Statistical Methods in Applied Computer Science

Size: px
Start display at page:

Download "Statistical Methods in Applied Computer Science"

Transcription

1 DD2447, DD3342 Statistical Methods in Applied Computer Science Stefan Arnborg, KTH SYLLABUS Common statistical models and their use: Bayesian, testing, and fiducial statistical philosophy Hypothesis choice Parametric inference Non-parametric inference Elements of regression Clustering Graphical statistical models Prediction and retrodiction Chapman-Kolmogoroff formulation Elements of Vapnik/Chervonenki's learning theory Evidence theory, estimation and combination of evidence. Support Vector Machines and Kernel methods Vovk/Gammerman hedged prediction technology Stochastic simulation, Markov Chain Monte Carlo. LEARNING GOALS After successfully taking this course, you will be able to: -motivate the use of uncertainty management and statistical methodology in computer science applications, as well as the main methods in use, -account for algorithms used in the area and use the standard tools, -critically evaluate the applicability of these methods in new contexts, and design new applications of uncertainty management, -follow research and development in the area. GRADING DD2447 Grades are E-A during % of homeworks and a very short oral discussion of them gives grade C. Less gives F-D. For higher grades, essentially all homeworks should be turned in on time. Alternative assignments will be substituted for those homeworks you miss. For grade B you must pass one Master's test, for grade A you must do two Master's tests. DD3342 Research level project, or deeper study of part of course 1

2 Applications of Uncertainty everywhere Medical Imaging/Research (Schizophrenia) Land Use Planning Environmental Surveillance and Prediction Finance and Stock Marketing into Google Robot Navigation and Tracking Security and Military Performance Tuning 2

3 Aristotle: Logic Logic as a semi-formal system was created by Aristotle, probably inspired by current practice in mathematical arguments. There is no record of Aristotle himself applying logic, but probably the Elements of Euclid derives from Aristotles illustrations of the logical method. Which role has logic in Computer Science?? Nicomachean Ethics Every action is thought to aim at some good Should we not, like archers, aim at what is right? We must be content to indicate the truth roughly and in outline, and with premises of the same kind, to reach conclusions that are no better. It is equally foolish to expect probable reasoning from a mathematician as it is to demand, from a rhetorician, scientific proofs. Visualization Visualize data in such a way that the important aspects are obvious - A good visualization strikes you as a punch between your eyes (Tukey, 1970) Pioneered by Florence Nightingale, first female member of Royal Statistical Society, inventor of pie charts and performance metrics Probabilistic approaches Bayes: Probability conditioned by observation Cournot: An event with very small probability will not happen. Vapnik-Chervonenkis: VC-dimension and PAC, distribution-independence Kolmogorov/Vovk: A sequence is random if it cannot be compressed 3

4 Peirce: Abduction and uncertainty Aristotles induction, generalizing from particulars, is considered invalid by strict deductionists. Peirce made the concept clear, or at least confused on a higher level. Abduction is verification by finding a plausible explanation. Key process in scientific progress. Sherlock Holmes: common sense inference Techniques used by Sherlock are modelled on Conan Doyle s professor in medical school, who followed the methodological tradition of Hippocrates and Galen. Abductive reasoning, first spelled out by Peirce, is found in 217 instances in Sherlock Holmes adventures - 30 of them in the first novel, A study in Scarlet. Thomas Bayes, amateur mathematician If we have a probability model of the world we know how to compute probabilities of events. But is it possible to learn about the world from events we see? Bayes proposal was forgotten but rediscovered by Laplace. Antoine Augustine Cournot ( ) Pioneer in stochastic processes, market theory and structural post-modernism. Predicted demise of academic system due to discourses of administration and excellence(cf Readings). An alternative to Bayes method - hypothesis testing - is based on Cournot s Bridge : an event with very small probability will not happen 4

