Nonresponse weighting adjustment using estimated response probability

Size: px
Start display at page:

Download "Nonresponse weighting adjustment using estimated response probability"

Transcription

1 Nonresponse weighting adjustment using estimated response probability Jae-kwang Kim Yonsei University, Seoul, Korea December 26, 2006

2 Introduction Nonresponse Unit nonresponse Item nonresponse Basic strategy for nonresponse Unit nonresponse : Call-back, Nonresponse weighting adjustment Item nonresponse : Imputation 2

3 Basic Setup Stratum Pop. Size Mean Sample Size Respondents N R Ȳ R n R Nonrespondents N M Ȳ M n M Entire population N Ȳ n SRS from the entire population, but observe only on the respondents. Use ȳ R (respondent mean) to estimate the population mean. Bias (ȳ R ) V ar (ȳ R ). = N R ) (ȲR Ȳ M N. = SR 2 n R 3

4 Two problems : Biased : Ȳ R Ȳ M Large variance due to n R < n

5 Nonresponse weighting adjustment (NWA) method Under no missing data: Ŷ HT = i A π i y i π i = P r (i A): first-order inclusion probability of unit i A: index set of the intended sample Response indicator function: R i = { if unit i responds, 0 if unit i does not respond. 4

6 Idea : Use two-phase sampling approach Population (U) P hase Sample (A) P hase2 Respondents (A R ) Estimation: Let φ i A = P r (R i = A). If φ i A were known, then Ŷ φ = R i y i i A π i φ i A would be conditionally unbiased. In practice, we use an estimator ˆφ i A of φ i A. The NWA estimator is Ŷ NW A = R i y i i A π i ˆφ i A 5

7 Example : Logistic regression model for φ i A Model : φ (x i, α) = exp ( x i α) + exp ( x i α) Estimation of α 0 by the maximum likelihood method : Solve S (α) [R i φ (x i, α)] x i = 0 i A for α. An iterative method can be used to solve the nonlinear equation : α (t+) α (t) ( S/ α) S ( α (t)) 6

8 More generally, the score equation can be weighted: for some weight k i. S k (α) i A k i [R i φ (x i, α)] x i = 0 Should we use weights or not? Optimal k i? 7

9 Asymptotic Properties of NWA estimator Assumptions about the population and the sample [A.] Sequence of finite populations with bounded fourth moments. [A.2] No extreme weights dominate the others. [A.3] n-consistency holds for the mean-type estimators 8

10 Assumptions about the response probability [B.] φ i A does not depend on the value of others. φ i A = φ i ) (i.e. [B.2] The responses are independent: Cov ( { ) φi ( φ R i, R j = i ) if i = j 0 otherwise. [B.3] The response probability is parametrically modelled. φ i = φ ( x i ; α 0), for some known smooth function φ (x i ; ) of parameter α evaluated at α = α 0. [B.4] φ i is uniformly bounded. 9

11 Estimation of φ i Estimation of α 0 : Use weighted score equation α i A k i [R i ln (φ i ) + ( R i ) ln ( φ i )] = 0, where k i is the weight of unit i in the score equation for α. Alternative representation: S k (α) (let) = i A k i (R i φ (x i ; α)) h i (α) = 0, where h i (α) = {logit (φ i )} / α. Use ˆφ i = φ (x i ; ˆα) where ˆα is the solution to S k (α) = 0. 0

12 Basic Idea (for deriving the asymptotic properties) Write the NWA estimator as a function of ˆα: Ŷ NW A (ˆα) i A π i φ i (ˆα) R iy i Taking a Taylor expansion of Ŷ NW A (ˆα) around α = α 0 : Ŷ NW A (ˆα). = Ŷ NW A ( α 0 ) + [ ŶNW A α ( α 0 )] (ˆα α 0 ) The second term in RHS does not contribute to the expectation, but does contribute to the variance.

13 Basic Idea - continued Taking a Taylor expansion of S k (ˆα) = 0: S k (ˆα). = S k ( α 0 ) + [ Sk α ( α 0 )] (ˆα α 0 ) Combine the two expansions: Ŷ NW A (ˆα). = Ŷ NW A ( α 0 ) [ ŶNW A α. = Ŷ NW A ( α 0 ) γ N S k ( α 0 ) ( α 0 )] [ Sk α ( α 0 )] S k ( α 0 ) ( where Ŷ NW A α 0 ) = i A πi φ ( i R i y i and S k α 0 ) = i A k i (R i φ i ) h i0. 2

14 Main Result Linearization Ŷ NW A. = i A π i [ π i φ i k i h i0 γ N + R i φ i ( yi π i φ i k i h i0 γ N ) ] Conditional expectation E ( Ŷ NW A A ). = i A π i y i Conditional variance V ( Ŷ NW A A ). = i A π 2 i φ i φ i ( yi π i φ i k i h i0 γ N ) 2 3

15 Main Result -continued The NWA estimator is asymptotically unbiased regardless of the choice of k i. The variance of the NWA estimator is minimized for k i = y i π i φ i h i0 γ If we don t have any prior information about the distribution of y i, then k i = π i φ i seems to be a reasonable choice for optimal NWA estimation. 4

16 Main Result -continued Estimate α 0 using k i = π i φ i : S k (α) = i A k i (R i φ (x i ; α)) h i (α) = i A π i φ i (R i φ (x i ; α)) h i (α) S k (ˆα) = 0 is equivalent to i A π i R i ˆφ i h i (ˆα) = i A π i h i (ˆα). Thus, optimal score equation = calibration equation. 5

