Need for Probabilistic Reasoning. Raymond J. Mooney. Conditional Probability. Axioms of Probability Theory. Classification (Categorization)

Size: px
Start display at page:

Download "Need for Probabilistic Reasoning. Raymond J. Mooney. Conditional Probability. Axioms of Probability Theory. Classification (Categorization)"

Transcription

1 Need for Probablstc Reasonng CS 343: Artfcal Intelence Probablstc Reasonng and Naïve Bayes Rayond J. Mooney Unversty of Texas at Austn Most everyday reasonng s based on uncertan evdence and nferences. Classcal logc, whch only allows conclusons to be strctly true or strctly false, does not account for ths uncertanty or the need to wegh and cobne conflctng evdence. Straghtforward applcaton of probablty theory s practcal snce the large nuber of probablty paraeters requ are rarely, f ever, avalable. Therefore, early expert systes eployed farly ad hoc ethods for reasonng under uncertanty and for cobnng evdence. Recently, ethods ore rgorously founded n probablty theory that attept to decrease the aount of condtonal probabltes requ have flourshed. 2 Axos of Probablty Theory All probabltes between 0 and 0 True proposton has probablty, false has probablty 0. true) false) 0. The probablty of dsjuncton s: A + A A A B B Condtonal Probablty A s the probablty of A gven B Assues that B s all and only nforaton nown. Defned by: A A A A B B 3 4 Independence A and B are ndependent ff: P ( A These two constrants are logcally equvalent P ( B Therefore, f A and B are ndependent: A P ( A P ( A Classfcaton (Categorzaton) Gven: A descrpton of an nstance, x X, where X s the nstance language or nstance space. A fxed set of categores: C{c, c 2, c n } Deterne: The category of x: c(x) C, where c(x) s a categorzaton functon whose doan s X and whose range s C. If c(x) s a bnary functon C{0,} ({true,false}, {postve, negatve}) then t s called a concept. 5 6

2 Learnng for Categorzaton Saple Learnng Proble A tranng exaple s an nstance x X, pa wth ts correct category c(x): <x, c(x)> for an unnown categorzaton functon, c. Gven a set of tranng exaples, D. Fnd a hypotheszed categorzaton functon, h(x), such that: < x, c( x) > D : h( x) c( x) Consstency 7 Instance language: <sze, color, shape> sze {sall, edu, large} color {,, green} shape {square, crcle, trangle} C {postve, negatve} D: Exaple Sze Color Shape sall crcle postve 2 large crcle postve 3 sall trangle negatve 4 large crcle negatve 8 Jont Dstrbuton Probablstc Classfcaton The jont probablty dstrbuton for a set of rando varables, X,,X n gves the probablty of every cobnaton of values (an n- densonal array wth v n values f all varables are dscrete wth v values, all v n values ust su to ): X,,X n ) postve negatve crcle square crcle square The probablty of all possble conjunctons (assgnents of values to soe subset of varables) can be calculated by sung the approprate subset of values fro the jont dstrbuton. crcle) ) Therefore, all condtonal probabltes can also be calculated. postve crcle) 0.20 postve crcle) 0.80 crcle) Let Y be the rando varable for the class whch taes values {y,y 2, y }. Let X be the rando varable descrbng an nstance consstng of a vector of values for n features <X,X 2 X n >, let x be a possble value for X and x j a possble value for X. For classfcaton, we need to copute Yy Xx ) for However, gven no other assuptons, ths requres a table gvng the probablty of each category for each possble nstance n the nstance space, whch s possble to accurately estate fro a reasonably-szed tranng set. Assung Y and all X are bnary, we need 2 n entres to specfy Ypos Xx ) for each of the 2 n possble x s snce Yneg Xx ) Ypos Xx ) Copa to 2 n+ entres for the jont dstrbuton Y,X,X 2 X n ) 0 Bayes Theore Bayesan Categorzaton E P ( H E) E) Sple proof fro defnton of condtonal probablty: H E) H E) (Def. cond. prob.) E) H E) E (Def. cond. prob.) P ( H E) E E QED: P ( H E) E) Deterne category of x by deternng for each y Y y ) X x Y y) Y y X x ) X x ) Xx ) can be deterned snce categores are coplete and dsjont. Y y X x ) X x ) Y y ) X x Y y ) X x ) Y y ) X x Y y ) 2 2

3 Bayesan Categorzaton (cont.) Need to now: Prors: Yy ) Condtonals: Xx Yy ) Yy ) are easly estated fro data. If n of the exaples n D are n y then Yy ) n / D Too any possble nstances (e.g. 2 n for bnary features) to estate all Xx Yy ). Stll need to ae soe sort of ndependence assuptons about the features to ae learnng tractable. 3 Generatve Probablstc Models Assue a sple (usually unrealstc) probablstc ethod by whch the data was generated. For categorzaton, each category has a dfferent paraeterzed generatve odel that characterzes that category. Tranng: Use the data for each category to estate the paraeters of the generatve odel for that category. Maxu Lelhood Estaton (MLE): Set paraeters to axze the probablty that the odel produced the gven tranng data. If M λ denotes a odel wth paraeter values λ and D s the tranng data for the th class, fnd odel paraeters for class (λ ) that axze the lelhood of D : λ argax D M ) λ Testng: Use Bayesan analyss to deterne the category odel that ost lely generated a specfc test nstance. λ 4 Naïve Bayes Generatve Model Naïve Bayes Inference Proble neg pos pos crc???? neg pos pos ed s grn crc tr tr crc crc crc crc ed s s crc tr crc crctr tr Sze Color Shape Sze Color Shape Postve Negatve grn grn grn 5 ed s grn crc tr tr crc crc crc crc ed s s crc tr crc crctr tr Sze Color Shape Sze Color Shape Postve Negatve grn grn grn 6 Naïve Bayesan Categorzaton Naïve Bayes Categrzaton Exaple If we assue features of an nstance are ndependent gven the category (condtonally ndependent). X Y ) X, X 2, L X n Y ) X Y ) Therefore, we then only need to now X Y) for each possble par of a feature-value and a category. If Y and all X and bnary, ths requres specfyng only 2n paraeters: X true Ytrue) and X true Yfalse) for each X X false Y) X true Y) Copa to specfyng 2 n paraeters wthout any ndependence assuptons. Probablty postve negatve Y) sall Y) edu Y) large Y) Y) Y) green Y) square Y) trangle Y) crcle Y) Test Instance: <edu,, crcle> 7 8 3

