Linear Regression & Correlation

Size: px
Start display at page:

Download "Linear Regression & Correlation"

Transcription

1 Linear Regression & Correlation Jamie Monogan University of Georgia Introduction to Data Analysis Jamie Monogan (UGA) Linear Regression & Correlation POLS / 25

2 Objectives By the end of these meetings, participants should be able to: Calculate and interpret the intercept and slope of a linear regression model with one independent variable. Draw statistical inferences from regression coefficients. Calculate and interpret Pearson s r and r 2. Explain the key assumptions behind a regression model. Jamie Monogan (UGA) Linear Regression & Correlation POLS / 25

3 Simple Regression Imagine that we have a relationship between two interval or ratio level variables. For instance, imagine the relationship between a county s average educational level and its turnout in a presidential election. Ideally simple regression would only be done on truly continuous variables (i.e. variables that are extremely precise and can take any real value). In practice almost no social science variables meet that requirement. In practice, relationships are rarely perfect (board illustration). Even if imperfect, from a relationship like this, we could compute something referred to as a regression coefficient. A regression coefficient is the amount of change in the value of the dependent variable based on a one unit change in the independent variable. In effect what we are doing is computing the slope of the line representing the relationship between the values of two variables. Jamie Monogan (UGA) Linear Regression & Correlation POLS / 25

4 Working Example: Education and Turnout in Texas Counties turnout<-c(33.9,35.3,36.2, 38.9,44,32.6,36.6,35.6,37.1, 35.4,39.9,35.9) highschool<-c(75,81.3,91.8, 86.7,75.5,89.4,77.8,76.9, 77.6,74.5,80.5,76.1) plot(y=turnout,x=highschool, xlab="percent High School Educated", ylab="percent Voter Turnout") Jamie Monogan (UGA) Linear Regression & Correlation POLS / 25

5 Simple Regression Since, in practice, data are never a straight linear relationship, regression lines are computed most commonly by method known as least squares. (Today s focus: Ordinary Least Squares, OLS.) This procedure in a two variable model with a small number of cases is relatively simple and easy to compute. This method seeks to minimize the mean squared error (not the error on any one specific case). y i = α + βx i + ɛ i is the basic formula for a population regression equation, where: α=population intercept (expected outcome for zero value on the independent variable, also commonly written as β 0 ) β=population slope (also commonly written as β 1 ) x i =value of the independent variable ɛ i =disturbance term y i =value of the dependent variable The part of that equation that we are most interested in is the slope. Jamie Monogan (UGA) Linear Regression & Correlation POLS / 25

6 Sample Regression Equation The sample regression equation is commonly written in one of two ways. One way is to place hats over quantities we estimate: y i = ˆα + ˆβx i + u i, where: ˆα=sample intercept ˆβ=sample slope x i =value of the independent variable u i =error term y i =value of the dependent variable Another way is to use the Roman equivalents of the Greek letters: y i = a + bx i + e i, where: a=sample intercept b=sample slope x i =value of the independent variable e i =error term y i =value of the dependent variable Jamie Monogan (UGA) Linear Regression & Correlation POLS / 25

7 Simple Regression The sample regression coefficient, or slope (b), can be computed in a number of ways, ordinary least squares (OLS) being just one technique among many. In simple regression the formula to compute b is: b = (xi x)(y i ȳ) (xi x) 2 In other words, the slope is computed by taking the difference of each value of the dependent variable from the mean of the dependent variable multiplied by the difference of each value of independent variable from the mean of the independent variable. Then a sum of all those products, divided by the sum of squared deviations of the independent variable. Intuition: how much do the two variables go together (covariance) divided by how much does the independent variable vary (variance). Jamie Monogan (UGA) Linear Regression & Correlation POLS / 25

8 An Example: Calculating the Slope Coefficient County % Turnout (y) % High School (x) (y 36.8) (x 80.3) (x 80.3) 2 Dallas Tarran Collin Rockwell Delta Denton Ellis Hunt Johnson Kaufman Parker Wise Average Sum So we determine b = 36.6/384.5 =.095 Jamie Monogan (UGA) Linear Regression & Correlation POLS / 25

9 An Example: Calculating the Intercept From this point we can also compute the sample intercept as well. a = ȳ b x, where: a=sample intercept ȳ =mean of the dependent variable x=mean of the independent variable From the previous slide, we can see that 36.8-(-.095*80.3)=44.4 So the sample intercept is 44.4 In R, we can estimate a and b in one fell swoop: tx.mod<-lm(turnout~highschool) We then can view our results by typing: summary(tx.mod) Jamie Monogan (UGA) Linear Regression & Correlation POLS / 25

10 Mean Squared Error The formula for mean squared error is: se 2 = SSE n 2 = (yi ŷ i ) 2 n 2 Where: n=number of Cases (y i ŷ i ) is the difference between the real value of the dependent variable and the expected value based on the predictor. In effect the formula for the mean squared error tells us how much better we can accurately predict y by using the predicting variable than if we just guessed the mean every time. If we had just guessed the mean the formula would be: sy 2 (yi ȳ) 2 = n 1 Jamie Monogan (UGA) Linear Regression & Correlation POLS / 25

11 Statistical Inference We will use the statistics: t 0 = a α SE(a) and t 1 = b β SE(b) which are distributed Student s-t with n 2 degrees of freedom. Where: n n SSE = ei 2 = (y i (a + bx i )) 2, and s 2 = SSE/(n 2) so that: i=1 i=1 SE(a) = s e ( n i=1 x 2 i i (x i x) 2 ) 1 2 SE(b) = s e 1 ( i (x i x) 2 ) 1 2 Jamie Monogan (UGA) Linear Regression & Correlation POLS / 25