17 Back to Example - Logistic regression model for φ i Under the logistic regression model, logit (φ i ) = x i α0 and S k (α) i A k i [R i φ (x i, α)] x i = 0 Optimal score equation i A π i R i ˆφ i x i = i A π i x i. Optimal NWA estimator applied to x = Complete sample estimator applied to x. 6

18 Simulation Study An artificial bivariate population of size N = 0, 000: ( ) [( ) ( )] yi i.i.d. 2 ρ N,, i =, 2,, N 2 ρ x i Unequal probability sampling (by stratified sampling) Generate missing data using a logistic regression model of R i on x i. About 30% missing data. 7

19 Simulation Study - continued Four estimators. Two-phase estimator : NWA estimator using true φ i 2. Unweighted NWA estimator : NWA estimator using k i = 3. Weighted NWA estimator : NWA estimator using k i = /π i 4. Optimal NWA estimator : NWA estimator using k i = / (π i φ i ) 0,000 Monte Carlo samples of size n = 00 and n = 400 are generated repeatedly from the fixed population. 8

20 Monte Carlo standardized variances of the NWA estimators, based on 0,000 samples. n Estimator Standardized variance ρ = 0.0 ρ = 0.3 ρ = 0.6 Two-phase Unweighted NWA Weighted NWA Optimal NWA Two-phase Unweighted NWA Weighted NWA Optimal NWA

21 Variance estimation Linearization : Ŷ NW A. = i A π i η i where η i = π i φ i k i h i0 γ N + R i φ i ( yi π i φ i k i h i0 γ N ) Extended definition of R i : { if unit i responds if sampled R i = 0 if unit i does not respond if sampled, for i =, 2,, N. 20

22 Variance estimation - continued Classical two-phase approach: Population (U) P hase Sample (A) P hase2 Respondents (A R ) Reverse approach: Population (U) Responding Population (U R ) Respondents (A R ) 2

23 Variance decomposition under the reverse approach: where V E V 2 V V E V ( Ŷ NW A ). = V + V 2 i A π i i A π i η i R, R 2,, R N η i R, R 2,, R N Variance component estimation ˆV = i A ˆV 2 = j A ˆφ i i A R π ij π i π j ˆη i ˆη j π ij π i π j (ˆφ i ) ( ) 2 y i π iˆφ i k iˆγ N 22

24 Extension : Nonresponse cell method A special case of NWA method. Commonly used. Partition the sample into G cells : A = A A 2 A G Assume that the response rates φ i are constant in a cell. For i A g, use ˆφ i = i A g πi R i i A g πi 23

25 Extension - Continued NWA cell : Two cell formation criteria Qausi-randomzation approach : Equal response probability assumption Model-based approach : Homogeneous study-item-value assumption Cross-classification of two dimensions of cells is not feasible : collapse the cells in an ad-hoc manner 24

26 Extension - Continued Previously we used Ŷ NW A = G g= i A π g i i A g πi R i y i i A g πi R i Here, the cells are formed to have equal response probability. Directly use ˆφ i in the cell-weighting estimator Ŷ NW A2 = G g= i A π g i i A g πi ˆφ i R i y i i A g πi ˆφ i R i 25

27 Extension - Continued Taylor expansion Ŷ NW A2 = ŶHT + G g= i A g π i ( ) Ri (y i ȳ g ) φ i Variance V ar ( Ŷ NW A2 ) = V ar (ŶHT ) +E G g= i A g π 2 i ( ) φ i (y i ȳ g ) 2 The variance will be smaller if the cells are formed with homogeneous y s. 26

28 Conclusion Even if you know the true response probability, it s better to use the estimated response probability for the NWA estimation. Maximum likelihood method may be optimal for estimating α 0, but not optimal for NWA estimation. Standard practice of calibration is indeed an optimal procedure. Variance estimation is possible using the reverse approach. 27

29 In the cell-weighting NWA method, we can Use the estimated response probability to control the bias. Use the weighting cell to control the variance.

30 Thank You! 28

Fractional Hot Deck Imputation for Robust Inference Under Item Nonresponse in Survey Sampling

Fractional Hot Deck Imputation for Robust Inference Under Item Nonresponse in Survey Sampling Fractional Hot Deck Imputation for Robust Inference Under Item Nonresponse in Survey Sampling Jae-Kwang Kim 1 Iowa State University June 26, 2013 1 Joint work with Shu Yang Introduction 1 Introduction

More information

Chapter 8: Estimation 1

Chapter 8: Estimation 1 Chapter 8: Estimation 1 Jae-Kwang Kim Iowa State University Fall, 2014 Kim (ISU) Ch. 8: Estimation 1 Fall, 2014 1 / 33 Introduction 1 Introduction 2 Ratio estimation 3 Regression estimator Kim (ISU) Ch.

