Supervised Learning Part I

Size: px
Start display at page:

Download "Supervised Learning Part I"

Transcription

1 Supervised Learning Part I Jean-Pierre Nadal CNRS & EHESS Laboratoire de Physique Statistique (LPS, UMR 8550 CNRS - ENS UPMC Univ. Paris Diderot) Ecole Normale Supérieure (ENS) & Centre d Analyse et de Mathématique Sociales (CAMS, UMR 8557 CNRS - EHESS) Ecole des Hautes Etudes en Sciences Sociales (EHESS) nadal@lps.ens.fr

2 Supervised learning Menu Intro: F. Rosenblatt The Perceptron as a linear separator Capacity & information capacity Cover geometrical approach Vapnik beyond the perceptron Learning a rule from examples Gardner statistical physics approach The perceptron algorithm the perceptron algorithm (Rosenblatt) max stability/optimal margin Support Vector Machines (SVM): back to the original Perceptron? Alternatives: MLP, deep-learning Modeling the Cerebellum: Purkinje cells as Perceptrons Efficient Hebbian learning

3 The Perceptron Frank Rosenblatt, «The perceptron: a probabilistic model for information storage and organization in the brain», Psychological Review, Vol. 65:6 (1958) F. Rosenblatt (1962). Principles of neurodynamics. New York: Spartan. Marvin Minsky and Seymour Papert, Perceptrons: An Introduction to Computational Geometry, MIT Press, Thomas M. Cover. Geometrical and Statistical Properties of Systems of Linear Inequalities with Applications in Pattern Recognition. IEEE Transactions on Electronic Computers, EC-14(3): , June 1965

4 The Perceptron

5 Supervised learning paradigm: learning a set of associations Perceptron Linear separator Space of patterns Space of couplings blackboard

6 The Perceptron: learning capacity Frank Rosenblatt, «The perceptron: a probabilistic model for information storage and organization in the brain», Psychological Review, Vol. 65:6 (1958) Frank Rosenblatt, Principles of neurodynamics, New York: Spartan (1962) Marvin Minsky and Seymour Papert, Perceptrons: An Introduction to Computational Geometry, MIT Press, Thomas M. Cover. Geometrical and Statistical Properties of Systems of Linear Inequalities with Applications in Pattern Recognition. IEEE Transactions on Electronic Computers, EC-14(3): , June 1965

7 Supervised learning paradigm: learning a set of associations Perceptron capacity Growth function Number of dichotomies (number of domains in the space of couplings)

8 (Theorem 1) Perceptron capacity from Schlafli 1950 to Cover 1965

9 Perceptron capacity Cover 1965 (null threshold)

10 Number of dichotomies Cover 1965 space of dimension ( inputs) hyperplanes passing through the origin (threshold set to zero) reminder (binomial coefficient): With threshold proof The Vapnik-Chervonenkis dimension of the Perceptron is

11 Perceptron capacity - Cover 1965 Probability that the p associations can be learned by a perceptron with N inputs p/n critical capacity

12 Perceptron capacity - Cover 1965 Probability that the p associations can be learned by a perceptron with N inputs N p/n critical capacity

13 Perceptron capacity - Cover 1965 Probability that the p associations can be learned by a perceptron with N inputs N p/n critical capacity

14 f fraction of «1» s Entropy: Exactly p f «1» s: H = p s f if = 1 with proba. f, 0 with proba. 1- f s(f) = f ln f 1 f ln 1 f With logarithms in base 2: information in bits s 2 (f) = f log 2 f (1 f) log 2 (1 f) s 2 f = s 2 (1 f) s 2 1 log 2 (. ) = ln(. ) ln 2 s 2 f = 0 = s 2 (f = 1) = 0 For f = 1 2 s 2 = 1 bit 0 0 1/2 1 f

15 Information stored = difference of entropies large number of p objects Object type: τ {, } f = probability to have an object of type Classification Data analysis Signal processing Encoding If noise, errors Drunk Maxwell s demon H 1 > 0 H 2 > 0 Box number: σ { 1, 2} Entropy (Shannon information): H H = p f ln f 1 f ln(1 f) H = Information gain = decrease in entropy I = H - H 1 - H 2 = mutual information between τ and σ

16 Information capacity N (bits per synapse) α = p / N G. Toulouse 1989; N. Brunel, JPN & G. Toulouse 1992

17 Beyond critical capacity: minimum fraction of errors N α = p / N Capacity (maximum information that can be transmitted) Information loss (entropy corresponding to ε p errors randomly distributed) + = Information sent (p bits = desired dichotomy of the p patterns) (bits per synapse) Fano s inequality in information theory (50 s) (min information loss in a noisy channel) Reminder, binary entropy, in bits: G. Toulouse 1989; N. Brunel, JPN & G. Toulouse 1992

18 Supervised learning Menu Intro: F. Rosenblatt The Perceptron as a linear separator Capacity & information capacity Cover geometrical approach Vapnik beyond the perceptron Learning a rule from examples Gardner statistical physics approach The perceptron algorithm the perceptron algorithm (Rosenblatt) max stability/optimal margin Support Vector Machines (SVM): back to the original Perceptron? Alternatives: MLP, deep-learning Modeling the Cerebellum: Purkinje cells as Perceptrons Efficient Hebbian learning

19 Perceptron algorithm and beyond Percepton algorithm Variants: minover optimal margin From the perceptron to the SVM (and back) Multi Layer Perceptrons, Deep learning