4 Naïve Bayes Categorzaton Exaple Naïve Bayes Dagnoss Exaple Probablty postve negatve Y) edu Y) Y) crcle Y) postve X) postve)*edu postve)* postve)*crcle postve) / X) 0.5 * 0. * 0.9 * / X) / negatve X) negatve)*edu negatve)* negatve)*crcle negatve) / X) 0.5 * 0.2 * 0.3 * / X) / postve X) + negatve X) / X) / X) X) ( ) Test Instance: <edu,, crcle> 9 C {allergy, cold, well} e sneeze; e 2 cough; e 3 fever E {sneeze, cough, fever} Prob Well Cold Allergy c ) sneeze c ) cough c ) fever c ) Naïve Bayes Dagnoss Exaple (cont.) Estatng Probabltes Probablty Well Cold Allergy c ) sneeze c ) cough c ) fever c ) well E) (0.9)(0.)(0.)(0.99)/E)0.0089/E) cold E) (0.05)(0.9)(0.8)(0.3)/E)0.0/E) allergy E) (0.05)(0.9)(0.7)(0.6)/E)0.09/E) Most probable category: allergy E) well E) 0.23 cold E) 0.26 allergy E) 0.50 E{sneeze, cough, fever} 2 Norally, probabltes are estated based on observed frequences n the tranng data. If D contans n exaples n category y, and n j of these n exaples have the jth value for feature X, x j, then: nj P ( X xj Y y ) n However, estatng such probabltes fro sall tranng sets s error-prone. If due only to chance, a rare feature, X, s always false n the tranng data, y :X true Yy ) 0. If X true then occurs n a test exaple, X, the result s that y : X Yy ) 0 and y : Yy X) 0 22 Probablty Estaton Exaple Ex Sze Color Shape sall crcle postve 2 large crcle postve 3 sall trangle negtve 4 large crcle negtve Test Instance X: <edu,, crcle> postve X) 0.5 * 0.0 *.0 *.0 / X) 0 Probablty postve negatve Y) sall Y) edu Y) large Y) Y) Y) green Y) square Y) trangle Y) crcle Y) Soothng To account for estaton fro sall saples, probablty estates are adjusted or soothed. Laplace soothng usng an -estate assues that each feature s gven a pror probablty, p, that s assued to have been prevously observed n a vrtual saple of sze. nj + p X xj Y y ) n + For bnary features, p s sply assued to be 0.5. negatve X) 0.5 * 0.0 * 0.5 * 0.5 / X)

5 Laplace Sothng Exaple Text Categorzaton Applcatons Assue tranng set contans 0 postve exaples: 4: sall 0: edu 6: large Estate paraeters as follows (f, p/3) sall postve) (4 + /3) / (0 + ) edu postve) (0 + /3) / (0 + ) 0.03 large postve) (6 + /3) / (0 + ) sall or edu or large postve).0 25 Web pages Recoendng Yahoo-le classfcaton Newsgroup/Blog Messages Recoendng flterng Sentent analyss for aretng News artcles Personalzed newspaper Eal essages Routng Prortzng Folderzng flterng Advertsng on Gal 26 Text Categorzaton Methods Naïve Bayes for Text Most coon representaton of a docuent s a bag of words,.e. set of words wth ther frequences, word order s gno. Gves a hgh-densonal vector representaton (one feature for each word). Vectors are sparse snce ost words are rare. Zpf s law and heavy-taled dstrbutons Modeled as generatng a bag of words for a docuent n a gven category by repeatedly saplng wth replaceent fro a vocabulary V {w, w 2, w } based on the probabltes w j c ). Sooth probablty estates wth Laplace -estates assung a unfor dstrbuton over all words (p / V ) and V Equvalent to a vrtual saple of seeng each word n each category exactly once Naïve Bayes Generatve Model for Text Naïve Bayes Text Classfcaton Vagra wn hot Ngera deal lottery nude $ Vagra legt legt legt legt scence PM coputer Frday test hoewor March score May exa legt 29 Vagra wn hot Ngera deal lottery nude $ Vagra Wn lotttery $???? legt legt legt legt scence PM coputer Frday test hoewor March score May exa legt 30 5

6 Text Naïve Bayes Aorth (Tran) Let V be the vocabulary of all words n the docuents n D For each category c C Let D be the subset of docuents n D n category c c ) D / D Let T be the concatenaton of all the docuents n D Let n be the total nuber of word occurrences n T For each word w j V Let n j be the nuber of occurrences of w j n T Let w j c ) (n j + ) / (n + V ) Text Naïve Bayes Aorth (Test) Gven a test docuent X Let n be the nuber of word occurrences n X Return the category: argax c ) c C n a c ) where a s the word occurrng the th poston n X 3 32 Underflow Preventon Multplyng lots of probabltes, whch are between 0 and by defnton, can result n floatng-pont underflow. Snce log(xy) log(x) + log(y), t s better to perfor all coputatons by sung logs of probabltes rather than ultplyng probabltes. Class wth hghest fnal un-noralzed log probablty score s stll the ost probable. Coents on Naïve Bayes Maes probablstc nference tractable by ang a strong assupton of condtonal ndependence. Tends to wor farly well despte ths strong assupton. Experents show t to be qute copettve wth other classfcaton ethods on standard datasets. Partcularly popular for text categorzaton, e.g. flterng

XII.3 The EM (Expectation-Maximization) Algorithm

XII.3 The EM (Expectation-Maximization) Algorithm XII.3 The EM (Expectaton-Maxzaton) Algorth Toshnor Munaata 3/7/06 The EM algorth s a technque to deal wth varous types of ncoplete data or hdden varables. It can be appled to a wde range of learnng probles

More information

Excess Error, Approximation Error, and Estimation Error

Excess Error, Approximation Error, and Estimation Error E0 370 Statstcal Learnng Theory Lecture 10 Sep 15, 011 Excess Error, Approxaton Error, and Estaton Error Lecturer: Shvan Agarwal Scrbe: Shvan Agarwal 1 Introducton So far, we have consdered the fnte saple

More information

Evaluation for sets of classes

Evaluation for sets of classes Evaluaton for Tet Categorzaton Classfcaton accuracy: usual n ML, the proporton of correct decsons, Not approprate f the populaton rate of the class s low Precson, Recall and F 1 Better measures 21 Evaluaton