More information

Chapter 5: Models used in conjunction with sampling. J. Kim, W. Fuller (ISU) Chapter 5: Models used in conjunction with sampling 1 / 70

Chapter 5: Models used in conjunction with sampling. J. Kim, W. Fuller (ISU) Chapter 5: Models used in conjunction with sampling 1 / 70 Chapter 5: Models used in conjunction with sampling J. Kim, W. Fuller (ISU) Chapter 5: Models used in conjunction with sampling 1 / 70 Nonresponse Unit Nonresponse: weight adjustment Item Nonresponse:

More information

Recent Advances in the analysis of missing data with non-ignorable missingness

Recent Advances in the analysis of missing data with non-ignorable missingness Recent Advances in the analysis of missing data with non-ignorable missingness Jae-Kwang Kim Department of Statistics, Iowa State University July 4th, 2014 1 Introduction 2 Full likelihood-based ML estimation

More information

Fractional Imputation in Survey Sampling: A Comparative Review

Fractional Imputation in Survey Sampling: A Comparative Review Fractional Imputation in Survey Sampling: A Comparative Review Shu Yang Jae-Kwang Kim Iowa State University Joint Statistical Meetings, August 2015 Outline Introduction Fractional imputation Features Numerical

More information

An Efficient Estimation Method for Longitudinal Surveys with Monotone Missing Data

An Efficient Estimation Method for Longitudinal Surveys with Monotone Missing Data An Efficient Estimation Method for Longitudinal Surveys with Monotone Missing Data Jae-Kwang Kim 1 Iowa State University June 28, 2012 1 Joint work with Dr. Ming Zhou (when he was a PhD student at ISU)

More information

Data Integration for Big Data Analysis for finite population inference

Data Integration for Big Data Analysis for finite population inference for Big Data Analysis for finite population inference Jae-kwang Kim ISU January 23, 2018 1 / 36 What is big data? 2 / 36 Data do not speak for themselves Knowledge Reproducibility Information Intepretation

More information

INSTRUMENTAL-VARIABLE CALIBRATION ESTIMATION IN SURVEY SAMPLING

INSTRUMENTAL-VARIABLE CALIBRATION ESTIMATION IN SURVEY SAMPLING Statistica Sinica 24 (2014), 1001-1015 doi:http://dx.doi.org/10.5705/ss.2013.038 INSTRUMENTAL-VARIABLE CALIBRATION ESTIMATION IN SURVEY SAMPLING Seunghwan Park and Jae Kwang Kim Seoul National Univeristy

More information

Imputation for Missing Data under PPSWR Sampling

Imputation for Missing Data under PPSWR Sampling July 5, 2010 Beijing Imputation for Missing Data under PPSWR Sampling Guohua Zou Academy of Mathematics and Systems Science Chinese Academy of Sciences 1 23 () Outline () Imputation method under PPSWR

More information

A measurement error model approach to small area estimation

A measurement error model approach to small area estimation A measurement error model approach to small area estimation Jae-kwang Kim 1 Spring, 2015 1 Joint work with Seunghwan Park and Seoyoung Kim Ouline Introduction Basic Theory Application to Korean LFS Discussion

More information

6. Fractional Imputation in Survey Sampling

6. Fractional Imputation in Survey Sampling 6. Fractional Imputation in Survey Sampling 1 Introduction Consider a finite population of N units identified by a set of indices U = {1, 2,, N} with N known. Associated with each unit i in the population

More information

A note on multiple imputation for general purpose estimation

A note on multiple imputation for general purpose estimation A note on multiple imputation for general purpose estimation Shu Yang Jae Kwang Kim SSC meeting June 16, 2015 Shu Yang, Jae Kwang Kim Multiple Imputation June 16, 2015 1 / 32 Introduction Basic Setup Assume

More information

Parametric fractional imputation for missing data analysis

Parametric fractional imputation for missing data analysis 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 Biometrika (????),??,?, pp. 1 15 C???? Biometrika Trust Printed in

More information

Chapter 3: Element sampling design: Part 1

Chapter 3: Element sampling design: Part 1 Chapter 3: Element sampling design: Part 1 Jae-Kwang Kim Fall, 2014 Simple random sampling 1 Simple random sampling 2 SRS with replacement 3 Systematic sampling Kim Ch. 3: Element sampling design: Part

More information

On the bias of the multiple-imputation variance estimator in survey sampling

On the bias of the multiple-imputation variance estimator in survey sampling J. R. Statist. Soc. B (2006) 68, Part 3, pp. 509 521 On the bias of the multiple-imputation variance estimator in survey sampling Jae Kwang Kim, Yonsei University, Seoul, Korea J. Michael Brick, Westat,

More information

Introduction to Survey Data Analysis

Introduction to Survey Data Analysis Introduction to Survey Data Analysis JULY 2011 Afsaneh Yazdani Preface Learning from Data Four-step process by which we can learn from data: 1. Defining the Problem 2. Collecting the Data 3. Summarizing

More information

Shu Yang and Jae Kwang Kim. Harvard University and Iowa State University

Shu Yang and Jae Kwang Kim. Harvard University and Iowa State University Statistica Sinica 27 (2017), 000-000 doi:https://doi.org/10.5705/ss.202016.0155 DISCUSSION: DISSECTING MULTIPLE IMPUTATION FROM A MULTI-PHASE INFERENCE PERSPECTIVE: WHAT HAPPENS WHEN GOD S, IMPUTER S AND

More information

Statistical Methods for Handling Incomplete Data Chapter 2: Likelihood-based approach

Statistical Methods for Handling Incomplete Data Chapter 2: Likelihood-based approach Statistical Methods for Handling Incomplete Data Chapter 2: Likelihood-based approach Jae-Kwang Kim Department of Statistics, Iowa State University Outline 1 Introduction 2 Observed likelihood 3 Mean Score

More information

Propensity score adjusted method for missing data

Propensity score adjusted method for missing data Graduate Theses and Dissertations Graduate College 2013 Propensity score adjusted method for missing data Minsun Kim Riddles Iowa State University Follow this and additional works at: http://lib.dr.iastate.edu/etd