20 Perceptron algorithm and beyond Percepton algorithm Variants: minover optimal margin From the perceptron to the SVM (and back) Multi Layer Perceptrons,, Deep learning ( blackboard)

21 The Perceptron Rosenblatt vs SVM Choice of the Kernel = choice of the feature space

22 Perceptron algorithm and beyond Percepton algorithm Variants: minover optimal margin From the perceptron to the SVM (and back) Multi Layer Perceptrons, Deep learning

23 Deep learning Prior knowledge specific architecture Hinton, G. E., Osindero, S. and Teh, Y. (2006) Approach further developped by Hinton, Bengio, LeCun and others Unsupervised learning phase initialization of parameters Supervised gradient descent fine tuning for each layer, companion feed-back layer trying to reconstruct the layer input from its output efficient coding Most recent versions: purely supervised approaches Figure from Bengio & LeCun, in Large-Scale Kernel Machines, Bottou et al Ed., MIT Press 2007

24 Applications MNIST database data set: handwritten digits training examples and test examples. Current best result: error rate of.23%, Ciresan et al Human performance ~ 0.2% Best performance of the year from results collected by Y LeCun Automatic speech recognition TIMIT data base phonemically and lexically transcribed speech of American English speakers of different sexes and dialects. 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0, Caltech 101 dataset: 101 natural object categories with up to 30 training instances per class. M A Ranzato et al: Average accuracy 54% M A Ranzato,

25 Supplementary slides

26 The Perceptron - Supplementary material Points in general position Points not in general position Definition: p points in dimension N are in general position iff no subset of size less than N is linearly dependent = generic case, typically true for points chosen at random

27 In terms of hyperplanes: in general position not in general position Definition: p points in dimension N are in general position iff no subset of size less than N is linearly dependent = generic case, typically true for points chosen at random

28 Cover result: = number of dichotomies of p points in dimension N Recursion : one shows that In the space of patterns p + 1 points. Dichotomies of the p points: A = those which can be realized by an hyperplane passing through the new point B = those for which this is not the case Clearly: In the case of zero threshold (hyperplanes passing through the origin), one shows:

29 proof in the case of zero threshold: hyperplanes passing through the origin new point Every hyperplane in this set goes through the origin and the (p+1)th point. Projection of each hyperplane and of each one of the p points, onto the (N- 1)-dim space orthogonal to [O, (p+1)th point]. Each projection is a linear separation (passing through the origin) of the projected p points. Figure from Hertz, Krogh, and Palmer, 1991 back

30 Generalization Learning curves

31 Learning from examples a given Learning Machine (not necessarily a neural network) with N-dimensional inputs and binary outputs, and a set of adaptable parameters θ Data: a set of input patterns given with their desired output (classification task) Hyp.: the desired output is some unknown function of the input Wanted: after learning, good performance on a new input pattern Standard method: learning on part of the data (training set), test on what remains (test set)

32 Consistent learning Cortes et al, 1993 Amari Fujita Shinomoto 1992 Amari Murata 1993 Seung et al 1992 not learnable learnable

33 Cortes et al, 1993

34 VC dimension Vapnik V. N. & Chervonenkis A. (1968, 1971, 1974; book in Russian: V. Vapnik, A. Chervonenkis: Pattern Recognition Theory, Statistical Learning Problems, Nauka, Moskva, 1974) Vapnik V.N., The Nature of Statistical Learning Theory, Springer-Verlag, 1995, 2nd ed a given Learning Machine (not necessarily a neural network) with N-dimensional inputs and binary outputs, and a set of adaptable parameters W Data: a set of input patterns given with their desired output (classification task) Growth function The Vapnik-Chervonenkis dimension of the Perceptron is The Vapnik-Chervonenkis dimension of the Perceptron with margin is at most In most cases (important exceptions): ~ number of parameters where R is the radius of smallest sphere containing all the input patterns (Vapnik 1998)

35 Vapnik: structural risk minimization Vapnik V. N. & Chervonenkis A. (1968, 1971, 1974; book in Russian: V. Vapnik, A. Chervonenkis: Pattern Recognition Theory, Statistical Learning Problems, Nauka, Moskva, 1974) Vapnik V.N., The Nature of Statistical Learning Theory, Springer-Verlag, 1995, 2nd ed a given Learning Machine (not necessarily a neural network) with N-dimensional inputs and binary outputs, and a set of adaptable parameters W Data: a set of input patterns given with their desired output (classification task) Bounds on generalization error (worst case analysis) With probability (here case with zero training error: )

36 Generalization for p > The meaning of generalization Generalization Learning by heart Any set of associations is learnable N

37 back

Neural coding Ecological approach to sensory coding: efficient adaptation to the natural environment

Neural coding Ecological approach to sensory coding: efficient adaptation to the natural environment Neural coding Ecological approach to sensory coding: efficient adaptation to the natural environment Jean-Pierre Nadal CNRS & EHESS Laboratoire de Physique Statistique (LPS, UMR 8550 CNRS - ENS UPMC Univ.