12 Statistical Inference What we re testing (software default): against the two-sided alternative: H 0 :α = 0, H 0 :β = 0. H A :α 0, H A :β 0. Is zero actually the null hypothesis you want? (Often it will be.) Do you really want a two-tailed test? (Often you won t.) Perhaps confidence intervals are a better choice! The basic form of confidence intervals: a ± t SE(a) b ± t SE(b) Jamie Monogan (UGA) Linear Regression & Correlation POLS / 25

13 Correlation Cofficient: Pearson s r With these data we could also create a measure referred to as the correlation coefficient. This value shows how well the independent variable predicts the dependent variable. This measure will range between -1 and 1. A correlation coefficient of 0 would suggest the absence of any relationship between the two variables. A value of 1 (such as in our example) would imply a perfect positive relationship. A value of -1 would suggest that additional years of education actually uniformly reduces turnout. The correlation coefficient for a linear relationship is known as a Pearson s r. The square of a Pearson s r (r 2 ) calculates the amount of variance explained by the predictor. Jamie Monogan (UGA) Linear Regression & Correlation POLS / 25

14 A Side Note on r 2 Generally speaking it is considered best in the social sciences to have the largest r 2 possible (it is bounded at 1). However, as the number approaches 1, concerns about the data emerge. There are no perfect relationships in the social sciences and so r 2 over.90 or so are immediately suspect. (Unless we re in the time series world.) Generally, it is best to compare your r 2 against scholars doing similar work. For example, macro research regularly finds r 2 values of.75 or greater while political psychology research rarely reaches.25. Good research asks good questions. So finding a high r 2 on a question that has been decided in the literature is less important than research with a low r 2 on an interesting question or a brand new idea. Jamie Monogan (UGA) Linear Regression & Correlation POLS / 25

15 Correlation How can we compute Pearson s r? r = N XY X Y [N X 2 ( X ) 2 ][N Y 2 ( Y ) 2 ] Obviously, this measure would be very complicated to compute for any model with multiple predictors or a large number of cases. Jamie Monogan (UGA) Linear Regression & Correlation POLS / 25

16 Another plan for calculating r 2 Hint: This is going to become our favorite technique! With these two formulas now we can compute the proportional reduction in error (r 2 ). r 2 = s2 y s 2 e s 2 y This is the square of the linear coefficient or Pearson s r. You can test this in R by typing: cor(turnout,highschool) Take the square and you will see the r 2 value. r =.185 r 2 =.034 Jamie Monogan (UGA) Linear Regression & Correlation POLS / 25

17 Class Example Let s run our own linear regression model using data on 45 occupations in Does the percentage of males in an occupation who are high-school graduates influence the percentage of people who rate an occupation as prestigious? #Load library containing data: library(car) #Load data set: data(duncan) #Run linear model: model<-lm(prestige~education, data=duncan) #Summarize results: summary(model) #Correlation coefficient: cor(duncan$prestige, Duncan$education) #Alternate means of obtaining r^2 cor(duncan$prestige, Duncan$education)^2 Jamie Monogan (UGA) Linear Regression & Correlation POLS / 25

18 Interpret results from your example What do the results tell us about the relationship between education and occupational prestige? How well does education predict prestige? How confident are we of this result? Jamie Monogan (UGA) Linear Regression & Correlation POLS / 25

19 Residuals Residuals reflect the part of the dependent variable not predicted by the independent variable. Examination of the residuals can sometimes help a researcher identify predictors in the model that are missing. Jamie Monogan (UGA) Linear Regression & Correlation POLS / 25

20 Regression Interpretation Recall that least squares regression fits relationships as a linear function. It is possible that the relationship you are seeking to explain is non-linear. It is generally worthwhile to graph the relationship between your chief predictor and your dependent variable to see if the relationship is linear. It is also wise to start by looking at how strongly your predictor and your dependent variable are correlated. With my initial example, it would have been clear that the relationship between high school and turnout is nowhere near significant in my sample of 12 (either directionally or in a two tailed test). In other words, I can not be sure if the relationship observed is due to a genuine relationship or measurement error. Jamie Monogan (UGA) Linear Regression & Correlation POLS / 25

21 Regression Interpretation While statistical significance is important, it does not tell the whole story. First, larger samples will reach significance much more easily. Second, different types of analyses expect different kinds of results. Third, you must be careful about the regression assumptions. Jamie Monogan (UGA) Linear Regression & Correlation POLS / 25

22 OLS Assumptions in Verbal and Scalar Form 1 Correct Specification (E{ɛ i } = 0 for i = 1,..., n) 2 Nonstochastic regressors ({ɛ 1,..., ɛ n } and {x 1,..., x n } are independent) 3 Error Properties a. Homoscedastic (V {ɛ i } = σ 2 for i = 1,..., n) b. Independent (Cov{ɛ i, ɛ j } = 0 for i, j = 1,..., n where i j) c. Normally Distributed (ɛ i N (0, σ 2 )) Jamie Monogan (UGA) Linear Regression & Correlation POLS / 25

23 Assumption Sets The weak set includes all but 3(c): sufficient for properties of β (and proof of Gauss-Markov). The strong set includes 3(c): sufficient for inference about β. In other words, four assumptions gets us to a good estimate of β, but we need all five to do confidence intervals and significance testing. Jamie Monogan (UGA) Linear Regression & Correlation POLS / 25

