Application of Series in Heat Transfer - transient heat conduction

Size: px
Start display at page:

Download "Application of Series in Heat Transfer - transient heat conduction"

Transcription

1 Application of Series in Heat Transfer - transient heat conduction By Alain Kassab Mechanical, Materials and Aerospace Engineering UCF EXCEL Applications of Calculus

2 Part I background and review of series (Monday 4, April 28). Taylor and Maclaurin series (section 2.) 2. Fourier series Part II applications (Monday 2, April 28). Transient heat conduction 2. Finite Difference

3 Background and review of series. Taylor series (section 2.) - developed through the works of J. Gregory, L. Euler, B. Taylor and C. Maclaurin ~ 8 th Century - named after B. Taylor Can be used represent any function, f(), that is infinitely differentiable about a point, o, called the epansion point, and the series is where, first derivative of f() R. second derivative of f(). n-th derivative of f() o Taylor series epansion point location where we evaluate the series The location,, where the series is evaluated can be taken anywhere within the radius of convergence of the series in order to yield the correct value for f().

4 James Gregory (638-67) Scottish mathematician and astronomer at the University of St. Andrews in 667 publishes series epansions for sin(), cos(), acos() and arcsin() that turn out to be Maclaurin series for these functions. Brook Taylor (68-73) English Mathematician, Cambridge University. Published his discoveries on series and what we call the Taylor theorem that according to Joseph Louis Lagrange was the main foundation of differential calculus in Methodus Incrementorum Directa et Inversa (7). Colin Maclaurin ( ), Scottish mathematician at the University of Edinburgh. Published series for trigonometric functions that now bear his name and popularizes them in his Calculus book Treatise of Fluions (742). ote: earlier Mādhava of Sangamagrama (4 th Century), (3-42) an Indian mathematician and astronomer had also discovered series for some trigonometric functions

5 Leonhard Paul Euler (77-783) a pioneering Swiss mathematician and physicist who made seminal discoveries in all branches of pure and applied mathematics and Calculus. He introduced much of the modern mathematical terminology and notation. He made major contributions to solid and fluid mechanics, optics and astronomy. Euler is considered to be the preeminent mathematician of the 8th century and one of the greatest of all time. He was blind for nearly half of his life and, despite that affliction, he was such a prolific scientific author that his discoveries are still being published. Pierre-Simon Laplace said of Euler Read Euler, read Euler, he is the master us all. In your studies you ll encounter his contributions in nearly every subject and when referring to Euler s Formula you will wonder which one? One of his most famous often called the Euler Formula is: He discovered the Maclaurin series for e :

6 infinitely differentiable about a point, o, means the function can t be badly behaved at o eamples of functions that are badly behaved and not differentiable at o = and, therefore, cannot be epanded in a Taylor series about that point. ln( o ) Φ ( o)

7 The radius of convergence of the series can be found using the ratio test (section 2.6). Practically, the radius of convergence is from the point o to the nearest point where f() is no longer well behaved. Eample: f()= ln() epanded about o =2 Taking the derivatives and evaluating at o =2 Plot of ln() for > ln () X o = R=2 Taylor series converges Taylor series diverges Introducing into the Taylor series definition, we have the series for ln() about o =2.and since ln() is badly behaved (goes to - ) at =, the series has radius of convergence R=2 or can be taken anywhere <<4 Let s compute this series with MATHCAD

8 Epand ln() about o =2 f (, ) := ln( 2) Evaluate series at point c := 2. + n = ( ) n+ ( 2)n n2 n Take M-terms in the series M := := 2,.. M X=2. is inside radius of convergence Series converges umber of terms in series = Taylor series for ln() about o =2 fc (, ) take anti-log of result to check = e fc (, ) =.9.94 fc (, ) e fc (, ) e fcm (, ) = Observation: =2. close to epansion point and series converges quickly (takes very few terms)

9 Epand ln() about o =2 f (, ) := ln( 2) Evaluate series at point c := n = ( ) n+ ( 2)n n2 n Take M-terms in the series M := := 2,.. M X=3.9 is inside radius of convergence Series converges umber of terms in series = Taylor series for ln() about o =2 fc (, ) take anti-log of result to check = e fc (, ) = fc (, ) e fc (, ) e fcm (, ) = Observation: =3.9 far from epansion point and series converges slowly (takes many terms)

10 Epand ln() about o =2 f (, ) := ln( 2) Evaluate series at point c := 4. + n = ( ) n+ ( 2)n n2 n Take M-terms in the series M := := 2,.. M umber of terms in series = Taylor series for ln() about o =2 fc (, ) take anti-log of result to check = e fc (, ) = fc (, ) e fc (, ) X=4. is outside radius of convergence Series diverges e fcm (, ) =

11 As we just saw in practice, when we compute using series, we can never add an infinite number of terms, so we truncate the series after -terms (stop after adding -terms) and, from the Taylor remainder theorem, we have an approimation of the function f() as Taylor polynomial: T n () Remainder: R n () ote: this epression for R n () is called the Lagrange form of the remainder. There are two other alternative forms: integral form of the remainder and Taylor s inequality. While we do not know ξ eactly, we do know at least that its location is somewhere o < ξ < More importantly, although we do not know the truncation error (TE) eactly, we know at least that it is proportional to (- o ) n+ [helps eplain rate of convergence]. How many terms do we take in the series? we take enough terms such that adding more terms will not make a significant change in the value of the sum we compute to approimate f(). For converging alternating series can rely on the Alternating Series Estimation Theorem (section 2.)