More information

Course 395: Machine Learning - Lectures

Course 395: Machine Learning - Lectures Course 395: Machine Learning - Lectures Lecture 1-2: Concept Learning (M. Pantic) Lecture 3-4: Decision Trees & CBC Intro (M. Pantic & S. Petridis) Lecture 5-6: Evaluating Hypotheses (S. Petridis) Lecture

More information

Neural Network Learning: Testing Bounds on Sample Complexity

Neural Network Learning: Testing Bounds on Sample Complexity Neural Network Learning: Testing Bounds on Sample Complexity Joaquim Marques de Sá, Fernando Sereno 2, Luís Alexandre 3 INEB Instituto de Engenharia Biomédica Faculdade de Engenharia da Universidade do

More information

Introduction To Artificial Neural Networks

Introduction To Artificial Neural Networks Introduction To Artificial Neural Networks Machine Learning Supervised circle square circle square Unsupervised group these into two categories Supervised Machine Learning Supervised Machine Learning Supervised

More information

Learning and Memory in Neural Networks

Learning and Memory in Neural Networks Learning and Memory in Neural Networks Guy Billings, Neuroinformatics Doctoral Training Centre, The School of Informatics, The University of Edinburgh, UK. Neural networks consist of computational units

More information

ECE 521. Lecture 11 (not on midterm material) 13 February K-means clustering, Dimensionality reduction

ECE 521. Lecture 11 (not on midterm material) 13 February K-means clustering, Dimensionality reduction ECE 521 Lecture 11 (not on midterm material) 13 February 2017 K-means clustering, Dimensionality reduction With thanks to Ruslan Salakhutdinov for an earlier version of the slides Overview K-means clustering

More information

How to do backpropagation in a brain

How to do backpropagation in a brain How to do backpropagation in a brain Geoffrey Hinton Canadian Institute for Advanced Research & University of Toronto & Google Inc. Prelude I will start with three slides explaining a popular type of deep

More information

Artificial Neural Networks. Introduction to Computational Neuroscience Tambet Matiisen

Artificial Neural Networks. Introduction to Computational Neuroscience Tambet Matiisen Artificial Neural Networks Introduction to Computational Neuroscience Tambet Matiisen 2.04.2018 Artificial neural network NB! Inspired by biology, not based on biology! Applications Automatic speech recognition

More information

What Do Neural Networks Do? MLP Lecture 3 Multi-layer networks 1

What Do Neural Networks Do? MLP Lecture 3 Multi-layer networks 1 What Do Neural Networks Do? MLP Lecture 3 Multi-layer networks 1 Multi-layer networks Steve Renals Machine Learning Practical MLP Lecture 3 7 October 2015 MLP Lecture 3 Multi-layer networks 2 What Do Single

More information

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz Neural networks Daniel Hennes 21.01.2018 (WS 2017/18) University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Logistic regression Neural networks Perceptron

More information

CSE 417T: Introduction to Machine Learning. Lecture 11: Review. Henry Chai 10/02/18

CSE 417T: Introduction to Machine Learning. Lecture 11: Review. Henry Chai 10/02/18 CSE 417T: Introduction to Machine Learning Lecture 11: Review Henry Chai 10/02/18 Unknown Target Function!: # % Training data Formal Setup & = ( ), + ),, ( -, + - Learning Algorithm 2 Hypothesis Set H

More information

Artificial Neural Networks The Introduction

Artificial Neural Networks The Introduction Artificial Neural Networks The Introduction 01001110 01100101 01110101 01110010 01101111 01101110 01101111 01110110 01100001 00100000 01110011 01101011 01110101 01110000 01101001 01101110 01100001 00100000

More information

Chapter ML:VI. VI. Neural Networks. Perceptron Learning Gradient Descent Multilayer Perceptron Radial Basis Functions

Chapter ML:VI. VI. Neural Networks. Perceptron Learning Gradient Descent Multilayer Perceptron Radial Basis Functions Chapter ML:VI VI. Neural Networks Perceptron Learning Gradient Descent Multilayer Perceptron Radial asis Functions ML:VI-1 Neural Networks STEIN 2005-2018 The iological Model Simplified model of a neuron:

More information

Course Structure. Psychology 452 Week 12: Deep Learning. Chapter 8 Discussion. Part I: Deep Learning: What and Why? Rufus. Rufus Processed By Fetch

Course Structure. Psychology 452 Week 12: Deep Learning. Chapter 8 Discussion. Part I: Deep Learning: What and Why? Rufus. Rufus Processed By Fetch Psychology 452 Week 12: Deep Learning What Is Deep Learning? Preliminary Ideas (that we already know!) The Restricted Boltzmann Machine (RBM) Many Layers of RBMs Pros and Cons of Deep Learning Course Structure

More information

CS 446: Machine Learning Lecture 4, Part 2: On-Line Learning

CS 446: Machine Learning Lecture 4, Part 2: On-Line Learning CS 446: Machine Learning Lecture 4, Part 2: On-Line Learning 0.1 Linear Functions So far, we have been looking at Linear Functions { as a class of functions which can 1 if W1 X separate some data and not

More information

Neural Networks. Chapter 18, Section 7. TB Artificial Intelligence. Slides from AIMA 1/ 21

Neural Networks. Chapter 18, Section 7. TB Artificial Intelligence. Slides from AIMA   1/ 21 Neural Networks Chapter 8, Section 7 TB Artificial Intelligence Slides from AIMA http://aima.cs.berkeley.edu / 2 Outline Brains Neural networks Perceptrons Multilayer perceptrons Applications of neural

More information

COMP9444: Neural Networks. Vapnik Chervonenkis Dimension, PAC Learning and Structural Risk Minimization

COMP9444: Neural Networks. Vapnik Chervonenkis Dimension, PAC Learning and Structural Risk Minimization : Neural Networks Vapnik Chervonenkis Dimension, PAC Learning and Structural Risk Minimization 11s2 VC-dimension and PAC-learning 1 How good a classifier does a learner produce? Training error is the precentage