24 Gauss-Markov Theorem Under the weak set assumptions OLS is BLUE (B)est (i.e., efficient) (L)inear (U)nbiased (E)stimator More on this in Fall Jamie Monogan (UGA) Linear Regression & Correlation POLS / 25

25 For Next Time Read Agresti & Finlay, chapter 10, Introduction to Multivariate Relationships. Answer questions 9.4 and 9.11 Load the UN Human Development Report, 2005 data from Agresti s website. (Also listed in Table 9.13.) Choose an input and outcome variable in these data and create a research hypothesis. Run a linear regression model to test your hypothesis. Report and interpret the intercept, slope, r, and r 2. Draw a statistical inference about the slope coefficient. Code Hints un<-read.csv( header=true, na.strings=.. ) Basic syntax for correlation: cor(x, y, use = "everything") If you have missing observations in your variables, you may need to change the use option. Jamie Monogan (UGA) Linear Regression & Correlation POLS / 25

Two-Variable Regression Model: The Problem of Estimation

Two-Variable Regression Model: The Problem of Estimation Two-Variable Regression Model: The Problem of Estimation Introducing the Ordinary Least Squares Estimator Jamie Monogan University of Georgia Intermediate Political Methodology Jamie Monogan (UGA) Two-Variable

More information

Multiple Regression Analysis: The Problem of Inference

Multiple Regression Analysis: The Problem of Inference Multiple Regression Analysis: The Problem of Inference Jamie Monogan University of Georgia Intermediate Political Methodology Jamie Monogan (UGA) Multiple Regression Analysis: Inference POLS 7014 1 / 10

More information

Scatter plot of data from the study. Linear Regression

Scatter plot of data from the study. Linear Regression 1 2 Linear Regression Scatter plot of data from the study. Consider a study to relate birthweight to the estriol level of pregnant women. The data is below. i Weight (g / 100) i Weight (g / 100) 1 7 25

More information

Statistical Inference for Means

Statistical Inference for Means Statistical Inference for Means Jamie Monogan University of Georgia February 18, 2011 Jamie Monogan (UGA) Statistical Inference for Means February 18, 2011 1 / 19 Objectives By the end of this meeting,

More information

Inferences for Regression

Inferences for Regression Inferences for Regression An Example: Body Fat and Waist Size Looking at the relationship between % body fat and waist size (in inches). Here is a scatterplot of our data set: Remembering Regression In

More information

Scatter plot of data from the study. Linear Regression

Scatter plot of data from the study. Linear Regression 1 2 Linear Regression Scatter plot of data from the study. Consider a study to relate birthweight to the estriol level of pregnant women. The data is below. i Weight (g / 100) i Weight (g / 100) 1 7 25

More information

Lecture 14 Simple Linear Regression

Lecture 14 Simple Linear Regression Lecture 4 Simple Linear Regression Ordinary Least Squares (OLS) Consider the following simple linear regression model where, for each unit i, Y i is the dependent variable (response). X i is the independent

More information

Warm-up Using the given data Create a scatterplot Find the regression line

Warm-up Using the given data Create a scatterplot Find the regression line Time at the lunch table Caloric intake 21.4 472 30.8 498 37.7 335 32.8 423 39.5 437 22.8 508 34.1 431 33.9 479 43.8 454 42.4 450 43.1 410 29.2 504 31.3 437 28.6 489 32.9 436 30.6 480 35.1 439 33.0 444

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression ST 430/514 Recall: A regression model describes how a dependent variable (or response) Y is affected, on average, by one or more independent variables (or factors, or covariates)

More information

Applied Regression Analysis

Applied Regression Analysis Applied Regression Analysis Lecture 2 January 27, 2005 Lecture #2-1/27/2005 Slide 1 of 46 Today s Lecture Simple linear regression. Partitioning the sum of squares. Tests of significance.. Regression diagnostics

More information

Chapter 27 Summary Inferences for Regression

Chapter 27 Summary Inferences for Regression Chapter 7 Summary Inferences for Regression What have we learned? We have now applied inference to regression models. Like in all inference situations, there are conditions that we must check. We can test

More information

1 Correlation and Inference from Regression

1 Correlation and Inference from Regression 1 Correlation and Inference from Regression Reading: Kennedy (1998) A Guide to Econometrics, Chapters 4 and 6 Maddala, G.S. (1992) Introduction to Econometrics p. 170-177 Moore and McCabe, chapter 12 is

More information

Introduction to Linear Regression

Introduction to Linear Regression Introduction to Linear Regression James H. Steiger Department of Psychology and Human Development Vanderbilt University James H. Steiger (Vanderbilt University) Introduction to Linear Regression 1 / 46

More information

appstats27.notebook April 06, 2017

appstats27.notebook April 06, 2017 Chapter 27 Objective Students will conduct inference on regression and analyze data to write a conclusion. Inferences for Regression An Example: Body Fat and Waist Size pg 634 Our chapter example revolves

More information

Section 3: Simple Linear Regression

Section 3: Simple Linear Regression Section 3: Simple Linear Regression Carlos M. Carvalho The University of Texas at Austin McCombs School of Business http://faculty.mccombs.utexas.edu/carlos.carvalho/teaching/ 1 Regression: General Introduction

More information

Inference in Regression Analysis

Inference in Regression Analysis Inference in Regression Analysis Dr. Frank Wood Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 4, Slide 1 Today: Normal Error Regression Model Y i = β 0 + β 1 X i + ǫ i Y i value

More information

Chapter 16. Simple Linear Regression and dcorrelation

Chapter 16. Simple Linear Regression and dcorrelation Chapter 16 Simple Linear Regression and dcorrelation 16.1 Regression Analysis Our problem objective is to analyze the relationship between interval variables; regression analysis is the first tool we will