More information

Calibration estimation using exponential tilting in sample surveys

Calibration estimation using exponential tilting in sample surveys Calibration estimation using exponential tilting in sample surveys Jae Kwang Kim February 23, 2010 Abstract We consider the problem of parameter estimation with auxiliary information, where the auxiliary

More information

Chapter 4: Imputation

Chapter 4: Imputation Chapter 4: Imputation Jae-Kwang Kim Department of Statistics, Iowa State University Outline 1 Introduction 2 Basic Theory for imputation 3 Variance estimation after imputation 4 Replication variance estimation

More information

Combining data from two independent surveys: model-assisted approach

Combining data from two independent surveys: model-assisted approach Combining data from two independent surveys: model-assisted approach Jae Kwang Kim 1 Iowa State University January 20, 2012 1 Joint work with J.N.K. Rao, Carleton University Reference Kim, J.K. and Rao,

More information

Biostat 2065 Analysis of Incomplete Data

Biostat 2065 Analysis of Incomplete Data Biostat 2065 Analysis of Incomplete Data Gong Tang Dept of Biostatistics University of Pittsburgh September 13 & 15, 2005 1. Complete-case analysis (I) Complete-case analysis refers to analysis based on

More information

Weighting in survey analysis under informative sampling

Weighting in survey analysis under informative sampling Jae Kwang Kim and Chris J. Skinner Weighting in survey analysis under informative sampling Article (Accepted version) (Refereed) Original citation: Kim, Jae Kwang and Skinner, Chris J. (2013) Weighting

More information

Two-phase sampling approach to fractional hot deck imputation

Two-phase sampling approach to fractional hot deck imputation Two-phase sampling approach to fractional hot deck imputation Jongho Im 1, Jae-Kwang Kim 1 and Wayne A. Fuller 1 Abstract Hot deck imputation is popular for handling item nonresponse in survey sampling.

More information

Some methods for handling missing data in surveys

Some methods for handling missing data in surveys Graduate Theses and Dissertations Graduate College 2015 Some methods for handling missing data in surveys Jongho Im Iowa State University Follow this and additional works at: http://lib.dr.iastate.edu/etd

More information

arxiv:math/ v1 [math.st] 23 Jun 2004

arxiv:math/ v1 [math.st] 23 Jun 2004 The Annals of Statistics 2004, Vol. 32, No. 2, 766 783 DOI: 10.1214/009053604000000175 c Institute of Mathematical Statistics, 2004 arxiv:math/0406453v1 [math.st] 23 Jun 2004 FINITE SAMPLE PROPERTIES OF

More information

Multidimensional Control Totals for Poststratified Weights

Multidimensional Control Totals for Poststratified Weights Multidimensional Control Totals for Poststratified Weights Darryl V. Creel and Mansour Fahimi Joint Statistical Meetings Minneapolis, MN August 7-11, 2005 RTI International is a trade name of Research

More information

New Developments in Nonresponse Adjustment Methods

New Developments in Nonresponse Adjustment Methods New Developments in Nonresponse Adjustment Methods Fannie Cobben January 23, 2009 1 Introduction In this paper, we describe two relatively new techniques to adjust for (unit) nonresponse bias: The sample

More information

Master s Written Examination

Master s Written Examination Master s Written Examination Option: Statistics and Probability Spring 05 Full points may be obtained for correct answers to eight questions Each numbered question (which may have several parts) is worth

More information

Statistical Methods for Handling Missing Data

Statistical Methods for Handling Missing Data Statistical Methods for Handling Missing Data Jae-Kwang Kim Department of Statistics, Iowa State University July 5th, 2014 Outline Textbook : Statistical Methods for handling incomplete data by Kim and

More information

Miscellanea A note on multiple imputation under complex sampling

Miscellanea A note on multiple imputation under complex sampling Biometrika (2017), 104, 1,pp. 221 228 doi: 10.1093/biomet/asw058 Printed in Great Britain Advance Access publication 3 January 2017 Miscellanea A note on multiple imputation under complex sampling BY J.

More information

analysis of incomplete data in statistical surveys

analysis of incomplete data in statistical surveys analysis of incomplete data in statistical surveys Ugo Guarnera 1 1 Italian National Institute of Statistics, Italy guarnera@istat.it Jordan Twinning: Imputation - Amman, 6-13 Dec 2014 outline 1 origin

More information

Modeling Longitudinal Count Data with Excess Zeros and Time-Dependent Covariates: Application to Drug Use

Modeling Longitudinal Count Data with Excess Zeros and Time-Dependent Covariates: Application to Drug Use Modeling Longitudinal Count Data with Excess Zeros and : Application to Drug Use University of Northern Colorado November 17, 2014 Presentation Outline I and Data Issues II Correlated Count Regression

More information

Likelihood-based inference with missing data under missing-at-random

Likelihood-based inference with missing data under missing-at-random Likelihood-based inference with missing data under missing-at-random Jae-kwang Kim Joint work with Shu Yang Department of Statistics, Iowa State University May 4, 014 Outline 1. Introduction. Parametric

More information

A Method for Inferring Label Sampling Mechanisms in Semi-Supervised Learning

A Method for Inferring Label Sampling Mechanisms in Semi-Supervised Learning A Method for Inferring Label Sampling Mechanisms in Semi-Supervised Learning Saharon Rosset Data Analytics Research Group IBM T.J. Watson Research Center Yorktown Heights, NY 1598 srosset@us.ibm.com Hui