More information

BAYESIAN CURVE FITTING USING PIECEWISE POLYNOMIALS. Dariusz Biskup

BAYESIAN CURVE FITTING USING PIECEWISE POLYNOMIALS. Dariusz Biskup BAYESIAN CURVE FITTING USING PIECEWISE POLYNOMIALS Darusz Bskup 1. Introducton The paper presents a nonparaetrc procedure for estaton of an unknown functon f n the regresson odel y = f x + ε = N. (1) (

More information

Xiangwen Li. March 8th and March 13th, 2001

Xiangwen Li. March 8th and March 13th, 2001 CS49I Approxaton Algorths The Vertex-Cover Proble Lecture Notes Xangwen L March 8th and March 3th, 00 Absolute Approxaton Gven an optzaton proble P, an algorth A s an approxaton algorth for P f, for an

More information

Outline. Prior Information and Subjective Probability. Subjective Probability. The Histogram Approach. Subjective Determination of the Prior Density

Outline. Prior Information and Subjective Probability. Subjective Probability. The Histogram Approach. Subjective Determination of the Prior Density Outlne Pror Inforaton and Subjectve Probablty u89603 1 Subjectve Probablty Subjectve Deternaton of the Pror Densty Nonnforatve Prors Maxu Entropy Prors Usng the Margnal Dstrbuton to Deterne the Pror Herarchcal

More information

LECTURE :FACTOR ANALYSIS

LECTURE :FACTOR ANALYSIS LCUR :FACOR ANALYSIS Rta Osadchy Based on Lecture Notes by A. Ng Motvaton Dstrbuton coes fro MoG Have suffcent aount of data: >>n denson Use M to ft Mture of Gaussans nu. of tranng ponts If

More information

Lecture 19 of 42. MAP and MLE continued, Minimum Description Length (MDL)

Lecture 19 of 42. MAP and MLE continued, Minimum Description Length (MDL) Lecture 19 of 4 MA and MLE contnued, Mnu Descrpton Length (MDL) Wednesday, 8 February 007 Wlla H. Hsu, KSU http://www.kddresearch.org Readngs for next class: Chapter 5, Mtchell Lecture Outlne Read Sectons

More information

COS 511: Theoretical Machine Learning

COS 511: Theoretical Machine Learning COS 5: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture #0 Scrbe: José Sões Ferrera March 06, 203 In the last lecture the concept of Radeacher coplexty was ntroduced, wth the goal of showng that

More information

System in Weibull Distribution

System in Weibull Distribution Internatonal Matheatcal Foru 4 9 no. 9 94-95 Relablty Equvalence Factors of a Seres-Parallel Syste n Webull Dstrbuton M. A. El-Dacese Matheatcs Departent Faculty of Scence Tanta Unversty Tanta Egypt eldacese@yahoo.co

More information

Several generation methods of multinomial distributed random number Tian Lei 1, a,linxihe 1,b,Zhigang Zhang 1,c

Several generation methods of multinomial distributed random number Tian Lei 1, a,linxihe 1,b,Zhigang Zhang 1,c Internatonal Conference on Appled Scence and Engneerng Innovaton (ASEI 205) Several generaton ethods of ultnoal dstrbuted rando nuber Tan Le, a,lnhe,b,zhgang Zhang,c School of Matheatcs and Physcs, USTB,

More information

PGM Learning Tasks and Metrics

PGM Learning Tasks and Metrics Probablstc Graphcal odels Learnng Overvew PG Learnng Tasks and etrcs Learnng doan epert True dstrbuton P* aybe correspondng to a PG * dataset of nstances D{d],...d]} sapled fro P* elctaton Network Learnng

More information

Text Categorization CSE 454. (Based on slides by Dan Weld, Tom Mitchell, and others)

Text Categorization CSE 454. (Based on slides by Dan Weld, Tom Mitchell, and others) Text Categorization CSE 454 (Based on slides by Dan Weld, Tom Mitchell, and others) 1 Given: Categorization A description of an instance, x X, where X is the instance language or instance space. A fixed

More information

Least Squares Fitting of Data

Least Squares Fitting of Data Least Squares Fttng of Data Davd Eberly Geoetrc Tools, LLC http://www.geoetrctools.co/ Copyrght c 1998-2014. All Rghts Reserved. Created: July 15, 1999 Last Modfed: February 9, 2008 Contents 1 Lnear Fttng

More information

Department of Computer Science Artificial Intelligence Research Laboratory. Iowa State University MACHINE LEARNING

Department of Computer Science Artificial Intelligence Research Laboratory. Iowa State University MACHINE LEARNING MACHINE LEANING Vasant Honavar Bonformatcs and Computatonal Bology rogram Center for Computatonal Intellgence, Learnng, & Dscovery Iowa State Unversty honavar@cs.astate.edu www.cs.astate.edu/~honavar/

More information

Bayesian Networks. Course: CS40022 Instructor: Dr. Pallab Dasgupta

Bayesian Networks. Course: CS40022 Instructor: Dr. Pallab Dasgupta Bayesan Networks Course: CS40022 Instructor: Dr. Pallab Dasgupta Department of Computer Scence & Engneerng Indan Insttute of Technology Kharagpur Example Burglar alarm at home Farly relable at detectng

More information

Multipoint Analysis for Sibling Pairs. Biostatistics 666 Lecture 18

Multipoint Analysis for Sibling Pairs. Biostatistics 666 Lecture 18 Multpont Analyss for Sblng ars Bostatstcs 666 Lecture 8 revously Lnkage analyss wth pars of ndvduals Non-paraetrc BS Methods Maxu Lkelhood BD Based Method ossble Trangle Constrant AS Methods Covered So

More information

1 Definition of Rademacher Complexity

1 Definition of Rademacher Complexity COS 511: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture #9 Scrbe: Josh Chen March 5, 2013 We ve spent the past few classes provng bounds on the generalzaton error of PAClearnng algorths for the

More information

Designing Fuzzy Time Series Model Using Generalized Wang s Method and Its application to Forecasting Interest Rate of Bank Indonesia Certificate

Designing Fuzzy Time Series Model Using Generalized Wang s Method and Its application to Forecasting Interest Rate of Bank Indonesia Certificate The Frst Internatonal Senar on Scence and Technology, Islac Unversty of Indonesa, 4-5 January 009. Desgnng Fuzzy Te Seres odel Usng Generalzed Wang s ethod and Its applcaton to Forecastng Interest Rate

More information

Computational and Statistical Learning theory Assignment 4

Computational and Statistical Learning theory Assignment 4 Coputatonal and Statstcal Learnng theory Assgnent 4 Due: March 2nd Eal solutons to : karthk at ttc dot edu Notatons/Defntons Recall the defnton of saple based Radeacher coplexty : [ ] R S F) := E ɛ {±}

More information

What is LP? LP is an optimization technique that allocates limited resources among competing activities in the best possible manner.