More information

Ordinary Least Squares Regression Explained: Vartanian

Ordinary Least Squares Regression Explained: Vartanian Ordinary Least Squares Regression Explained: Vartanian When to Use Ordinary Least Squares Regression Analysis A. Variable types. When you have an interval/ratio scale dependent variable.. When your independent

More information

Business Statistics. Lecture 9: Simple Regression

Business Statistics. Lecture 9: Simple Regression Business Statistics Lecture 9: Simple Regression 1 On to Model Building! Up to now, class was about descriptive and inferential statistics Numerical and graphical summaries of data Confidence intervals

More information

Multiple Regression Analysis

Multiple Regression Analysis Chapter 4 Multiple Regression Analysis The simple linear regression covered in Chapter 2 can be generalized to include more than one variable. Multiple regression analysis is an extension of the simple

More information

The Simple Linear Regression Model

The Simple Linear Regression Model The Simple Linear Regression Model Lesson 3 Ryan Safner 1 1 Department of Economics Hood College ECON 480 - Econometrics Fall 2017 Ryan Safner (Hood College) ECON 480 - Lesson 3 Fall 2017 1 / 77 Bivariate

More information

LECTURE 15: SIMPLE LINEAR REGRESSION I

LECTURE 15: SIMPLE LINEAR REGRESSION I David Youngberg BSAD 20 Montgomery College LECTURE 5: SIMPLE LINEAR REGRESSION I I. From Correlation to Regression a. Recall last class when we discussed two basic types of correlation (positive and negative).

More information

statistical sense, from the distributions of the xs. The model may now be generalized to the case of k regressors:

statistical sense, from the distributions of the xs. The model may now be generalized to the case of k regressors: Wooldridge, Introductory Econometrics, d ed. Chapter 3: Multiple regression analysis: Estimation In multiple regression analysis, we extend the simple (two-variable) regression model to consider the possibility

More information

Heteroscedasticity. Jamie Monogan. Intermediate Political Methodology. University of Georgia. Jamie Monogan (UGA) Heteroscedasticity POLS / 11

Heteroscedasticity. Jamie Monogan. Intermediate Political Methodology. University of Georgia. Jamie Monogan (UGA) Heteroscedasticity POLS / 11 Heteroscedasticity Jamie Monogan University of Georgia Intermediate Political Methodology Jamie Monogan (UGA) Heteroscedasticity POLS 7014 1 / 11 Objectives By the end of this meeting, participants should

More information

Intro to Linear Regression

Intro to Linear Regression Intro to Linear Regression Introduction to Regression Regression is a statistical procedure for modeling the relationship among variables to predict the value of a dependent variable from one or more predictor

More information

ECON 450 Development Economics

ECON 450 Development Economics ECON 450 Development Economics Statistics Background University of Illinois at Urbana-Champaign Summer 2017 Outline 1 Introduction 2 3 4 5 Introduction Regression analysis is one of the most important

More information

Sociology 6Z03 Review II

Sociology 6Z03 Review II Sociology 6Z03 Review II John Fox McMaster University Fall 2016 John Fox (McMaster University) Sociology 6Z03 Review II Fall 2016 1 / 35 Outline: Review II Probability Part I Sampling Distributions Probability

More information

Summer School in Statistics for Astronomers V June 1 - June 6, Regression. Mosuk Chow Statistics Department Penn State University.

Summer School in Statistics for Astronomers V June 1 - June 6, Regression. Mosuk Chow Statistics Department Penn State University. Summer School in Statistics for Astronomers V June 1 - June 6, 2009 Regression Mosuk Chow Statistics Department Penn State University. Adapted from notes prepared by RL Karandikar Mean and variance Recall

More information

Keller: Stats for Mgmt & Econ, 7th Ed July 17, 2006

Keller: Stats for Mgmt & Econ, 7th Ed July 17, 2006 Chapter 17 Simple Linear Regression and Correlation 17.1 Regression Analysis Our problem objective is to analyze the relationship between interval variables; regression analysis is the first tool we will

More information

Can you tell the relationship between students SAT scores and their college grades?

Can you tell the relationship between students SAT scores and their college grades? Correlation One Challenge Can you tell the relationship between students SAT scores and their college grades? A: The higher SAT scores are, the better GPA may be. B: The higher SAT scores are, the lower

More information

Correlation Analysis

Correlation Analysis Simple Regression Correlation Analysis Correlation analysis is used to measure strength of the association (linear relationship) between two variables Correlation is only concerned with strength of the

More information

Intro to Linear Regression

Intro to Linear Regression Intro to Linear Regression Introduction to Regression Regression is a statistical procedure for modeling the relationship among variables to predict the value of a dependent variable from one or more predictor

More information

Regression: Main Ideas Setting: Quantitative outcome with a quantitative explanatory variable. Example, cont.