More information

A Method for Inferring Label Sampling Mechanisms in Semi-Supervised Learning

A Method for Inferring Label Sampling Mechanisms in Semi-Supervised Learning A Method for Inferring Label Sampling Mechanisms in Semi-Supervised Learning Saharon Rosset Data Analytics Research Group IBM T.J. Watson Research Center Yorktown Heights, NY 1598 srosset@us.ibm.com Hui

More information

of being selected and varying such probability across strata under optimal allocation leads to increased accuracy.

of being selected and varying such probability across strata under optimal allocation leads to increased accuracy. 5 Sampling with Unequal Probabilities Simple random sampling and systematic sampling are schemes where every unit in the population has the same chance of being selected We will now consider unequal probability

More information

Testing for a unit root in an ar(1) model using three and four moment approximations: symmetric distributions

Testing for a unit root in an ar(1) model using three and four moment approximations: symmetric distributions Hong Kong Baptist University HKBU Institutional Repository Department of Economics Journal Articles Department of Economics 1998 Testing for a unit root in an ar(1) model using three and four moment approximations:

More information

Cluster Sampling 2. Chapter Introduction

Cluster Sampling 2. Chapter Introduction Chapter 7 Cluster Sampling 7.1 Introduction In this chapter, we consider two-stage cluster sampling where the sample clusters are selected in the first stage and the sample elements are selected in the

More information

Plausible Values for Latent Variables Using Mplus

Plausible Values for Latent Variables Using Mplus Plausible Values for Latent Variables Using Mplus Tihomir Asparouhov and Bengt Muthén August 21, 2010 1 1 Introduction Plausible values are imputed values for latent variables. All latent variables can

More information

Model Assisted Survey Sampling

Model Assisted Survey Sampling Carl-Erik Sarndal Jan Wretman Bengt Swensson Model Assisted Survey Sampling Springer Preface v PARTI Principles of Estimation for Finite Populations and Important Sampling Designs CHAPTER 1 Survey Sampling

More information

Asymptotic inference for a nonstationary double ar(1) model

Asymptotic inference for a nonstationary double ar(1) model Asymptotic inference for a nonstationary double ar() model By SHIQING LING and DONG LI Department of Mathematics, Hong Kong University of Science and Technology, Hong Kong maling@ust.hk malidong@ust.hk

More information

Econometrics I, Estimation

Econometrics I, Estimation Econometrics I, Estimation Department of Economics Stanford University September, 2008 Part I Parameter, Estimator, Estimate A parametric is a feature of the population. An estimator is a function of the

More information

A weighted simulation-based estimator for incomplete longitudinal data models

A weighted simulation-based estimator for incomplete longitudinal data models To appear in Statistics and Probability Letters, 113 (2016), 16-22. doi 10.1016/j.spl.2016.02.004 A weighted simulation-based estimator for incomplete longitudinal data models Daniel H. Li 1 and Liqun

More information

VARIANCE ESTIMATION FOR NEAREST NEIGHBOR IMPUTATION FOR U.S. CENSUS LONG FORM DATA

VARIANCE ESTIMATION FOR NEAREST NEIGHBOR IMPUTATION FOR U.S. CENSUS LONG FORM DATA Submitted to the Annals of Applied Statistics VARIANCE ESTIMATION FOR NEAREST NEIGHBOR IMPUTATION FOR U.S. CENSUS LONG FORM DATA By Jae Kwang Kim, Wayne A. Fuller and William R. Bell Iowa State University

More information

Weighting Missing Data Coding and Data Preparation Wrap-up Preview of Next Time. Data Management

Weighting Missing Data Coding and Data Preparation Wrap-up Preview of Next Time. Data Management Data Management Department of Political Science and Government Aarhus University November 24, 2014 Data Management Weighting Handling missing data Categorizing missing data types Imputation Summary measures

More information

MS&E 226: Small Data. Lecture 11: Maximum likelihood (v2) Ramesh Johari

MS&E 226: Small Data. Lecture 11: Maximum likelihood (v2) Ramesh Johari MS&E 226: Small Data Lecture 11: Maximum likelihood (v2) Ramesh Johari ramesh.johari@stanford.edu 1 / 18 The likelihood function 2 / 18 Estimating the parameter This lecture develops the methodology behind

More information

Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017

Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017 Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017 Put your solution to each problem on a separate sheet of paper. Problem 1. (5106) Let X 1, X 2,, X n be a sequence of i.i.d. observations from a

More information

ANALYSIS OF PANEL DATA MODELS WITH GROUPED OBSERVATIONS. 1. Introduction

ANALYSIS OF PANEL DATA MODELS WITH GROUPED OBSERVATIONS. 1. Introduction Tatra Mt Math Publ 39 (2008), 183 191 t m Mathematical Publications ANALYSIS OF PANEL DATA MODELS WITH GROUPED OBSERVATIONS Carlos Rivero Teófilo Valdés ABSTRACT We present an iterative estimation procedure

More information

Unequal Probability Designs

Unequal Probability Designs Unequal Probability Designs Department of Statistics University of British Columbia This is prepares for Stat 344, 2014 Section 7.11 and 7.12 Probability Sampling Designs: A quick review A probability

More information

Graybill Conference Poster Session Introductions

Graybill Conference Poster Session Introductions Graybill Conference Poster Session Introductions 2013 Graybill Conference in Modern Survey Statistics Colorado State University Fort Collins, CO June 10, 2013 Small Area Estimation with Incomplete Auxiliary

More information

How to Use the Internet for Election Surveys

How to Use the Internet for Election Surveys How to Use the Internet for Election Surveys Simon Jackman and Douglas Rivers Stanford University and Polimetrix, Inc. May 9, 2008 Theory and Practice Practice Theory Works Doesn t work Works Great! Black

More information

Weighting Methods. Harvard University STAT186/GOV2002 CAUSAL INFERENCE. Fall Kosuke Imai

Weighting Methods. Harvard University STAT186/GOV2002 CAUSAL INFERENCE. Fall Kosuke Imai Weighting Methods Kosuke Imai Harvard University STAT186/GOV2002 CAUSAL INFERENCE Fall 2018 Kosuke Imai (Harvard) Weighting Methods Stat186/Gov2002 Fall 2018 1 / 13 Motivation Matching methods for improving

More information

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A.