12 The Maclaurin series is a Taylor series epanded about the particular epansion point o =, that is What the big deal? discovered independently and the advantage is that if a function behaves well everywhere on the real ais (and can be epanded about any point) then the special point = gives the easiest form of the series to differentiated and to compute. Eample: computing π with the Maclaurin series for tan - (θ) y θ π tan( θ = ) = 4 π tan () = 4

13 so that the Maclaurin series for tan - (), also called Gregory s series, is ote: although the series converges on the interval,, from our previous and for the specific case that = and tan - () = π/4, then eperience we epect, that since we are interested to evaluate the series at =, slow convergence. or a way to compute π (called the Leibniz formula for π) is Let s compute with MATHCAD

14 ( ) Leibniz formula: pi( ) := 4 Take M-terms M := 2n + n = := 2,.. M = pi( ) = pi( M) = π = pi( )

15 OK, that s great, but how do we utilize such series in practice? In part II, we will consider practical eamples of the application of Taylor and Maclaurin series to the determination of the temperature of a hot metal bar being quenched (rapidly cooled) in water bath and the applications of Taylor series in computational methods in heat transfer and fluid flow (finite difference methods). The solution to certain heat conduction problems (EML 442 Heat Transfer) in which we seek the temperature as a function of time and space, T(,t), involves what is called the error function, erf(), which is defined by the integral Quenching of a metal bar This integral has no closed form solution, that is we cannot find a formula, a method, or a combination of tricks from calculus to integrate and find an eplicit epression for the integral. How are we to then compute the temperature? 2 We can utilize the Maclaurin series for into the integral and integrate term by term (section 2.9). e

16 The Maclaurin series for is which converges on - < < +. Utilizing this result we can epress as a series that converges also on - < < + and therefore can be integrated term by term and will yield a series that will converge for any value of. e 2

17 Integrating term by term So that the error function can be written as the series: You will also encounter this function in statistics (STA 332) as it is also called the probability function, and, in statistics, you will likely be told to use look-up tables to evaluate this function. After this discussion, you will know another way than to use a table. Let s compute the error function series for various values of using MATHCAD

18 Error function ( ) Erf o, Erf(, ) o :=.2 M := 2 ( ) n 2n+ := π n! ( 2n + ) n = := 2,.. M n :=, 2.. M nn :=, 3.. M ( ) ( ) = := ( ) Erf( o, ) erf o = Erf o, M Error( ) erf o = Erf o, ( ) = Error( ) = Error( )

19 Error function Erf( o, ).. Erf(, ) := o :=. M := 2 ( ) n 2n+ π n! ( 2n + ) n = := 2,.. M n :=, 2.. M nn :=, 3.. M ( ) ( ) = := ( ) Erf( o, ) erf o = Erf o, M Error( ) erf o = Erf o, ( ) = Error( ) = Error( )

20 Error function Erf( o, ) 2 Erf(, ) o := 2. M := 2 ( ) n 2n+ := π n! ( 2n + ) n = := 2,.. M n :=, 2.. M nn :=, 3.. M ( ) ( ) = := ( ) Erf( o, ) erf o = Erf o, M Error( ) erf o Erf( o, M) = ( ) = Erf o, = Error( ) = Error( ) 2 3 4

21 The error function of : definition and series erf(.) =.2 erf( 2) =.99 erf( 2.) =.8 erf( )

22 2. Fourier series - due to the work of Jean-Baptiste Fourier (768-83) and named after him - L. Euler and Jacob Bernoulli also had made early discoveries summing certain sine and cosine series for specific functions. A function f() can be represented on [-L,L] as a sum of sines and cosines, the Fourier series where the coefficients in the series are given by: provide the amplitude for every trigonometric wave: applications in acoustics, vibrations, heat transfer, signal processing, imaging,.

23 Jean-Baptiste Joseph Fourier (768-83) who lived in the days of apoleon whom he accompanied in his 798 campaigns to Egypt and served as governor of Lower Egypt under French rule. He later became Prefect of the Department of Isere in South-Western France where he carried out the famous eperimental and analytical research that laid the foundations of heat transfer. It was a great accomplishment by Fourier to show that any function, with some reasonable degree to continuity, could be epressed in terms of summations of trigonometric functions that now bear his name: Fourier series. Actually, some of the greatest mathematicians and physicists of his time were not convinced of this and made his life a bit miserable. He published these results and the foundations of heat transfer in solids in his famous 822 treatise Théorie Analytique de la Chaleure (the Analytical Theory of Heat) which got him elected as a member of the French ational Academy of Science (with special mention for lack of rigor are the French tough or what!), of which he was later to be the Permanent Secretary. Mathematician, physicist and historian Ecole ormale and Ecole Polytechnique Fourier is also credited with the discovery in 824 that gases in the atmosphere might increase the surface temperature of the Earth: the greenhouse effect.

24 The Bernoullis were a family of Swiss traders and scholars. The founder of the family, icolaus Bernoulli, immigrated to Basel from Flanders in the 6 th Century. The Bernoulli family has produced many notable mathematicians, scientists, philosophers and artists, and in particular several of the most well-known mathematician the 8th century: the brothers Jacob and Johann Bernoulli and Daniel Bernoulli. icolaus Bernoulli (623-78) Jacob Bernoulli (64 7; also Jacques): Bernoulli numbers and icolaus Bernoulli (662 76) separation of variables icloaus I Bernoulli (687 79) Johann Bernoulli ( ): developed L Hopital s rule & sold it to him icolaus II Bernoulli (69 726) Daniel Bernoulli (7 782): Bernoulli Equation Johann Bernoulli II (7 79) Johann Bernoulli II (744 87) Daniel II Bernoulli (7 834) Jacob Bernoulli II (79 789) Johann s son Daniel The brothers: Jacob and Johann 2 p + ρ V + gh = constant 2

25 How does this series work? Lets eamine the terms. the mean value: 2. amplitude of cosine waves: w_cos (, n) := cos n π L also called the discrete Fourier cosine transform w_cos(, ) w_cos(, 2) w_cos(, 3)..

26 3. amplitude of sine waves: w_sin(, n) := sin n π L also called the discrete Fourier sine transform w_sin(, ) w_sin(, 2) w_sin(, 3).. J.B Fourier, 822 treatise Théorie Analytique de la Chaleure J.P. Dirichlet (8-89) defines the Dirichlet conditions for f() to be represented by a Fourier series as well as the behavior of the Fourier series of f():. f() must be a piece-wise regular real-valued function defined on some interval, say [-L,L] or [,L] 2. f() has only a finite number of discontinuities and etrema in that interval 3 then Fourier series of this function converges to f() where f() is continuous and to the arithmetic mean of the limit to the left and limit to the right of the function f() at a point where f() is discontinuous.

