SYMMETRY ANALYSIS AND SOME SOLUTIONS OF GOWDY EQUATIONS

Size: px
Start display at page:

Download "SYMMETRY ANALYSIS AND SOME SOLUTIONS OF GOWDY EQUATIONS"

Transcription

1 SYMMETRY ANALYSIS AND SOME SOLUTIONS OF GOWDY EQUATIONS RAJEEV KUMAR 1, R.K.GUPTA 2,a, S.S.BHATIA 2 1 Department of Mathematics Maharishi Markandeshwar Univesity, Mullana, Ambala Haryana, India rajeevkumarbudhiraja@gmail.com. 2 School of Mathematics and Computer Applications Thapar University, Patiala Punjab, India a : rajeshgupta@thapar.edu Corresponding author Received April 11, 2014 The Gowdy spacetime metric splits the vacuum Einstein field equations into evolution equations, known as Gowdy equations. In this paper, Lie classical method is applied to investigate symmetries of the Gowdy equations, that is a coupled system of nonlinear second order partial differential equations. Symmetries which are obtained in this paper, are further helpful for reducing the coupled system of partial differential equations into ordinary differential equations. Moreover, some new solutions of Gowdy equations are derived from reduced differential equations. Key words: Lie classical method, Gowdy spacetimes, Gowdy equations, Cosmology. PACS: Sv, k. 1. INTRODUCTION In the literature, different approaches have been applied to study the singularity in inhomogeneous cosmologies. The most extensively studied class of these spacetimes is the class of Gowdy spacetimes on T 3 R [1]-[4]. In the Gowdy class the spacetime metric can be written in the form ds 2 = t 1 2 e λ 2 dt 2 + dθ 2 + t e P dx + Qdy 2 + e P dy 2}. 1 Here the functions P, Q and λ depend only on t and θ. The essential equations describing these spacetimes are a system of semilinear wave equations for two functions P and Q which are assumed to be periodic with period 2π in the spatial coordinate t. The vacuum Einstein field equations [5] split into two systems, in which first is evolution equations for P and Q: P tt + 1 t P t P θθ e 2P Q 2 t Q 2 θ = 0 Q tt + 1 t Q t Q θθ + 2Q t P t Q θ P θ = 0, RJP Rom. 60Nos. Journ. Phys., 1-2, Vol , Nos , P. c 15 21, 2015 Bucharest, - v.1.3a*

2 16 Rajeev Kumar, R.K.Gupta, S.S.Bhatia 2 and the other is constraint equations for λ: λ θ = t [ P 2 θ + P 2 t + e 2P Q 2 t + Q 2 θ], λ t = 2t P t P θ + e 2P Q t Q θ. 3 The constraint equations determine λ once P and Q are known. The integrability conditions for the constraint equations are satisfied as a consequence of the evolution equations. Since the evolution equations do not depend on λ there is essentially a complete decoupling of constraints from evolution equations. In this paper, we will deal with equations 2, which we call the Gowdy equations [6, 7]. The layout of this paper is as follows: Section 2 is devoted to an outline of the Lie classical method [8] [10] for generating various symmetries of the Gowdy equations. Section 3 deals with the determination of the transformation group for the reduction of system 2 to a system of ordinary differential equations ODEs and exact solutions have also been obtained. We record our conclusion in last Section. 2. LIE SYMMETRY ANALYSIS A Lie point symmetry of a partial differential equation PDE is an invertible transformation of the dependent and independent variables that leaves the equation unchanged. Sophus Lie observed that if we restrict ourself to symmetries that depend continuously on a small parameter and that form a group continuous one-parameter group of transformations, one can linearize the symmetry conditions and end up with an algorithm for calculating continuous symmetries. The Lie classical method has been used to examine the exact solutions of various nonlinear PDEs for some important contributions, refer to [11] [18]. In view of the algorithmic steps, we proceed as follows: Let us first consider the Lie group of point transformations t = t + ξ X, σ + O ɛ 2, θ = θ + τ X, σ + O ɛ 2, σ = σ + φ X, σ + O ɛ 2, 4 where X = t,θ, σ = P,Q and φ = η,φ, which leaves the system 2 invariant. In other words, the transformations are such that if σ is a solution of system 2 then σ is also a solution. The method for determining the symmetry group of system 2 mainly consists of finding the infinitesimals ξ, τ, η and φ, which are functions of t, θ, P and Q. We get the following relations from the coefficients of the first order of ɛ as η tt + tη t ξp t η θθ 2e 2P φ t Q t φ θ Q θ 2e 2P η Q 2 t Q 2 θ = 0, φ tt + φ t t ξq t φ θθ + 2φ t P t + 2η t Q t 2φ θ P θ 2η θ Q θ = 0, 5

3 3 Symmetry analysis and some solutions of Gowdy equations 17 where η t,η θ, φ t,φ θ, η tt, η θθ, φ θθ,φ θθ are extended prolonged infinitesimals acting on an enlarged space that includes all derivatives of the dependent variables P t, P θ, Q t, Q θ, P tt, P θθ, Q tt and Q θθ. The infinitesimals are determined from invariance conditions 5, by setting the coefficients of different differentials equal to zero. We obtain a large number of PDEs in ξ, τ, η and φ that need to be satisfied. The general solution of this large system provides the following forms for the infinitesimal elements ξ, τ, η and φ: τ = k 1 θ + k 2, ξ = k 1 t, η = k 3, φ = k 4 k 3 Q, where k i, i = 1,2,3,4 are arbitrary constants. The Lie algebra associated with the system of 2 consists of the following four vector fields: 6 V 1 = θ, V 2 = Q, V 3 = θ θ + t t, V 4 = P Q Q SYMMETRY REDUCTIONS AND SOLUTIONS One of the main purposes for calculating symmetries of a differential equation is to use them for obtaining symmetry reductions and finding exact solutions. In this section, we will make use of the linear combination of system of vector fields 7 and reduce the system equations 2 to systems of ODEs. The similarity variables and the similarity solutions of the Gowdy equation can be obtained by solving characteristic equation given dt ξ = dθ τ = dp η = dq φ. 8 The general solution of these equations involves three variables; one becomes the new independent variable ζ and the other two, F and G are dependent variables VECTOR FIELD V 3 For this vector field, on solving the system of equations 2 and 8 we obtain ζ = t θ,p = F ζ,q = Gζ. 9

