Results of the GABLS3 diurnal-cycle benchmark for wind energy applications

Size: px
Start display at page:

Download "Results of the GABLS3 diurnal-cycle benchmark for wind energy applications"

Transcription

1 Results of the GABLS3 diurnal-cycle benchmark for wind energy applications Javier Sanz Rodrigo Wake Conference 2017 Visby, 1 June 2017

2 GABLS 3: Boundary-layer characteristics (Bosveld et al., 2014) Cabauw (Netherlands) 30 km Stationary synoptic Clear skies No fog Substantial LLJ 6 years 9 days night of 1 2 July 2006 Bosveld et al. (2014) The third GABLS Intercomparison case for evaluation studies of Boundary-Layer Models Part A: Case Selection and Set-Up. Boundary Layer Meteorol 152:

3 GABLS3 revisited for Wind Energy ABL models New European Wind Atlas (NEWA) context Add 1 st -order physics to the flow model Include thermal stratification vs neutral Transient model vs steady-steate Include large-scale tendencies vs idealized forcing Avoid adding physical complexity if this is not justified by meaningful improved performance No humidity equation just momentum and energy No heat transfer by radiation or phase changes just diffusion and advection No land-surface modeling just MOST Focus on wind energy quantities of interest (QoIs) Rotor heights ( m): S hub, WD hub, REWS, etc Metrics Cycle-integrated errors, relevant for intended use (AEP) Quantify performance vs observations and vs reference model

4 Simulations

5 WRF Sensitivity Analysis WRF-YSU (ref): ERA Interim 9 > 3 > 1 km, 46 vertical levels 24 hr spin-up YSU Tendencies from d02 (3 km) L av = 3x3 = 9 km t av = 60 min (rolling average) Sensitivity analysis Input data: GFS, ERA Interim PBL scheme: MYJ, MYNN, QNSE, TEMF, YSU

6 WRF Sensitivity Analysis: Horizontal wind fields at 80 m z = 80 m

7 WRF Sensitivity Analysis: time-series at 80 m

8 WRF Sensitivity Analysis: vertical profiles at midnight

9 Momentum Budget at Mesoscale: Tendencies Meso 1 U 1 U U U 1 u ' w' U V W V Vg fc t fc x y z fc z 1 V 1 V V V 1 v ' w' U V W U U g fc t fc x y z fc z Tendency Advection Coriolis Horizontal Pressure Gradient Turbulence Coriolis parameter: f c 2 sin Utend Uadv Ucor U pg U pbl

10 Mesoscale Tendencies from WRF WRF-YSU ERA Interim 9 > 3 > 1 km 24 hr spin-up Tendencies from d02 (3 km) L av = 3x3 = 9 km t av = 60 min (rolling average) Utend Uadv Ucor U pg U pbl D = 160 m z hub = 120 m

11 Mesoscale Tendencies from WRF WRF-YSU ERA Interim 9 > 3 > 1 km 24 hr spin-up Tendencies from d02 (3 km) L av = 3x3 = 9 km t av = 60 min (rolling average) Vtend Vadv Vcor Vpg Vpbl D = 160 m z hub = 120 m

12 SCM with Large-Scale Tendencies and Data Assimilation Mesoscale forcing Solved at microscale Data assimilation at microscale 1 U 1 uw Uadv V U pg U f t f z c 1 V 1 vw Vad v U Vp g V f t f z c t adv w z nud c c nud nud No humidity No heat transfer by radiation or phase changes nud z obs f c nud τ nud = 10min : 1hr ω = 1 within measurements M-O at the surface based on mesoscale inputs 2 * 2 2 * w' ' 0 lg h ; * z0t L0 u

13 1.5 th -order k-ε model (Sogachev et al. 2012) Eddy-viscosity from k-ε: Prognostic equations for k and ε: Length-scale limiter (MY74): m k m K C l k C k Km k P B t z k z * Km C 1 P C 2 C 3 B t k z z 0 12 zk dz 0 lmax C ; C k dz Constants: C ε1 = 1.52, C ε2 = 1.833, σ k = 2.95, σ ε = 2.95 and C μ = 0.03 * C C ( C C ) l C ( C C ) B l m max B 2 C ( C C ) lm lmax if Ri C 2 1 C 2 C 1l m lmax if Ri 0

14 Vertical Profiles at Midnight (LLJ)

15 Time-Height Fields Good consistency among all the models at capturing mesoscale forcing Best results on mean wind speed obtained from WRF ensemble Spread of microscale models of about the same size as that observed in the WRF ensemble Differences in TKE fields

16 Wind Energy Quantities of Interest Hub-height wind speed and direction S hub, WD hub Rotor Equivalent Wind Speed REWS z D = 160 m i+1 REWS A S cos A i z i z obs = [40, 80, 140, 200] z hub = 120 m A i i i i β i : veer angle with respect to hubheight wind direction Wind speed shear, α, and direction veer ψ S i z Shub zhub

17 Wind Energy Quantities of Interest

18 Cycle-Aggregrated Metrics 1 N pred obs i 1 MAE N

19 Conclusions Consistent flow fields of microscale models (RANS and LES) using tendencies from mesoscale Spread is significant, of similar magnitude in microscale models (using the same input) than that observed in the WRF sensitivity analysis Ensemble approach leads to the best predictions of mean wind speed fields Assessment is limited to the particular conditions of the diurnal cycle What shall be the impact of meso-micro in wind resource assessment applications?