27 EXAMPLE: f() = Є [,L] f() := Calculate the Fourier series coefficients: f ( ) L 2 a := f () d a = mean value of f() L L on [-L,L] L L a n π f ( ) cos n L L := d b f ( ) sin n π n L L := d L L Let s compute this series with MATHCAD

28 n = a = n b = n a n -.64 b n All the a n s are zero!! actually, we already know this.why? 2 n and f()= Integral of odd function (cos even, odd and cos() is odd) between symmetric limits=!

29 . F(, ) := a + n = a cos n π n L b sin n π n L + As we add more terms series converges F (, ) F (, ) F (, ) F(, ma)..... terms terms terms ma terms ma:= f()=. what s going on here? F(, ma).. what s going on here?...

30 Since we represent a function with sum of periodic functions result is periodic!!! and at endpoints converges to mean value from limit to the left and limit to the right: ol J.P. (Dirichlet) was right!!! M := 3 := M L, M L +... ML 3 2 mean value of the limit from the left and the limit from the right F (, ) F(, ma) this wiggling is called the Gibb s effect terms ma terms f()=

31 M := 6 := M L, M L +... ML F (, ) F(, ma) terms ma terms f()=

32 Step function. Fourier series can handle even discontinuous functions f (). ma:= F(, ) := a + n = a cos n π n L + b sin n π n L F(, ma) F (, ) F (, ) terms F (, ) F(, ma). f ( )... terms terms terms ma terms f() modern version: I. Daubechie s wavelets handles jumps without wiggles

33 Conclusions we studied two series:. Taylor series - very powerful but can t model discontinuous functions. - applied to evaluation of error function (the probability integral) 2. Fourier series - very general and can model to some degree discontinuous functions. Coming attractions: applications to heat transfer and finite difference methods in heat and fluid flow

9.2 Taylor Polynomials

9.2 Taylor Polynomials 9.2 Taylor Polynomials Taylor Polynomials and Approimations Polynomial functions can be used to approimate other elementary functions such as sin, Eample 1: f at 0 Find the equation of the tangent line

More information

Computer Problems for Taylor Series and Series Convergence

Computer Problems for Taylor Series and Series Convergence Computer Problems for Taylor Series and Series Convergence The two problems below are a set; the first should be done without a computer and the second is a computer-based follow up. 1. The drawing below

More information

Fourier series: Fourier, Dirichlet, Poisson, Sturm, Liouville

Fourier series: Fourier, Dirichlet, Poisson, Sturm, Liouville Fourier series: Fourier, Dirichlet, Poisson, Sturm, Liouville Joseph Fourier (1768-1830) upon returning from Egypt in 1801 was appointed by Napoleon Prefect of the Department of Isères (where Grenoble

More information

Time-Frequency Analysis: Fourier Transforms and Wavelets

Time-Frequency Analysis: Fourier Transforms and Wavelets Chapter 4 Time-Frequenc Analsis: Fourier Transforms and Wavelets 4. Basics of Fourier Series 4.. Introduction Joseph Fourier (768-83) who gave his name to Fourier series, was not the first to use Fourier

More information

On the computational complexity of mathematical functions

On the computational complexity of mathematical functions On the computational complexity of mathematical functions Jean-Pierre Demailly Institut Fourier, Université de Grenoble I & Académie des Sciences, Paris (France) November 26, 2011 KVPY conference at Vijyoshi

More information

AP Calculus AB Summer Assignment

AP Calculus AB Summer Assignment AP Calculus AB Summer Assignment Name: When you come back to school, it is my epectation that you will have this packet completed. You will be way behind at the beginning of the year if you haven t attempted

More information

Fourier Analysis Fourier Series C H A P T E R 1 1

Fourier Analysis Fourier Series C H A P T E R 1 1 C H A P T E R Fourier Analysis 474 This chapter on Fourier analysis covers three broad areas: Fourier series in Secs...4, more general orthonormal series called Sturm iouville epansions in Secs..5 and.6

More information

PHYS 502 Lecture 3: Fourier Series

PHYS 502 Lecture 3: Fourier Series PHYS 52 Lecture 3: Fourier Series Fourier Series Introduction In mathematics, a Fourier series decomposes periodic functions or periodic signals into the sum of a (possibly infinite) set of simple oscillating

More information

Time-Frequency Analysis: Fourier Transforms and Wavelets

Time-Frequency Analysis: Fourier Transforms and Wavelets Chapter 4 Time-Frequenc Analsis: Fourier Transforms and Wavelets 4. Basics of Fourier Series 4.. Introduction Joseph Fourier (768-83) who gave his name to Fourier series, was not the first to use Fourier

More information

1 Question related to polynomials

1 Question related to polynomials 07-08 MATH00J Lecture 6: Taylor Series Charles Li Warning: Skip the material involving the estimation of error term Reference: APEX Calculus This lecture introduced Taylor Polynomial and Taylor Series

More information

1 Exponential Functions Limit Derivative Integral... 5

1 Exponential Functions Limit Derivative Integral... 5 Contents Eponential Functions 3. Limit................................................. 3. Derivative.............................................. 4.3 Integral................................................

More information

Leonhard Euler: Swiss man famous for mathematics, and not his chocolate

Leonhard Euler: Swiss man famous for mathematics, and not his chocolate 1 Jose Cabrera Dr. Shanyu Ji Math 4388 31 October 2016 Leonhard Euler: Swiss man famous for mathematics, and not his chocolate Leonhard Euler - one of the most revolutionary figures in 18th century mathematics.

More information

Taylor Series and Series Convergence (Online)

Taylor Series and Series Convergence (Online) 7in 0in Felder c02_online.te V3 - February 9, 205 9:5 A.M. Page CHAPTER 2 Taylor Series and Series Convergence (Online) 2.8 Asymptotic Epansions In introductory calculus classes the statement this series

More information

Mathematics 132 Calculus for Physical and Life Sciences 2 Exam 3 Review Sheet April 15, 2008

Mathematics 132 Calculus for Physical and Life Sciences 2 Exam 3 Review Sheet April 15, 2008 Mathematics 32 Calculus for Physical and Life Sciences 2 Eam 3 Review Sheet April 5, 2008 Sample Eam Questions - Solutions This list is much longer than the actual eam will be (to give you some idea of

More information

INFINITE SEQUENCES AND SERIES

INFINITE SEQUENCES AND SERIES 11 INFINITE SEQUENCES AND SERIES INFINITE SEQUENCES AND SERIES In section 11.9, we were able to find power series representations for a certain restricted class of functions. INFINITE SEQUENCES AND SERIES