4 18 Rajeev Kumar, R.K.Gupta, S.S.Bhatia 4 By using these similarity variables and similarity solutions in system 2, the reduced system of ODEs is as follows: F 1 + ζ 2ζ F ζ 2 F e 2F 1 ζ 2 G 2 = 0, G 1 + ζ 2ζ G ζ 2 G ζ 2 10 F G = 0. Solution of the system 10 of ODEs is as follow: Let Gζ = exp F ζh ζ, F ζ = N ζ. Using these substitutions our system reduce to N ζ + N 2Nζ 2 N ζ 3 ζn 2 H 2 + 2ζNHH H ζ N Hζ ζhn 2 NH + 2NHζ 2 + H ζh 2 + ζ 3 N 2 H 2 2ζ 3 NHH + ζ 3 H 2 = 0, 2ζ 2 H + ζ 3 N H + ζ 3 N 2 H ζ 3 H = 0. We arrive at following cases: Case 1: Hζ = 0, that is not a physically interesting case. Case 2: Hζ = ι, where ι represents the complex number iota. With this, our system 11 reduced to single equation: ζ 1 ζζ N + ζ 2 1 ζζ N ζ + 1 2ζ 3 4ζ N ζ 3 + 2ζ 2 + ζ 1 = 0, 12 which can be further solve to give solution ζ 2 1ζ + c 1 ln ζ + ζ 2 1 ζ 2 1ζ + c 1 ζ + c 2 N ζ = c 1 ln ζ + ζ ζ + 1, 13 ζ 2 1ζ where c 1, c 2 are constants. Using above we get final solution of system 2, ζ 2 1ζ + c 1 ln ζ + ζ 2 1 ζ 2 1ζ + c 1 ζ + c 2 P = c 1 ln ζ + ζ ζ + 1 dζ + d 1, 14 ζ 2 1ζ ζ 2 1ζ + c 1 ln ζ + ζ 2 1 ζ 2 1ζ + c 1 ζ + c 2 Q = ιexp c 1 ln ζ + ζ ζ + 1 dζ + d 1, ζ 2 1ζ where ζ = t θ and d 1 is constant. On substituting 14 in 3, we get λ =constant.

5 5 Symmetry analysis and some solutions of Gowdy equations VECTOR FIELD V 1 Following the same way as above, we get ζ = t,p = F ζ,q = Gζ. 15 Substituting 15 into system of equations 2 yields a reduced ODEs as: F + F ζ e2f G 2 = 0, G + G ζ + 2F G = 0. Solution of this system 16 of ODEs is as follows: Let Gζ = exp F ζh ζ, F ζ = N ζ. Using these substitutions our system reduce to N + N ζ N 2 H 2 + 2NHH H 2 = 0, ζh ζn H + H NH ζn 2 H = We arrive at following cases: Case 1: Hζ = 0, that is not a physically interesting case. Case 2: Hζ = ι, where ι represents the complex number iota. With this, our system 17 reduced to single equation: 1 ζ 2 N + N ζ 3ζN = 0, 18 which can be further solve to give solution: N ζ = ζ2 + d 2 ζζ 2 1, 19 where d 2 is constant. Using these results we get final solution of system 2 as follows: [ ] t P = log 2 1 ] d 2 + log[ t t 2 1, [ ] t Q = ιexp log 2 1 d 2 + log[ t t 2 1] 20. On substituting 20 in 3, we get λ =constant.

6 20 Rajeev Kumar, R.K.Gupta, S.S.Bhatia VECTOR FIELD V 1 + V 4 Corresponding to this vector field, the forms of the similarity variable and similarity solution are as follows: ζ = θ,p = F ζ,q = Gζ, 21 using above the system equations 2 reduces to the following ODEs: F e 2F G 2 = 0, G 2F G = 0. Solution of this system 22 of ODEs is as follows: Let Gζ = exp F ζh ζ, F ζ = N ζ. Using these substitutions our system reduce to N N 2 H 2 + 2NHH H 2 = 0, H N H 4NH + 3N 2 H = 0. We arrive at following cases: Case 1: Hζ = 0, that is not a physically interesting case. Case 2: Hζ = ι, where ι represents the complex number iota. With this, our system 23 reduced to single equation: ζn + N 2 ζ 2 2ζ + 4N + 3N 2 ζ + 1 = 0, 24 which can be further solve to give solution: N ζ = ζ d 3 d ζ + ζ ζ 1 2 5, 25 where d 3 is constant. Using these results we get final solution of system 2 as θ d 3 P = d θ + θ θ 1 dθ, 2 5 [ ] θ d 3 Q = ιexp d θ + θ θ 1 dθ. 2 5 On substituting 26 in 3, we get λ =constant CONCLUSION This paper intended to present some key aspects on how a vacuum Einstein field equations whose evolution is described by a nonlinear differential equation known as Gowdy equation, can be studied using the Lie classical symmetry method. The main

7 7 Symmetry analysis and some solutions of Gowdy equations 21 steps which have to be done in order to find a set of exact solutions are: i determination of the general form for the symmetry operator; ii based on the different set of operators and using the similarity reduction procedure, a complete set of invariant solutions can be generated; iii last but not least, a special method can be applied in order to find the solution. This is a new exact solution of the nonlinear system of vacuum Einstein field equations that are not found in the literature. REFERENCES 1. R.H. Gowdy, Ann. Phys. NY. 83, M. Tanimoto, J. Math. Phys. 39, S. Kichenassamy and A. Rendall, Class. Quantum Grav. 15, A.D. Rendall and M. Weaver, Class. Quantum Grav. 18, A. Einstein, Annal. Physik 17, A. Sáncheza, A. Maćyasa and H. Quevedo, Revista Mexicana De Física 53, A.D. Rendall, J. of Geo. and Phys. 62, S. Lie, Vorlesungenüber Differentialgleichungen mit Bekannten Infinitesimalen Transformationen Teuber, Leipzig, 1891; reprinted by Chelsea, New York, P.J. Olver, Applications of Lie Groups to Differential Equations, New York, Springer Verlag, G.W. Bluman, S.C. Anco, Symmetry and Integration Methods for Differential Equations, New York, Appl. Math. Sci., 154, Springer, K. Singh and R.K. Gupta, Int. J. of Eng. Sci., 44, R.K. Gupta and K. Singh, Comm. in Nonlinear Sci. and Num. Simu. 16, H. Triki, A. Yildirim, T. Hayat, O.M. Aldossary and A. Biswas, Rom. J. Phys. 57, A. Biswas, A. Yildirim, T. Hayat, O.M. Aldossary and R. Sassaman, Proc. of the Romanian Acad. A 13, G. Ebadi, N. Yousefzadeh Fard, A.H. Bhrawy, S. Kumar, H. Triki, A. Yildirim and A. Biswas, Rom. Rep. Phys. 65, A. Biswas, S. Kumar, E.V. Krishnan, B. Ahmed, A. Strong, S. Johnson and A. Yildirim, Rom. Rep. Phys. 65, G. Ebadi, A. Mojaver, H. Triki, A. Yildirim and A. Biswas, Rom. J. Phys. 58, N. Goyal and R.K. Gupta, Chin. Phys. B 20,

Painlevé analysis and some solutions of variable coefficient Benny equation

Painlevé analysis and some solutions of variable coefficient Benny equation PRAMANA c Indian Academy of Sciences Vol. 85, No. 6 journal of December 015 physics pp. 1111 11 Painlevé analysis and some solutions of variable coefficient Benny equation RAJEEV KUMAR 1,, R K GUPTA and