What is LP? LP is an optimization technique that allocates limited resources among competing activities in the best possible manner. (C) 998 Gerald B Sheblé, all rghts reserved Lnear Prograng Introducton Contents I. What s LP? II. LP Theor III. The Splex Method IV. Refneents to the Splex Method What s LP? LP s an optzaton technque that

More information

Our focus will be on linear systems. A system is linear if it obeys the principle of superposition and homogenity, i.e.

Our focus will be on linear systems. A system is linear if it obeys the principle of superposition and homogenity, i.e. SSTEM MODELLIN In order to solve a control syste proble, the descrptons of the syste and ts coponents ust be put nto a for sutable for analyss and evaluaton. The followng ethods can be used to odel physcal

More information

1 Review From Last Time

1 Review From Last Time COS 5: Foundatons of Machne Learnng Rob Schapre Lecture #8 Scrbe: Monrul I Sharf Aprl 0, 2003 Revew Fro Last Te Last te, we were talkng about how to odel dstrbutons, and we had ths setup: Gven - exaples

More information

Reliability estimation in Pareto-I distribution based on progressively type II censored sample with binomial removals

Reliability estimation in Pareto-I distribution based on progressively type II censored sample with binomial removals Journal of Scentfc esearch Developent (): 08-3 05 Avalable onlne at wwwjsradorg ISSN 5-7569 05 JSAD elablty estaton n Pareto-I dstrbuton based on progressvely type II censored saple wth bnoal reovals Ilhan

More information

Least Squares Fitting of Data

Least Squares Fitting of Data Least Squares Fttng of Data Davd Eberly Geoetrc Tools, LLC http://www.geoetrctools.co/ Copyrght c 1998-2015. All Rghts Reserved. Created: July 15, 1999 Last Modfed: January 5, 2015 Contents 1 Lnear Fttng

More information

,..., k N. , k 2. ,..., k i. The derivative with respect to temperature T is calculated by using the chain rule: & ( (5) dj j dt = "J j. k i.

,..., k N. , k 2. ,..., k i. The derivative with respect to temperature T is calculated by using the chain rule: & ( (5) dj j dt = J j. k i. Suppleentary Materal Dervaton of Eq. 1a. Assue j s a functon of the rate constants for the N coponent reactons: j j (k 1,,..., k,..., k N ( The dervatve wth respect to teperature T s calculated by usng

More information

CS47300: Web Information Search and Management

CS47300: Web Information Search and Management CS47300: Web Informaton Search and Management Probablstc Retreval Models Prof. Chrs Clfton 7 September 2018 Materal adapted from course created by Dr. Luo S, now leadng Albaba research group 14 Why probabltes

More information

Statistical analysis of Accelerated life testing under Weibull distribution based on fuzzy theory

Statistical analysis of Accelerated life testing under Weibull distribution based on fuzzy theory Statstcal analyss of Accelerated lfe testng under Webull dstrbuton based on fuzzy theory Han Xu, Scence & Technology on Relablty & Envronental Engneerng Laboratory, School of Relablty and Syste Engneerng,

More information

Gadjah Mada University, Indonesia. Yogyakarta State University, Indonesia Karangmalang Yogyakarta 55281

Gadjah Mada University, Indonesia. Yogyakarta State University, Indonesia Karangmalang Yogyakarta 55281 Reducng Fuzzy Relatons of Fuzzy Te Seres odel Usng QR Factorzaton ethod and Its Applcaton to Forecastng Interest Rate of Bank Indonesa Certfcate Agus aan Abad Subanar Wdodo 3 Sasubar Saleh 4 Ph.D Student

More information

ON WEIGHTED ESTIMATION IN LINEAR REGRESSION IN THE PRESENCE OF PARAMETER UNCERTAINTY

ON WEIGHTED ESTIMATION IN LINEAR REGRESSION IN THE PRESENCE OF PARAMETER UNCERTAINTY Econoetrcs orkng Paper EP7 ISSN 485-644 Departent of Econocs ON EIGTED ESTIMATION IN LINEAR REGRESSION IN TE PRESENCE OF PARAMETER UNCERTAINTY udth A Clarke Departent of Econocs, Unversty of Vctora Vctora,

More information

AN ANALYSIS OF A FRACTAL KINETICS CURVE OF SAVAGEAU

AN ANALYSIS OF A FRACTAL KINETICS CURVE OF SAVAGEAU AN ANALYI OF A FRACTAL KINETIC CURE OF AAGEAU by John Maloney and Jack Hedel Departent of Matheatcs Unversty of Nebraska at Oaha Oaha, Nebraska 688 Eal addresses: aloney@unoaha.edu, jhedel@unoaha.edu Runnng

More information

Retrieval Models: Language models

Retrieval Models: Language models CS-590I Informaton Retreval Retreval Models: Language models Luo S Department of Computer Scence Purdue Unversty Introducton to language model Ungram language model Document language model estmaton Maxmum

More information

2 Complement Representation PIC. John J. Sudano Lockheed Martin Moorestown, NJ, 08057, USA

2 Complement Representation PIC. John J. Sudano Lockheed Martin Moorestown, NJ, 08057, USA The yste Probablty nforaton ontent P Relatonshp to ontrbutng oponents obnng ndependent Mult-ource elefs Hybrd and Pedgree Pgnstc Probabltes ohn. udano Lockheed Martn Moorestown 08057 U john.j.sudano@lco.co

More information

CHAPTER 3: BAYESIAN DECISION THEORY

CHAPTER 3: BAYESIAN DECISION THEORY HATER 3: BAYESIAN DEISION THEORY Decson mang under uncertanty 3 Data comes from a process that s completely not nown The lac of nowledge can be compensated by modelng t as a random process May be the underlyng

More information

Centroid Uncertainty Bounds for Interval Type-2 Fuzzy Sets: Forward and Inverse Problems

Centroid Uncertainty Bounds for Interval Type-2 Fuzzy Sets: Forward and Inverse Problems Centrod Uncertanty Bounds for Interval Type-2 Fuzzy Sets: Forward and Inverse Probles Jerry M. Mendel and Hongwe Wu Sgnal and Iage Processng Insttute Departent of Electrcal Engneerng Unversty of Southern