More information

MinOver Revisited for Incremental Support-Vector-Classification

MinOver Revisited for Incremental Support-Vector-Classification MinOver Revisited for Incremental Support-Vector-Classification Thomas Martinetz Institute for Neuro- and Bioinformatics University of Lübeck D-23538 Lübeck, Germany martinetz@informatik.uni-luebeck.de

More information

TTIC 31230, Fundamentals of Deep Learning, Winter David McAllester. The Fundamental Equations of Deep Learning

TTIC 31230, Fundamentals of Deep Learning, Winter David McAllester. The Fundamental Equations of Deep Learning TTIC 31230, Fundamentals of Deep Learning, Winter 2019 David McAllester The Fundamental Equations of Deep Learning 1 Early History 1943: McCullock and Pitts introduced the linear threshold neuron. 1962:

More information

Computational Learning Theory (VC Dimension)

Computational Learning Theory (VC Dimension) Computational Learning Theory (VC Dimension) 1 Difficulty of machine learning problems 2 Capabilities of machine learning algorithms 1 Version Space with associated errors error is the true error, r is

More information

Neural Turing Machine. Author: Alex Graves, Greg Wayne, Ivo Danihelka Presented By: Tinghui Wang (Steve)

Neural Turing Machine. Author: Alex Graves, Greg Wayne, Ivo Danihelka Presented By: Tinghui Wang (Steve) Neural Turing Machine Author: Alex Graves, Greg Wayne, Ivo Danihelka Presented By: Tinghui Wang (Steve) Introduction Neural Turning Machine: Couple a Neural Network with external memory resources The combined

More information

CS 4700: Foundations of Artificial Intelligence

CS 4700: Foundations of Artificial Intelligence CS 4700: Foundations of Artificial Intelligence Prof. Bart Selman selman@cs.cornell.edu Machine Learning: Neural Networks R&N 18.7 Intro & perceptron learning 1 2 Neuron: How the brain works # neurons

More information

Machine Learning. VC Dimension and Model Complexity. Eric Xing , Fall 2015

Machine Learning. VC Dimension and Model Complexity. Eric Xing , Fall 2015 Machine Learning 10-701, Fall 2015 VC Dimension and Model Complexity Eric Xing Lecture 16, November 3, 2015 Reading: Chap. 7 T.M book, and outline material Eric Xing @ CMU, 2006-2015 1 Last time: PAC and

More information

Computational Learning Theory

Computational Learning Theory Computational Learning Theory Pardis Noorzad Department of Computer Engineering and IT Amirkabir University of Technology Ordibehesht 1390 Introduction For the analysis of data structures and algorithms

More information

Empirical Risk Minimization

Empirical Risk Minimization Empirical Risk Minimization Fabrice Rossi SAMM Université Paris 1 Panthéon Sorbonne 2018 Outline Introduction PAC learning ERM in practice 2 General setting Data X the input space and Y the output space

More information

Classifier Complexity and Support Vector Classifiers

Classifier Complexity and Support Vector Classifiers Classifier Complexity and Support Vector Classifiers Feature 2 6 4 2 0 2 4 6 8 RBF kernel 10 10 8 6 4 2 0 2 4 6 Feature 1 David M.J. Tax Pattern Recognition Laboratory Delft University of Technology D.M.J.Tax@tudelft.nl

More information

Neural Networks for Machine Learning. Lecture 2a An overview of the main types of neural network architecture

Neural Networks for Machine Learning. Lecture 2a An overview of the main types of neural network architecture Neural Networks for Machine Learning Lecture 2a An overview of the main types of neural network architecture Geoffrey Hinton with Nitish Srivastava Kevin Swersky Feed-forward neural networks These are

More information

Neural networks. Chapter 20, Section 5 1

Neural networks. Chapter 20, Section 5 1 Neural networks Chapter 20, Section 5 Chapter 20, Section 5 Outline Brains Neural networks Perceptrons Multilayer perceptrons Applications of neural networks Chapter 20, Section 5 2 Brains 0 neurons of

More information

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others)

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others) Machine Learning Neural Networks (slides from Domingos, Pardo, others) Human Brain Neurons Input-Output Transformation Input Spikes Output Spike Spike (= a brief pulse) (Excitatory Post-Synaptic Potential)

More information

Denoising Autoencoders

Denoising Autoencoders Denoising Autoencoders Oliver Worm, Daniel Leinfelder 20.11.2013 Oliver Worm, Daniel Leinfelder Denoising Autoencoders 20.11.2013 1 / 11 Introduction Poor initialisation can lead to local minima 1986 -

More information

Machine Learning. Neural Networks

Machine Learning. Neural Networks Machine Learning Neural Networks Bryan Pardo, Northwestern University, Machine Learning EECS 349 Fall 2007 Biological Analogy Bryan Pardo, Northwestern University, Machine Learning EECS 349 Fall 2007 THE

More information

Large Margin Classification Using the Perceptron Algorithm

Large Margin Classification Using the Perceptron Algorithm Machine Learning, 37(3):277-296, 1999. Large Margin Classification Using the Perceptron Algorithm YOAV FREUND yoav@research.att.com AT&T Labs, Shannon Laboratory, 180 Park Avenue, Room A205, Florham Park,

More information

From perceptrons to word embeddings. Simon Šuster University of Groningen

From perceptrons to word embeddings. Simon Šuster University of Groningen From perceptrons to word embeddings Simon Šuster University of Groningen Outline A basic computational unit Weighting some input to produce an output: classification Perceptron Classify tweets Written