More information

Symmetry Reductions of (2+1) dimensional Equal Width. Wave Equation

Symmetry Reductions of (2+1) dimensional Equal Width. Wave Equation Authors: Symmetry Reductions of (2+1) dimensional Equal Width 1. Dr. S. Padmasekaran Wave Equation Asst. Professor, Department of Mathematics Periyar University, Salem 2. M.G. RANI Periyar University,

More information

Painlevé Analysis, Lie Symmetries and Exact Solutions for Variable Coefficients Benjamin Bona Mahony Burger (BBMB) Equation

Painlevé Analysis, Lie Symmetries and Exact Solutions for Variable Coefficients Benjamin Bona Mahony Burger (BBMB) Equation Commun. Theor. Phys. 60 (2013) 175 182 Vol. 60, No. 2, August 15, 2013 Painlevé Analysis, Lie Symmetries and Exact Solutions for Variable Coefficients Benjamin Bona Mahony Burger (BBMB) Equation Vikas

More information

On the Linearization of Second-Order Dif ferential and Dif ference Equations

On the Linearization of Second-Order Dif ferential and Dif ference Equations Symmetry, Integrability and Geometry: Methods and Applications Vol. (006), Paper 065, 15 pages On the Linearization of Second-Order Dif ferential and Dif ference Equations Vladimir DORODNITSYN Keldysh

More information

Group analysis of differential equations: A new type of Lie symmetries

Group analysis of differential equations: A new type of Lie symmetries Group analysis of differential equations: A new type of Lie symmetries Jacob Manale The Department of Mathematical Sciences, University of South Africa, Florida, 1709, Johannesburg, Gauteng Province, Republic

More information

SIMILARITY SOLUTIONS OF FIELD EQUATIONS WITH AN ELECTROMAGNETIC STRESS TENSOR AS SOURCE

SIMILARITY SOLUTIONS OF FIELD EQUATIONS WITH AN ELECTROMAGNETIC STRESS TENSOR AS SOURCE (c) 2018 Rom. Rep. Phys. (for accepted papers only) SIMILARITY SOLUTIONS OF FIELD EQUATIONS WITH AN ELECTROMAGNETIC STRESS TENSOR AS SOURCE LAKHVEER KAUR 1,a, ABDUL-MAJID WAZWAZ 2,b 1 Department of Mathematics,

More information

LIE SYMMETRY, FULL SYMMETRY GROUP, AND EXACT SOLUTIONS TO THE (2+1)-DIMENSIONAL DISSIPATIVE AKNS EQUATION

LIE SYMMETRY, FULL SYMMETRY GROUP, AND EXACT SOLUTIONS TO THE (2+1)-DIMENSIONAL DISSIPATIVE AKNS EQUATION LIE SYMMETRY FULL SYMMETRY GROUP AND EXACT SOLUTIONS TO THE (2+1)-DIMENSIONAL DISSIPATIVE AKNS EQUATION ZHENG-YI MA 12 HUI-LIN WU 1 QUAN-YONG ZHU 1 1 Department of Mathematics Lishui University Lishui

More information

Symmetry and Exact Solutions of (2+1)-Dimensional Generalized Sasa Satsuma Equation via a Modified Direct Method

Symmetry and Exact Solutions of (2+1)-Dimensional Generalized Sasa Satsuma Equation via a Modified Direct Method Commun. Theor. Phys. Beijing, China 51 2009 pp. 97 978 c Chinese Physical Society and IOP Publishing Ltd Vol. 51, No., June 15, 2009 Symmetry and Exact Solutions of 2+1-Dimensional Generalized Sasa Satsuma

More information

A Recursion Formula for the Construction of Local Conservation Laws of Differential Equations

A Recursion Formula for the Construction of Local Conservation Laws of Differential Equations A Recursion Formula for the Construction of Local Conservation Laws of Differential Equations Alexei Cheviakov Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, Canada December

More information

Symmetries and reduction techniques for dissipative models

Symmetries and reduction techniques for dissipative models Symmetries and reduction techniques for dissipative models M. Ruggieri and A. Valenti Dipartimento di Matematica e Informatica Università di Catania viale A. Doria 6, 95125 Catania, Italy Fourth Workshop

More information

arxiv:gr-qc/ v1 12 Mar 2003

arxiv:gr-qc/ v1 12 Mar 2003 ASYMPTOTIC EXPANSIONS CLOSE TO THE SINGULARITY IN GOWDY SPACETIMES HANS RINGSTRÖM arxiv:gr-qc/0303051 v1 12 Mar 2003 Abstract. We consider Gowdy spacetimes under the assumption that the spatial hypersurfaces

More information

Lie Symmetry of Ito Stochastic Differential Equation Driven by Poisson Process

Lie Symmetry of Ito Stochastic Differential Equation Driven by Poisson Process American Review of Mathematics Statistics June 016, Vol. 4, No. 1, pp. 17-30 ISSN: 374-348 (Print), 374-356 (Online) Copyright The Author(s).All Rights Reserved. Published by American Research Institute

More information

Symmetry reductions for the Tzitzeica curve equation

Symmetry reductions for the Tzitzeica curve equation Fayetteville State University DigitalCommons@Fayetteville State University Math and Computer Science Working Papers College of Arts and Sciences 6-29-2012 Symmetry reductions for the Tzitzeica curve equation

More information

Computers and Mathematics with Applications

Computers and Mathematics with Applications Computers and Mathematics with Applications 60 (00) 3088 3097 Contents lists available at ScienceDirect Computers and Mathematics with Applications journal homepage: www.elsevier.com/locate/camwa Symmetry

More information

Generalized evolutionary equations and their invariant solutions

Generalized evolutionary equations and their invariant solutions Generalized evolutionary equations and their invariant solutions Rodica Cimpoiasu, Radu Constantinescu University of Craiova, 13 A.I.Cuza Street, 200585 Craiova, Dolj, Romania Abstract The paper appplies

More information

Symmetry Reduction of Chazy Equation

Symmetry Reduction of Chazy Equation Applied Mathematical Sciences, Vol 8, 2014, no 70, 3449-3459 HIKARI Ltd, wwwm-hikaricom http://dxdoiorg/1012988/ams201443208 Symmetry Reduction of Chazy Equation Figen AÇIL KİRAZ Department of Mathematics,

More information

On Certain New Exact Solutions of the (2+1)-Dimensional Calogero-Degasperis Equation via Symmetry Approach

On Certain New Exact Solutions of the (2+1)-Dimensional Calogero-Degasperis Equation via Symmetry Approach ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.13(01) No.4,pp.475-481 On Certain New Exact Solutions of the (+1)-Dimensional Calogero-Degasperis Equation via

More information

Lie and Non-Lie Symmetries of Nonlinear Diffusion Equations with Convection Term

Lie and Non-Lie Symmetries of Nonlinear Diffusion Equations with Convection Term Symmetry in Nonlinear Mathematical Physics 1997, V.2, 444 449. Lie and Non-Lie Symmetries of Nonlinear Diffusion Equations with Convection Term Roman CHERNIHA and Mykola SEROV Institute of Mathematics