5 Kolmogorov and randomness Andrei Kolmogorov( ) is the mathematician best known for shaping probability theory into a modern axiomatized theory. His axioms of probability tells how probability measures are defined, also on infinite and infinite-dimensional event spaces and complex product spaces. Kolmogorov complexity characterizes a random string by the smallest size of a description of it. Used to explain Vovk/Gammerman scheme of hedged prediction. Also used in MDL (Minimum Description Length) inference. Normative claim of Bayesianism EVERY type of uncertainty should be treated as probability This claim is controversial and not universally accepted: Fisher(1922), Cramér, Zadeh, Dempster, Shafer, Walley(1999) Students encounter many approaches to uncertainty management and identify weaknessess in foundational arguments. Foundations for Bayesian Inference Bayes method, first documented method based on probability: Plausibility of event depends on observation, Bayes rule: Showcase application: PET-camera f (! D) " f (D!) f (!) Bayes rule organizing principle for uncertainty Parameter and observation spaces can be extremely complex, priors and likelihoods also. MCMC current approach -- often but not always applicable (difficult when posterior has many local maxima separated by low density regions) Better than Numerics?? Camera geometry&noise film scene regularity and also any other camera or imaging device 5

6 PET camera Project Aims likelihood prior D: film, count by detector j X: radioactivity in voxel i a: camera geometry Inference about Y gives posterior, its mean is often a good picture Support transformation of tasks and solutions in a generic fashion Integrate different command levels and services in a dynamic organization Facilitate consistent situation awareness * WIRED on Total Information Awareness WIRED (Dec 2, 2002) article "Total Info System Totally Touchy" discusses the Total Information Awareness system. ~~~ Quote: "People have to move and plan before committing a terrorist act. Our hypothesis is their planning process has a signature." Jan Walker, Pentagon spokeswoman, in Wired, Dec 2, "What's alarming is the danger of false positives based on incorrect data," Herb Edelstein, in Wired, Dec 2, Combination of evidence f (! D) " f (D!) f (!) f (! {d 1,d 2 }) " f (d 1!) f (d 2!) f (!) In Bayes method, evidence is likelihood for observation. 6

7 Particle filtergeneral tracking Chapman Kolmogorov version of Bayes rule f (! t D t ) " f (d t! t )# f (! t! t $1 ) f (! t $1 D t $1 )d! t$1 Berry and Linoff have eloquently stated their preferences with the often quoted sentence: "Neural networks are a good choice for most classification problems when the results of the model are more important than understanding how the model works". Neural networks typically give the right answer 7

8 : The age of rationality. Let us describe the world with a mathematical model and compute the best way to manage it!! This is a large Bayesian Network, a popular statistical model Ed Jaynes devoted a large part of his career to promote Bayesian inference. He also championed the use of Maximum Entropy in physics Outside physics, he received resistance from people who had already invented other methods. Why should statistical mechanics say anything about our daily human world?? Robust Bayes Priors and likelihoods are convex sets of probability distributions (Berger, de Finetti, Walley,...): imprecise probability: f (! D) " f (D!) f (!) F(! D) " F(D!)F(!) Every member of posterior is a parallell combination of one member of likelihood and one member of prior. For decision making: Jaynes recommends to use that member of posterior with maximum entropy (Maxent estimate). 8

9 SVM and Kernel method SVM and Kernel method Based on Vapnik-Chervonenkis learning theory Separate classes by wide margin hyperplane classifier, or enclose data points between close parallell hyperplanes for regression Possibly after non-linear mapping to highdimensional space Assumption is only point exchangeability Vovk/Gammerman Hedged predictions Based on Kolmogorov complexity or non-conformance measure In classification, each prediction comes with confidence Asymptotically, misclassifications appear independently and with probability 1-confidence. Only assumption is exchangeability 9

Nonparametric Bayesian Methods (Gaussian Processes)

Nonparametric Bayesian Methods (Gaussian Processes) [70240413 Statistical Machine Learning, Spring, 2015] Nonparametric Bayesian Methods (Gaussian Processes) Jun Zhu dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent

More information

Deciding, Estimating, Computing, Checking

Deciding, Estimating, Computing, Checking Deciding, Estimating, Computing, Checking How are Bayesian posteriors used, computed and validated? Fundamentalist Bayes: The posterior is ALL knowledge you have about the state Use in decision making:

More information

Deciding, Estimating, Computing, Checking. How are Bayesian posteriors used, computed and validated?