20 Follow-up: NEWA Meso-Micro Challenge Determine the applicability range of meso-micro AEP methodologies for the NEWA validation domain Cabauw (flat onshore) Fino-1 (offshore) Alaiz (complex terrain) + additional sites as data comes in (Perdigao, Hornamossen, Kassel, etc) Launched in May 2017 Exploitation of NEWA s open-access experimental database and modelchain

21 Acknowledgements

22

A wind energy benchmark for ABL modelling of a diurnal cycle with a nocturnal low-level jet: GABLS3 revisited

A wind energy benchmark for ABL modelling of a diurnal cycle with a nocturnal low-level jet: GABLS3 revisited Journal of Physics: Conference Series PAPER OPEN ACCESS A wind energy benchmark for ABL modelling of a diurnal cycle with a nocturnal low-level jet: GABLS3 revisited To cite this article: J. Sanz Rodrigo

More information

Stable Atmospheric Boundary Layers and Diurnal Cycles

Stable Atmospheric Boundary Layers and Diurnal Cycles Stable Atmospheric Boundary Layers and Diurnal Cycles Introduction and overview of GABLS Bert Holtslag DICE and GABLS4 Workshop, Toulouse, May 20, 2015 Meteorology and Air Quality Department Modeling Atmospheric

More information

P1.1 THE QUALITY OF HORIZONTAL ADVECTIVE TENDENCIES IN ATMOSPHERIC MODELS FOR THE 3 RD GABLS SCM INTERCOMPARISON CASE

P1.1 THE QUALITY OF HORIZONTAL ADVECTIVE TENDENCIES IN ATMOSPHERIC MODELS FOR THE 3 RD GABLS SCM INTERCOMPARISON CASE P1.1 THE QUALITY OF HORIZONTAL ADVECTIVE TENDENCIES IN ATMOSPHERIC MODELS FOR THE 3 RD GABLS SCM INTERCOMPARISON CASE Fred C. Bosveld 1*, Erik van Meijgaard 1, Evert I. F. de Bruijn 1 and Gert-Jan Steeneveld

More information

Overview of 10 years of GABLS

Overview of 10 years of GABLS Overview of 10 years of GABLS Bert Holtslag (Wageningen Univ, www.maq.wur.nl ) Thanks to Sukanta Basu (NC State Univ), Bob Beare (Exeter Univ), Fred Bosveld (KNMI), Joan Cuxart (Univ. Balearic Islands)

More information

Super ensembles for wind climate assessment

Super ensembles for wind climate assessment Super ensembles for wind climate assessment Andrea N. Hahmann (ahah@dtu.dk) and Tija Sile (Univ. of Latvia) DTU Department of Wind Energy, Risø Campus and the New European Wind Atlas (NEWA) WP3 Mesoscale

More information

Mesoscale Modelling Benchmarking Exercise: Initial Results

Mesoscale Modelling Benchmarking Exercise: Initial Results Mesoscale Modelling Benchmarking Exercise: Initial Results Andrea N. Hahmann ahah@dtu.dk, DTU Wind Energy, Denmark Bjarke Tobias Olsen, Anna Maria Sempreviva, Hans E. Jørgensen, Jake Badger Motivation

More information

Atmospheric Boundary Layers:

Atmospheric Boundary Layers: Atmospheric Boundary Layers: An introduction and model intercomparisons Bert Holtslag Lecture for Summer school on Land-Atmosphere Interactions, Valsavarenche, Valle d'aosta (Italy), 22 June, 2015 Meteorology

More information

Assessing WRF PBL Schemes for Wind Energy Applications

Assessing WRF PBL Schemes for Wind Energy Applications Assessing WRF PBL Schemes for Wind Energy Applications Branko Kosović, Yubao Liu, Youwei Liu, Will Cheng NCAR Workshop May 12, 21 NATIONAL CENTER FOR ATMOSPHERIC RESEARCH In the Past PBL Parameterizations

More information

Wind Flow Modeling The Basis for Resource Assessment and Wind Power Forecasting

Wind Flow Modeling The Basis for Resource Assessment and Wind Power Forecasting Wind Flow Modeling The Basis for Resource Assessment and Wind Power Forecasting Detlev Heinemann ForWind Center for Wind Energy Research Energy Meteorology Unit, Oldenburg University Contents Model Physics

More information

Simulating the Vertical Structure of the Wind with the WRF Model

Simulating the Vertical Structure of the Wind with the WRF Model Simulating the Vertical Structure of the Wind with the WRF Model Andrea N Hahmann, Caroline Draxl, Alfredo Peña, Jake Badger, Xiaoli Lársen, and Joakim R. Nielsen Wind Energy Division Risø National Laboratory

More information

Nesting large-eddy simulations within mesoscale simulations in WRF for wind energy applications

Nesting large-eddy simulations within mesoscale simulations in WRF for wind energy applications Performance Measures x.x, x.x, and x.x Nesting large-eddy simulations within mesoscale simulations in WRF for wind energy applications Julie K. Lundquist Jeff Mirocha, Branko Kosović 9 WRF User s Workshop,

More information

WIND CLIMATE ESTIMATION USING WRF MODEL OUTPUT: MODEL SENSITIVITIES

WIND CLIMATE ESTIMATION USING WRF MODEL OUTPUT: MODEL SENSITIVITIES WIND CLIMATE ESTIMATION USING WRF MODEL OUTPUT: MODEL SENSITIVITIES Andrea N Hahmann (ahah@dtu.dk) Claire Vincent, Alfredo Peña, Ebba Dellwik, Julia Lange, Charlotte Hasager Wind Energy Department, DTU,

More information

Stable and transitional (and cloudy) boundary layers in WRF. Wayne M. Angevine CIRES, University of Colorado, and NOAA ESRL

Stable and transitional (and cloudy) boundary layers in WRF. Wayne M. Angevine CIRES, University of Colorado, and NOAA ESRL Stable and transitional (and cloudy) boundary layers in WRF Wayne M. Angevine CIRES, University of Colorado, and NOAA ESRL WRF PBL and Land Surface options Too many options! PBL here: MYJ (traditional,