More information

Lie Theory of Differential Equations and Computer Algebra

Lie Theory of Differential Equations and Computer Algebra Seminar Sophus Lie 1 (1991) 83 91 Lie Theory of Differential Equations and Computer Algebra Günter Czichowski Introduction The aim of this contribution is to show the possibilities for solving ordinary

More information

ANALYSIS OF A NONLINEAR SURFACE WIND WAVES MODEL VIA LIE GROUP METHOD

ANALYSIS OF A NONLINEAR SURFACE WIND WAVES MODEL VIA LIE GROUP METHOD Electronic Journal of Differential Equations, Vol. 206 (206), No. 228, pp. 8. ISSN: 072-669. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ANALYSIS OF A NONLINEAR SURFACE WIND WAVES MODEL

More information

arxiv: v1 [math.ap] 10 Apr 2008

arxiv: v1 [math.ap] 10 Apr 2008 Optimal systems of subalgebras and invariant solutions for a nonlinear Black-Scholes equation arxiv:0804.1673v1 [math.ap] 10 Apr 2008 Maxim Bobrov Halmstad University, Box 823, 301 18 Halmstad, Sweden

More information

Exact Solutions of Nonlinear Partial Dif ferential Equations by the Method of Group Foliation Reduction

Exact Solutions of Nonlinear Partial Dif ferential Equations by the Method of Group Foliation Reduction Symmetry, Integrability and Geometry: Methods and Applications Exact Solutions of Nonlinear Partial Dif ferential Equations by the Method of Group Foliation Reduction SIGMA 7 (2011), 066, 10 pages Stephen

More information

Solution for a non-homogeneous Klein-Gordon Equation with 5th Degree Polynomial Forcing Function

Solution for a non-homogeneous Klein-Gordon Equation with 5th Degree Polynomial Forcing Function Advanced Studies in Theoretical Physics Vol., 207, no. 2, 679-685 HIKARI Ltd, www.m-hikari.com https://doi.org/0.2988/astp.207.7052 Solution for a non-homogeneous Klein-Gordon Equation with 5th Degree

More information

Symmetry Solutions of a Third-Order Ordinary Differential Equation which Arises from Prandtl Boundary Layer Equations

Symmetry Solutions of a Third-Order Ordinary Differential Equation which Arises from Prandtl Boundary Layer Equations Journal of Nonlinear Mathematical Physics Volume 15, Supplement 1 (2008), 179 191 Article Symmetry Solutions of a Third-Order Ordinary Differential Equation which Arises from Prandtl Boundary Layer Equations

More information

Lie point symmetries and invariant solutions of (2+1)- dimensional Calogero Degasperis equation

Lie point symmetries and invariant solutions of (2+1)- dimensional Calogero Degasperis equation NTMSCI 5, No. 1, 179-189 (017) 179 New Trends in Mathematical Sciences http://.doi.org/10.085/ntmsci.017.136 Lie point symmetries and invariant solutions of (+1)- dimensional Calogero Degasperis equation

More information

SYMMETRY REDUCTION AND NUMERICAL SOLUTION OF A THIRD-ORDER ODE FROM THIN FILM FLOW

SYMMETRY REDUCTION AND NUMERICAL SOLUTION OF A THIRD-ORDER ODE FROM THIN FILM FLOW Mathematical and Computational Applications,Vol. 15, No. 4, pp. 709-719, 2010. c Association for Scientific Research SYMMETRY REDUCTION AND NUMERICAL SOLUTION OF A THIRD-ORDER ODE FROM THIN FILM FLOW E.

More information

EXP-FUNCTION AND -EXPANSION METHODS

EXP-FUNCTION AND -EXPANSION METHODS SOLVIN NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS USIN EXP-FUNCTION AND -EXPANSION METHODS AHMET BEKIR 1, ÖZKAN ÜNER 2, ALI H. BHRAWY 3,4, ANJAN BISWAS 3,5 1 Eskisehir Osmangazi University, Art-Science

More information

arxiv:gr-qc/ v1 25 Jan 1997

arxiv:gr-qc/ v1 25 Jan 1997 Inflationary solutions and inhomogeneous Kaluza-Klein cosmology in 4 n dimensions Santiago E. Perez Bergliaffa Departamento de Física, Universidad Nacional de La Plata C.C. 67, 1900, La Plata, Buenos Aires,

More information

Department of Mathematics Luleå University of Technology, S Luleå, Sweden. Abstract

Department of Mathematics Luleå University of Technology, S Luleå, Sweden. Abstract Nonlinear Mathematical Physics 1997, V.4, N 4, 10 7. Transformation Properties of ẍ + f 1 t)ẋ + f t)x + f t)x n = 0 Norbert EULER Department of Mathematics Luleå University of Technology, S-971 87 Luleå,

More information

Research Article Exact Solutions of φ 4 Equation Using Lie Symmetry Approach along with the Simplest Equation and Exp-Function Methods

Research Article Exact Solutions of φ 4 Equation Using Lie Symmetry Approach along with the Simplest Equation and Exp-Function Methods Abstract and Applied Analysis Volume 2012, Article ID 350287, 7 pages doi:10.1155/2012/350287 Research Article Exact Solutions of φ 4 Equation Using Lie Symmetry Approach along with the Simplest Equation

More information

Exact Solutions of Space-time Fractional EW and modified EW equations

Exact Solutions of Space-time Fractional EW and modified EW equations arxiv:1601.01294v1 [nlin.si] 6 Jan 2016 Exact Solutions of Space-time Fractional EW and modified EW equations Alper Korkmaz Department of Mathematics, Çankırı Karatekin University, Çankırı, TURKEY January

More information

Global properties of solutions to the Einstein-matter equations

Global properties of solutions to the Einstein-matter equations Global properties of solutions to the Einstein-matter equations Makoto Narita Okinawa National College of Technology 12/Nov./2012 @JGRG22, Tokyo Singularity theorems and two conjectures Theorem 1 (Penrose)

More information

Potential symmetry and invariant solutions of Fokker-Planck equation in. cylindrical coordinates related to magnetic field diffusion

Potential symmetry and invariant solutions of Fokker-Planck equation in. cylindrical coordinates related to magnetic field diffusion Potential symmetry and invariant solutions of Fokker-Planck equation in cylindrical coordinates related to magnetic field diffusion in magnetohydrodynamics including the Hall current A. H. Khater a,1,

More information

SOLITONS AND OTHER SOLUTIONS TO LONG-WAVE SHORT-WAVE INTERACTION EQUATION

SOLITONS AND OTHER SOLUTIONS TO LONG-WAVE SHORT-WAVE INTERACTION EQUATION SOLITONS AND OTHER SOLUTIONS TO LONG-WAVE SHORT-WAVE INTERACTION EQUATION H. TRIKI 1, M. MIRZAZADEH 2, A. H. BHRAWY 3,4, P. RAZBOROVA 5, ANJAN BISWAS 3,5 1 Radiation Physics Laboratory, Department of Physics