More information

Chapter 12 Lyes KADEM [Thermodynamics II] 2007

Chapter 12 Lyes KADEM [Thermodynamics II] 2007 Chapter 2 Lyes KDEM [Therodynacs II] 2007 Gas Mxtures In ths chapter we wll develop ethods for deternng therodynac propertes of a xture n order to apply the frst law to systes nvolvng xtures. Ths wll be

More information

Bayesian Learning. Smart Home Health Analytics Spring Nirmalya Roy Department of Information Systems University of Maryland Baltimore County

Bayesian Learning. Smart Home Health Analytics Spring Nirmalya Roy Department of Information Systems University of Maryland Baltimore County Smart Home Health Analytcs Sprng 2018 Bayesan Learnng Nrmalya Roy Department of Informaton Systems Unversty of Maryland Baltmore ounty www.umbc.edu Bayesan Learnng ombnes pror knowledge wth evdence to

More information

Determination of the Confidence Level of PSD Estimation with Given D.O.F. Based on WELCH Algorithm

Determination of the Confidence Level of PSD Estimation with Given D.O.F. Based on WELCH Algorithm Internatonal Conference on Inforaton Technology and Manageent Innovaton (ICITMI 05) Deternaton of the Confdence Level of PSD Estaton wth Gven D.O.F. Based on WELCH Algorth Xue-wang Zhu, *, S-jan Zhang

More information

Reasoning under Uncertainty

Reasoning under Uncertainty Reasonng under Uncertanty Course: CS40022 Instructor: Dr. Pallab Dasgupta Department of Computer Scence & Engneerng Indan Insttute of Technology Kharagpur Handlng uncertan knowledge p p Symptom(p, Toothache

More information

Two Conjectures About Recency Rank Encoding

Two Conjectures About Recency Rank Encoding Internatonal Journal of Matheatcs and Coputer Scence, 0(205, no. 2, 75 84 M CS Two Conjectures About Recency Rank Encodng Chrs Buhse, Peter Johnson, Wlla Lnz 2, Matthew Spson 3 Departent of Matheatcs and

More information

Slobodan Lakić. Communicated by R. Van Keer

Slobodan Lakić. Communicated by R. Van Keer Serdca Math. J. 21 (1995), 335-344 AN ITERATIVE METHOD FOR THE MATRIX PRINCIPAL n-th ROOT Slobodan Lakć Councated by R. Van Keer In ths paper we gve an teratve ethod to copute the prncpal n-th root and

More information

Estimation of Reliability in Multicomponent Stress-Strength Based on Generalized Rayleigh Distribution

Estimation of Reliability in Multicomponent Stress-Strength Based on Generalized Rayleigh Distribution Journal of Modern Appled Statstcal Methods Volue 13 Issue 1 Artcle 4 5-1-014 Estaton of Relablty n Multcoponent Stress-Strength Based on Generalzed Raylegh Dstrbuton Gadde Srnvasa Rao Unversty of Dodoa,

More information

Small-Sample Equating With Prior Information

Small-Sample Equating With Prior Information Research Report Sall-Saple Equatng Wth Pror Inforaton Sauel A Lvngston Charles Lews June 009 ETS RR-09-5 Lstenng Learnng Leadng Sall-Saple Equatng Wth Pror Inforaton Sauel A Lvngston and Charles Lews ETS,

More information

Applied Mathematics Letters

Applied Mathematics Letters Appled Matheatcs Letters 2 (2) 46 5 Contents lsts avalable at ScenceDrect Appled Matheatcs Letters journal hoepage: wwwelseverco/locate/al Calculaton of coeffcents of a cardnal B-splne Gradr V Mlovanovć

More information

PROBABILITY AND STATISTICS Vol. III - Analysis of Variance and Analysis of Covariance - V. Nollau ANALYSIS OF VARIANCE AND ANALYSIS OF COVARIANCE

PROBABILITY AND STATISTICS Vol. III - Analysis of Variance and Analysis of Covariance - V. Nollau ANALYSIS OF VARIANCE AND ANALYSIS OF COVARIANCE ANALYSIS OF VARIANCE AND ANALYSIS OF COVARIANCE V. Nollau Insttute of Matheatcal Stochastcs, Techncal Unversty of Dresden, Gerany Keywords: Analyss of varance, least squares ethod, odels wth fxed effects,

More information

} Often, when learning, we deal with uncertainty:

} Often, when learning, we deal with uncertainty: Uncertanty and Learnng } Often, when learnng, we deal wth uncertanty: } Incomplete data sets, wth mssng nformaton } Nosy data sets, wth unrelable nformaton } Stochastcty: causes and effects related non-determnstcally

More information

Artificial Intelligence Bayesian Networks

Artificial Intelligence Bayesian Networks Artfcal Intellgence Bayesan Networks Adapted from sldes by Tm Fnn and Mare desjardns. Some materal borrowed from Lse Getoor. 1 Outlne Bayesan networks Network structure Condtonal probablty tables Condtonal

More information

e companion ONLY AVAILABLE IN ELECTRONIC FORM

e companion ONLY AVAILABLE IN ELECTRONIC FORM e copanon ONLY AVAILABLE IN ELECTRONIC FORM Electronc Copanon Decson Analyss wth Geographcally Varyng Outcoes: Preference Models Illustratve Applcatons by Jay Son, Crag W. Krkwood, L. Robn Keller, Operatons

More information

Face Recognition Using Ada-Boosted Gabor Features

Face Recognition Using Ada-Boosted Gabor Features Face Recognton Usng Ada-Boosted Gabor Features Peng Yang, Shguang Shan, Wen Gao, Stan Z. L, Dong Zhang Insttute of Coputng Technology of Chnese Acadey Scence Mcrosoft Research Asa {pyang, sgshan,wgao}@dl.ac.cn,

More information

CIS587 - Artificial Intellgence. Bayesian Networks CIS587 - AI. KB for medical diagnosis. Example.