Deciding, Estimating, Computing, Checking. How are Bayesian posteriors used, computed and validated? Deciding, Estimating, Computing, Checking How are Bayesian posteriors used, computed and validated? Fundamentalist Bayes: The posterior is ALL knowledge you have about the state Use in decision making:

More information

STAT 499/962 Topics in Statistics Bayesian Inference and Decision Theory Jan 2018, Handout 01

STAT 499/962 Topics in Statistics Bayesian Inference and Decision Theory Jan 2018, Handout 01 STAT 499/962 Topics in Statistics Bayesian Inference and Decision Theory Jan 2018, Handout 01 Nasser Sadeghkhani a.sadeghkhani@queensu.ca There are two main schools to statistical inference: 1-frequentist

More information

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 BASEL. Logistic Regression. Pattern Recognition 2016 Sandro Schönborn University of Basel

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 BASEL. Logistic Regression. Pattern Recognition 2016 Sandro Schönborn University of Basel Logistic Regression Pattern Recognition 2016 Sandro Schönborn University of Basel Two Worlds: Probabilistic & Algorithmic We have seen two conceptual approaches to classification: data class density estimation

More information

Bayesian Reasoning. Adapted from slides by Tim Finin and Marie desjardins.

Bayesian Reasoning. Adapted from slides by Tim Finin and Marie desjardins. Bayesian Reasoning Adapted from slides by Tim Finin and Marie desjardins. 1 Outline Probability theory Bayesian inference From the joint distribution Using independence/factoring From sources of evidence

More information

Reasoning with Uncertainty

Reasoning with Uncertainty Reasoning with Uncertainty Representing Uncertainty Manfred Huber 2005 1 Reasoning with Uncertainty The goal of reasoning is usually to: Determine the state of the world Determine what actions to take

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 3 Linear

More information

Machine Learning Support Vector Machines. Prof. Matteo Matteucci

Machine Learning Support Vector Machines. Prof. Matteo Matteucci Machine Learning Support Vector Machines Prof. Matteo Matteucci Discriminative vs. Generative Approaches 2 o Generative approach: we derived the classifier from some generative hypothesis about the way

More information

EEL 851: Biometrics. An Overview of Statistical Pattern Recognition EEL 851 1

EEL 851: Biometrics. An Overview of Statistical Pattern Recognition EEL 851 1 EEL 851: Biometrics An Overview of Statistical Pattern Recognition EEL 851 1 Outline Introduction Pattern Feature Noise Example Problem Analysis Segmentation Feature Extraction Classification Design Cycle

More information

Algorithms for Classification: The Basic Methods

Algorithms for Classification: The Basic Methods Algorithms for Classification: The Basic Methods Outline Simplicity first: 1R Naïve Bayes 2 Classification Task: Given a set of pre-classified examples, build a model or classifier to classify new cases.

More information

Introduction to Machine Learning. Introduction to ML - TAU 2016/7 1

Introduction to Machine Learning. Introduction to ML - TAU 2016/7 1 Introduction to Machine Learning Introduction to ML - TAU 2016/7 1 Course Administration Lecturers: Amir Globerson (gamir@post.tau.ac.il) Yishay Mansour (Mansour@tau.ac.il) Teaching Assistance: Regev Schweiger

More information

COURSE INTRODUCTION. J. Elder CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

COURSE INTRODUCTION. J. Elder CSE 6390/PSYC 6225 Computational Modeling of Visual Perception COURSE INTRODUCTION COMPUTATIONAL MODELING OF VISUAL PERCEPTION 2 The goal of this course is to provide a framework and computational tools for modeling visual inference, motivated by interesting examples

More information

An Introduction to Statistical Theory of Learning. Nakul Verma Janelia, HHMI

An Introduction to Statistical Theory of Learning. Nakul Verma Janelia, HHMI An Introduction to Statistical Theory of Learning Nakul Verma Janelia, HHMI Towards formalizing learning What does it mean to learn a concept? Gain knowledge or experience of the concept. The basic process

More information

9/12/17. Types of learning. Modeling data. Supervised learning: Classification. Supervised learning: Regression. Unsupervised learning: Clustering

9/12/17. Types of learning. Modeling data. Supervised learning: Classification. Supervised learning: Regression. Unsupervised learning: Clustering Types of learning Modeling data Supervised: we know input and targets Goal is to learn a model that, given input data, accurately predicts target data Unsupervised: we know the input only and want to make