More information

ESS Turbulence and Diffusion in the Atmospheric Boundary-Layer : Winter 2017: Notes 1

ESS Turbulence and Diffusion in the Atmospheric Boundary-Layer : Winter 2017: Notes 1 ESS5203.03 - Turbulence and Diffusion in the Atmospheric Boundary-Layer : Winter 2017: Notes 1 Text: J.R.Garratt, The Atmospheric Boundary Layer, 1994. Cambridge Also some material from J.C. Kaimal and

More information

WRF/Chem forecasting of boundary layer meteorology and O 3. Xiaoming 湖南气象局 Nov. 22 th 2013

WRF/Chem forecasting of boundary layer meteorology and O 3. Xiaoming 湖南气象局 Nov. 22 th 2013 WRF/Chem forecasting of boundary layer meteorology and O 3 Xiaoming Hu @ 湖南气象局 Nov. 22 th 2013 Importance of O 3, Aerosols Have adverse effects on human health and environments Reduce visibility Play an

More information

The Total Energy Mass Flux PBL Scheme: Overview and Performance in Shallow-Cloud Cases

The Total Energy Mass Flux PBL Scheme: Overview and Performance in Shallow-Cloud Cases The Total Energy Mass Flux PBL Scheme: Overview and Performance in Shallow-Cloud Cases Wayne M. Angevine CIRES, University of Colorado, and NOAA ESRL Thorsten Mauritsen Max Planck Institute for Meteorology,

More information

The Forcing of Wind Turbine Rotors by True Weather Events as a Function of Atmospheric Stability State*

The Forcing of Wind Turbine Rotors by True Weather Events as a Function of Atmospheric Stability State* NAWEA 2015 Symposium 11 June 2015 Virginia Tech, Blacksburg, VA The Forcing of Wind Turbine Rotors by True Weather Events as a Function of Atmospheric Stability State* Balaji Jayaraman 1 and James G. Brasseur

More information

Warm weather s a comin!

Warm weather s a comin! Warm weather s a comin! Performance Dependence on Closure Constants of the MYNN PBL Scheme for Wind Ramp Events in a Stable Boundary Layer David E. Jahn IGERT Wind Energy Science Engineering and Policy

More information

The Third GABLS Intercomparison Case for Evaluation Studies of Boundary-Layer Models. Part A: Case Selection and Set-Up

The Third GABLS Intercomparison Case for Evaluation Studies of Boundary-Layer Models. Part A: Case Selection and Set-Up Boundary-Layer Meteorol DOI 10.1007/s10546-014-9917-3 ARTICLE The Third GABLS Intercomparison Case for Evaluation Studies of Boundary-Layer Models. Part A: Case Selection and Set-Up Fred C. Bosveld Peter

More information

Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2)

Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2) Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2) The ABL, though turbulent, is not homogeneous, and a critical role of turbulence is transport and mixing of air properties, especially in the

More information

GEWEX Atmospheric Boundary Layer Model

GEWEX Atmospheric Boundary Layer Model GEWEX Atmospheric Boundary Layer Model Inter-comparison Studies Timo Vihma 1, Tiina Kilpeläinen 1, Albert A.M. Holtslag 2, Laura Rontu 1, Phil Anderson 3, Klara Finkele 4, and Gunilla Svensson 5 1 Finnish

More information

Atmospheric Boundary Layers

Atmospheric Boundary Layers Lecture for International Summer School on the Atmospheric Boundary Layer, Les Houches, France, June 17, 2008 Atmospheric Boundary Layers Bert Holtslag Introducing the latest developments in theoretical

More information

The collapse of atmospheric turbulence

The collapse of atmospheric turbulence The collapse of atmospheric turbulence Bas van de Wiel, Arnold Moene, Harm Jonker, Peter Baas, Bosveld, Jielun Sun,Sukanta Basu, Bert Holtslag, Judith Donda, Herman Clercx Terre Incognita? GABLS I: GABLS

More information

The applicability of Monin Obukhov scaling for sloped cooled flows in the context of Boundary Layer parameterization

The applicability of Monin Obukhov scaling for sloped cooled flows in the context of Boundary Layer parameterization Julia Palamarchuk Odessa State Environmental University, Ukraine The applicability of Monin Obukhov scaling for sloped cooled flows in the context of Boundary Layer parameterization The low-level katabatic

More information

Generating Virtual Wind Climatologies through the Direct Downscaling of MERRA Reanalysis Data using WindSim

Generating Virtual Wind Climatologies through the Direct Downscaling of MERRA Reanalysis Data using WindSim Generating Virtual Wind Climatologies through the Direct Downscaling of MERRA Reanalysis Data using WindSim WindSim Americas User Meeting December 4 th, 2014 Orlando, FL, USA Christopher G. Nunalee cgnunale@ncsu.edu

More information

Measurements and Simulations of Wakes in Onshore Wind Farms Julie K. Lundquist 1,2

Measurements and Simulations of Wakes in Onshore Wind Farms Julie K. Lundquist 1,2 Measurements and Simulations of Wakes in Onshore Wind Farms Julie K. Lundquist 1,2 1 University of Colorado Boulder, 2 National Renewable Energy Laboratory NORCOWE 2016, 14 16 Sept 2016, Bergen, Norway

More information

The Atmospheric Boundary Layer. The Surface Energy Balance (9.2)

The Atmospheric Boundary Layer. The Surface Energy Balance (9.2) The Atmospheric Boundary Layer Turbulence (9.1) The Surface Energy Balance (9.2) Vertical Structure (9.3) Evolution (9.4) Special Effects (9.5) The Boundary Layer in Context (9.6) Fair Weather over Land