CIS587 - Artificial Intellgence. Bayesian Networks CIS587 - AI. KB for medical diagnosis. Example. CIS587 - Artfcal Intellgence Bayesan Networks KB for medcal dagnoss. Example. We want to buld a KB system for the dagnoss of pneumona. Problem descrpton: Dsease: pneumona Patent symptoms (fndngs, lab tests):

More information

Classification Algorithms

Classification Algorithms Classification Algorithms UCSB 290N, 2015. T. Yang Slides based on R. Mooney UT Austin 1 Table of Content roblem Definition Rocchio K-nearest neighbor case based Bayesian algorithm Decision trees 2 Given:

More information

PARAMETER ESTIMATION IN WEIBULL DISTRIBUTION ON PROGRESSIVELY TYPE- II CENSORED SAMPLE WITH BETA-BINOMIAL REMOVALS

PARAMETER ESTIMATION IN WEIBULL DISTRIBUTION ON PROGRESSIVELY TYPE- II CENSORED SAMPLE WITH BETA-BINOMIAL REMOVALS Econoy & Busness ISSN 1314-7242, Volue 10, 2016 PARAMETER ESTIMATION IN WEIBULL DISTRIBUTION ON PROGRESSIVELY TYPE- II CENSORED SAMPLE WITH BETA-BINOMIAL REMOVALS Ilhan Usta, Hanef Gezer Departent of Statstcs,

More information

CHAPT II : Prob-stats, estimation

CHAPT II : Prob-stats, estimation CHAPT II : Prob-stats, estaton Randoness, probablty Probablty densty functons and cuulatve densty functons. Jont, argnal and condtonal dstrbutons. The Bayes forula. Saplng and statstcs Descrptve and nferental

More information

Denote the function derivatives f(x) in given points. x a b. Using relationships (1.2), polynomials (1.1) are written in the form

Denote the function derivatives f(x) in given points. x a b. Using relationships (1.2), polynomials (1.1) are written in the form SET OF METHODS FO SOUTION THE AUHY POBEM FO STIFF SYSTEMS OF ODINAY DIFFEENTIA EUATIONS AF atypov and YuV Nulchev Insttute of Theoretcal and Appled Mechancs SB AS 639 Novosbrs ussa Introducton A constructon

More information

8/25/17. Data Modeling. Data Modeling. Data Modeling. Patrice Koehl Department of Biological Sciences National University of Singapore

8/25/17. Data Modeling. Data Modeling. Data Modeling. Patrice Koehl Department of Biological Sciences National University of Singapore 8/5/17 Data Modelng Patrce Koehl Department of Bologcal Scences atonal Unversty of Sngapore http://www.cs.ucdavs.edu/~koehl/teachng/bl59 koehl@cs.ucdavs.edu Data Modelng Ø Data Modelng: least squares Ø

More information

Markov Chain Monte-Carlo (MCMC)

Markov Chain Monte-Carlo (MCMC) Markov Chan Monte-Carlo (MCMC) What for s t and what does t look lke? A. Favorov, 2003-2017 favorov@sens.org favorov@gal.co Monte Carlo ethod: a fgure square The value s unknown. Let s saple a rando value

More information

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family IOSR Journal of Mathematcs IOSR-JM) ISSN: 2278-5728. Volume 3, Issue 3 Sep-Oct. 202), PP 44-48 www.osrjournals.org Usng T.O.M to Estmate Parameter of dstrbutons that have not Sngle Exponental Famly Jubran

More information

On the number of regions in an m-dimensional space cut by n hyperplanes

On the number of regions in an m-dimensional space cut by n hyperplanes 6 On the nuber of regons n an -densonal space cut by n hyperplanes Chungwu Ho and Seth Zeran Abstract In ths note we provde a unfor approach for the nuber of bounded regons cut by n hyperplanes n general

More information

The Expectation-Maximization Algorithm

The Expectation-Maximization Algorithm The Expectaton-Maxmaton Algorthm Charles Elan elan@cs.ucsd.edu November 16, 2007 Ths chapter explans the EM algorthm at multple levels of generalty. Secton 1 gves the standard hgh-level verson of the algorthm.

More information

On Pfaff s solution of the Pfaff problem

On Pfaff s solution of the Pfaff problem Zur Pfaff scen Lösung des Pfaff scen Probles Mat. Ann. 7 (880) 53-530. On Pfaff s soluton of te Pfaff proble By A. MAYER n Lepzg Translated by D. H. Delpenc Te way tat Pfaff adopted for te ntegraton of

More information

FUZZY MODEL FOR FORECASTING INTEREST RATE OF BANK INDONESIA CERTIFICATE

FUZZY MODEL FOR FORECASTING INTEREST RATE OF BANK INDONESIA CERTIFICATE he 3 rd Internatonal Conference on Quanttatve ethods ISBN 979-989 Used n Econoc and Busness. June 6-8, 00 FUZZY ODEL FOR FORECASING INERES RAE OF BANK INDONESIA CERIFICAE Agus aan Abad, Subanar, Wdodo

More information

PHYS 1443 Section 002 Lecture #20

PHYS 1443 Section 002 Lecture #20 PHYS 1443 Secton 002 Lecture #20 Dr. Jae Condtons for Equlbru & Mechancal Equlbru How to Solve Equlbru Probles? A ew Exaples of Mechancal Equlbru Elastc Propertes of Solds Densty and Specfc Gravty lud

More information

Final Exam Solutions, 1998

Final Exam Solutions, 1998 58.439 Fnal Exa Solutons, 1998 roble 1 art a: Equlbru eans that the therodynac potental of a consttuent s the sae everywhere n a syste. An exaple s the Nernst potental. If the potental across a ebrane

More information

Description of the Force Method Procedure. Indeterminate Analysis Force Method 1. Force Method con t. Force Method con t

Description of the Force Method Procedure. Indeterminate Analysis Force Method 1. Force Method con t. Force Method con t Indeternate Analyss Force Method The force (flexblty) ethod expresses the relatonshps between dsplaceents and forces that exst n a structure. Prary objectve of the force ethod s to deterne the chosen set

More information

Probability Theory (revisited)

Probability Theory (revisited) Probablty Theory (revsted) Summary Probablty v.s. plausblty Random varables Smulaton of Random Experments Challenge The alarm of a shop rang. Soon afterwards, a man was seen runnng n the street, persecuted

More information

Universal communication part II: channels with memory

Universal communication part II: channels with memory Unversal councaton part II: channels wth eory Yuval Lontz, Mer Feder Tel Avv Unversty, Dept. of EE-Systes Eal: {yuvall,er@eng.tau.ac.l arxv:202.047v2 [cs.it] 20 Mar 203 Abstract Consder councaton over

More information

Logistic Regression. CAP 5610: Machine Learning Instructor: Guo-Jun QI

Logistic Regression. CAP 5610: Machine Learning Instructor: Guo-Jun QI Logstc Regresson CAP 561: achne Learnng Instructor: Guo-Jun QI Bayes Classfer: A Generatve model odel the posteror dstrbuton P(Y X) Estmate class-condtonal dstrbuton P(X Y) for each Y Estmate pror dstrbuton