More information

Statistical Methods in Particle Physics Lecture 1: Bayesian methods

Statistical Methods in Particle Physics Lecture 1: Bayesian methods Statistical Methods in Particle Physics Lecture 1: Bayesian methods SUSSP65 St Andrews 16 29 August 2009 Glen Cowan Physics Department Royal Holloway, University of London g.cowan@rhul.ac.uk www.pp.rhul.ac.uk/~cowan

More information

PART I INTRODUCTION The meaning of probability Basic definitions for frequentist statistics and Bayesian inference Bayesian inference Combinatorics

PART I INTRODUCTION The meaning of probability Basic definitions for frequentist statistics and Bayesian inference Bayesian inference Combinatorics Table of Preface page xi PART I INTRODUCTION 1 1 The meaning of probability 3 1.1 Classical definition of probability 3 1.2 Statistical definition of probability 9 1.3 Bayesian understanding of probability

More information

Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning Christopher M. Bishop Pattern Recognition and Machine Learning ÖSpri inger Contents Preface Mathematical notation Contents vii xi xiii 1 Introduction 1 1.1 Example: Polynomial Curve Fitting 4 1.2 Probability

More information

Applied Logic. Lecture 4 part 2 Bayesian inductive reasoning. Marcin Szczuka. Institute of Informatics, The University of Warsaw

Applied Logic. Lecture 4 part 2 Bayesian inductive reasoning. Marcin Szczuka. Institute of Informatics, The University of Warsaw Applied Logic Lecture 4 part 2 Bayesian inductive reasoning Marcin Szczuka Institute of Informatics, The University of Warsaw Monographic lecture, Spring semester 2017/2018 Marcin Szczuka (MIMUW) Applied

More information

Probabilistic Machine Learning. Industrial AI Lab.

Probabilistic Machine Learning. Industrial AI Lab. Probabilistic Machine Learning Industrial AI Lab. Probabilistic Linear Regression Outline Probabilistic Classification Probabilistic Clustering Probabilistic Dimension Reduction 2 Probabilistic Linear

More information

International Journal "Information Theories & Applications" Vol.14 /

International Journal Information Theories & Applications Vol.14 / International Journal "Information Theories & Applications" Vol.4 / 2007 87 or 2) Nˆ t N. That criterion and parameters F, M, N assign method of constructing sample decision function. In order to estimate

More information

COMS 4771 Introduction to Machine Learning. Nakul Verma

COMS 4771 Introduction to Machine Learning. Nakul Verma COMS 4771 Introduction to Machine Learning Nakul Verma Announcements HW2 due now! Project proposal due on tomorrow Midterm next lecture! HW3 posted Last time Linear Regression Parametric vs Nonparametric

More information

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2013

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2013 UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2013 Exam policy: This exam allows two one-page, two-sided cheat sheets; No other materials. Time: 2 hours. Be sure to write your name and

More information

Support Vector Machines (SVM) in bioinformatics. Day 1: Introduction to SVM

Support Vector Machines (SVM) in bioinformatics. Day 1: Introduction to SVM 1 Support Vector Machines (SVM) in bioinformatics Day 1: Introduction to SVM Jean-Philippe Vert Bioinformatics Center, Kyoto University, Japan Jean-Philippe.Vert@mines.org Human Genome Center, University

More information

Lecture 1: Bayesian Framework Basics

Lecture 1: Bayesian Framework Basics Lecture 1: Bayesian Framework Basics Melih Kandemir melih.kandemir@iwr.uni-heidelberg.de April 21, 2014 What is this course about? Building Bayesian machine learning models Performing the inference of

More information

Machine Learning Overview

Machine Learning Overview Machine Learning Overview Sargur N. Srihari University at Buffalo, State University of New York USA 1 Outline 1. What is Machine Learning (ML)? 2. Types of Information Processing Problems Solved 1. Regression

More information

Statistical Methods for Particle Physics Lecture 1: parameter estimation, statistical tests