More information

VALIDATION OF BOUNDARY-LAYER WINDS FROM WRF MESOSCALE FORECASTS WITH APPLICATIONS TO WIND ENERGY FORECASTING

VALIDATION OF BOUNDARY-LAYER WINDS FROM WRF MESOSCALE FORECASTS WITH APPLICATIONS TO WIND ENERGY FORECASTING VALIDATION OF BOUNDARY-LAYER WINDS FROM WRF MESOSCALE FORECASTS WITH APPLICATIONS TO WIND ENERGY FORECASTING Caroline Draxl, Andrea N. Hahmann, Alfredo Peña, Jesper N. Nissen, and Gregor Giebel Risø National

More information

WASA WP1:Mesoscale modeling UCT (CSAG) & DTU Wind Energy Oct March 2014

WASA WP1:Mesoscale modeling UCT (CSAG) & DTU Wind Energy Oct March 2014 WASA WP1:Mesoscale modeling UCT (CSAG) & DTU Wind Energy Oct 2013 - March 2014 Chris Lennard and Brendan Argent University of Cape Town, Cape Town, South Africa Andrea N. Hahmann (ahah@dtu.dk), Jake Badger,

More information

Towards the Fourth GEWEX Atmospheric Boundary Layer Model Inter-Comparison Study (GABLS4)

Towards the Fourth GEWEX Atmospheric Boundary Layer Model Inter-Comparison Study (GABLS4) Towards the Fourth GEWEX Atmospheric Boundary Layer Model Inter-Comparison Study (GABLS4) Timo Vihma 1, Tiina Nygård 1, Albert A.M. Holtslag 2, Laura Rontu 1, Phil Anderson 3, Klara Finkele 4, and Gunilla

More information

Mesoscale modeling of coastal low-level jets: implications for offshore wind resource estimation

Mesoscale modeling of coastal low-level jets: implications for offshore wind resource estimation WIND ENERGY Wind Energ. (2013) Published online in Wiley Online Library (wileyonlinelibrary.com)..1628 RESEARCH ARTICLE Mesoscale modeling of coastal low-level jets: implications for offshore wind resource

More information

A GSI-based convection-allowing EnKF and ensemble forecast system for PECAN

A GSI-based convection-allowing EnKF and ensemble forecast system for PECAN A GSI-based convection-allowing EnKF and ensemble forecast system for PECAN Aaron Johnson, Xuguang Wang, Samuel Degelia University of Oklahoma, Norman, OK 26 May 2016 7 th EnKF Data Assimilation Workshop,

More information

Evaluating winds and vertical wind shear from Weather Research and Forecasting model forecasts using seven planetary boundary layer schemes

Evaluating winds and vertical wind shear from Weather Research and Forecasting model forecasts using seven planetary boundary layer schemes WIND ENERGY Wind Energ. 2014; 17:39 55 Published online 28 October 2012 in Wiley Online Library (wileyonlinelibrary.com)..1555 RESEARCH ARTICLE Evaluating winds and vertical wind shear from Weather Research

More information

Frequency and evolution of Low Level Jet events over the Southern North Sea analysed from WRF simulations and LiDAR measurements

Frequency and evolution of Low Level Jet events over the Southern North Sea analysed from WRF simulations and LiDAR measurements Frequency and evolution of Low Level Jet events over the Southern North Sea analysed from WRF simulations and LiDAR measurements David Wagner1, Gerald Steinfeld1, Björn Witha1, Hauke Wurps1, Joachim Reuder2

More information

90 s. MS-Micro. Primitives NOABL. high. low. CPU / Information/ Global Market

90 s. MS-Micro. Primitives NOABL. high. low. CPU / Information/ Global Market 2010 2000 90 s MS-Micro Primitives NOABL low high CPU / Information/ Global Market 2010 2000 European Wind Atlas flatland 90 s Danish Revolution Risoe MS-Micro Primitives NOABL low high CPU / Information/

More information

Lecture 12. The diurnal cycle and the nocturnal BL

Lecture 12. The diurnal cycle and the nocturnal BL Lecture 12. The diurnal cycle and the nocturnal BL Over flat land, under clear skies and with weak thermal advection, the atmospheric boundary layer undergoes a pronounced diurnal cycle. A schematic and

More information

Evaluation of nonlocal and local planetary boundary layer schemes in the WRF model

Evaluation of nonlocal and local planetary boundary layer schemes in the WRF model Evaluation of nonlocal and local planetary boundary layer schemes in the WRF model Bo Xie,Jimmy C. H. Fung,Allen Chan,and Alexis Lau Received 31 October 2011; revised 13 May 2012; accepted 14 May 2012;

More information

1 Introduction to Governing Equations 2 1a Methodology... 2

1 Introduction to Governing Equations 2 1a Methodology... 2 Contents 1 Introduction to Governing Equations 2 1a Methodology............................ 2 2 Equation of State 2 2a Mean and Turbulent Parts...................... 3 2b Reynolds Averaging.........................