More information

The Parity of the Number of Irreducible Factors for Some Pentanomials

The Parity of the Number of Irreducible Factors for Some Pentanomials The Party of the Nuber of Irreducble Factors for Soe Pentanoals Wolfra Koepf 1, Ryul K 1 Departent of Matheatcs Unversty of Kassel, Kassel, F. R. Gerany Faculty of Matheatcs and Mechancs K Il Sung Unversty,

More information

Collaborative Filtering Recommendation Algorithm

Collaborative Filtering Recommendation Algorithm Vol.141 (GST 2016), pp.199-203 http://dx.do.org/10.14257/astl.2016.141.43 Collaboratve Flterng Recoendaton Algorth Dong Lang Qongta Teachers College, Haou 570100, Chna, 18689851015@163.co Abstract. Ths

More information

Homework Assignment 3 Due in class, Thursday October 15

Homework Assignment 3 Due in class, Thursday October 15 Homework Assgnment 3 Due n class, Thursday October 15 SDS 383C Statstcal Modelng I 1 Rdge regresson and Lasso 1. Get the Prostrate cancer data from http://statweb.stanford.edu/~tbs/elemstatlearn/ datasets/prostate.data.

More information

Markov Logic Network. Matthew Richardson and Pedro Domingos. IE , Present by Hao Wu (haowu4)

Markov Logic Network. Matthew Richardson and Pedro Domingos. IE , Present by Hao Wu (haowu4) Markov Logc Network Matthew Rchardson and Pedro Domngos IE598 2016, Present by Hao Wu (haowu4) Motvaton - Unfyng Logc and Probablty Logc and probablty are two most mport way of reasonng. Classc AI favors

More information

MLE and Bayesian Estimation. Jie Tang Department of Computer Science & Technology Tsinghua University 2012

MLE and Bayesian Estimation. Jie Tang Department of Computer Science & Technology Tsinghua University 2012 MLE and Bayesan Estmaton Je Tang Department of Computer Scence & Technology Tsnghua Unversty 01 1 Lnear Regresson? As the frst step, we need to decde how we re gong to represent the functon f. One example:

More information

Algorithm for reduction of Element Calculus to Element Algebra

Algorithm for reduction of Element Calculus to Element Algebra Algorth for reducton of Eleent Calculus to Eleent Algebra Introducton M. Manukyan, V. Harutunyan The XML databases currently act defnte nterest aong researchers of databases for the followng reasons: 1.

More information

Statistical Foundations of Pattern Recognition

Statistical Foundations of Pattern Recognition Statstcal Foundatons of Pattern Recognton Learnng Objectves Bayes Theorem Decson-mang Confdence factors Dscrmnants The connecton to neural nets Statstcal Foundatons of Pattern Recognton NDE measurement

More information

Engineering Risk Benefit Analysis

Engineering Risk Benefit Analysis Engneerng Rsk Beneft Analyss.55, 2.943, 3.577, 6.938, 0.86, 3.62, 6.862, 22.82, ESD.72, ESD.72 RPRA 2. Elements of Probablty Theory George E. Apostolaks Massachusetts Insttute of Technology Sprng 2007

More information

Ensemble Methods: Boosting

Ensemble Methods: Boosting Ensemble Methods: Boostng Ncholas Ruozz Unversty of Texas at Dallas Based on the sldes of Vbhav Gogate and Rob Schapre Last Tme Varance reducton va baggng Generate new tranng data sets by samplng wth replacement

More information

Conditionalization for Interval Probabilities

Conditionalization for Interval Probabilities Condtonalzaton for Interval robabltes Alex Dekhtyar Judy Goldsth Abstract Condtonalzaton,.e., coputaton of a condtonal probablty dstrbuton gven a jont probablty dstrbuton of two or ore rando varables s

More information

Bayesian decision theory. Nuno Vasconcelos ECE Department, UCSD

Bayesian decision theory. Nuno Vasconcelos ECE Department, UCSD Bayesan decson theory Nuno Vasconcelos ECE Department UCSD Notaton the notaton n DHS s qute sloppy e.. show that error error z z dz really not clear what ths means we wll use the follown notaton subscrpts

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

International Journal of Mathematical Archive-9(3), 2018, Available online through ISSN

International Journal of Mathematical Archive-9(3), 2018, Available online through   ISSN Internatonal Journal of Matheatcal Archve-9(3), 208, 20-24 Avalable onlne through www.ja.nfo ISSN 2229 5046 CONSTRUCTION OF BALANCED INCOMPLETE BLOCK DESIGNS T. SHEKAR GOUD, JAGAN MOHAN RAO M AND N.CH.

More information

ENG 8801/ Special Topics in Computer Engineering: Pattern Recognition. Memorial University of Newfoundland Pattern Recognition

ENG 8801/ Special Topics in Computer Engineering: Pattern Recognition. Memorial University of Newfoundland Pattern Recognition EG 880/988 - Specal opcs n Computer Engneerng: Pattern Recognton Memoral Unversty of ewfoundland Pattern Recognton Lecture 7 May 3, 006 http://wwwengrmunca/~charlesr Offce Hours: uesdays hursdays 8:30-9:30

More information

arxiv: v2 [math.co] 3 Sep 2017

arxiv: v2 [math.co] 3 Sep 2017 On the Approxate Asyptotc Statstcal Independence of the Peranents of 0- Matrces arxv:705.0868v2 ath.co 3 Sep 207 Paul Federbush Departent of Matheatcs Unversty of Mchgan Ann Arbor, MI, 4809-043 Septeber

More information

On the Eigenspectrum of the Gram Matrix and the Generalisation Error of Kernel PCA (Shawe-Taylor, et al. 2005) Ameet Talwalkar 02/13/07

On the Eigenspectrum of the Gram Matrix and the Generalisation Error of Kernel PCA (Shawe-Taylor, et al. 2005) Ameet Talwalkar 02/13/07 On the Egenspectru of the Gra Matr and the Generalsaton Error of Kernel PCA Shawe-aylor, et al. 005 Aeet alwalar 0/3/07 Outlne Bacground Motvaton PCA, MDS Isoap Kernel PCA Generalsaton Error of Kernel

More information

Chapter 13. Gas Mixtures. Study Guide in PowerPoint. Thermodynamics: An Engineering Approach, 5th edition by Yunus A. Çengel and Michael A.