More information

LIE SYMMETRY ANALYSIS AND EXACT SOLUTIONS TO N-COUPLED NONLINEAR SCHRÖDINGER S EQUATIONS WITH KERR AND PARABOLIC LAW NONLINEARITIES

LIE SYMMETRY ANALYSIS AND EXACT SOLUTIONS TO N-COUPLED NONLINEAR SCHRÖDINGER S EQUATIONS WITH KERR AND PARABOLIC LAW NONLINEARITIES LIE SYMMETRY ANALYSIS AND EXACT SOLUTIONS TO N-COUPLED NONLINEAR SCHRÖDINGER S EQUATIONS WITH KERR AND PARABOLIC LAW NONLINEARITIES YAKUP YILDIRIM 1, EMRULLAH YAŞAR 1, HOURIA TRIKI 2, QIN ZHOU 3, SEITHUTI

More information

On Symmetry Group Properties of the Benney Equations

On Symmetry Group Properties of the Benney Equations Proceedings of Institute of Mathematics of NAS of Ukraine 2004, Vol. 50, Part 1, 214 218 On Symmetry Group Properties of the Benney Equations Teoman ÖZER Istanbul Technical University, Faculty of Civil

More information

Invariance Analysis of the (2+1) Dimensional Long Dispersive Wave Equation

Invariance Analysis of the (2+1) Dimensional Long Dispersive Wave Equation Nonlinear Mathematical Physics 997 V.4 N 3 4 60. Invariance Analysis of the + Dimensional Long Dispersive Wave Equation M. SENTHIL VELAN and M. LAKSHMANAN Center for Nonlinear Dynamics Department of Physics

More information

Exact solutions through symmetry reductions for a new integrable equation

Exact solutions through symmetry reductions for a new integrable equation Exact solutions through symmetry reductions for a new integrable equation MARIA LUZ GANDARIAS University of Cádiz Department of Mathematics PO.BOX, 1151 Puerto Real, Cádiz SPAIN marialuz.gandarias@uca.es

More information

Topological and Non-Topological Soliton Solutions of the Coupled Klein-Gordon-Schrodinger and the Coupled Quadratic Nonlinear Equations

Topological and Non-Topological Soliton Solutions of the Coupled Klein-Gordon-Schrodinger and the Coupled Quadratic Nonlinear Equations Quant. Phys. Lett. 3, No., -5 (0) Quantum Physics Letters An International Journal http://dx.doi.org/0.785/qpl/0300 Topological Non-Topological Soliton Solutions of the Coupled Klein-Gordon-Schrodinger

More information

THE MODIFIED SIMPLE EQUATION METHOD FOR NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS

THE MODIFIED SIMPLE EQUATION METHOD FOR NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS THE MODIFIED SIMPLE EQUATION METHOD FOR NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS MELIKE KAPLAN 1,a, AHMET BEKIR 1,b, ARZU AKBULUT 1,c, ESIN AKSOY 2 1 Eskisehir Osmangazi University, Art-Science Faculty,

More information

) -Expansion Method for Solving (2+1) Dimensional PKP Equation. The New Generalized ( G. 1 Introduction. ) -expansion method

) -Expansion Method for Solving (2+1) Dimensional PKP Equation. The New Generalized ( G. 1 Introduction. ) -expansion method ISSN 749-3889 (print, 749-3897 (online International Journal of Nonlinear Science Vol.4(0 No.,pp.48-5 The New eneralized ( -Expansion Method for Solving (+ Dimensional PKP Equation Rajeev Budhiraja, R.K.

More information

Group analysis, nonlinear self-adjointness, conservation laws, and soliton solutions for the mkdv systems

Group analysis, nonlinear self-adjointness, conservation laws, and soliton solutions for the mkdv systems ISSN 139-5113 Nonlinear Analysis: Modelling Control, 017, Vol., No. 3, 334 346 https://doi.org/10.15388/na.017.3.4 Group analysis, nonlinear self-adjointness, conservation laws, soliton solutions for the

More information

arxiv:gr-qc/ v1 14 Jul 1994

arxiv:gr-qc/ v1 14 Jul 1994 LINEAR BIMETRIC GRAVITATION THEORY arxiv:gr-qc/9407017v1 14 Jul 1994 M.I. Piso, N. Ionescu-Pallas, S. Onofrei Gravitational Researches Laboratory 71111 Bucharest, Romania September 3, 2018 Abstract A general

More information

Path Integral Quantization of the Electromagnetic Field Coupled to A Spinor

Path Integral Quantization of the Electromagnetic Field Coupled to A Spinor EJTP 6, No. 22 (2009) 189 196 Electronic Journal of Theoretical Physics Path Integral Quantization of the Electromagnetic Field Coupled to A Spinor Walaa. I. Eshraim and Nasser. I. Farahat Department of

More information

Symmetry reductions and travelling wave solutions for a new integrable equation

Symmetry reductions and travelling wave solutions for a new integrable equation Symmetry reductions and travelling wave solutions for a new integrable equation MARIA LUZ GANDARIAS University of Cádiz Department of Mathematics PO.BOX 0, 50 Puerto Real, Cádiz SPAIN marialuz.gandarias@uca.es

More information

APPLICATIONS OF MAPLE SOFTWARE TO DERIVE EXACT SOLUTIONS OF GENERALIZED FIFTH-ORDER KORTEWEG-DE VRIES EQUATION WITH TIME-DEPENDENT COEFFICIENTS

APPLICATIONS OF MAPLE SOFTWARE TO DERIVE EXACT SOLUTIONS OF GENERALIZED FIFTH-ORDER KORTEWEG-DE VRIES EQUATION WITH TIME-DEPENDENT COEFFICIENTS c) 2015 Rom. Rep. Phys. for accepted papers only) APPLICATIONS OF MAPLE SOFTWARE TO DERIVE EXACT SOLUTIONS OF GENERALIZED FIFTH-ORDER KORTEWEG-DE VRIES EQUATION WITH TIME-DEPENDENT COEFFICIENTS NISHA GOYAL

More information

FRACTAL SPACE-TIME THEORY AND SUPERCONDUCTIVITY

FRACTAL SPACE-TIME THEORY AND SUPERCONDUCTIVITY GENERAL PHYSICS RELATIVITY FRACTAL SPACE-TIME THEORY AND SUPERCONDUCTIVITY M. AGOP 1, V. ENACHE, M. BUZDUGAN 1 Department of Physics, Technical Gh. Asachi University, Iaºi 70009, România Faculty of Physics,

More information

The BKL proposal and cosmic censorship

The BKL proposal and cosmic censorship - 1 - The BKL proposal and cosmic censorship Lars Andersson University of Miami and Albert Einstein Institute (joint work with Henk van Elst, Claes Uggla and Woei-Chet Lim) References: Gowdy phenomenology