More information

Artificial Neural Networks. MGS Lecture 2

Artificial Neural Networks. MGS Lecture 2 Artificial Neural Networks MGS 2018 - Lecture 2 OVERVIEW Biological Neural Networks Cell Topology: Input, Output, and Hidden Layers Functional description Cost functions Training ANNs Back-Propagation

More information

Linear & nonlinear classifiers

Linear & nonlinear classifiers Linear & nonlinear classifiers Machine Learning Hamid Beigy Sharif University of Technology Fall 1394 Hamid Beigy (Sharif University of Technology) Linear & nonlinear classifiers Fall 1394 1 / 34 Table

More information

Lecture 12. Neural Networks Bastian Leibe RWTH Aachen

Lecture 12. Neural Networks Bastian Leibe RWTH Aachen Advanced Machine Learning Lecture 12 Neural Networks 24.11.2016 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de/ leibe@vision.rwth-aachen.de Talk Announcement Yann LeCun (NYU & FaceBook AI)

More information

Part of the slides are adapted from Ziko Kolter

Part of the slides are adapted from Ziko Kolter Part of the slides are adapted from Ziko Kolter OUTLINE 1 Supervised learning: classification........................................................ 2 2 Non-linear regression/classification, overfitting,

More information

Perceptron. (c) Marcin Sydow. Summary. Perceptron

Perceptron. (c) Marcin Sydow. Summary. Perceptron Topics covered by this lecture: Neuron and its properties Mathematical model of neuron: as a classier ' Learning Rule (Delta Rule) Neuron Human neural system has been a natural source of inspiration for

More information

VC dimension, Model Selection and Performance Assessment for SVM and Other Machine Learning Algorithms

VC dimension, Model Selection and Performance Assessment for SVM and Other Machine Learning Algorithms 03/Feb/2010 VC dimension, Model Selection and Performance Assessment for SVM and Other Machine Learning Algorithms Presented by Andriy Temko Department of Electrical and Electronic Engineering Page 2 of

More information

The Perceptron algorithm

The Perceptron algorithm The Perceptron algorithm Tirgul 3 November 2016 Agnostic PAC Learnability A hypothesis class H is agnostic PAC learnable if there exists a function m H : 0,1 2 N and a learning algorithm with the following

More information

Supervised Learning. George Konidaris

Supervised Learning. George Konidaris Supervised Learning George Konidaris gdk@cs.brown.edu Fall 2017 Machine Learning Subfield of AI concerned with learning from data. Broadly, using: Experience To Improve Performance On Some Task (Tom Mitchell,

More information

Lecture 12. Neural Networks Bastian Leibe RWTH Aachen

Lecture 12. Neural Networks Bastian Leibe RWTH Aachen Advanced Machine Learning Lecture 12 Neural Networks 10.12.2015 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de/ leibe@vision.rwth-aachen.de This Lecture: Advanced Machine Learning Regression

More information

Lecture 4: Feed Forward Neural Networks

Lecture 4: Feed Forward Neural Networks Lecture 4: Feed Forward Neural Networks Dr. Roman V Belavkin Middlesex University BIS4435 Biological neurons and the brain A Model of A Single Neuron Neurons as data-driven models Neural Networks Training

More information

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others)

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others) Machine Learning Neural Networks (slides from Domingos, Pardo, others) For this week, Reading Chapter 4: Neural Networks (Mitchell, 1997) See Canvas For subsequent weeks: Scaling Learning Algorithms toward

More information

Measuring the Usefulness of Hidden Units in Boltzmann Machines with Mutual Information

Measuring the Usefulness of Hidden Units in Boltzmann Machines with Mutual Information Measuring the Usefulness of Hidden Units in Boltzmann Machines with Mutual Information Mathias Berglund, Tapani Raiko, and KyungHyun Cho Department of Information and Computer Science Aalto University

More information

Neural Networks and the Back-propagation Algorithm

Neural Networks and the Back-propagation Algorithm Neural Networks and the Back-propagation Algorithm Francisco S. Melo In these notes, we provide a brief overview of the main concepts concerning neural networks and the back-propagation algorithm. We closely

More information

Are Rosenblatt multilayer perceptrons more powerfull than sigmoidal multilayer perceptrons? From a counter example to a general result

Are Rosenblatt multilayer perceptrons more powerfull than sigmoidal multilayer perceptrons? From a counter example to a general result Are Rosenblatt multilayer perceptrons more powerfull than sigmoidal multilayer perceptrons? From a counter example to a general result J. Barahona da Fonseca Department of Electrical Engineering, Faculty

More information

ML4NLP Multiclass Classification

ML4NLP Multiclass Classification ML4NLP Multiclass Classification CS 590NLP Dan Goldwasser Purdue University dgoldwas@purdue.edu Social NLP Last week we discussed the speed-dates paper. Interesting perspective on NLP problems- Can we

More information

Based on the original slides of Hung-yi Lee

Based on the original slides of Hung-yi Lee Based on the original slides of Hung-yi Lee Google Trends Deep learning obtains many exciting results. Can contribute to new Smart Services in the Context of the Internet of Things (IoT). IoT Services

More information

Simple Neural Nets For Pattern Classification

Simple Neural Nets For Pattern Classification CHAPTER 2 Simple Neural Nets For Pattern Classification Neural Networks General Discussion One of the simplest tasks that neural nets can be trained to perform is pattern classification. In pattern classification

More information

COMPARING PERFORMANCE OF NEURAL NETWORKS RECOGNIZING MACHINE GENERATED CHARACTERS

COMPARING PERFORMANCE OF NEURAL NETWORKS RECOGNIZING MACHINE GENERATED CHARACTERS Proceedings of the First Southern Symposium on Computing The University of Southern Mississippi, December 4-5, 1998 COMPARING PERFORMANCE OF NEURAL NETWORKS RECOGNIZING MACHINE GENERATED CHARACTERS SEAN