Regression: Main Ideas Setting: Quantitative outcome with a quantitative explanatory variable. Example, cont. TCELL 9/4/205 36-309/749 Experimental Design for Behavioral and Social Sciences Simple Regression Example Male black wheatear birds carry stones to the nest as a form of sexual display. Soler et al. wanted

More information

where x and ȳ are the sample means of x 1,, x n

where x and ȳ are the sample means of x 1,, x n y y Animal Studies of Side Effects Simple Linear Regression Basic Ideas In simple linear regression there is an approximately linear relation between two variables say y = pressure in the pancreas x =

More information

LECTURE 6. Introduction to Econometrics. Hypothesis testing & Goodness of fit

LECTURE 6. Introduction to Econometrics. Hypothesis testing & Goodness of fit LECTURE 6 Introduction to Econometrics Hypothesis testing & Goodness of fit October 25, 2016 1 / 23 ON TODAY S LECTURE We will explain how multiple hypotheses are tested in a regression model We will define

More information

review session gov 2000 gov 2000 () review session 1 / 38

review session gov 2000 gov 2000 () review session 1 / 38 review session gov 2000 gov 2000 () review session 1 / 38 Overview Random Variables and Probability Univariate Statistics Bivariate Statistics Multivariate Statistics Causal Inference gov 2000 () review

More information

9. Linear Regression and Correlation

9. Linear Regression and Correlation 9. Linear Regression and Correlation Data: y a quantitative response variable x a quantitative explanatory variable (Chap. 8: Recall that both variables were categorical) For example, y = annual income,

More information

ECNS 561 Multiple Regression Analysis

ECNS 561 Multiple Regression Analysis ECNS 561 Multiple Regression Analysis Model with Two Independent Variables Consider the following model Crime i = β 0 + β 1 Educ i + β 2 [what else would we like to control for?] + ε i Here, we are taking

More information

36-309/749 Experimental Design for Behavioral and Social Sciences. Sep. 22, 2015 Lecture 4: Linear Regression

36-309/749 Experimental Design for Behavioral and Social Sciences. Sep. 22, 2015 Lecture 4: Linear Regression 36-309/749 Experimental Design for Behavioral and Social Sciences Sep. 22, 2015 Lecture 4: Linear Regression TCELL Simple Regression Example Male black wheatear birds carry stones to the nest as a form

More information

Linear Regression. In this problem sheet, we consider the problem of linear regression with p predictors and one intercept,

Linear Regression. In this problem sheet, we consider the problem of linear regression with p predictors and one intercept, Linear Regression In this problem sheet, we consider the problem of linear regression with p predictors and one intercept, y = Xβ + ɛ, where y t = (y 1,..., y n ) is the column vector of target values,

More information

Ch 2: Simple Linear Regression

Ch 2: Simple Linear Regression Ch 2: Simple Linear Regression 1. Simple Linear Regression Model A simple regression model with a single regressor x is y = β 0 + β 1 x + ɛ, where we assume that the error ɛ is independent random component

More information

Measuring the fit of the model - SSR

Measuring the fit of the model - SSR Measuring the fit of the model - SSR Once we ve determined our estimated regression line, we d like to know how well the model fits. How far/close are the observations to the fitted line? One way to do

More information

Correlation and Regression

Correlation and Regression Correlation and Regression October 25, 2017 STAT 151 Class 9 Slide 1 Outline of Topics 1 Associations 2 Scatter plot 3 Correlation 4 Regression 5 Testing and estimation 6 Goodness-of-fit STAT 151 Class

More information

Linear models and their mathematical foundations: Simple linear regression

Linear models and their mathematical foundations: Simple linear regression Linear models and their mathematical foundations: Simple linear regression Steffen Unkel Department of Medical Statistics University Medical Center Göttingen, Germany Winter term 2018/19 1/21 Introduction

More information

Assumptions, Diagnostics, and Inferences for the Simple Linear Regression Model with Normal Residuals

Assumptions, Diagnostics, and Inferences for the Simple Linear Regression Model with Normal Residuals Assumptions, Diagnostics, and Inferences for the Simple Linear Regression Model with Normal Residuals 4 December 2018 1 The Simple Linear Regression Model with Normal Residuals In previous class sessions,

More information

Introduction and Single Predictor Regression. Correlation

Introduction and Single Predictor Regression. Correlation Introduction and Single Predictor Regression Dr. J. Kyle Roberts Southern Methodist University Simmons School of Education and Human Development Department of Teaching and Learning Correlation A correlation

More information

5. Linear Regression

5. Linear Regression 5. Linear Regression Outline.................................................................... 2 Simple linear regression 3 Linear model............................................................. 4

More information

1 Multiple Regression

1 Multiple Regression 1 Multiple Regression In this section, we extend the linear model to the case of several quantitative explanatory variables. There are many issues involved in this problem and this section serves only

More information

Lecture 3: Inference in SLR

Lecture 3: Inference in SLR Lecture 3: Inference in SLR STAT 51 Spring 011 Background Reading KNNL:.1.6 3-1 Topic Overview This topic will cover: Review of hypothesis testing Inference about 1 Inference about 0 Confidence Intervals

More information

Lecture 10 Multiple Linear Regression

Lecture 10 Multiple Linear Regression Lecture 10 Multiple Linear Regression STAT 512 Spring 2011 Background Reading KNNL: 6.1-6.5 10-1 Topic Overview Multiple Linear Regression Model 10-2 Data for Multiple Regression Y i is the response variable

More information

Hypothesis testing Goodness of fit Multicollinearity Prediction. Applied Statistics. Lecturer: Serena Arima

Hypothesis testing Goodness of fit Multicollinearity Prediction. Applied Statistics. Lecturer: Serena Arima Applied Statistics Lecturer: Serena Arima Hypothesis testing for the linear model Under the Gauss-Markov assumptions and the normality of the error terms, we saw that β N(β, σ 2 (X X ) 1 ) and hence s

More information

Overview. Overview. Overview. Specific Examples. General Examples. Bivariate Regression & Correlation

Overview. Overview. Overview. Specific Examples. General Examples. Bivariate Regression & Correlation Bivariate Regression & Correlation Overview The Scatter Diagram Two Examples: Education & Prestige Correlation Coefficient Bivariate Linear Regression Line SPSS Output Interpretation Covariance ou already