More information

Symmetry of stochastic differential equations

Symmetry of stochastic differential equations G. Gaeta - GF85 - Trieste, Jan 2018 p. 1/73 Symmetry of stochastic differential equations Giuseppe Gaeta giuseppe.gaeta@unimi.it Dipartimento di Matematica, Università degli Studi di Milano **** Trieste,

More information

Approximate Similarity Reduction for Perturbed Kaup Kupershmidt Equation via Lie Symmetry Method and Direct Method

Approximate Similarity Reduction for Perturbed Kaup Kupershmidt Equation via Lie Symmetry Method and Direct Method Commun. Theor. Phys. Beijing, China) 54 2010) pp. 797 802 c Chinese Physical Society and IOP Publishing Ltd Vol. 54, No. 5, November 15, 2010 Approximate Similarity Reduction for Perturbed Kaup Kupershmidt

More information

A Fixed Point Theorem Satisfying a Generalized. Weak Contractive Condition of Integral Type

A Fixed Point Theorem Satisfying a Generalized. Weak Contractive Condition of Integral Type Int. Journal of Math. Analysis, Vol. 6, 2012, no. 38, 1883 1889 A Fixed Point Theorem Satisfying a Generalized Weak Contractive Condition of Integral Type Vishal Gupta Department of Mathematics Maharishi

More information

Exact Solutions of Supersymmetric KdV-a System via Bosonization Approach

Exact Solutions of Supersymmetric KdV-a System via Bosonization Approach Commun. Theor. Phys. 58 1 617 6 Vol. 58, No. 5, November 15, 1 Exact Solutions of Supersymmetric KdV-a System via Bosonization Approach GAO Xiao-Nan Ô é, 1 YANG Xu-Dong Êü, and LOU Sen-Yue 1,, 1 Department

More information

HOMOTOPY ANALYSIS METHOD FOR SOLVING COUPLED RAMANI EQUATIONS

HOMOTOPY ANALYSIS METHOD FOR SOLVING COUPLED RAMANI EQUATIONS HOMOTOPY ANALYSIS METHOD FOR SOLVING COUPLED RAMANI EQUATIONS A. JAFARIAN 1, P. GHADERI 2, ALIREZA K. GOLMANKHANEH 3, D. BALEANU 4,5,6 1 Department of Mathematics, Uremia Branch, Islamic Azan University,

More information

THE ANALYTICAL EXPRESSION OF THE CHERNOFF POLARIZATION OF THE WERNER STATE

THE ANALYTICAL EXPRESSION OF THE CHERNOFF POLARIZATION OF THE WERNER STATE THE ANALYTICAL EXPRESSION OF THE CHERNOFF POLARIZATION OF THE WERNER STATE IULIA GHIU 1,*, AURELIAN ISAR 2,3 1 University of Bucharest, Faculty of Physics, Centre for Advanced Quantum Physics, PO Box MG-11,

More information

arxiv: v1 [gr-qc] 6 Nov 2009

arxiv: v1 [gr-qc] 6 Nov 2009 Gowdy waves as a test-bed for constraint-preserving boundary conditions C. Bona and C. Bona-Casas Departament de Fisica, Universitat de les Illes Balears, Palma de Mallorca, Spain. Institute for Applied

More information

Research Article Equivalent Lagrangians: Generalization, Transformation Maps, and Applications

Research Article Equivalent Lagrangians: Generalization, Transformation Maps, and Applications Journal of Applied Mathematics Volume 01, Article ID 86048, 19 pages doi:10.1155/01/86048 Research Article Equivalent Lagrangians: Generalization, Transformation Maps, and Applications N. Wilson and A.

More information

Lie s Symmetries of (2+1)dim PDE

Lie s Symmetries of (2+1)dim PDE International Journal of Mathematics Trends and Technology (IJMTT) - Volume 5 Numer 6 Novemer 7 Lie s Symmetries of (+)dim PDE S. Padmasekaran and S. Rajeswari Department of Mathematics Periyar University

More information

Invariant and Conditionally Invariant Solutions of Magnetohydrodynamic Equations in (3 + 1) Dimensions

Invariant and Conditionally Invariant Solutions of Magnetohydrodynamic Equations in (3 + 1) Dimensions Proceedings of Institute of Mathematics of NAS of Ukraine 2004, Vol. 50, Part 1, 118 124 Invariant and Conditionally Invariant Solutions of Magnetohydrodynamic Equations in 3 + 1) Dimensions A.M. GRUNDLAND

More information

Bianchi Type-VI Inflationary Universe in General Relativity

Bianchi Type-VI Inflationary Universe in General Relativity March 01 Vol. 3 Issue 5 pp. 7-79 Katore S. D. & Chopade B. B. Bianchi Type-VI Inflationary Universe in General Relativity Bianchi Type-VI Inflationary Universe in General Relativity 7 Article Shivdas.

More information

Research Article Some Results on Equivalence Groups

Research Article Some Results on Equivalence Groups Applied Mathematics Volume 2012, Article ID 484805, 11 pages doi:10.1155/2012/484805 Research Article Some Results on Equivalence Groups J. C. Ndogmo School of Mathematics, University of the Witwatersrand,

More information

Type II hidden symmetries of the Laplace equation

Type II hidden symmetries of the Laplace equation Type II hidden symmetries of the Laplace equation Andronikos Paliathanasis Larnaka, 2014 A. Paliathanasis (Univ. of Naples) Type II symmetries Larnaka, 2014 1 / 25 Plan of the Talk 1 The generic symmetry

More information

Applications of Lie Group Analysis to the Equations of Motion of Inclined Unsagged Cables

Applications of Lie Group Analysis to the Equations of Motion of Inclined Unsagged Cables Applied Mathematical Sciences, Vol., 008, no. 46, 59-69 Applications of Lie Group Analysis to the Equations of Motion of Inclined Unsagged Cables Waraporn Chatanin Department of Mathematics King Mongkut

More information

The symmetry structures of ASD manifolds

The symmetry structures of ASD manifolds The symmetry structures of ASD manifolds 1 1 School of Mathematics University of the Witatersrand, Johannesburg South Africa African Institute of Mathematics Outline 1 Introduction 2 3 The dispersionless

More information

On the cosmic no-hair conjecture in the Einstein-Vlasov setting

On the cosmic no-hair conjecture in the Einstein-Vlasov setting On the cosmic no-hair conjecture in the Einstein-Vlasov setting KTH, Royal Institute of Technology, Stockholm Recent Advances in Mathematical General Relativity Institut Henri Poincaré, Paris September

More information

Electromagnetic spikes

Electromagnetic spikes Electromagnetic spikes Ernesto Nungesser (joint work with Woei Chet Lim) Trinity College Dublin ANZAMP, 29th of November, 2013 Overview Heuristic picture of initial singularity What is a Bianchi spacetime?