Statistical Methods for Particle Physics Lecture 1: parameter estimation, statistical tests Statistical Methods for Particle Physics Lecture 1: parameter estimation, statistical tests http://benasque.org/2018tae/cgi-bin/talks/allprint.pl TAE 2018 Benasque, Spain 3-15 Sept 2018 Glen Cowan Physics

More information

Bayesian Inference. Chapter 1. Introduction and basic concepts

Bayesian Inference. Chapter 1. Introduction and basic concepts Bayesian Inference Chapter 1. Introduction and basic concepts M. Concepción Ausín Department of Statistics Universidad Carlos III de Madrid Master in Business Administration and Quantitative Methods Master

More information

Content. Learning. Regression vs Classification. Regression a.k.a. function approximation and Classification a.k.a. pattern recognition

Content. Learning. Regression vs Classification. Regression a.k.a. function approximation and Classification a.k.a. pattern recognition Content Andrew Kusiak Intelligent Systems Laboratory 239 Seamans Center The University of Iowa Iowa City, IA 52242-527 andrew-kusiak@uiowa.edu http://www.icaen.uiowa.edu/~ankusiak Introduction to learning

More information

Master of Science in Statistics A Proposal

Master of Science in Statistics A Proposal 1 Master of Science in Statistics A Proposal Rationale of the Program In order to cope up with the emerging complexity on the solutions of realistic problems involving several phenomena of nature it is

More information

FINAL: CS 6375 (Machine Learning) Fall 2014

FINAL: CS 6375 (Machine Learning) Fall 2014 FINAL: CS 6375 (Machine Learning) Fall 2014 The exam is closed book. You are allowed a one-page cheat sheet. Answer the questions in the spaces provided on the question sheets. If you run out of room for

More information

VCMC: Variational Consensus Monte Carlo

VCMC: Variational Consensus Monte Carlo VCMC: Variational Consensus Monte Carlo Maxim Rabinovich, Elaine Angelino, Michael I. Jordan Berkeley Vision and Learning Center September 22, 2015 probabilistic models! sky fog bridge water grass object

More information

Overview of Statistical Tools. Statistical Inference. Bayesian Framework. Modeling. Very simple case. Things are usually more complicated

Overview of Statistical Tools. Statistical Inference. Bayesian Framework. Modeling. Very simple case. Things are usually more complicated Fall 3 Computer Vision Overview of Statistical Tools Statistical Inference Haibin Ling Observation inference Decision Prior knowledge http://www.dabi.temple.edu/~hbling/teaching/3f_5543/index.html Bayesian

More information

Pattern Recognition and Machine Learning. Perceptrons and Support Vector machines

Pattern Recognition and Machine Learning. Perceptrons and Support Vector machines Pattern Recognition and Machine Learning James L. Crowley ENSIMAG 3 - MMIS Fall Semester 2016 Lessons 6 10 Jan 2017 Outline Perceptrons and Support Vector machines Notation... 2 Perceptrons... 3 History...3

More information

Qualifying Exam in Machine Learning

Qualifying Exam in Machine Learning Qualifying Exam in Machine Learning October 20, 2009 Instructions: Answer two out of the three questions in Part 1. In addition, answer two out of three questions in two additional parts (choose two parts

More information

Chapter 6 The Structural Risk Minimization Principle

Chapter 6 The Structural Risk Minimization Principle Chapter 6 The Structural Risk Minimization Principle Junping Zhang jpzhang@fudan.edu.cn Intelligent Information Processing Laboratory, Fudan University March 23, 2004 Objectives Structural risk minimization

More information

Machine Learning using Bayesian Approaches

Machine Learning using Bayesian Approaches Machine Learning using Bayesian Approaches Sargur N. Srihari University at Buffalo, State University of New York 1 Outline 1. Progress in ML and PR 2. Fully Bayesian Approach 1. Probability theory Bayes

More information

ECE-271B. Nuno Vasconcelos ECE Department, UCSD

ECE-271B. Nuno Vasconcelos ECE Department, UCSD ECE-271B Statistical ti ti Learning II Nuno Vasconcelos ECE Department, UCSD The course the course is a graduate level course in statistical learning in SLI we covered the foundations of Bayesian or generative