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A. 1. Let P be a probability measure on a collection of sets A. (a) For each n N, let H n be a set in A such that H n H n+1. Show that P (H n ) monotonically converges to P ( k=1 H k) as n. (b) For each n

More information

An Overview of the Pros and Cons of Linearization versus Replication in Establishment Surveys

An Overview of the Pros and Cons of Linearization versus Replication in Establishment Surveys An Overview of the Pros and Cons of Linearization versus Replication in Establishment Surveys Richard Valliant University of Michigan and Joint Program in Survey Methodology University of Maryland 1 Introduction

More information

Robustness to Parametric Assumptions in Missing Data Models

Robustness to Parametric Assumptions in Missing Data Models Robustness to Parametric Assumptions in Missing Data Models Bryan Graham NYU Keisuke Hirano University of Arizona April 2011 Motivation Motivation We consider the classic missing data problem. In practice

More information

REPLICATION VARIANCE ESTIMATION FOR THE NATIONAL RESOURCES INVENTORY

REPLICATION VARIANCE ESTIMATION FOR THE NATIONAL RESOURCES INVENTORY REPLICATION VARIANCE ESTIMATION FOR THE NATIONAL RESOURCES INVENTORY J.D. Opsomer, W.A. Fuller and X. Li Iowa State University, Ames, IA 50011, USA 1. Introduction Replication methods are often used in

More information

Introduction to Survey Data Integration

Introduction to Survey Data Integration Introduction to Survey Data Integration Jae-Kwang Kim Iowa State University May 20, 2014 Outline 1 Introduction 2 Survey Integration Examples 3 Basic Theory for Survey Integration 4 NASS application 5

More information

The Use of Survey Weights in Regression Modelling

The Use of Survey Weights in Regression Modelling The Use of Survey Weights in Regression Modelling Chris Skinner London School of Economics and Political Science (with Jae-Kwang Kim, Iowa State University) Colorado State University, June 2013 1 Weighting

More information

Bootstrap inference for the finite population total under complex sampling designs

Bootstrap inference for the finite population total under complex sampling designs Bootstrap inference for the finite population total under complex sampling designs Zhonglei Wang (Joint work with Dr. Jae Kwang Kim) Center for Survey Statistics and Methodology Iowa State University Jan.

More information

Statistics 203: Introduction to Regression and Analysis of Variance Course review

Statistics 203: Introduction to Regression and Analysis of Variance Course review Statistics 203: Introduction to Regression and Analysis of Variance Course review Jonathan Taylor - p. 1/?? Today Review / overview of what we learned. - p. 2/?? General themes in regression models Specifying

More information

Outline of GLMs. Definitions

Outline of GLMs. Definitions Outline of GLMs Definitions This is a short outline of GLM details, adapted from the book Nonparametric Regression and Generalized Linear Models, by Green and Silverman. The responses Y i have density

More information

Combining multiple observational data sources to estimate causal eects

Combining multiple observational data sources to estimate causal eects Department of Statistics, North Carolina State University Combining multiple observational data sources to estimate causal eects Shu Yang* syang24@ncsuedu Joint work with Peng Ding UC Berkeley May 23,

More information

Jong-Min Kim* and Jon E. Anderson. Statistics Discipline Division of Science and Mathematics University of Minnesota at Morris

Jong-Min Kim* and Jon E. Anderson. Statistics Discipline Division of Science and Mathematics University of Minnesota at Morris Jackknife Variance Estimation for Two Samples after Imputation under Two-Phase Sampling Jong-Min Kim* and Jon E. Anderson jongmink@mrs.umn.edu Statistics Discipline Division of Science and Mathematics

More information

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Cross-Validation, Information Criteria, Expected Utilities and the Effective Number of Parameters Aki Vehtari and Jouko Lampinen Laboratory of Computational Engineering Introduction Expected utility -

More information

if n is large, Z i are weakly dependent 0-1-variables, p i = P(Z i = 1) small, and Then n approx i=1 i=1 n i=1

if n is large, Z i are weakly dependent 0-1-variables, p i = P(Z i = 1) small, and Then n approx i=1 i=1 n i=1 Count models A classical, theoretical argument for the Poisson distribution is the approximation Binom(n, p) Pois(λ) for large n and small p and λ = np. This can be extended considerably to n approx Z

More information

COMPARISON OF GMM WITH SECOND-ORDER LEAST SQUARES ESTIMATION IN NONLINEAR MODELS. Abstract

COMPARISON OF GMM WITH SECOND-ORDER LEAST SQUARES ESTIMATION IN NONLINEAR MODELS. Abstract Far East J. Theo. Stat. 0() (006), 179-196 COMPARISON OF GMM WITH SECOND-ORDER LEAST SQUARES ESTIMATION IN NONLINEAR MODELS Department of Statistics University of Manitoba Winnipeg, Manitoba, Canada R3T

More information

Introduction to Estimation Methods for Time Series models Lecture 2

Introduction to Estimation Methods for Time Series models Lecture 2 Introduction to Estimation Methods for Time Series models Lecture 2 Fulvio Corsi SNS Pisa Fulvio Corsi Introduction to Estimation () Methods for Time Series models Lecture 2 SNS Pisa 1 / 21 Estimators:

More information

Unbiased Estimation. Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others.