More information

Convolutional Neural Networks. Srikumar Ramalingam

Convolutional Neural Networks. Srikumar Ramalingam Convolutional Neural Networks Srikumar Ramalingam Reference Many of the slides are prepared using the following resources: neuralnetworksanddeeplearning.com (mainly Chapter 6) http://cs231n.github.io/convolutional-networks/

More information

Statistical learning theory, Support vector machines, and Bioinformatics

Statistical learning theory, Support vector machines, and Bioinformatics 1 Statistical learning theory, Support vector machines, and Bioinformatics Jean-Philippe.Vert@mines.org Ecole des Mines de Paris Computational Biology group ENS Paris, november 25, 2003. 2 Overview 1.

More information

Lecture Support Vector Machine (SVM) Classifiers

Lecture Support Vector Machine (SVM) Classifiers Introduction to Machine Learning Lecturer: Amir Globerson Lecture 6 Fall Semester Scribe: Yishay Mansour 6.1 Support Vector Machine (SVM) Classifiers Classification is one of the most important tasks in

More information

Multilayer Perceptron

Multilayer Perceptron Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Single Perceptron 3 Boolean Function Learning 4

More information

Administration. Registration Hw3 is out. Lecture Captioning (Extra-Credit) Scribing lectures. Questions. Due on Thursday 10/6

Administration. Registration Hw3 is out. Lecture Captioning (Extra-Credit) Scribing lectures. Questions. Due on Thursday 10/6 Administration Registration Hw3 is out Due on Thursday 10/6 Questions Lecture Captioning (Extra-Credit) Look at Piazza for details Scribing lectures With pay; come talk to me/send email. 1 Projects Projects

More information

Machine Learning Lecture 12

Machine Learning Lecture 12 Machine Learning Lecture 12 Neural Networks 30.11.2017 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Course Outline Fundamentals Bayes Decision Theory Probability

More information

Radial Basis Function Networks. Ravi Kaushik Project 1 CSC Neural Networks and Pattern Recognition

Radial Basis Function Networks. Ravi Kaushik Project 1 CSC Neural Networks and Pattern Recognition Radial Basis Function Networks Ravi Kaushik Project 1 CSC 84010 Neural Networks and Pattern Recognition History Radial Basis Function (RBF) emerged in late 1980 s as a variant of artificial neural network.

More information

Links between Perceptrons, MLPs and SVMs

Links between Perceptrons, MLPs and SVMs Links between Perceptrons, MLPs and SVMs Ronan Collobert Samy Bengio IDIAP, Rue du Simplon, 19 Martigny, Switzerland Abstract We propose to study links between three important classification algorithms:

More information

Introduction to Convolutional Neural Networks (CNNs)

Introduction to Convolutional Neural Networks (CNNs) Introduction to Convolutional Neural Networks (CNNs) nojunk@snu.ac.kr http://mipal.snu.ac.kr Department of Transdisciplinary Studies Seoul National University, Korea Jan. 2016 Many slides are from Fei-Fei

More information

Lecture 7 Artificial neural networks: Supervised learning

Lecture 7 Artificial neural networks: Supervised learning Lecture 7 Artificial neural networks: Supervised learning Introduction, or how the brain works The neuron as a simple computing element The perceptron Multilayer neural networks Accelerated learning in

More information

Discriminative Models

Discriminative Models No.5 Discriminative Models Hui Jiang Department of Electrical Engineering and Computer Science Lassonde School of Engineering York University, Toronto, Canada Outline Generative vs. Discriminative models

More information

Neural Networks Lecturer: J. Matas Authors: J. Matas, B. Flach, O. Drbohlav

Neural Networks Lecturer: J. Matas Authors: J. Matas, B. Flach, O. Drbohlav Neural Networks 30.11.2015 Lecturer: J. Matas Authors: J. Matas, B. Flach, O. Drbohlav 1 Talk Outline Perceptron Combining neurons to a network Neural network, processing input to an output Learning Cost

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 Outlines Overview Introduction Linear Algebra Probability Linear Regression

More information

arxiv: v2 [nlin.ao] 19 May 2015

arxiv: v2 [nlin.ao] 19 May 2015 Efficient and optimal binary Hopfield associative memory storage using minimum probability flow arxiv:1204.2916v2 [nlin.ao] 19 May 2015 Christopher Hillar Redwood Center for Theoretical Neuroscience University

More information

Learning Deep Architectures for AI. Part II - Vijay Chakilam

Learning Deep Architectures for AI. Part II - Vijay Chakilam Learning Deep Architectures for AI - Yoshua Bengio Part II - Vijay Chakilam Limitations of Perceptron x1 W, b 0,1 1,1 y x2 weight plane output =1 output =0 There is no value for W and b such that the model

More information

Perceptron Revisited: Linear Separators. Support Vector Machines

Perceptron Revisited: Linear Separators. Support Vector Machines Support Vector Machines Perceptron Revisited: Linear Separators Binary classification can be viewed as the task of separating classes in feature space: w T x + b > 0 w T x + b = 0 w T x + b < 0 Department

More information

Neural Networks with Applications to Vision and Language. Feedforward Networks. Marco Kuhlmann

Neural Networks with Applications to Vision and Language. Feedforward Networks. Marco Kuhlmann Neural Networks with Applications to Vision and Language Feedforward Networks Marco Kuhlmann Feedforward networks Linear separability x 2 x 2 0 1 0 1 0 0 x 1 1 0 x 1 linearly separable not linearly separable