Chapter 13. Gas Mixtures. Study Guide in PowerPoint. Thermodynamics: An Engineering Approach, 5th edition by Yunus A. Çengel and Michael A. Chapter 3 Gas Mxtures Study Gude n PowerPont to accopany Therodynacs: An Engneerng Approach, 5th edton by Yunus A. Çengel and Mchael A. Boles The dscussons n ths chapter are restrcted to nonreactve deal-gas

More information

Chapter One Mixture of Ideal Gases

Chapter One Mixture of Ideal Gases herodynacs II AA Chapter One Mxture of Ideal Gases. Coposton of a Gas Mxture: Mass and Mole Fractons o deterne the propertes of a xture, we need to now the coposton of the xture as well as the propertes

More information

COMP th April, 2007 Clement Pang

COMP th April, 2007 Clement Pang COMP 540 12 th Aprl, 2007 Cleent Pang Boostng Cobnng weak classers Fts an Addtve Model Is essentally Forward Stagewse Addtve Modelng wth Exponental Loss Loss Functons Classcaton: Msclasscaton, Exponental,

More information

Elastic Collisions. Definition: two point masses on which no external forces act collide without losing any energy.

Elastic Collisions. Definition: two point masses on which no external forces act collide without losing any energy. Elastc Collsons Defnton: to pont asses on hch no external forces act collde thout losng any energy v Prerequstes: θ θ collsons n one denson conservaton of oentu and energy occurs frequently n everyday

More information

A Framework of Feature Selection Methods for Text Categorization

A Framework of Feature Selection Methods for Text Categorization A Fraework of Feature Selecton Methods for Text Categorzaton Shoushan L Ru Xa Chengqng Zong Chu-Ren Huang Departent of Chnese and Blngual Studes The Hong Kong Polytechnc Unversty {shoushanl,churenhuang}

More information

Kernel Methods and SVMs Extension

Kernel Methods and SVMs Extension Kernel Methods and SVMs Extenson The purpose of ths document s to revew materal covered n Machne Learnng 1 Supervsed Learnng regardng support vector machnes (SVMs). Ths document also provdes a general

More information

Lecture 3: Probability Distributions

Lecture 3: Probability Distributions Lecture 3: Probablty Dstrbutons Random Varables Let us begn by defnng a sample space as a set of outcomes from an experment. We denote ths by S. A random varable s a functon whch maps outcomes nto the

More information

SEMI-EMPIRICAL LIKELIHOOD RATIO CONFIDENCE INTERVALS FOR THE DIFFERENCE OF TWO SAMPLE MEANS

SEMI-EMPIRICAL LIKELIHOOD RATIO CONFIDENCE INTERVALS FOR THE DIFFERENCE OF TWO SAMPLE MEANS Ann. Inst. Statst. Math. Vol. 46, No. 1, 117 126 (1994) SEMI-EMPIRICAL LIKELIHOOD RATIO CONFIDENCE INTERVALS FOR THE DIFFERENCE OF TWO SAMPLE MEANS JING QIN Departent of Statstcs and Actuaral Scence, Unversty

More information

y new = M x old Feature Selection: Linear Transformations Constraint Optimization (insertion)

y new = M x old Feature Selection: Linear Transformations Constraint Optimization (insertion) Feature Selecton: Lnear ransforatons new = M x old Constrant Optzaton (nserton) 3 Proble: Gven an objectve functon f(x) to be optzed and let constrants be gven b h k (x)=c k, ovng constants to the left,

More information

Study of the possibility of eliminating the Gibbs paradox within the framework of classical thermodynamics *

Study of the possibility of eliminating the Gibbs paradox within the framework of classical thermodynamics * tudy of the possblty of elnatng the Gbbs paradox wthn the fraework of classcal therodynacs * V. Ihnatovych Departent of Phlosophy, Natonal echncal Unversty of Ukrane Kyv Polytechnc Insttute, Kyv, Ukrane

More information

Will Monroe August 9, with materials by Mehran Sahami and Chris Piech. image: Arito. Parameter learning

Will Monroe August 9, with materials by Mehran Sahami and Chris Piech. image: Arito. Parameter learning Will Monroe August 9, 07 with aterials by Mehran Sahai and Chris Piech iage: Arito Paraeter learning Announceent: Proble Set #6 Goes out tonight. Due the last day of class, Wednesday, August 6 (before

More information

Expected Value and Variance

Expected Value and Variance MATH 38 Expected Value and Varance Dr. Neal, WKU We now shall dscuss how to fnd the average and standard devaton of a random varable X. Expected Value Defnton. The expected value (or average value, or

More information

1.3 Hence, calculate a formula for the force required to break the bond (i.e. the maximum value of F)

1.3 Hence, calculate a formula for the force required to break the bond (i.e. the maximum value of F) EN40: Dynacs and Vbratons Hoework 4: Work, Energy and Lnear Moentu Due Frday March 6 th School of Engneerng Brown Unversty 1. The Rydberg potental s a sple odel of atoc nteractons. It specfes the potental

More information

Quantum Particle Motion in Physical Space

Quantum Particle Motion in Physical Space Adv. Studes Theor. Phys., Vol. 8, 014, no. 1, 7-34 HIKARI Ltd, www.-hkar.co http://dx.do.org/10.1988/astp.014.311136 Quantu Partcle Moton n Physcal Space A. Yu. Saarn Dept. of Physcs, Saara State Techncal

More information

A Knowledge-Based Feature Selection Method for Text Categorization

A Knowledge-Based Feature Selection Method for Text Categorization A Knowledge-Based Feature Selecton Method for Text Categorzaton Yan Xu,2, JnTao L, Bn Wang,ChunMng Sun,2 Insttute of Coputng Technology,Chnese Acadey of Scences No.6 Kexueyuan South Road, Zhongguancun,Hadan

More information

Introducing Entropy Distributions

Introducing Entropy Distributions Graubner, Schdt & Proske: Proceedngs of the 6 th Internatonal Probablstc Workshop, Darstadt 8 Introducng Entropy Dstrbutons Noel van Erp & Peter van Gelder Structural Hydraulc Engneerng and Probablstc

More information

Estimation in Step-stress Partially Accelerated Life Test for Exponentiated Pareto Distribution under Progressive Censoring with Random Removal

Estimation in Step-stress Partially Accelerated Life Test for Exponentiated Pareto Distribution under Progressive Censoring with Random Removal Journal of Advances n Matheatcs and Coputer Scence 5(): -6, 07; Artcle no.jamcs.3469 Prevously known as Brtsh Journal of Matheatcs & Coputer Scence ISSN: 3-085 Estaton n Step-stress Partally Accelerated

More information