More information

Power series and Taylor series

Power series and Taylor series Power series and Taylor series D. DeTurck University of Pennsylvania March 29, 2018 D. DeTurck Math 104 002 2018A: Series 1 / 42 Series First... a review of what we have done so far: 1 We examined series

More information

Sequences and Series

Sequences and Series Sequences and Series What do you think of when you read the title of our next unit? In case your answers are leading us off track, let's review the following IB problems. 1 November 2013 HL 2 3 November

More information

An improper integral and an infinite series

An improper integral and an infinite series An improper integral and an infinite series A. Baltimore one of the old cities in the United States Yue Kwok Choy In summer of 2010, I had great time visiting my daughter, Wendy, who is living in a small

More information

THE MATHEMATICS OF EULER. Introduction: The Master of Us All. (Dunham, Euler the Master xv). This quote by twentieth-century mathematician André Weil

THE MATHEMATICS OF EULER. Introduction: The Master of Us All. (Dunham, Euler the Master xv). This quote by twentieth-century mathematician André Weil THE MATHEMATICS OF EULER Introduction: The Master of Us All All his life he seems to have carried in his head the whole of the mathematics of his day (Dunham, Euler the Master xv). This quote by twentieth-century

More information

Analysis II: Fourier Series

Analysis II: Fourier Series .... Analysis II: Fourier Series Kenichi Maruno Department of Mathematics, The University of Texas - Pan American May 3, 011 K.Maruno (UT-Pan American) Analysis II May 3, 011 1 / 16 Fourier series were

More information

AP Calculus AB Summer Assignment

AP Calculus AB Summer Assignment AP Calculus AB Summer Assignment Name: When you come back to school, you will be epected to have attempted every problem. These skills are all different tools that you will pull out of your toolbo this

More information

Chapter 29 BC Calculus Practice Test

Chapter 29 BC Calculus Practice Test Chapter 9 BC Calculus Practice Test The Eam AP Calculus BC Eam SECTION I: Multiple-Choice Questions DO NOT OPEN THIS BOOKLET UNTIL YOU ARE TOLD TO DO SO. At a Glance Total Time hour and 5 minutes Number

More information

8.5 Taylor Polynomials and Taylor Series

8.5 Taylor Polynomials and Taylor Series 8.5. TAYLOR POLYNOMIALS AND TAYLOR SERIES 50 8.5 Taylor Polynomials and Taylor Series Motivating Questions In this section, we strive to understand the ideas generated by the following important questions:

More information

Review of Power Series

Review of Power Series Review of Power Series MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Introduction In addition to the techniques we have studied so far, we may use power

More information

Introduction Derivation General formula List of series Convergence Applications Test SERIES 4 INU0114/514 (MATHS 1)

Introduction Derivation General formula List of series Convergence Applications Test SERIES 4 INU0114/514 (MATHS 1) MACLAURIN SERIES SERIES 4 INU0114/514 (MATHS 1) Dr Adrian Jannetta MIMA CMath FRAS Maclaurin Series 1/ 21 Adrian Jannetta Recap: Binomial Series Recall that some functions can be rewritten as a power series

More information

Boyce/DiPrima/Meade 11 th ed, Ch 1.1: Basic Mathematical Models; Direction Fields

Boyce/DiPrima/Meade 11 th ed, Ch 1.1: Basic Mathematical Models; Direction Fields Boyce/DiPrima/Meade 11 th ed, Ch 1.1: Basic Mathematical Models; Direction Fields Elementary Differential Equations and Boundary Value Problems, 11 th edition, by William E. Boyce, Richard C. DiPrima,

More information

The answers below are not comprehensive and are meant to indicate the correct way to solve the problem. sin

The answers below are not comprehensive and are meant to indicate the correct way to solve the problem. sin Math : Practice Final Answer Key Name: The answers below are not comprehensive and are meant to indicate the correct way to solve the problem. Problem : Consider the definite integral I = 5 sin ( ) d.

More information

9.8 APPLICATIONS OF TAYLOR SERIES EXPLORATORY EXERCISES. Using Taylor Polynomials to Approximate a Sine Value EXAMPLE 8.1

9.8 APPLICATIONS OF TAYLOR SERIES EXPLORATORY EXERCISES. Using Taylor Polynomials to Approximate a Sine Value EXAMPLE 8.1 9-75 SECTION 9.8.. Applications of Taylor Series 677 and f 0) miles/min 3. Predict the location of the plane at time t min. 5. Suppose that an astronaut is at 0, 0) and the moon is represented by a circle

More information

Solutions to Math 41 Final Exam December 9, 2013

Solutions to Math 41 Final Exam December 9, 2013 Solutions to Math 4 Final Eam December 9,. points In each part below, use the method of your choice, but show the steps in your computations. a Find f if: f = arctane csc 5 + log 5 points Using the Chain

More information

Lecture 5. The Digital Fourier Transform. (Based, in part, on The Scientist and Engineer's Guide to Digital Signal Processing by Steven Smith)

Lecture 5. The Digital Fourier Transform. (Based, in part, on The Scientist and Engineer's Guide to Digital Signal Processing by Steven Smith) Lecture 5 The Digital Fourier Transform (Based, in part, on The Scientist and Engineer's Guide to Digital Signal Processing by Steven Smith) 1 -. 8 -. 6 -. 4 -. 2-1 -. 8 -. 6 -. 4 -. 2 -. 2. 4. 6. 8 1

More information

West Essex Regional School District. AP Calculus AB. Summer Packet

West Essex Regional School District. AP Calculus AB. Summer Packet West Esse Regional School District AP Calculus AB Summer Packet 05-06 Calculus AB Calculus AB covers the equivalent of a one semester college calculus course. Our focus will be on differential and integral

More information

Representation of Functions by Power Series. Geometric Power Series

Representation of Functions by Power Series. Geometric Power Series 60_0909.qd //0 :09 PM Page 669 SECTION 9.9 Representation of Functions b Power Series 669 The Granger Collection Section 9.9 JOSEPH FOURIER (768 80) Some of the earl work in representing functions b power

More information

Introduction Derivation General formula Example 1 List of series Convergence Applications Test SERIES 4 INU0114/514 (MATHS 1)