More information

Validation of Boundary Layer Winds from WRF Mesoscale Forecasts over Denmark

Validation of Boundary Layer Winds from WRF Mesoscale Forecasts over Denmark Downloaded from orbit.dtu.dk on: Dec 14, 2018 Validation of Boundary Layer Winds from WRF Mesoscale Forecasts over Denmark Hahmann, Andrea N.; Pena Diaz, Alfredo Published in: EWEC 2010 Proceedings online

More information

Tue 2/16/2016. Wrap-up on some WRF PBL options Paper presentations (Hans, Pat, Dylan, Masih, Xia, James) Begin convective parameterization (if time)

Tue 2/16/2016. Wrap-up on some WRF PBL options Paper presentations (Hans, Pat, Dylan, Masih, Xia, James) Begin convective parameterization (if time) Tue 2/16/2016 Finish turbulence and PBL closure: Wrap-up on some WRF PBL options Paper presentations (Hans, Pat, Dylan, Masih, Xia, James) Begin convective parameterization (if time) Reminders/announcements:

More information

GABLS3-LES Intercomparison Study

GABLS3-LES Intercomparison Study GABLS3-LES Intercomparison Study S. Basu 1, A.A.M. Holtslag 2, F.C. Bosveld 3 1 Dept of Marine, Earth, and Atmospheric Sciences, North Carolina State University, USA; 2 Meteorology and Air Quality Section,

More information

Arctic Boundary Layer

Arctic Boundary Layer Annual Seminar 2015 Physical processes in present and future large-scale models Arctic Boundary Layer Gunilla Svensson Department of Meteorology and Bolin Centre for Climate Research Stockholm University,

More information

Chapter (3) TURBULENCE KINETIC ENERGY

Chapter (3) TURBULENCE KINETIC ENERGY Chapter (3) TURBULENCE KINETIC ENERGY 3.1 The TKE budget Derivation : The definition of TKE presented is TKE/m= e = 0.5 ( u 2 + v 2 + w 2 ). we recognize immediately that TKE/m is nothing more than the

More information

Atm S 547 Boundary Layer Meteorology

Atm S 547 Boundary Layer Meteorology Lecture 8. Parameterization of BL Turbulence I In this lecture Fundamental challenges and grid resolution constraints for BL parameterization Turbulence closure (e. g. first-order closure and TKE) parameterizations

More information

WRF-RTFDDA Optimization and Wind Farm Data Assimilation

WRF-RTFDDA Optimization and Wind Farm Data Assimilation 2009, University Corporation for Atmospheric Research. All rights reserved. WRF-RTFDDA Optimization and Wind Farm Data Assimilation William Y.Y. Cheng, Yubao Liu, Yuewei Liu, and Gregory Roux NCAR/Research

More information

Pseudo-Global warming approach using 4KM WRF model

Pseudo-Global warming approach using 4KM WRF model Pseudo-Global warming approach using 4KM WRF model S. Kurkute 1,2 Y. Li 1,2 1 School of Environment and Sustainability University of Saskatchewan 2 Global Institute of Water Security University of Saskatchewan

More information

Tue 2/9/2016. Turbulence and PBL closure: Reminders/announcements: Local & non-local WRF PBL options. - WRF real-data case assignment, due today

Tue 2/9/2016. Turbulence and PBL closure: Reminders/announcements: Local & non-local WRF PBL options. - WRF real-data case assignment, due today Tue 2/9/2016 Turbulence and PBL closure: Local & non-local WRF PBL options Reminders/announcements: - WRF real-data case assignment, due today - Some lessons learned here! - Project hypothesis assignment,

More information

A Discussion on The Effect of Mesh Resolution on Convective Boundary Layer Statistics and Structures Generated by Large-Eddy Simulation by Sullivan

A Discussion on The Effect of Mesh Resolution on Convective Boundary Layer Statistics and Structures Generated by Large-Eddy Simulation by Sullivan 耶鲁 - 南京信息工程大学大气环境中心 Yale-NUIST Center on Atmospheric Environment A Discussion on The Effect of Mesh Resolution on Convective Boundary Layer Statistics and Structures Generated by Large-Eddy Simulation

More information

Linking mesocale modelling to site conditions

Linking mesocale modelling to site conditions VindKraftNet Mesoscale Workshop 3 March 2010, Vestas Technology HQ, Århus, Denmark Linking mesocale modelling to site conditions Jake Badger, Andrea Hahmann, Xiaoli Guo Larsen, Claire Vincent, Caroline

More information

Investigation of surface layer parameterization in WRF model & its impact on modeled nocturnal wind biases

Investigation of surface layer parameterization in WRF model & its impact on modeled nocturnal wind biases Investigation of surface layer parameterization in WRF model & its impact on modeled nocturnal wind biases Pius Lee 1, Fantine Ngan 1,2, Hang Lei 1,2, Li Pan 1,2, Hyuncheol Kim 1,2, and Daniel Tong 1,2

More information

Simulations of Midlatitude and Tropical Out-of-Cloud Convectively-Induced Turbulence

Simulations of Midlatitude and Tropical Out-of-Cloud Convectively-Induced Turbulence Simulations of Midlatitude and Tropical Out-of-Cloud Convectively-Induced Turbulence Katelyn Barber University of North Dakota Turbulence Impact Mitigation Workshop 2018 katelyn.barber@und.edu 1 Zovko-Rajak

More information

Advanced Hurricane WRF (AHW) Physics

Advanced Hurricane WRF (AHW) Physics Advanced Hurricane WRF (AHW) Physics Jimy Dudhia MMM Division, NCAR 1D Ocean Mixed-Layer Model 1d model based on Pollard, Rhines and Thompson (1973) was added for hurricane forecasts Purpose is to represent

More information

TURBULENT KINETIC ENERGY

TURBULENT KINETIC ENERGY TURBULENT KINETIC ENERGY THE CLOSURE PROBLEM Prognostic Moment Equation Number Number of Ea. fg[i Q! Ilial.!.IokoQlI!!ol Ui au. First = at au.'u.' '_J_ ax j 3 6 ui'u/ au.'u.' a u.'u.'u k ' Second ' J =

More information

Vertical resolution of numerical models. Atm S 547 Lecture 8, Slide 1

Vertical resolution of numerical models. Atm S 547 Lecture 8, Slide 1 Vertical resolution of numerical models Atm S 547 Lecture 8, Slide 1 M-O and Galperin stability factors Atm S 547 Lecture 8, Slide 2 Profile vs. forcing-driven turbulence parameterization Mellor-Yamada