Unbiased Estimation. Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others. Unbiased Estimation Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others. To compare ˆθ and θ, two estimators of θ: Say ˆθ is better than θ if it

More information

Economics 671: Applied Econometrics Department of Economics, Finance and Legal Studies University of Alabama

Economics 671: Applied Econometrics Department of Economics, Finance and Legal Studies University of Alabama Problem Set #1 (Random Data Generation) 1. Generate =500random numbers from both the uniform 1 ( [0 1], uniformbetween zero and one) and exponential exp ( ) (set =2and let [0 1]) distributions. Plot the

More information

Chapter 3: Maximum Likelihood Theory

Chapter 3: Maximum Likelihood Theory Chapter 3: Maximum Likelihood Theory Florian Pelgrin HEC September-December, 2010 Florian Pelgrin (HEC) Maximum Likelihood Theory September-December, 2010 1 / 40 1 Introduction Example 2 Maximum likelihood

More information

Vasil Khalidov & Miles Hansard. C.M. Bishop s PRML: Chapter 5; Neural Networks

Vasil Khalidov & Miles Hansard. C.M. Bishop s PRML: Chapter 5; Neural Networks C.M. Bishop s PRML: Chapter 5; Neural Networks Introduction The aim is, as before, to find useful decompositions of the target variable; t(x) = y(x, w) + ɛ(x) (3.7) t(x n ) and x n are the observations,

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Le Song Machine Learning I CSE 6740, Fall 2013 Naïve Bayes classifier Still use Bayes decision rule for classification P y x = P x y P y P x But assume p x y = 1 is fully factorized

More information

Linear Methods for Prediction

Linear Methods for Prediction Chapter 5 Linear Methods for Prediction 5.1 Introduction We now revisit the classification problem and focus on linear methods. Since our prediction Ĝ(x) will always take values in the discrete set G we

More information

STAT5044: Regression and Anova

STAT5044: Regression and Anova STAT5044: Regression and Anova Inyoung Kim 1 / 15 Outline 1 Fitting GLMs 2 / 15 Fitting GLMS We study how to find the maxlimum likelihood estimator ˆβ of GLM parameters The likelihood equaions are usually

More information

Multilevel Statistical Models: 3 rd edition, 2003 Contents

Multilevel Statistical Models: 3 rd edition, 2003 Contents Multilevel Statistical Models: 3 rd edition, 2003 Contents Preface Acknowledgements Notation Two and three level models. A general classification notation and diagram Glossary Chapter 1 An introduction

More information

On Markov chain Monte Carlo methods for tall data

On Markov chain Monte Carlo methods for tall data On Markov chain Monte Carlo methods for tall data Remi Bardenet, Arnaud Doucet, Chris Holmes Paper review by: David Carlson October 29, 2016 Introduction Many data sets in machine learning and computational

More information

Estimation from Purposive Samples with the Aid of Probability Supplements but without Data on the Study Variable

Estimation from Purposive Samples with the Aid of Probability Supplements but without Data on the Study Variable Estimation from Purposive Samples with the Aid of Probability Supplements but without Data on the Study Variable A.C. Singh,, V. Beresovsky, and C. Ye Survey and Data Sciences, American nstitutes for Research,

More information

7 Day 3: Time Varying Parameter Models

7 Day 3: Time Varying Parameter Models 7 Day 3: Time Varying Parameter Models References: 1. Durbin, J. and S.-J. Koopman (2001). Time Series Analysis by State Space Methods. Oxford University Press, Oxford 2. Koopman, S.-J., N. Shephard, and

More information

Semiparametric Estimation of a Sample Selection Model in the Presence of Endogeneity

Semiparametric Estimation of a Sample Selection Model in the Presence of Endogeneity Semiparametric Estimation of a Sample Selection Model in the Presence of Endogeneity Jörg Schwiebert Abstract In this paper, we derive a semiparametric estimation procedure for the sample selection model

More information

Problem Selected Scores

Problem Selected Scores Statistics Ph.D. Qualifying Exam: Part II November 20, 2010 Student Name: 1. Answer 8 out of 12 problems. Mark the problems you selected in the following table. Problem 1 2 3 4 5 6 7 8 9 10 11 12 Selected

More information

Asymptotic Normality under Two-Phase Sampling Designs

Asymptotic Normality under Two-Phase Sampling Designs Asymptotic Normality under Two-Phase Sampling Designs Jiahua Chen and J. N. K. Rao University of Waterloo and University of Carleton Abstract Large sample properties of statistical inferences in the context

More information

Large sample theory for merged data from multiple sources

Large sample theory for merged data from multiple sources Large sample theory for merged data from multiple sources Takumi Saegusa University of Maryland Division of Statistics August 22 2018 Section 1 Introduction Problem: Data Integration Massive data are collected

More information

Incorporating Level of Effort Paradata in Nonresponse Adjustments. Paul Biemer RTI International University of North Carolina Chapel Hill

Incorporating Level of Effort Paradata in Nonresponse Adjustments. Paul Biemer RTI International University of North Carolina Chapel Hill Incorporating Level of Effort Paradata in Nonresponse Adjustments Paul Biemer RTI International University of North Carolina Chapel Hill Acknowledgements Patrick Chen, RTI International Kevin Wang, RTI