Introduction Derivation General formula Example 1 List of series Convergence Applications Test SERIES 4 INU0114/514 (MATHS 1) MACLAURIN SERIES SERIES 4 INU0114/514 (MATHS 1) Dr Adrian Jannetta MIMA CMath FRAS Maclaurin Series 1/ 19 Adrian Jannetta Background In this presentation you will be introduced to the concept of a power

More information

CHAPTER 1 Prerequisites for Calculus 2. CHAPTER 2 Limits and Continuity 58

CHAPTER 1 Prerequisites for Calculus 2. CHAPTER 2 Limits and Continuity 58 CHAPTER 1 Prerequisites for Calculus 2 1.1 Lines 3 Increments Slope of a Line Parallel and Perpendicular Lines Equations of Lines Applications 1.2 Functions and Graphs 12 Functions Domains and Ranges Viewing

More information

Math 113 (Calculus 2) Exam 4

Math 113 (Calculus 2) Exam 4 Math 3 (Calculus ) Exam 4 November 0 November, 009 Sections 0, 3 7 Name Student ID Section Instructor In some cases a series may be seen to converge or diverge for more than one reason. For such problems

More information

2.5 Exponential Functions and Trigonometric Functions

2.5 Exponential Functions and Trigonometric Functions 5 CHAPTER. COMPLEX-VALUED FUNCTIONS.5 Exponential Functions and Trigonometric Functions Exponential Function and Its Properties By the theory of power series, we can define e z := which is called the exponential

More information

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals 8. Basic Integration Rules In this section we will review various integration strategies. Strategies: I. Separate

More information

Chapter 2 Joseph Fourier

Chapter 2 Joseph Fourier Chapter 2 Joseph Fourier Joseph Fourier (1768 1830) 2.1 Introduction Fourier series are trigonometric series used to represent a function, and they are widely used throughout pure and applied mathematics.

More information

Properties of Fourier Cosine and Sine Transforms

Properties of Fourier Cosine and Sine Transforms International Journal of Sciences: Basic and Applied Research (IJSBAR) ISSN 237-4531 (Print & Online) http://gssrr.org/index.php?journal=journalofbasicandapplied ---------------------------------------------------------------------------------------------------------------------------

More information

Partial Fractions. dx dx x sec tan d 1 4 tan 2. 2 csc d. csc cot C. 2x 5. 2 ln. 2 x 2 5x 6 C. 2 ln. 2 ln x

Partial Fractions. dx dx x sec tan d 1 4 tan 2. 2 csc d. csc cot C. 2x 5. 2 ln. 2 x 2 5x 6 C. 2 ln. 2 ln x 460_080.qd //04 :08 PM Page CHAPTER 8 Integration Techniques, L Hôpital s Rule, and Improper Integrals Section 8. Partial Fractions Understand the concept of a partial fraction decomposition. Use partial

More information

Math 112 Rahman. Week Taylor Series Suppose the function f has the following power series:

Math 112 Rahman. Week Taylor Series Suppose the function f has the following power series: Math Rahman Week 0.8-0.0 Taylor Series Suppose the function f has the following power series: fx) c 0 + c x a) + c x a) + c 3 x a) 3 + c n x a) n. ) Can we figure out what the coefficients are? Yes, yes

More information

Lecture # 06. Image Processing in Frequency Domain

Lecture # 06. Image Processing in Frequency Domain Digital Image Processing CP-7008 Lecture # 06 Image Processing in Frequency Domain Fall 2011 Outline Fourier Transform Relationship with Image Processing CP-7008: Digital Image Processing Lecture # 6 2

More information

Using the TI-92+ : examples

Using the TI-92+ : examples Using the TI-9+ : eamples Michel Beaudin École de technologie supérieure 1100, rue Notre-Dame Ouest Montréal (Québec) Canada, H3C 1K3 mbeaudin@seg.etsmtl.ca 1- Introduction We incorporated the use of the

More information

INVERSE TRIGONOMETRIC FUNCTIONS. Mathematics, in general, is fundamentally the science of self-evident things. FELIX KLEIN

INVERSE TRIGONOMETRIC FUNCTIONS. Mathematics, in general, is fundamentally the science of self-evident things. FELIX KLEIN . Introduction Mathematics, in general, is fundamentally the science of self-evident things. FELIX KLEIN In Chapter, we have studied that the inverse of a function f, denoted by f, eists if f is one-one

More information

Review of elements of Calculus (functions in one variable)

Review of elements of Calculus (functions in one variable) Review of elements of Calculus (functions in one variable) Mainly adapted from the lectures of prof Greg Kelly Hanford High School, Richland Washington http://online.math.uh.edu/houstonact/ https://sites.google.com/site/gkellymath/home/calculuspowerpoints

More information

Bernoulli Numbers and their Applications

Bernoulli Numbers and their Applications Bernoulli Numbers and their Applications James B Silva Abstract The Bernoulli numbers are a set of numbers that were discovered by Jacob Bernoulli (654-75). This set of numbers holds a deep relationship

More information

5.4 Continuity: Preliminary Notions

5.4 Continuity: Preliminary Notions 5.4. CONTINUITY: PRELIMINARY NOTIONS 181 5.4 Continuity: Preliminary Notions 5.4.1 Definitions The American Heritage Dictionary of the English Language defines continuity as an uninterrupted succession,

More information

Mat104 Fall 2002, Improper Integrals From Old Exams

Mat104 Fall 2002, Improper Integrals From Old Exams Mat4 Fall 22, Improper Integrals From Old Eams For the following integrals, state whether they are convergent or divergent, and give your reasons. () (2) (3) (4) (5) converges. Break it up as 3 + 2 3 +

More information

AP Calculus Chapter 9: Infinite Series

AP Calculus Chapter 9: Infinite Series AP Calculus Chapter 9: Infinite Series 9. Sequences a, a 2, a 3, a 4, a 5,... Sequence: A function whose domain is the set of positive integers n = 2 3 4 a n = a a 2 a 3 a 4 terms of the sequence Begin

More information

23.4. Convergence. Introduction. Prerequisites. Learning Outcomes

23.4. Convergence. Introduction. Prerequisites. Learning Outcomes Convergence 3.4 Introduction In this Section we examine, briefly, the convergence characteristics of a Fourier series. We have seen that a Fourier series can be found for functions which are not necessarily