More information

arxiv: v2 [physics.gen-ph] 30 Dec 2014

arxiv: v2 [physics.gen-ph] 30 Dec 2014 arxiv:1411.2013v2 [physics.gen-ph] 30 Dec 2014 Plane Symmetric Cylindrically Symmetric and Spherically Symmetric Black hole Solutions of Einstein Field Equations Farhad Ali School of Natural Sciences National

More information

General Relativity and Cosmology Mock exam

General Relativity and Cosmology Mock exam Physikalisches Institut Mock Exam Universität Bonn 29. June 2011 Theoretische Physik SS 2011 General Relativity and Cosmology Mock exam Priv. Doz. Dr. S. Förste Exercise 1: Overview Give short answers

More information

Conservation Laws: Systematic Construction, Noether s Theorem, Applications, and Symbolic Computations.

Conservation Laws: Systematic Construction, Noether s Theorem, Applications, and Symbolic Computations. Conservation Laws: Systematic Construction, Noether s Theorem, Applications, and Symbolic Computations. Alexey Shevyakov Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon,

More information

Alexei F. Cheviakov. University of Saskatchewan, Saskatoon, Canada. INPL seminar June 09, 2011

Alexei F. Cheviakov. University of Saskatchewan, Saskatoon, Canada. INPL seminar June 09, 2011 Direct Method of Construction of Conservation Laws for Nonlinear Differential Equations, its Relation with Noether s Theorem, Applications, and Symbolic Software Alexei F. Cheviakov University of Saskatchewan,

More information

On Reduction and Q-conditional (Nonclassical) Symmetry

On Reduction and Q-conditional (Nonclassical) Symmetry Symmetry in Nonlinear Mathematical Physics 1997, V.2, 437 443. On Reduction and Q-conditional (Nonclassical) Symmetry Roman POPOVYCH Institute of Mathematics of the National Academy of Sciences of Ukraine,

More information

SYMMETRIES OF SECOND-ORDER DIFFERENTIAL EQUATIONS AND DECOUPLING

SYMMETRIES OF SECOND-ORDER DIFFERENTIAL EQUATIONS AND DECOUPLING SYMMETRIES OF SECOND-ORDER DIFFERENTIAL EQUATIONS AND DECOUPLING W. Sarlet and E. Martínez Instituut voor Theoretische Mechanica, Universiteit Gent Krijgslaan 281, B-9000 Gent, Belgium Departamento de

More information

Bachelor Thesis. General Relativity: An alternative derivation of the Kruskal-Schwarzschild solution

Bachelor Thesis. General Relativity: An alternative derivation of the Kruskal-Schwarzschild solution Bachelor Thesis General Relativity: An alternative derivation of the Kruskal-Schwarzschild solution Author: Samo Jordan Supervisor: Prof. Markus Heusler Institute of Theoretical Physics, University of

More information

Lie symmetry and Mei conservation law of continuum system

Lie symmetry and Mei conservation law of continuum system Chin. Phys. B Vol. 20, No. 2 20 020 Lie symmetry an Mei conservation law of continuum system Shi Shen-Yang an Fu Jing-Li Department of Physics, Zhejiang Sci-Tech University, Hangzhou 3008, China Receive

More information

Classification of cubics up to affine transformations

Classification of cubics up to affine transformations Classification of cubics up to affine transformations Mehdi Nadjafikah and Ahmad-Reza Forough Abstract. Classification of cubics (that is, third order planar curves in the R 2 ) up to certain transformations

More information

Conservation laws for the geodesic equations of the canonical connection on Lie groups in dimensions two and three

Conservation laws for the geodesic equations of the canonical connection on Lie groups in dimensions two and three Appl Math Inf Sci 7 No 1 311-318 (013) 311 Applied Mathematics & Information Sciences An International Journal Conservation laws for the geodesic equations of the canonical connection on Lie groups in

More information

Symmetry Properties and Exact Solutions of the Fokker-Planck Equation

Symmetry Properties and Exact Solutions of the Fokker-Planck Equation Nonlinear Mathematical Physics 1997, V.4, N 1, 13 136. Symmetry Properties and Exact Solutions of the Fokker-Planck Equation Valery STOHNY Kyïv Polytechnical Institute, 37 Pobedy Avenue, Kyïv, Ukraïna

More information

Addendum: Symmetries of the. energy-momentum tensor

Addendum: Symmetries of the. energy-momentum tensor Addendum: Symmetries of the arxiv:gr-qc/0410136v1 28 Oct 2004 energy-momentum tensor M. Sharif Department of Mathematics, University of the Punjab, Quaid-e-Azam Campus Lahore-54590, PAKISTAN. Abstract

More information

Introduction and Vectors Lecture 1

Introduction and Vectors Lecture 1 1 Introduction Introduction and Vectors Lecture 1 This is a course on classical Electromagnetism. It is the foundation for more advanced courses in modern physics. All physics of the modern era, from quantum

More information

Study of Optical Soliton Perturbation with Quadratic-Cubic Nonlinearity by Lie Symmetry and Group Invariance

Study of Optical Soliton Perturbation with Quadratic-Cubic Nonlinearity by Lie Symmetry and Group Invariance ISSN 1541-308X, Physics of Wave Phenomena, 018, Vol. 6, No. 4, pp. 31 316. c Allerton Press, Inc., 018. THEORY OF NONLINEAR WAVES Study of Optical Soliton Perturbation with Quadratic-Cubic Nonlinearity

More information

Symmetry Classification of KdV-Type Nonlinear Evolution Equations

Symmetry Classification of KdV-Type Nonlinear Evolution Equations Proceedings of Institute of Mathematics of NAS of Ukraine 2004, Vol. 50, Part 1, 125 130 Symmetry Classification of KdV-Type Nonlinear Evolution Equations Faruk GÜNGÖR, Victor LAHNO and Renat ZHDANOV Department

More information

Bianchi Type-VI Bulk Viscous Fluid String Cosmological Model in General Relativity

Bianchi Type-VI Bulk Viscous Fluid String Cosmological Model in General Relativity Bulg. J. Phys. 38 2011 14 14 Bianchi Type-VI Bulk Viscous Fluid String Cosmological Model in General Relativity S.P. Kandalkar 1, P.P. Khade 2, S.P. Gawande 1 1 Department of Mathematics, Government Vidarbha

More information

arxiv:hep-th/ v1 15 Mar 1996

arxiv:hep-th/ v1 15 Mar 1996 RUSSIAN GRAVITATIONAL SOCIETY INSTITUTE OF METROLOGICAL SERVICE CENTER OF GRAVITATION AND FUNDAMENTAL METROLOGY RGS-CSVR-002/96 hep-th/9603xxx arxiv:hep-th/9603107v1 15 Mar 1996 Multidimensional Extremal

More information

Nonclassical analysis of the nonlinear Kompaneets equation

Nonclassical analysis of the nonlinear Kompaneets equation J Eng Math DOI 10.1007/s10665-012-9552-2 Nonclassical analysis of the nonlinear Kompaneets equation George W. Bluman Shou-fu Tian Zhengzheng Yang Received: 30 December 2011 / Accepted: 19 April 2012 Springer