More information

Bayesian Reasoning and Recognition

Bayesian Reasoning and Recognition Intelligent Systems: Reasoning and Recognition James L. Crowley ENSIAG 2 / osig 1 Second Semester 2013/2014 Lesson 12 28 arch 2014 Bayesian Reasoning and Recognition Notation...2 Pattern Recognition...3

More information

The Fundamental Principle of Data Science

The Fundamental Principle of Data Science The Fundamental Principle of Data Science Harry Crane Department of Statistics Rutgers May 7, 2018 Web : www.harrycrane.com Project : researchers.one Contact : @HarryDCrane Harry Crane (Rutgers) Foundations

More information

Contents. Part I: Fundamentals of Bayesian Inference 1

Contents. Part I: Fundamentals of Bayesian Inference 1 Contents Preface xiii Part I: Fundamentals of Bayesian Inference 1 1 Probability and inference 3 1.1 The three steps of Bayesian data analysis 3 1.2 General notation for statistical inference 4 1.3 Bayesian

More information

Subject CS1 Actuarial Statistics 1 Core Principles

Subject CS1 Actuarial Statistics 1 Core Principles Institute of Actuaries of India Subject CS1 Actuarial Statistics 1 Core Principles For 2019 Examinations Aim The aim of the Actuarial Statistics 1 subject is to provide a grounding in mathematical and

More information

Semester I BASIC STATISTICS AND PROBABILITY STS1C01

Semester I BASIC STATISTICS AND PROBABILITY STS1C01 NAME OF THE DEPARTMENT CODE AND NAME OUTCOMES (POs) SPECIFIC OUTCOMES (PSOs) Department of Statistics PO.1 PO.2 PO.3. PO.4 PO.5 PO.6 PSO.1. PSO.2. PSO.3. PSO.4. PSO. 5. PSO.6. Not Applicable Not Applicable

More information

Introduction: MLE, MAP, Bayesian reasoning (28/8/13)

Introduction: MLE, MAP, Bayesian reasoning (28/8/13) STA561: Probabilistic machine learning Introduction: MLE, MAP, Bayesian reasoning (28/8/13) Lecturer: Barbara Engelhardt Scribes: K. Ulrich, J. Subramanian, N. Raval, J. O Hollaren 1 Classifiers In this

More information

Should all Machine Learning be Bayesian? Should all Bayesian models be non-parametric?

Should all Machine Learning be Bayesian? Should all Bayesian models be non-parametric? Should all Machine Learning be Bayesian? Should all Bayesian models be non-parametric? Zoubin Ghahramani Department of Engineering University of Cambridge, UK zoubin@eng.cam.ac.uk http://learning.eng.cam.ac.uk/zoubin/

More information

Machine Learning Lecture 7

Machine Learning Lecture 7 Course Outline Machine Learning Lecture 7 Fundamentals (2 weeks) Bayes Decision Theory Probability Density Estimation Statistical Learning Theory 23.05.2016 Discriminative Approaches (5 weeks) Linear Discriminant

More information

The exam is closed book, closed notes except your one-page (two sides) or two-page (one side) crib sheet.

The exam is closed book, closed notes except your one-page (two sides) or two-page (one side) crib sheet. CS 189 Spring 013 Introduction to Machine Learning Final You have 3 hours for the exam. The exam is closed book, closed notes except your one-page (two sides) or two-page (one side) crib sheet. Please

More information

Probabilistic Graphical Models for Image Analysis - Lecture 1

Probabilistic Graphical Models for Image Analysis - Lecture 1 Probabilistic Graphical Models for Image Analysis - Lecture 1 Alexey Gronskiy, Stefan Bauer 21 September 2018 Max Planck ETH Center for Learning Systems Overview 1. Motivation - Why Graphical Models 2.