More information

Surface layer parameterization in WRF

Surface layer parameterization in WRF Surface layer parameteriation in WRF Laura Bianco ATOC 7500: Mesoscale Meteorological Modeling Spring 008 Surface Boundary Layer: The atmospheric surface layer is the lowest part of the atmospheric boundary

More information

Simulating wind energy resources with mesoscale models: Intercomparison of stateof-the-art

Simulating wind energy resources with mesoscale models: Intercomparison of stateof-the-art Downloaded from orbit.dtu.dk on: Nov 01, 2018 Simulating wind energy resources with mesoscale models: Intercomparison of stateof-the-art models Olsen, Bjarke Tobias; Hahmann, Andrea N.; Sempreviva, Anna

More information

Research Article WRF Model Methodology for Offshore Wind Energy Applications

Research Article WRF Model Methodology for Offshore Wind Energy Applications Advances in Meteorology, Article ID 319819, 14 pages http://dx.doi.org/10.1155/2014/319819 Research Article WRF Model Methodology for Offshore Wind Energy Applications Evangelia-Maria Giannakopoulou and

More information

Stable atmospheric conditions over the Baltic Sea: model evaluation and climatology

Stable atmospheric conditions over the Baltic Sea: model evaluation and climatology BOREAL ENVIRONMENT RESEARCH 21: 387 404 2016 ISSN 1239-6095 (print) ISSN 1797-2469 (online) Helsinki 15 February 2016 Stable atmospheric conditions over the Baltic Sea: model evaluation and climatology

More information

Testing and Improving Pacific NW PBL forecasts

Testing and Improving Pacific NW PBL forecasts Testing and Improving Pacific NW PBL forecasts Chris Bretherton and Matt Wyant University of Washington Eric Grimit 3Tier NASA MODIS Image Testing and Improving Pacific NW PBL forecasts PBL-related forecast

More information

Environmental Fluid Dynamics

Environmental Fluid Dynamics Environmental Fluid Dynamics ME EN 7710 Spring 2015 Instructor: E.R. Pardyjak University of Utah Department of Mechanical Engineering Definitions Environmental Fluid Mechanics principles that govern transport,

More information

Di Wu, Xiquan Dong, Baike Xi, Zhe Feng, Aaron Kennedy, and Gretchen Mullendore. University of North Dakota

Di Wu, Xiquan Dong, Baike Xi, Zhe Feng, Aaron Kennedy, and Gretchen Mullendore. University of North Dakota Di Wu, Xiquan Dong, Baike Xi, Zhe Feng, Aaron Kennedy, and Gretchen Mullendore University of North Dakota Objectives 3 case studies to evaluate WRF and NAM performance in Oklahoma (OK) during summer 2007,

More information

6A.3 Stably stratified boundary layer simulations with a non-local closure model

6A.3 Stably stratified boundary layer simulations with a non-local closure model 6A.3 Stably stratified boundary layer simulations with a non-local closure model N. M. Colonna, E. Ferrero*, Dipartimento di Scienze e Tecnologie Avanzate, University of Piemonte Orientale, Alessandria,

More information

Investigating low-level jet wind profiles using two different lidars

Investigating low-level jet wind profiles using two different lidars Investigating low-level jet wind profiles using two different lidars B.J. Vanderwende 1 J.K. Lundquist 1,2 1. Atmospheric and Oceanic Sciences University of Colorado Boulder, CO USA 2. National Renewable

More information

The Stable Boundary layer

The Stable Boundary layer The Stable Boundary layer the statistically stable or stratified regime occurs when surface is cooler than the air The stable BL forms at night over land (Nocturnal Boundary Layer) or when warm air travels

More information

ADAPTATION OF THE REYNOLDS STRESS TURBULENCE MODEL FOR ATMOSPHERIC SIMULATIONS

ADAPTATION OF THE REYNOLDS STRESS TURBULENCE MODEL FOR ATMOSPHERIC SIMULATIONS ADAPTATION OF THE REYNOLDS STRESS TURBULENCE MODEL FOR ATMOSPHERIC SIMULATIONS Radi Sadek 1, Lionel Soulhac 1, Fabien Brocheton 2 and Emmanuel Buisson 2 1 Laboratoire de Mécanique des Fluides et d Acoustique,

More information

The parametrization of the planetary boundary layer May 1992

The parametrization of the planetary boundary layer May 1992 The parametrization of the planetary boundary layer May 99 By Anton Beljaars European Centre for Medium-Range Weather Forecasts Table of contents. Introduction. The planetary boundary layer. Importance

More information

Wind conditions based on coupling between a mesoscale and microscale model

Wind conditions based on coupling between a mesoscale and microscale model Wind conditions based on coupling between a mesoscale and microscale model José Laginha Palma and Carlos Veiga Rodrigues CEsA Centre for Wind Energy and Atmospheric Flows Faculty of Engineering, University

More information

Turbulence in the Stable Boundary Layer

Turbulence in the Stable Boundary Layer Turbulence in the Stable Boundary Layer Chemical-Biological Information Systems Austin, TX 11 January 2006 Walter D. Bach, Jr. and Dennis M. Garvey AMSRD-ARL-RO-EV & -CI-EE JSTO Project: AO06MSB00x Outline

More information

Assimilation in the PBL

Assimilation in the PBL Assimilation in the PBL Joshua Hacker hacker@ucar.edu National Center for Atmospheric Research, Research Applications Program Data Assimilation Initiative review, Sept 2004 p.1/17 Outline DAI in my world

More information

Climate Variables for Energy: WP2

Climate Variables for Energy: WP2 Climate Variables for Energy: WP2 Phil Jones CRU, UEA, Norwich, UK Within ECEM, WP2 provides climate data for numerous variables to feed into WP3, where ESCIIs will be used to produce energy-relevant series