More information

Chapter 16. Simple Linear Regression and Correlation

Chapter 16. Simple Linear Regression and Correlation Chapter 16 Simple Linear Regression and Correlation 16.1 Regression Analysis Our problem objective is to analyze the relationship between interval variables; regression analysis is the first tool we will

More information

Chapter 4 Describing the Relation between Two Variables

Chapter 4 Describing the Relation between Two Variables Chapter 4 Describing the Relation between Two Variables 4.1 Scatter Diagrams and Correlation The is the variable whose value can be explained by the value of the or. A is a graph that shows the relationship

More information

At this point, if you ve done everything correctly, you should have data that looks something like:

At this point, if you ve done everything correctly, you should have data that looks something like: This homework is due on July 19 th. Economics 375: Introduction to Econometrics Homework #4 1. One tool to aid in understanding econometrics is the Monte Carlo experiment. A Monte Carlo experiment allows

More information

Y i = η + ɛ i, i = 1,...,n.

Y i = η + ɛ i, i = 1,...,n. Nonparametric tests If data do not come from a normal population (and if the sample is not large), we cannot use a t-test. One useful approach to creating test statistics is through the use of rank statistics.

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression Christopher Ting Christopher Ting : christophert@smu.edu.sg : 688 0364 : LKCSB 5036 January 7, 017 Web Site: http://www.mysmu.edu/faculty/christophert/ Christopher Ting QF 30 Week

More information

Microeconometria Day # 5 L. Cembalo. Regressione con due variabili e ipotesi dell OLS

Microeconometria Day # 5 L. Cembalo. Regressione con due variabili e ipotesi dell OLS Microeconometria Day # 5 L. Cembalo Regressione con due variabili e ipotesi dell OLS Multiple regression model Classical hypothesis of a regression model: Assumption 1: Linear regression model.the regression

More information

Introduction to Multivariate Relationships

Introduction to Multivariate Relationships Introduction to Multivariate Relationships Jamie Monogan University of Georgia Introduction to Data Analysis Jamie Monogan (UGA) Multivariate Relationships POLS 7012 1 / 13 Why do we need multivariate

More information

Hypothesis Testing. We normally talk about two types of hypothesis: the null hypothesis and the research or alternative hypothesis.

Hypothesis Testing. We normally talk about two types of hypothesis: the null hypothesis and the research or alternative hypothesis. Hypothesis Testing Today, we are going to begin talking about the idea of hypothesis testing how we can use statistics to show that our causal models are valid or invalid. We normally talk about two types

More information

Correlation and Linear Regression

Correlation and Linear Regression Correlation and Linear Regression Correlation: Relationships between Variables So far, nearly all of our discussion of inferential statistics has focused on testing for differences between group means

More information

Correlation. A statistics method to measure the relationship between two variables. Three characteristics

Correlation. A statistics method to measure the relationship between two variables. Three characteristics Correlation Correlation A statistics method to measure the relationship between two variables Three characteristics Direction of the relationship Form of the relationship Strength/Consistency Direction

More information

Lectures 5 & 6: Hypothesis Testing

Lectures 5 & 6: Hypothesis Testing Lectures 5 & 6: Hypothesis Testing in which you learn to apply the concept of statistical significance to OLS estimates, learn the concept of t values, how to use them in regression work and come across

More information

Mathematics for Economics MA course

Mathematics for Economics MA course Mathematics for Economics MA course Simple Linear Regression Dr. Seetha Bandara Simple Regression Simple linear regression is a statistical method that allows us to summarize and study relationships between

More information

Lecture 3: Multiple Regression

Lecture 3: Multiple Regression Lecture 3: Multiple Regression R.G. Pierse 1 The General Linear Model Suppose that we have k explanatory variables Y i = β 1 + β X i + β 3 X 3i + + β k X ki + u i, i = 1,, n (1.1) or Y i = β j X ji + u

More information

STAT5044: Regression and Anova. Inyoung Kim

STAT5044: Regression and Anova. Inyoung Kim STAT5044: Regression and Anova Inyoung Kim 2 / 47 Outline 1 Regression 2 Simple Linear regression 3 Basic concepts in regression 4 How to estimate unknown parameters 5 Properties of Least Squares Estimators:

More information

Review of Statistics 101

Review of Statistics 101 Review of Statistics 101 We review some important themes from the course 1. Introduction Statistics- Set of methods for collecting/analyzing data (the art and science of learning from data). Provides methods

More information

where Female = 0 for males, = 1 for females Age is measured in years (22, 23, ) GPA is measured in units on a four-point scale (0, 1.22, 3.45, etc.

where Female = 0 for males, = 1 for females Age is measured in years (22, 23, ) GPA is measured in units on a four-point scale (0, 1.22, 3.45, etc. Notes on regression analysis 1. Basics in regression analysis key concepts (actual implementation is more complicated) A. Collect data B. Plot data on graph, draw a line through the middle of the scatter

More information

Simple Linear Regression for the Climate Data

Simple Linear Regression for the Climate Data Prediction Prediction Interval Temperature 0.2 0.0 0.2 0.4 0.6 0.8 320 340 360 380 CO 2 Simple Linear Regression for the Climate Data What do we do with the data? y i = Temperature of i th Year x i =CO

More information

Lecture 18: Simple Linear Regression

Lecture 18: Simple Linear Regression Lecture 18: Simple Linear Regression BIOS 553 Department of Biostatistics University of Michigan Fall 2004 The Correlation Coefficient: r The correlation coefficient (r) is a number that measures the strength

More information

Variance. Standard deviation VAR = = value. Unbiased SD = SD = 10/23/2011. Functional Connectivity Correlation and Regression.