More information

Gauge Theory of Gravitation: Electro-Gravity Mixing

Gauge Theory of Gravitation: Electro-Gravity Mixing Gauge Theory of Gravitation: Electro-Gravity Mixing E. Sánchez-Sastre 1,2, V. Aldaya 1,3 1 Instituto de Astrofisica de Andalucía, Granada, Spain 2 Email: sastre@iaa.es, es-sastre@hotmail.com 3 Email: valdaya@iaa.es

More information

The Atiyah bundle and connections on a principal bundle

The Atiyah bundle and connections on a principal bundle Proc. Indian Acad. Sci. (Math. Sci.) Vol. 120, No. 3, June 2010, pp. 299 316. Indian Academy of Sciences The Atiyah bundle and connections on a principal bundle INDRANIL BISWAS School of Mathematics, Tata

More information

arxiv: v1 [gr-qc] 22 Jul 2015

arxiv: v1 [gr-qc] 22 Jul 2015 Spinor Field with Polynomial Nonlinearity in LRS Bianchi type-i spacetime Bijan Saha arxiv:1507.06236v1 [gr-qc] 22 Jul 2015 Laboratory of Information Technologies Joint Institute for Nuclear Research 141980

More information

Group Invariant Solutions of Complex Modified Korteweg-de Vries Equation

Group Invariant Solutions of Complex Modified Korteweg-de Vries Equation International Mathematical Forum, 4, 2009, no. 28, 1383-1388 Group Invariant Solutions of Complex Modified Korteweg-de Vries Equation Emanullah Hızel 1 Department of Mathematics, Faculty of Science and

More information

arxiv: v1 [gr-qc] 27 Sep 2017

arxiv: v1 [gr-qc] 27 Sep 2017 To appear in: Journal of Mathematical Physics arxiv:1709.09715v1 [gr-qc] 27 Sep 2017 Asymptotic Behavior in Polarized T 2 -symmetric Vacuum Spacetimes James Isenberg 1 and Satyanad Kichenassamy 2 Abstract

More information

Canonical Forms for BiHamiltonian Systems

Canonical Forms for BiHamiltonian Systems Canonical Forms for BiHamiltonian Systems Peter J. Olver Dedicated to the Memory of Jean-Louis Verdier BiHamiltonian systems were first defined in the fundamental paper of Magri, [5], which deduced the

More information

Conditional Symmetry Reduction and Invariant Solutions of Nonlinear Wave Equations

Conditional Symmetry Reduction and Invariant Solutions of Nonlinear Wave Equations Proceedings of Institute of Mathematics of NAS of Ukraine 2002, Vol. 43, Part 1, 229 233 Conditional Symmetry Reduction and Invariant Solutions of Nonlinear Wave Equations Ivan M. TSYFRA Institute of Geophysics

More information

The Solution of the Truncated Harmonic Oscillator Using Lie Groups

The Solution of the Truncated Harmonic Oscillator Using Lie Groups Advanced Studies in Theoretical Physics Vol. 11, 2017, no. 7, 327-335 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/astp.2017.7521 The Solution of the Truncated Harmonic Oscillator Using Lie Groups

More information

APPLICATION OF HYBRID FUNCTIONS FOR SOLVING OSCILLATOR EQUATIONS

APPLICATION OF HYBRID FUNCTIONS FOR SOLVING OSCILLATOR EQUATIONS APPLICATIO OF HYBRID FUCTIOS FOR SOLVIG OSCILLATOR EQUATIOS K. MALEKEJAD a, L. TORKZADEH b School of Mathematics, Iran University of Science & Technology, armak, Tehran 16846 13114, Iran E-mail a : Maleknejad@iust.ac.ir,

More information

ANALYTICAL APPROXIMATE SOLUTIONS OF THE ZAKHAROV-KUZNETSOV EQUATIONS

ANALYTICAL APPROXIMATE SOLUTIONS OF THE ZAKHAROV-KUZNETSOV EQUATIONS (c) Romanian RRP 66(No. Reports in 2) Physics, 296 306 Vol. 2014 66, No. 2, P. 296 306, 2014 ANALYTICAL APPROXIMATE SOLUTIONS OF THE ZAKHAROV-KUZNETSOV EQUATIONS A. JAFARIAN 1, P. GHADERI 2, ALIREZA K.

More information

Nonlocal Symmetry and Generating Solutions for the Inhomogeneous Burgers Equation

Nonlocal Symmetry and Generating Solutions for the Inhomogeneous Burgers Equation Proceedings of Institute of Mathematics of NAS of Ukraine 004, Vol. 50, Part, 77 8 Nonlocal Symmetry and Generating Solutions for the Inhomogeneous Burgers Equation Valentyn TYCHYNIN and Olexandr RASIN

More information

Some half-bps solutions of M-theory

Some half-bps solutions of M-theory Preprint typeset in JHEP style - PAPER VERSION arxiv:hep-th/0506247v2 10 Feb 2006 Some half-bps solutions of M-theory Micha l Spaliński So ltan Institute for Nuclear Studies ul. Hoża 69, 00-681 Warszawa,

More information

A rotating charged black hole solution in f (R) gravity

A rotating charged black hole solution in f (R) gravity PRAMANA c Indian Academy of Sciences Vol. 78, No. 5 journal of May 01 physics pp. 697 703 A rotating charged black hole solution in f R) gravity ALEXIS LARRAÑAGA National Astronomical Observatory, National

More information

Bianchi Type-III Inflationary Universe with Constant Deceleration Parameter in General Relativity

Bianchi Type-III Inflationary Universe with Constant Deceleration Parameter in General Relativity Bulg. J. Phys. 38 2011 139 1 Bianchi Type-III Inflationary Universe with Constant Deceleration Parameter in General Relativity S.D. Katore Department of Mathematics, S.G.B. Amravati University, Amravati

More information

An exact solution for 2+1 dimensional critical collapse

An exact solution for 2+1 dimensional critical collapse An exact solution for + dimensional critical collapse David Garfinkle Department of Physics, Oakland University, Rochester, Michigan 839 We find an exact solution in closed form for the critical collapse

More information

Travelling Wave Solutions and Conservation Laws of Fisher-Kolmogorov Equation

Travelling Wave Solutions and Conservation Laws of Fisher-Kolmogorov Equation Gen. Math. Notes, Vol. 18, No. 2, October, 2013, pp. 16-25 ISSN 2219-7184; Copyright c ICSRS Publication, 2013 www.i-csrs.org Available free online at http://www.geman.in Travelling Wave Solutions and

More information

PROBABILITY FOR PRIMORDIAL BLACK HOLES IN HIGHER DIMENSIONAL UNIVERSE

PROBABILITY FOR PRIMORDIAL BLACK HOLES IN HIGHER DIMENSIONAL UNIVERSE PROBABILITY FOR PRIMORDIAL BLACK HOLES IN HIGHER DIMENSIONAL UNIVERSE arxiv:gr-qc/0106041v1 13 Jun 2001 B. C. Paul Department of Physics, North Bengal University, Siliguri, Dist. Darjeeling, Pin : 734

More information