More information

Working Group report: A brief history of functions for mathematics educators. Keywords: history of mathematics; functions; BSHM

Working Group report: A brief history of functions for mathematics educators. Keywords: history of mathematics; functions; BSHM Working Group report: A brief history of functions for mathematics educators Leo Rogers and Sue Pope British Society for the History of Mathematics (BSHM); Manchester Metropolitan University Despite the

More information

Continuous-time Fourier Methods

Continuous-time Fourier Methods ELEC 321-001 SIGNALS and SYSTEMS Continuous-time Fourier Methods Chapter 6 1 Representing a Signal The convolution method for finding the response of a system to an excitation takes advantage of the linearity

More information

dx dx x sec tan d 1 4 tan 2 2 csc d 2 ln 2 x 2 5x 6 C 2 ln 2 ln x ln x 3 x 2 C Now, suppose you had observed that x 3

dx dx x sec tan d 1 4 tan 2 2 csc d 2 ln 2 x 2 5x 6 C 2 ln 2 ln x ln x 3 x 2 C Now, suppose you had observed that x 3 CHAPTER 8 Integration Techniques, L Hôpital s Rule, and Improper Integrals Section 8. Partial Fractions Understand the concept of a partial fraction decomposition. Use partial fraction decomposition with

More information

Communication Signals (Haykin Sec. 2.4 and Ziemer Sec Sec. 2.4) KECE321 Communication Systems I

Communication Signals (Haykin Sec. 2.4 and Ziemer Sec Sec. 2.4) KECE321 Communication Systems I Communication Signals (Haykin Sec..4 and iemer Sec...4-Sec..4) KECE3 Communication Systems I Lecture #3, March, 0 Prof. Young-Chai Ko 년 3 월 일일요일 Review Signal classification Phasor signal and spectra Representation

More information

Beyond the Basel Problem: Sums of Reciprocals of Figurate Numbers

Beyond the Basel Problem: Sums of Reciprocals of Figurate Numbers Beyond the Basel Problem: Sums of Reciprocals of Figurate Numbers June 7, 008 Lawrence Downey (lmd08@psuedu) and Boon W Ong (bwo@psuedu), Penn State Erie, Behrend College, Erie, PA 6563, and James A Sellers

More information

HUDSONVILLE HIGH SCHOOL COURSE FRAMEWORK

HUDSONVILLE HIGH SCHOOL COURSE FRAMEWORK HUDSONVILLE HIGH SCHOOL COURSE FRAMEWORK COURSE / SUBJECT A P C a l c u l u s ( B C ) KEY COURSE OBJECTIVES/ENDURING UNDERSTANDINGS OVERARCHING/ESSENTIAL SKILLS OR QUESTIONS Limits and Continuity Derivatives

More information

Continuous functions. Limits of non-rational functions. Squeeze Theorem. Calculator issues. Applications of limits

Continuous functions. Limits of non-rational functions. Squeeze Theorem. Calculator issues. Applications of limits Calculus Lia Vas Continuous functions. Limits of non-rational functions. Squeeze Theorem. Calculator issues. Applications of limits Continuous Functions. Recall that we referred to a function f() as a

More information

Beyond Newton and Leibniz: The Making of Modern Calculus. Anthony V. Piccolino, Ed. D. Palm Beach State College Palm Beach Gardens, Florida

Beyond Newton and Leibniz: The Making of Modern Calculus. Anthony V. Piccolino, Ed. D. Palm Beach State College Palm Beach Gardens, Florida Beyond Newton and Leibniz: The Making of Modern Calculus Anthony V. Piccolino, Ed. D. Palm Beach State College Palm Beach Gardens, Florida Calculus Before Newton & Leibniz Four Major Scientific Problems

More information

19. TAYLOR SERIES AND TECHNIQUES

19. TAYLOR SERIES AND TECHNIQUES 19. TAYLOR SERIES AND TECHNIQUES Taylor polynomials can be generated for a given function through a certain linear combination of its derivatives. The idea is that we can approximate a function by a polynomial,

More information

BC Calculus Diagnostic Test

BC Calculus Diagnostic Test BC Calculus Diagnostic Test The Eam AP Calculus BC Eam SECTION I: Multiple-Choice Questions DO NOT OPEN THIS BOOKLET UNTIL YOU ARE TOLD TO DO SO. At a Glance Total Time hour and 5 minutes Number of Questions

More information

Chapter 17: Fourier Series

Chapter 17: Fourier Series Section A Introduction to Fourier Series By the end of this section you will be able to recognise periodic functions sketch periodic functions determine the period of the given function Why are Fourier

More information

Taylor and Maclaurin Series

Taylor and Maclaurin Series Taylor and Maclaurin Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Background We have seen that some power series converge. When they do, we can think of them as

More information

Questions. x 2 e x dx. Use Part 1 of the Fundamental Theorem of Calculus to find the derivative of the functions g(x) = x cost2 dt.

Questions. x 2 e x dx. Use Part 1 of the Fundamental Theorem of Calculus to find the derivative of the functions g(x) = x cost2 dt. Questions. Evaluate the Riemann sum for f() =,, with four subintervals, taking the sample points to be right endpoints. Eplain, with the aid of a diagram, what the Riemann sum represents.. If f() = ln,

More information

Steady and unsteady diffusion

Steady and unsteady diffusion Chapter 5 Steady and unsteady diffusion In this chapter, we solve the diffusion and forced convection equations, in which it is necessary to evaluate the temperature or concentration fields when the velocity

More information

Chapter 19 Classwork Famous Scientist Biography Isaac...