Variance. Standard deviation VAR = = value. Unbiased SD = SD = 10/23/2011. Functional Connectivity Correlation and Regression. 10/3/011 Functional Connectivity Correlation and Regression Variance VAR = Standard deviation Standard deviation SD = Unbiased SD = 1 10/3/011 Standard error Confidence interval SE = CI = = t value for

More information

MAT2377. Rafa l Kulik. Version 2015/November/26. Rafa l Kulik

MAT2377. Rafa l Kulik. Version 2015/November/26. Rafa l Kulik MAT2377 Rafa l Kulik Version 2015/November/26 Rafa l Kulik Bivariate data and scatterplot Data: Hydrocarbon level (x) and Oxygen level (y): x: 0.99, 1.02, 1.15, 1.29, 1.46, 1.36, 0.87, 1.23, 1.55, 1.40,

More information

STA 2101/442 Assignment Four 1

STA 2101/442 Assignment Four 1 STA 2101/442 Assignment Four 1 One version of the general linear model with fixed effects is y = Xβ + ɛ, where X is an n p matrix of known constants with n > p and the columns of X linearly independent.

More information

Ordinary Least Squares Regression Explained: Vartanian

Ordinary Least Squares Regression Explained: Vartanian Ordinary Least Squares Regression Eplained: Vartanian When to Use Ordinary Least Squares Regression Analysis A. Variable types. When you have an interval/ratio scale dependent variable.. When your independent

More information

ECON The Simple Regression Model

ECON The Simple Regression Model ECON 351 - The Simple Regression Model Maggie Jones 1 / 41 The Simple Regression Model Our starting point will be the simple regression model where we look at the relationship between two variables In

More information

11.5 Regression Linear Relationships

11.5 Regression Linear Relationships Contents 11.5 Regression............................. 835 11.5.1 Linear Relationships................... 835 11.5.2 The Least Squares Regression Line........... 837 11.5.3 Using the Regression Line................

More information

Statistical Distribution Assumptions of General Linear Models

Statistical Distribution Assumptions of General Linear Models Statistical Distribution Assumptions of General Linear Models Applied Multilevel Models for Cross Sectional Data Lecture 4 ICPSR Summer Workshop University of Colorado Boulder Lecture 4: Statistical Distributions

More information

CHAPTER 4 & 5 Linear Regression with One Regressor. Kazu Matsuda IBEC PHBU 430 Econometrics

CHAPTER 4 & 5 Linear Regression with One Regressor. Kazu Matsuda IBEC PHBU 430 Econometrics CHAPTER 4 & 5 Linear Regression with One Regressor Kazu Matsuda IBEC PHBU 430 Econometrics Introduction Simple linear regression model = Linear model with one independent variable. y = dependent variable

More information

28. SIMPLE LINEAR REGRESSION III

28. SIMPLE LINEAR REGRESSION III 28. SIMPLE LINEAR REGRESSION III Fitted Values and Residuals To each observed x i, there corresponds a y-value on the fitted line, y = βˆ + βˆ x. The are called fitted values. ŷ i They are the values of

More information

Regression and Stats Primer

Regression and Stats Primer D. Alex Hughes dhughes@ucsd.edu March 1, 2012 Why Statistics? Theory, Hypotheses & Inference Research Design and Data-Gathering Mechanics of OLS Regression Mechanics Assumptions Practical Regression Interpretation

More information

Quantitative Analysis of Financial Markets. Summary of Part II. Key Concepts & Formulas. Christopher Ting. November 11, 2017

Quantitative Analysis of Financial Markets. Summary of Part II. Key Concepts & Formulas. Christopher Ting. November 11, 2017 Summary of Part II Key Concepts & Formulas Christopher Ting November 11, 2017 christopherting@smu.edu.sg http://www.mysmu.edu/faculty/christophert/ Christopher Ting 1 of 16 Why Regression Analysis? Understand

More information

Problems. Suppose both models are fitted to the same data. Show that SS Res, A SS Res, B

Problems. Suppose both models are fitted to the same data. Show that SS Res, A SS Res, B Simple Linear Regression 35 Problems 1 Consider a set of data (x i, y i ), i =1, 2,,n, and the following two regression models: y i = β 0 + β 1 x i + ε, (i =1, 2,,n), Model A y i = γ 0 + γ 1 x i + γ 2

More information

STAT 111 Recitation 7

STAT 111 Recitation 7 STAT 111 Recitation 7 Xin Lu Tan xtan@wharton.upenn.edu October 25, 2013 1 / 13 Miscellaneous Please turn in homework 6. Please pick up homework 7 and the graded homework 5. Please check your grade and

More information

Linear Regression with 1 Regressor. Introduction to Econometrics Spring 2012 Ken Simons

Linear Regression with 1 Regressor. Introduction to Econometrics Spring 2012 Ken Simons Linear Regression with 1 Regressor Introduction to Econometrics Spring 2012 Ken Simons Linear Regression with 1 Regressor 1. The regression equation 2. Estimating the equation 3. Assumptions required for

More information

POLI 618 Notes. Stuart Soroka, Department of Political Science, McGill University. March 2010

POLI 618 Notes. Stuart Soroka, Department of Political Science, McGill University. March 2010 POLI 618 Notes Stuart Soroka, Department of Political Science, McGill University March 2010 These pages were written originally as my own lecture notes, but are now designed to be distributed to students

More information

Linear regression. We have that the estimated mean in linear regression is. ˆµ Y X=x = ˆβ 0 + ˆβ 1 x. The standard error of ˆµ Y X=x is.