More information

Pattern Recognition and Machine Learning. Perceptrons and Support Vector machines

Pattern Recognition and Machine Learning. Perceptrons and Support Vector machines Pattern Recognition and Machine Learning James L. Crowley ENSIMAG 3 - MMIS Fall Semester 2016 Lessons 6 10 Jan 2017 Outline Perceptrons and Support Vector machines Notation... 2 Perceptrons... 3 History...3

More information

Neural Networks biological neuron artificial neuron 1

Neural Networks biological neuron artificial neuron 1 Neural Networks biological neuron artificial neuron 1 A two-layer neural network Output layer (activation represents classification) Weighted connections Hidden layer ( internal representation ) Input

More information

Weight Quantization for Multi-layer Perceptrons Using Soft Weight Sharing

Weight Quantization for Multi-layer Perceptrons Using Soft Weight Sharing Weight Quantization for Multi-layer Perceptrons Using Soft Weight Sharing Fatih Köksal, Ethem Alpaydın, and Günhan Dündar 2 Department of Computer Engineering 2 Department of Electrical and Electronics

More information

Discriminative Models

Discriminative Models No.5 Discriminative Models Hui Jiang Department of Electrical Engineering and Computer Science Lassonde School of Engineering York University, Toronto, Canada Outline Generative vs. Discriminative models

More information

Large Scale Machine Learning with Stochastic Gradient Descent

Large Scale Machine Learning with Stochastic Gradient Descent Large Scale Machine Learning with Stochastic Gradient Descent Léon Bottou leon@bottou.org Microsoft (since June) Summary i. Learning with Stochastic Gradient Descent. ii. The Tradeoffs of Large Scale Learning.

More information

Machine Learning for Large-Scale Data Analysis and Decision Making A. Neural Networks Week #6

Machine Learning for Large-Scale Data Analysis and Decision Making A. Neural Networks Week #6 Machine Learning for Large-Scale Data Analysis and Decision Making 80-629-17A Neural Networks Week #6 Today Neural Networks A. Modeling B. Fitting C. Deep neural networks Today s material is (adapted)

More information

STA 414/2104: Lecture 8

STA 414/2104: Lecture 8 STA 414/2104: Lecture 8 6-7 March 2017: Continuous Latent Variable Models, Neural networks With thanks to Russ Salakhutdinov, Jimmy Ba and others Outline Continuous latent variable models Background PCA

More information

CS 4700: Foundations of Artificial Intelligence

CS 4700: Foundations of Artificial Intelligence CS 4700: Foundations of Artificial Intelligence Prof. Bart Selman selman@cs.cornell.edu Machine Learning: Neural Networks R&N 18.7 Intro & perceptron learning 1 2 Neuron: How the brain works # neurons

More information

MACHINE LEARNING. Support Vector Machines. Alessandro Moschitti

MACHINE LEARNING. Support Vector Machines. Alessandro Moschitti MACHINE LEARNING Support Vector Machines Alessandro Moschitti Department of information and communication technology University of Trento Email: moschitti@dit.unitn.it Summary Support Vector Machines

More information

Introduction to Neural Networks

Introduction to Neural Networks Introduction to Neural Networks What are (Artificial) Neural Networks? Models of the brain and nervous system Highly parallel Process information much more like the brain than a serial computer Learning

More information

Neural Networks: Introduction

Neural Networks: Introduction Neural Networks: Introduction Machine Learning Fall 2017 Based on slides and material from Geoffrey Hinton, Richard Socher, Dan Roth, Yoav Goldberg, Shai Shalev-Shwartz and Shai Ben-David, and others 1

More information

Neural networks. Chapter 19, Sections 1 5 1

Neural networks. Chapter 19, Sections 1 5 1 Neural networks Chapter 19, Sections 1 5 Chapter 19, Sections 1 5 1 Outline Brains Neural networks Perceptrons Multilayer perceptrons Applications of neural networks Chapter 19, Sections 1 5 2 Brains 10

More information

Neural Networks. Mark van Rossum. January 15, School of Informatics, University of Edinburgh 1 / 28

Neural Networks. Mark van Rossum. January 15, School of Informatics, University of Edinburgh 1 / 28 1 / 28 Neural Networks Mark van Rossum School of Informatics, University of Edinburgh January 15, 2018 2 / 28 Goals: Understand how (recurrent) networks behave Find a way to teach networks to do a certain

More information

Worst-Case Analysis of the Perceptron and Exponentiated Update Algorithms

Worst-Case Analysis of the Perceptron and Exponentiated Update Algorithms Worst-Case Analysis of the Perceptron and Exponentiated Update Algorithms Tom Bylander Division of Computer Science The University of Texas at San Antonio San Antonio, Texas 7849 bylander@cs.utsa.edu April

More information

CS 6501: Deep Learning for Computer Graphics. Basics of Neural Networks. Connelly Barnes

CS 6501: Deep Learning for Computer Graphics. Basics of Neural Networks. Connelly Barnes CS 6501: Deep Learning for Computer Graphics Basics of Neural Networks Connelly Barnes Overview Simple neural networks Perceptron Feedforward neural networks Multilayer perceptron and properties Autoencoders

More information

Neural Networks. Bishop PRML Ch. 5. Alireza Ghane. Feed-forward Networks Network Training Error Backpropagation Applications