More information

CSE 546 Final Exam, Autumn 2013

CSE 546 Final Exam, Autumn 2013 CSE 546 Final Exam, Autumn 0. Personal info: Name: Student ID: E-mail address:. There should be 5 numbered pages in this exam (including this cover sheet).. You can use any material you brought: any book,

More information

Computational Learning Theory

Computational Learning Theory Computational Learning Theory Pardis Noorzad Department of Computer Engineering and IT Amirkabir University of Technology Ordibehesht 1390 Introduction For the analysis of data structures and algorithms

More information

Universal Learning Technology: Support Vector Machines

Universal Learning Technology: Support Vector Machines Special Issue on Information Utilizing Technologies for Value Creation Universal Learning Technology: Support Vector Machines By Vladimir VAPNIK* This paper describes the Support Vector Machine (SVM) technology,

More information

CS 4649/7649 Robot Intelligence: Planning

CS 4649/7649 Robot Intelligence: Planning CS 4649/7649 Robot Intelligence: Planning Probability Primer Sungmoon Joo School of Interactive Computing College of Computing Georgia Institute of Technology S. Joo (sungmoon.joo@cc.gatech.edu) 1 *Slides

More information

Some Concepts of Probability (Review) Volker Tresp Summer 2018

Some Concepts of Probability (Review) Volker Tresp Summer 2018 Some Concepts of Probability (Review) Volker Tresp Summer 2018 1 Definition There are different way to define what a probability stands for Mathematically, the most rigorous definition is based on Kolmogorov

More information

CMPT Machine Learning. Bayesian Learning Lecture Scribe for Week 4 Jan 30th & Feb 4th

CMPT Machine Learning. Bayesian Learning Lecture Scribe for Week 4 Jan 30th & Feb 4th CMPT 882 - Machine Learning Bayesian Learning Lecture Scribe for Week 4 Jan 30th & Feb 4th Stephen Fagan sfagan@sfu.ca Overview: Introduction - Who was Bayes? - Bayesian Statistics Versus Classical Statistics

More information

Bayesian Inference: What, and Why?

Bayesian Inference: What, and Why? Winter School on Big Data Challenges to Modern Statistics Geilo Jan, 2014 (A Light Appetizer before Dinner) Bayesian Inference: What, and Why? Elja Arjas UH, THL, UiO Understanding the concepts of randomness

More information

Bayesian Phylogenetics:

Bayesian Phylogenetics: Bayesian Phylogenetics: an introduction Marc A. Suchard msuchard@ucla.edu UCLA Who is this man? How sure are you? The one true tree? Methods we ve learned so far try to find a single tree that best describes

More information

Generative Techniques: Bayes Rule and the Axioms of Probability

Generative Techniques: Bayes Rule and the Axioms of Probability Intelligent Systems: Reasoning and Recognition James L. Crowley ENSIMAG 2 / MoSIG M1 Second Semester 2016/2017 Lesson 8 3 March 2017 Generative Techniques: Bayes Rule and the Axioms of Probability Generative

More information

Solving Classification Problems By Knowledge Sets

Solving Classification Problems By Knowledge Sets Solving Classification Problems By Knowledge Sets Marcin Orchel a, a Department of Computer Science, AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Kraków, Poland Abstract We propose

More information

From Complexity to Intelligence

From Complexity to Intelligence From Complexity to Intelligence Machine Learning and Complexity PAGE 1 / 72 Table of contents Reminder Introduction to Machine Learning What is Machine Learning? Types of Learning Unsupervised Learning

More information

Discriminative Models

Discriminative Models No.5 Discriminative Models Hui Jiang Department of Electrical Engineering and Computer Science Lassonde School of Engineering York University, Toronto, Canada Outline Generative vs. Discriminative models

More information

Machine Learning

Machine Learning Machine Learning 10-701 Tom M. Mitchell Machine Learning Department Carnegie Mellon University January 13, 2011 Today: The Big Picture Overfitting Review: probability Readings: Decision trees, overfiting

More information

Prentice Hall Mathematics, Geometry 2009 Correlated to: Connecticut Mathematics Curriculum Framework Companion, 2005 (Grades 9-12 Core and Extended)

Prentice Hall Mathematics, Geometry 2009 Correlated to: Connecticut Mathematics Curriculum Framework Companion, 2005 (Grades 9-12 Core and Extended) Grades 9-12 CORE Algebraic Reasoning: Patterns And Functions GEOMETRY 2009 Patterns and functional relationships can be represented and analyzed using a variety of strategies, tools and technologies. 1.1