More information

For more information about how to cite these materials visit

For more information about how to cite these materials visit Author(s): Kerby Shedden, Ph.D., 2010 License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution Share Alike 3.0 License: http://creativecommons.org/licenses/by-sa/3.0/

More information

Monte Carlo Study on the Successive Difference Replication Method for Non-Linear Statistics

Monte Carlo Study on the Successive Difference Replication Method for Non-Linear Statistics Monte Carlo Study on the Successive Difference Replication Method for Non-Linear Statistics Amang S. Sukasih, Mathematica Policy Research, Inc. Donsig Jang, Mathematica Policy Research, Inc. Amang S. Sukasih,

More information

Calibration Estimation of Semiparametric Copula Models with Data Missing at Random

Calibration Estimation of Semiparametric Copula Models with Data Missing at Random Calibration Estimation of Semiparametric Copula Models with Data Missing at Random Shigeyuki Hamori 1 Kaiji Motegi 1 Zheng Zhang 2 1 Kobe University 2 Renmin University of China Econometrics Workshop UNC

More information

A bias improved estimator of the concordance correlation coefficient

A bias improved estimator of the concordance correlation coefficient The 22 nd Annual Meeting in Mathematics (AMM 217) Department of Mathematics, Faculty of Science Chiang Mai University, Chiang Mai, Thailand A bias improved estimator of the concordance correlation coefficient

More information

Statement: With my signature I confirm that the solutions are the product of my own work. Name: Signature:.

Statement: With my signature I confirm that the solutions are the product of my own work. Name: Signature:. MATHEMATICAL STATISTICS Homework assignment Instructions Please turn in the homework with this cover page. You do not need to edit the solutions. Just make sure the handwriting is legible. You may discuss

More information

Some methods for handling missing values in outcome variables. Roderick J. Little

Some methods for handling missing values in outcome variables. Roderick J. Little Some methods for handling missing values in outcome variables Roderick J. Little Missing data principles Likelihood methods Outline ML, Bayes, Multiple Imputation (MI) Robust MAR methods Predictive mean

More information

Fractional hot deck imputation

Fractional hot deck imputation Biometrika (2004), 91, 3, pp. 559 578 2004 Biometrika Trust Printed in Great Britain Fractional hot deck imputation BY JAE KWANG KM Department of Applied Statistics, Yonsei University, Seoul, 120-749,

More information

Finite Population Sampling and Inference

Finite Population Sampling and Inference Finite Population Sampling and Inference A Prediction Approach RICHARD VALLIANT ALAN H. DORFMAN RICHARD M. ROYALL A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim Brisbane

More information

Modeling the scale parameter ϕ A note on modeling correlation of binary responses Using marginal odds ratios to model association for binary responses

Modeling the scale parameter ϕ A note on modeling correlation of binary responses Using marginal odds ratios to model association for binary responses Outline Marginal model Examples of marginal model GEE1 Augmented GEE GEE1.5 GEE2 Modeling the scale parameter ϕ A note on modeling correlation of binary responses Using marginal odds ratios to model association

More information

ECONOMETRICS II (ECO 2401S) University of Toronto. Department of Economics. Winter 2016 Instructor: Victor Aguirregabiria

ECONOMETRICS II (ECO 2401S) University of Toronto. Department of Economics. Winter 2016 Instructor: Victor Aguirregabiria ECOOMETRICS II (ECO 24S) University of Toronto. Department of Economics. Winter 26 Instructor: Victor Aguirregabiria FIAL EAM. Thursday, April 4, 26. From 9:am-2:pm (3 hours) ISTRUCTIOS: - This is a closed-book

More information

Covariance function estimation in Gaussian process regression

Covariance function estimation in Gaussian process regression Covariance function estimation in Gaussian process regression François Bachoc Department of Statistics and Operations Research, University of Vienna WU Research Seminar - May 2015 François Bachoc Gaussian

More information

Economics 583: Econometric Theory I A Primer on Asymptotics

Economics 583: Econometric Theory I A Primer on Asymptotics Economics 583: Econometric Theory I A Primer on Asymptotics Eric Zivot January 14, 2013 The two main concepts in asymptotic theory that we will use are Consistency Asymptotic Normality Intuition consistency:

More information

MA 575 Linear Models: Cedric E. Ginestet, Boston University Midterm Review Week 7

MA 575 Linear Models: Cedric E. Ginestet, Boston University Midterm Review Week 7 MA 575 Linear Models: Cedric E. Ginestet, Boston University Midterm Review Week 7 1 Random Vectors Let a 0 and y be n 1 vectors, and let A be an n n matrix. Here, a 0 and A are non-random, whereas y is

More information

Constrained Maximum Likelihood Estimation for Model Calibration Using Summary-level Information from External Big Data Sources

Constrained Maximum Likelihood Estimation for Model Calibration Using Summary-level Information from External Big Data Sources Constrained Maximum Likelihood Estimation for Model Calibration Using Summary-level Information from External Big Data Sources Yi-Hau Chen Institute of Statistical Science, Academia Sinica Joint with Nilanjan

More information

Classification. Chapter Introduction. 6.2 The Bayes classifier

Classification. Chapter Introduction. 6.2 The Bayes classifier Chapter 6 Classification 6.1 Introduction Often encountered in applications is the situation where the response variable Y takes values in a finite set of labels. For example, the response Y could encode

More information