More information

Quantifying the influence of wind advection on the urban heat island for an improvement of a climate change adaptation planning tool

Quantifying the influence of wind advection on the urban heat island for an improvement of a climate change adaptation planning tool Quantifying the influence of wind advection on the urban heat island for an improvement of a climate change adaptation planning tool BEAR conference 15/12/2014 Bassett R., Cai X., Chapman L., Heaviside

More information

2. Synoptic situation. 3. 3D model set-up and results

2. Synoptic situation. 3. 3D model set-up and results 5th International Conference on Fog, Fog Collection and Dew Münster, Germany, 25 30 July 2010 FOGDEW2010-70 c Author(s) 2010 Modeling and Forecasting the Onset and Duration of a Fog Event during Frost

More information

An analysis of Wintertime Cold-Air Pool in Armenia Using Climatological Observations and WRF Model Data

An analysis of Wintertime Cold-Air Pool in Armenia Using Climatological Observations and WRF Model Data An analysis of Wintertime Cold-Air Pool in Armenia Using Climatological Observations and WRF Model Data Hamlet Melkonyan 1,2, Artur Gevorgyan 1,2, Sona Sargsyan 1, Vladimir Sahakyan 2, Zarmandukht Petrosyan

More information

Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace

Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace Adapted from Publisher: John S. Wiley & Sons 2002 Center for Scientific Computation and

More information

UNIVERSITY OF CALIFORNIA

UNIVERSITY OF CALIFORNIA UNIVERSITY OF CALIFORNIA Methods of Improving Methane Emission Estimates in California Using Mesoscale and Particle Dispersion Modeling Alex Turner GCEP SURE Fellow Marc L. Fischer Lawrence Berkeley National

More information

Weather Research and Forecasting Model. Melissa Goering Glen Sampson ATMO 595E November 18, 2004

Weather Research and Forecasting Model. Melissa Goering Glen Sampson ATMO 595E November 18, 2004 Weather Research and Forecasting Model Melissa Goering Glen Sampson ATMO 595E November 18, 2004 Outline What does WRF model do? WRF Standard Initialization WRF Dynamics Conservation Equations Grid staggering

More information

Validation and comparison of numerical wind atlas methods: the South African example

Validation and comparison of numerical wind atlas methods: the South African example Downloaded from orbit.dtu.dk on: Jul 18, 2018 Validation and comparison of numerical wind atlas methods: the South African example Hahmann, Andrea N.; Badger, Jake; Volker, Patrick; Nielsen, Joakim Refslund;

More information

Wake modeling with the Actuator Disc concept

Wake modeling with the Actuator Disc concept Available online at www.sciencedirect.com Energy Procedia 24 (212 ) 385 392 DeepWind, 19-2 January 212, Trondheim, Norway Wake modeling with the Actuator Disc concept G. Crasto a *, A.R. Gravdahl a, F.

More information

Effective Depth of Ekman Layer.

Effective Depth of Ekman Layer. 5.5: Ekman Pumping Effective Depth of Ekman Layer. 2 Effective Depth of Ekman Layer. Defining γ = f/2k, we derived the solution u = u g (1 e γz cos γz) v = u g e γz sin γz corresponding to the Ekman spiral.

More information

Improved Atmospheric Stable Boundary Layer Formulations for Navy Seasonal Forecasting

Improved Atmospheric Stable Boundary Layer Formulations for Navy Seasonal Forecasting DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Improved Atmospheric Stable Boundary Layer Formulations for Navy Seasonal Forecasting Michael Tjernström Department of

More information

Extreme Winds in the New European Wind Atlas Paper

Extreme Winds in the New European Wind Atlas Paper Downloaded from orbit.dtu.dk on: Jan 20, 2019 Extreme Winds in the New European Wind Atlas Paper Bastine, David; Larsén, Xiaoli Guo; Witha, Björn; Dörenkämper, Martin; Gottschall, Julia Published in: Journal

More information

Comparison of a Mesoscale Model with FINO Measurements in the German Bight and the Baltic Sea

Comparison of a Mesoscale Model with FINO Measurements in the German Bight and the Baltic Sea Comparison of a Mesoscale Model with FINO Measurements in the German Bight and the Baltic Sea F. Durante; DEWI Italy A. Westerhellweg; DEWI GmbH, Wilhelmshaven B. Jimenez; DEWI GmbH Oldenburg F. Durante

More information

What is a wind atlas and where does it fit into the wind energy sector?

What is a wind atlas and where does it fit into the wind energy sector? What is a wind atlas and where does it fit into the wind energy sector? DTU Wind Energy By Hans E. Jørgensen Head of section : Meteorology & Remote sensing Program manager : Siting & Integration Outline

More information

Mesoscale meteorological models. Claire L. Vincent, Caroline Draxl and Joakim R. Nielsen

Mesoscale meteorological models. Claire L. Vincent, Caroline Draxl and Joakim R. Nielsen Mesoscale meteorological models Claire L. Vincent, Caroline Draxl and Joakim R. Nielsen Outline Mesoscale and synoptic scale meteorology Meteorological models Dynamics Parametrizations and interactions

More information

Physics of the Convective Boundary Layer based on Radar/Lidar Profiler measurements and simulation

Physics of the Convective Boundary Layer based on Radar/Lidar Profiler measurements and simulation Physics of the Convective Boundary Layer based on Radar/Lidar Profiler measurements and simulation D. Vanhoenacker Janvier (1), A. Graziani (1), D. Kovalev (1), C. Pereira (1), M. Duponcheel (2), R. Wilson

More information

Challenges in model development

Challenges in model development Challenges in model development Andy Brown 29/6/10 Contents How do we try to improve a model? Bottom up Top down Examples (Sensitivity to drag) Bottom up Develop new (and hopefully improved) parametrization