Neural Networks. Bishop PRML Ch. 5. Alireza Ghane. Feed-forward Networks Network Training Error Backpropagation Applications Neural Networks Bishop PRML Ch. 5 Alireza Ghane Neural Networks Alireza Ghane / Greg Mori 1 Neural Networks Neural networks arise from attempts to model human/animal brains Many models, many claims of

More information

The Perceptron. Volker Tresp Summer 2016

The Perceptron. Volker Tresp Summer 2016 The Perceptron Volker Tresp Summer 2016 1 Elements in Learning Tasks Collection, cleaning and preprocessing of training data Definition of a class of learning models. Often defined by the free model parameters

More information

Machine Learning Lecture 10

Machine Learning Lecture 10 Machine Learning Lecture 10 Neural Networks 26.11.2018 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Today s Topic Deep Learning 2 Course Outline Fundamentals Bayes

More information

UNSUPERVISED LEARNING

UNSUPERVISED LEARNING UNSUPERVISED LEARNING Topics Layer-wise (unsupervised) pre-training Restricted Boltzmann Machines Auto-encoders LAYER-WISE (UNSUPERVISED) PRE-TRAINING Breakthrough in 2006 Layer-wise (unsupervised) pre-training

More information

EEE 241: Linear Systems

EEE 241: Linear Systems EEE 4: Linear Systems Summary # 3: Introduction to artificial neural networks DISTRIBUTED REPRESENTATION An ANN consists of simple processing units communicating with each other. The basic elements of

More information

Neural Networks: A Very Brief Tutorial

Neural Networks: A Very Brief Tutorial Neural Networks: A Very Brief Tutorial Chloé-Agathe Azencott Machine Learning & Computational Biology MPIs for Developmental Biology & for Intelligent Systems Tübingen (Germany) cazencott@tue.mpg.de October

More information

A New Perspective on an Old Perceptron Algorithm

A New Perspective on an Old Perceptron Algorithm A New Perspective on an Old Perceptron Algorithm Shai Shalev-Shwartz 1,2 and Yoram Singer 1,2 1 School of Computer Sci & Eng, The Hebrew University, Jerusalem 91904, Israel 2 Google Inc, 1600 Amphitheater

More information

ARTIFICIAL NEURAL NETWORKS گروه مطالعاتي 17 بهار 92

ARTIFICIAL NEURAL NETWORKS گروه مطالعاتي 17 بهار 92 ARTIFICIAL NEURAL NETWORKS گروه مطالعاتي 17 بهار 92 BIOLOGICAL INSPIRATIONS Some numbers The human brain contains about 10 billion nerve cells (neurons) Each neuron is connected to the others through 10000

More information

Neural networks. Chapter 20. Chapter 20 1

Neural networks. Chapter 20. Chapter 20 1 Neural networks Chapter 20 Chapter 20 1 Outline Brains Neural networks Perceptrons Multilayer networks Applications of neural networks Chapter 20 2 Brains 10 11 neurons of > 20 types, 10 14 synapses, 1ms

More information

Artificial Neural Networks. Historical description

Artificial Neural Networks. Historical description Artificial Neural Networks Historical description Victor G. Lopez 1 / 23 Artificial Neural Networks (ANN) An artificial neural network is a computational model that attempts to emulate the functions of

More information

PAC Learning Introduction to Machine Learning. Matt Gormley Lecture 14 March 5, 2018

PAC Learning Introduction to Machine Learning. Matt Gormley Lecture 14 March 5, 2018 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University PAC Learning Matt Gormley Lecture 14 March 5, 2018 1 ML Big Picture Learning Paradigms:

More information

Introduction to Support Vector Machines

Introduction to Support Vector Machines Introduction to Support Vector Machines Hsuan-Tien Lin Learning Systems Group, California Institute of Technology Talk in NTU EE/CS Speech Lab, November 16, 2005 H.-T. Lin (Learning Systems Group) Introduction

More information

Machine Learning Lecture 7

Machine Learning Lecture 7 Course Outline Machine Learning Lecture 7 Fundamentals (2 weeks) Bayes Decision Theory Probability Density Estimation Statistical Learning Theory 23.05.2016 Discriminative Approaches (5 weeks) Linear Discriminant

More information

Optimization Methods for Machine Learning (OMML)

Optimization Methods for Machine Learning (OMML) Optimization Methods for Machine Learning (OMML) 2nd lecture (2 slots) Prof. L. Palagi 16/10/2014 1 What is (not) Data Mining? By Namwar Rizvi - Ad Hoc Query: ad Hoc queries just examines the current data

More information

COMP-4360 Machine Learning Neural Networks

COMP-4360 Machine Learning Neural Networks COMP-4360 Machine Learning Neural Networks Jacky Baltes Autonomous Agents Lab University of Manitoba Winnipeg, Canada R3T 2N2 Email: jacky@cs.umanitoba.ca WWW: http://www.cs.umanitoba.ca/~jacky http://aalab.cs.umanitoba.ca

More information

Introduction to Neural Networks

Introduction to Neural Networks CUONG TUAN NGUYEN SEIJI HOTTA MASAKI NAKAGAWA Tokyo University of Agriculture and Technology Copyright by Nguyen, Hotta and Nakagawa 1 Pattern classification Which category of an input? Example: Character

More information

Basic Principles of Unsupervised and Unsupervised

Basic Principles of Unsupervised and Unsupervised Basic Principles of Unsupervised and Unsupervised Learning Toward Deep Learning Shun ichi Amari (RIKEN Brain Science Institute) collaborators: R. Karakida, M. Okada (U. Tokyo) Deep Learning Self Organization

More information