Chapter 19 Classwork Famous Scientist Biography Isaac... Chapter 19 Classwork Famous Scientist Biography Isaac... Score: 1. is perhaps the greatest physicist who has ever lived. 1@1 2. He and are almost equally matched contenders for this title. 1@1 3. Each

More information

AP Calculus BC Summer Assignment 2018

AP Calculus BC Summer Assignment 2018 AP Calculus BC Summer Assignment 018 Name: When you come back to school, I will epect you to have attempted every problem. These skills are all different tools that we will pull out of our toolbo at different

More information

Limits and Their Properties

Limits and Their Properties Chapter 1 Limits and Their Properties Course Number Section 1.1 A Preview of Calculus Objective: In this lesson you learned how calculus compares with precalculus. I. What is Calculus? (Pages 42 44) Calculus

More information

Chapter 9: Infinite Series Part 2

Chapter 9: Infinite Series Part 2 Name: Date: Period: AP Calc BC Mr. Mellina/Ms. Lombardi Chapter 9: Infinite Series Part 2 Topics: 9.5 Alternating Series Remainder 9.7 Taylor Polynomials and Approximations 9.8 Power Series 9.9 Representation

More information

Introduction. x 7. Partial fraction decomposition x 7 of. x 7. x 3 1. x 2. Decomposition of N x /D x into Partial Fractions. N x. D x polynomial N 1 x

Introduction. x 7. Partial fraction decomposition x 7 of. x 7. x 3 1. x 2. Decomposition of N x /D x into Partial Fractions. N x. D x polynomial N 1 x 333202_0704.qd 2/5/05 9:43 M Page 533 Section 7.4 Partial Fractions 533 7.4 Partial Fractions What you should learn Recognize partial fraction decompositions of rational epressions. Find partial fraction

More information

Chapter 4 Sequences and Series

Chapter 4 Sequences and Series Chapter 4 Sequences and Series 4.1 Sequence Review Sequence: a set of elements (numbers or letters or a combination of both). The elements of the set all follow the same rule (logical progression). The

More information

Summer Review Packet for Students Entering AP Calculus BC. Complex Fractions

Summer Review Packet for Students Entering AP Calculus BC. Complex Fractions Summer Review Packet for Students Entering AP Calculus BC Comple Fractions When simplifying comple fractions, multiply by a fraction equal to 1 which has a numerator and denominator composed of the common

More information

E = {x 0 < x < 1}. Z f(x) dx <.

E = {x 0 < x < 1}. Z f(x) dx <. Chapter Devastating Eamples Students of calculus develop an intuition for the subject typically based on geometric considerations. This intuition works adequately for problems in physics and engineering.

More information

Pure Further Mathematics 2. Revision Notes

Pure Further Mathematics 2. Revision Notes Pure Further Mathematics Revision Notes October 016 FP OCT 016 SDB Further Pure 1 Inequalities... 3 Algebraic solutions... 3 Graphical solutions... 4 Series Method of Differences... 5 3 Comple Numbers...

More information

Mathematical Misnomers: Hey, who really discovered that theorem!

Mathematical Misnomers: Hey, who really discovered that theorem! Mathematical Misnomers: Hey, who really discovered that theorem! Mike Raugh mikeraugh.org LACC Math Contest 24th March 2007 Who was buried in Grant s tomb? Ulysss S. Grant, of course! These are true too:

More information

Paper read at History of Science Society 2014 Annual Meeting, Chicago, Nov. 9,

Paper read at History of Science Society 2014 Annual Meeting, Chicago, Nov. 9, Euler s Mechanics as Opposition to Leibnizian Dynamics 1 Nobumichi ARIGA 2 1. Introduction Leonhard Euler, the notable mathematician in the eighteenth century, is also famous for his contributions to mechanics.

More information

Answer Key 1973 BC 1969 BC 24. A 14. A 24. C 25. A 26. C 27. C 28. D 29. C 30. D 31. C 13. C 12. D 12. E 3. A 32. B 27. E 34. C 14. D 25. B 26.

Answer Key 1973 BC 1969 BC 24. A 14. A 24. C 25. A 26. C 27. C 28. D 29. C 30. D 31. C 13. C 12. D 12. E 3. A 32. B 27. E 34. C 14. D 25. B 26. Answer Key 969 BC 97 BC. C. E. B. D 5. E 6. B 7. D 8. C 9. D. A. B. E. C. D 5. B 6. B 7. B 8. E 9. C. A. B. E. D. C 5. A 6. C 7. C 8. D 9. C. D. C. B. A. D 5. A 6. B 7. D 8. A 9. D. E. D. B. E. E 5. E.

More information

y x is symmetric with respect to which of the following?

y x is symmetric with respect to which of the following? AP Calculus Summer Assignment Name: Note: Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers for which f () is a real number. Part : Multiple Choice Solve

More information

O1 History of Mathematics Lecture VIII Establishing rigorous thinking in analysis. Monday 31st October 2016 (Week 4)

O1 History of Mathematics Lecture VIII Establishing rigorous thinking in analysis. Monday 31st October 2016 (Week 4) O1 History of Mathematics Lecture VIII Establishing rigorous thinking in analysis Monday 31st October 2016 (Week 4) Summary French institutions Fourier series Early-19th-century rigour Limits, continuity,

More information

Useful Mathematics. 1. Multivariable Calculus. 1.1 Taylor s Theorem. Monday, 13 May 2013

Useful Mathematics. 1. Multivariable Calculus. 1.1 Taylor s Theorem. Monday, 13 May 2013 Useful Mathematics Monday, 13 May 013 Physics 111 In recent years I have observed a reticence among a subpopulation of students to dive into mathematics when the occasion arises in theoretical mechanics

More information

Part Two. Diagnostic Test

Part Two. Diagnostic Test Part Two Diagnostic Test AP Calculus AB and BC Diagnostic Tests Take a moment to gauge your readiness for the AP Calculus eam by taking either the AB diagnostic test or the BC diagnostic test, depending

More information

+ y = 1 : the polynomial

+ y = 1 : the polynomial Notes on Basic Ideas of Spherical Harmonics In the representation of wavefields (solutions of the wave equation) one of the natural considerations that arise along the lines of Huygens Principle is the

More information

MATH141: Calculus II Exam #4 review solutions 7/20/2017 Page 1

MATH141: Calculus II Exam #4 review solutions 7/20/2017 Page 1 MATH4: Calculus II Exam #4 review solutions 7/0/07 Page. The limaçon r = + sin θ came up on Quiz. Find the area inside the loop of it. Solution. The loop is the section of the graph in between its two

More information

Basic methods to solve equations

Basic methods to solve equations Roberto s Notes on Prerequisites for Calculus Chapter 1: Algebra Section 1 Basic methods to solve equations What you need to know already: How to factor an algebraic epression. What you can learn here:

More information

BESSEL FUNCTIONS APPENDIX D

BESSEL FUNCTIONS APPENDIX D APPENDIX D BESSEL FUNCTIONS D.1 INTRODUCTION Bessel functions are not classified as one of the elementary functions in mathematics; however, Bessel functions appear in the solution of many physical problems

More information

Calculus Problem Sheet Prof Paul Sutcliffe. 2. State the domain and range of each of the following functions

Calculus Problem Sheet Prof Paul Sutcliffe. 2. State the domain and range of each of the following functions f( 8 6 4 8 6-3 - - 3 4 5 6 f(.9.8.7.6.5.4.3.. -4-3 - - 3 f( 7 6 5 4 3-3 - - Calculus Problem Sheet Prof Paul Sutcliffe. By applying the vertical line test, or otherwise, determine whether each of the following

More information

Lies My Calculator and Computer Told Me

Lies My Calculator and Computer Told Me Lies My Calculator and Computer Told Me 2 LIES MY CALCULATOR AND COMPUTER TOLD ME Lies My Calculator and Computer Told Me See Section.4 for a discussion of graphing calculators and computers with graphing

More information

Course. Print and use this sheet in conjunction with MathinSite s Maclaurin Series applet and worksheet.

Course. Print and use this sheet in conjunction with MathinSite s Maclaurin Series applet and worksheet. Maclaurin Series Learning Outcomes After reading this theory sheet, you should recognise the difference between a function and its polynomial epansion (if it eists!) understand what is meant by a series

More information

Composition of and the Transformation of Functions

Composition of and the Transformation of Functions 1 3 Specific Outcome Demonstrate an understanding of operations on, and compositions of, functions. Demonstrate an understanding of the effects of horizontal and vertical translations on the graphs of

More information

lecture 7: Trigonometric Interpolation

lecture 7: Trigonometric Interpolation lecture : Trigonometric Interpolation 9 Trigonometric interpolation for periodic functions Thus far all our interpolation schemes have been based on polynomials However, if the function f is periodic,

More information

VII. Techniques of Integration

VII. Techniques of Integration VII. Techniques of Integration Integration, unlike differentiation, is more of an art-form than a collection of algorithms. Many problems in applied mathematics involve the integration of functions given

More information

MthEd/Math 300 Williams Fall 2011 Midterm Exam 3

MthEd/Math 300 Williams Fall 2011 Midterm Exam 3 Name: MthEd/Math 300 Williams Fall 2011 Midterm Exam 3 Closed Book / Closed Note. Answer all problems. You may use a calculator for numerical computations. Section 1: For each event listed in the first

More information

d 1 µ 2 Θ = 0. (4.1) consider first the case of m = 0 where there is no azimuthal dependence on the angle φ.

d 1 µ 2 Θ = 0. (4.1) consider first the case of m = 0 where there is no azimuthal dependence on the angle φ. 4 Legendre Functions In order to investigate the solutions of Legendre s differential equation d ( µ ) dθ ] ] + l(l + ) m dµ dµ µ Θ = 0. (4.) consider first the case of m = 0 where there is no azimuthal

More information

Properties of a Taylor Polynomial

Properties of a Taylor Polynomial 3.4.4: Still Better Approximations: Taylor Polynomials Properties of a Taylor Polynomial Constant: f (x) f (a) Linear: f (x) f (a) + f (a)(x a) Quadratic: f (x) f (a) + f (a)(x a) + 1 2 f (a)(x a) 2 3.4.4:

More information

TOTAL NAME DATE PERIOD AP CALCULUS AB UNIT 4 ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT /6 10/8 10/9 10/10 X X X X 10/11 10/12

TOTAL NAME DATE PERIOD AP CALCULUS AB UNIT 4 ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT /6 10/8 10/9 10/10 X X X X 10/11 10/12 NAME DATE PERIOD AP CALCULUS AB UNIT ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT 0 0 0/6 0/8 0/9 0/0 X X X X 0/ 0/ 0/5 0/6 QUIZ X X X 0/7 0/8 0/9 0/ 0/ 0/ 0/5 UNIT EXAM X X X TOTAL AP Calculus

More information

CONTINUITY AND DIFFERENTIABILITY

CONTINUITY AND DIFFERENTIABILITY 5. Introduction The whole of science is nothing more than a refinement of everyday thinking. ALBERT EINSTEIN This chapter is essentially a continuation of our stu of differentiation of functions in Class

More information

Euler s Formula for.2n/

Euler s Formula for.2n/ Euler s Formula for.2n/ Timothy W. Jones January 28, 208 Abstract In this article we derive a formula for zeta(2) and zeta(2n). Introduction In this paper we derive from scratch k 2 D 2 6 () and k 2p D.

More information

Calculus 1 - Lab ) f(x) = 1 x. 3.8) f(x) = arcsin( x+1., prove the equality cosh 2 x sinh 2 x = 1. Calculus 1 - Lab ) lim. 2.

Calculus 1 - Lab ) f(x) = 1 x. 3.8) f(x) = arcsin( x+1., prove the equality cosh 2 x sinh 2 x = 1. Calculus 1 - Lab ) lim. 2. ) Solve the following inequalities.) ++.) 4 >.) Calculus - Lab { + > + 5 + < +. ) Graph the functions f() =, g() = + +, h() = cos( ), r() = +. ) Find the domain of the following functions.) f() = +.) f()

More information

Chapter 5 Symbolic Increments

Chapter 5 Symbolic Increments Chapter 5 Symbolic Increments The main idea of di erential calculus is that small changes in smooth functions are approimately linear. In Chapter 3, we saw that most microscopic views of graphs appear

More information

Fourier Analysis Partial Differential Equations (PDEs)

Fourier Analysis Partial Differential Equations (PDEs) PART C Fourier Analysis. Partial Differential Equations (PDEs) CHAPTER CHAPTER Fourier Analysis Partial Differential Equations (PDEs) Chapter and Chapter are directly related to each other in that Fourier

More information

Complex Analysis: A Round-Up

Complex Analysis: A Round-Up Complex Analysis: A Round-Up October 1, 2009 Sergey Lototsky, USC, Dept. of Math. *** 1 Prelude: Arnold s Principle Valdimir Igorevich Arnold (b. 1937): Russian The Arnold Principle. If a notion bears

More information