Linear regression. We have that the estimated mean in linear regression is. ˆµ Y X=x = ˆβ 0 + ˆβ 1 x. The standard error of ˆµ Y X=x is. Linear regression We have that the estimated mean in linear regression is The standard error of ˆµ Y X=x is where x = 1 n s.e.(ˆµ Y X=x ) = σ ˆµ Y X=x = ˆβ 0 + ˆβ 1 x. 1 n + (x x)2 i (x i x) 2 i x i. The

More information

INTRODUCTION TO BASIC LINEAR REGRESSION MODEL

INTRODUCTION TO BASIC LINEAR REGRESSION MODEL INTRODUCTION TO BASIC LINEAR REGRESSION MODEL 13 September 2011 Yogyakarta, Indonesia Cosimo Beverelli (World Trade Organization) 1 LINEAR REGRESSION MODEL In general, regression models estimate the effect

More information

Statistics and Quantitative Analysis U4320. Segment 10 Prof. Sharyn O Halloran

Statistics and Quantitative Analysis U4320. Segment 10 Prof. Sharyn O Halloran Statistics and Quantitative Analysis U4320 Segment 10 Prof. Sharyn O Halloran Key Points 1. Review Univariate Regression Model 2. Introduce Multivariate Regression Model Assumptions Estimation Hypothesis

More information

Chapter 10. Regression. Understandable Statistics Ninth Edition By Brase and Brase Prepared by Yixun Shi Bloomsburg University of Pennsylvania

Chapter 10. Regression. Understandable Statistics Ninth Edition By Brase and Brase Prepared by Yixun Shi Bloomsburg University of Pennsylvania Chapter 10 Regression Understandable Statistics Ninth Edition By Brase and Brase Prepared by Yixun Shi Bloomsburg University of Pennsylvania Scatter Diagrams A graph in which pairs of points, (x, y), are

More information

Harvard University. Rigorous Research in Engineering Education

Harvard University. Rigorous Research in Engineering Education Statistical Inference Kari Lock Harvard University Department of Statistics Rigorous Research in Engineering Education 12/3/09 Statistical Inference You have a sample and want to use the data collected

More information

Formal Statement of Simple Linear Regression Model

Formal Statement of Simple Linear Regression Model Formal Statement of Simple Linear Regression Model Y i = β 0 + β 1 X i + ɛ i Y i value of the response variable in the i th trial β 0 and β 1 are parameters X i is a known constant, the value of the predictor

More information

EC212: Introduction to Econometrics Review Materials (Wooldridge, Appendix)

EC212: Introduction to Econometrics Review Materials (Wooldridge, Appendix) 1 EC212: Introduction to Econometrics Review Materials (Wooldridge, Appendix) Taisuke Otsu London School of Economics Summer 2018 A.1. Summation operator (Wooldridge, App. A.1) 2 3 Summation operator For

More information

Lecture 4 Multiple linear regression

Lecture 4 Multiple linear regression Lecture 4 Multiple linear regression BIOST 515 January 15, 2004 Outline 1 Motivation for the multiple regression model Multiple regression in matrix notation Least squares estimation of model parameters

More information

Vector Autoregression

Vector Autoregression Vector Autoregression Jamie Monogan University of Georgia February 27, 2018 Jamie Monogan (UGA) Vector Autoregression February 27, 2018 1 / 17 Objectives By the end of these meetings, participants should

More information

Probability and Statistics Notes

Probability and Statistics Notes Probability and Statistics Notes Chapter Seven Jesse Crawford Department of Mathematics Tarleton State University Spring 2011 (Tarleton State University) Chapter Seven Notes Spring 2011 1 / 42 Outline

More information

2 Prediction and Analysis of Variance

2 Prediction and Analysis of Variance 2 Prediction and Analysis of Variance Reading: Chapters and 2 of Kennedy A Guide to Econometrics Achen, Christopher H. Interpreting and Using Regression (London: Sage, 982). Chapter 4 of Andy Field, Discovering

More information

LECTURE 5 HYPOTHESIS TESTING

LECTURE 5 HYPOTHESIS TESTING October 25, 2016 LECTURE 5 HYPOTHESIS TESTING Basic concepts In this lecture we continue to discuss the normal classical linear regression defined by Assumptions A1-A5. Let θ Θ R d be a parameter of interest.

More information

Applied Regression. Applied Regression. Chapter 2 Simple Linear Regression. Hongcheng Li. April, 6, 2013

Applied Regression. Applied Regression. Chapter 2 Simple Linear Regression. Hongcheng Li. April, 6, 2013 Applied Regression Chapter 2 Simple Linear Regression Hongcheng Li April, 6, 2013 Outline 1 Introduction of simple linear regression 2 Scatter plot 3 Simple linear regression model 4 Test of Hypothesis

More information

Graphical Diagnosis. Paul E. Johnson 1 2. (Mostly QQ and Leverage Plots) 1 / Department of Political Science

Graphical Diagnosis. Paul E. Johnson 1 2. (Mostly QQ and Leverage Plots) 1 / Department of Political Science (Mostly QQ and Leverage Plots) 1 / 63 Graphical Diagnosis Paul E. Johnson 1 2 1 Department of Political Science 2 Center for Research Methods and Data Analysis, University of Kansas. (Mostly QQ and Leverage

More information

Intermediate Econometrics

Intermediate Econometrics Intermediate Econometrics Markus Haas LMU München Summer term 2011 15. Mai 2011 The Simple Linear Regression Model Considering variables x and y in a specific population (e.g., years of education and wage

More information