More information

The Planetary Boundary Layer and Uncertainty in Lower Boundary Conditions

The Planetary Boundary Layer and Uncertainty in Lower Boundary Conditions The Planetary Boundary Layer and Uncertainty in Lower Boundary Conditions Joshua Hacker National Center for Atmospheric Research hacker@ucar.edu Topics The closure problem and physical parameterizations

More information

The selective dynamical downscaling method for extreme wind atlases. Xiaoli Guo Larsén Jake Badger Andrea N. Hahmann Søren Ott

The selective dynamical downscaling method for extreme wind atlases. Xiaoli Guo Larsén Jake Badger Andrea N. Hahmann Søren Ott The selective dynamical downscaling method for extreme wind atlases Xiaoli Guo Larsén Jake Badger Andrea N. Hahmann Søren Ott 1 EWEC 2011 Why is such a method needed? Lack of long term measurements Global

More information

Temperature fronts and vortical structures in turbulent stably stratified atmospheric boundary layers

Temperature fronts and vortical structures in turbulent stably stratified atmospheric boundary layers VIIIth International Symposium on Stratified Flows August 29 - September 1 2016, San Diego, CA Temperature fronts and vortical structures in turbulent stably stratified atmospheric boundary layers Peter

More information

Impacts of the Lowest Model Level Height on the Performance of Planetary Boundary Layer Parameterizations

Impacts of the Lowest Model Level Height on the Performance of Planetary Boundary Layer Parameterizations 664 M O N T H L Y W E A T H E R R E V I E W VOLUME 140 Impacts of the Lowest Model Level Height on the Performance of Planetary Boundary Layer Parameterizations HYEYUM HAILEY SHIN AND SONG-YOU HONG Department

More information

Boundary Layer Meteorology. Chapter 2

Boundary Layer Meteorology. Chapter 2 Boundary Layer Meteorology Chapter 2 Contents Some mathematical tools: Statistics The turbulence spectrum Energy cascade, The spectral gap Mean and turbulent parts of the flow Some basic statistical methods

More information

A WRF Ensemble for Improved Wind Speed Forecasts at Turbine Height

A WRF Ensemble for Improved Wind Speed Forecasts at Turbine Height 212 W E A T H E R A N D F O R E C A S T I N G VOLUME 28 A WRF Ensemble for Improved Wind Speed Forecasts at Turbine Height ADAM J. DEPPE AND WILLIAM A. GALLUS JR. Department of Geological and Atmospheric

More information

2.1 Temporal evolution

2.1 Temporal evolution 15B.3 ROLE OF NOCTURNAL TURBULENCE AND ADVECTION IN THE FORMATION OF SHALLOW CUMULUS Jordi Vilà-Guerau de Arellano Meteorology and Air Quality Section, Wageningen University, The Netherlands 1. MOTIVATION

More information

Upsidence wave during VOCALS. David A. Rahn and René Garreaud Department of Geophysics Universidad de Chile

Upsidence wave during VOCALS. David A. Rahn and René Garreaud Department of Geophysics Universidad de Chile Upsidence wave during VOCALS David A. Rahn and René Garreaud Department of Geophysics Universidad de Chile Upsidence Wave Garreaud and Muñoz (2004, GM04) A robust diurnal cycle of vertical motion between

More information

Observations and WRF simulations of fog events Engineering at the Spanish Northern Plateau

Observations and WRF simulations of fog events Engineering at the Spanish Northern Plateau Open Sciences doi:10.5194/asr-8-11-2012 Author(s) 2012. CC Attribution 3.0 License. Advances in Science & Research Open Access Proceedings Drinking Water Observations and WRF simulations of fog events

More information

The Boundary Layer and Related Phenomena

The Boundary Layer and Related Phenomena The Boundary Layer and Related Phenomena Jeremy A. Gibbs University of Oklahoma gibbz@ou.edu February 19, 2015 1 / 49 Overview Nocturnal Low-Level Jets Introduction Climatology of LLJs Meteorological Importance

More information

Effects of transfer processes on marine atmospheric boundary layer or Effects of boundary layer processes on air-sea exchange

Effects of transfer processes on marine atmospheric boundary layer or Effects of boundary layer processes on air-sea exchange Effects of transfer processes on marine atmospheric boundary layer or Effects of boundary layer processes on air-sea exchange Ann-Sofi Smedman Uppsala University Uppsala, Sweden Effect of transfer process

More information

LANFEX : Understand fog behaviour in a region of small hills

LANFEX : Understand fog behaviour in a region of small hills LANFEX : Understand fog behaviour in a region of small hills L. Ducongé, C. Lac, T. Bergot, B. Vié CNRM/GMME/PHY-NH In collaboration with J. Price, I. Boutle Met Office - UK Introduction Surface heterogeneities

More information

Model Error and Parameter Estimation in a Simplied Mesoscale Prediction Framework, Part I:

Model Error and Parameter Estimation in a Simplied Mesoscale Prediction Framework, Part I: Model Error and Parameter Estimation in a Simplied Mesoscale Prediction Framework, Part I: Model Description and Sources of Uncertainty Guillaume Vernieres, Josh Hacker, Montse Fuentes Topics Mesoscale

More information

Upsidence wave during VOCALS. David A. Rahn and René Garreaud Department of Geophysics Universidad de Chile

Upsidence wave during VOCALS. David A. Rahn and René Garreaud Department of Geophysics Universidad de Chile Upsidence wave during VOCALS David A. Rahn and René Garreaud Department of Geophysics Universidad de Chile Upsidence Wave Garreaud and Muñoz (2004, GM04) A robust diurnal cycle of vertical motion between

More information