More information

Introduction to Statistical Methods for High Energy Physics

Introduction to Statistical Methods for High Energy Physics Introduction to Statistical Methods for High Energy Physics 2011 CERN Summer Student Lectures Glen Cowan Physics Department Royal Holloway, University of London g.cowan@rhul.ac.uk www.pp.rhul.ac.uk/~cowan

More information

Course Goals and Course Objectives, as of Fall Math 102: Intermediate Algebra

Course Goals and Course Objectives, as of Fall Math 102: Intermediate Algebra Course Goals and Course Objectives, as of Fall 2015 Math 102: Intermediate Algebra Interpret mathematical models such as formulas, graphs, tables, and schematics, and draw inferences from them. Represent

More information

Uncertain Inference and Artificial Intelligence

Uncertain Inference and Artificial Intelligence March 3, 2011 1 Prepared for a Purdue Machine Learning Seminar Acknowledgement Prof. A. P. Dempster for intensive collaborations on the Dempster-Shafer theory. Jianchun Zhang, Ryan Martin, Duncan Ermini

More information

Machine Learning Linear Classification. Prof. Matteo Matteucci

Machine Learning Linear Classification. Prof. Matteo Matteucci Machine Learning Linear Classification Prof. Matteo Matteucci Recall from the first lecture 2 X R p Regression Y R Continuous Output X R p Y {Ω 0, Ω 1,, Ω K } Classification Discrete Output X R p Y (X)

More information

Introduction to Machine Learning Midterm Exam

Introduction to Machine Learning Midterm Exam 10-701 Introduction to Machine Learning Midterm Exam Instructors: Eric Xing, Ziv Bar-Joseph 17 November, 2015 There are 11 questions, for a total of 100 points. This exam is open book, open notes, but

More information

Discussion of Dempster by Shafer. Dempster-Shafer is fiducial and so are you.

Discussion of Dempster by Shafer. Dempster-Shafer is fiducial and so are you. Fourth Bayesian, Fiducial, and Frequentist Conference Department of Statistics, Harvard University, May 1, 2017 Discussion of Dempster by Shafer (Glenn Shafer at Rutgers, www.glennshafer.com) Dempster-Shafer

More information

STA414/2104 Statistical Methods for Machine Learning II

STA414/2104 Statistical Methods for Machine Learning II STA414/2104 Statistical Methods for Machine Learning II Murat A. Erdogdu & David Duvenaud Department of Computer Science Department of Statistical Sciences Lecture 3 Slide credits: Russ Salakhutdinov Announcements

More information

Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak

Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak 1 Introduction. Random variables During the course we are interested in reasoning about considered phenomenon. In other words,

More information

Machine Learning

Machine Learning Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University August 30, 2017 Today: Decision trees Overfitting The Big Picture Coming soon Probabilistic learning MLE,

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 7 Approximate

More information

Bayesian Nonparametric Regression for Diabetes Deaths

Bayesian Nonparametric Regression for Diabetes Deaths Bayesian Nonparametric Regression for Diabetes Deaths Brian M. Hartman PhD Student, 2010 Texas A&M University College Station, TX, USA David B. Dahl Assistant Professor Texas A&M University College Station,

More information

Bayesian Regression Linear and Logistic Regression

Bayesian Regression Linear and Logistic Regression When we want more than point estimates Bayesian Regression Linear and Logistic Regression Nicole Beckage Ordinary Least Squares Regression and Lasso Regression return only point estimates But what if we

More information

Probability Basics. Robot Image Credit: Viktoriya Sukhanova 123RF.com

Probability Basics. Robot Image Credit: Viktoriya Sukhanova 123RF.com Probability Basics These slides were assembled by Eric Eaton, with grateful acknowledgement of the many others who made their course materials freely available online. Feel free to reuse or adapt these

More information

EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS

EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS Lecture 16, 6/1/2005 University of Washington, Department of Electrical Engineering Spring 2005 Instructor: Professor Jeff A. Bilmes Uncertainty & Bayesian Networks

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU10701 11. Learning Theory Barnabás Póczos Learning Theory We have explored many ways of learning from data But How good is our classifier, really? How much data do we

More information

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review STATS 200: Introduction to Statistical Inference Lecture 29: Course review Course review We started in Lecture 1 with a fundamental assumption: Data is a realization of a random process. The goal throughout

More information

PROBABILISTIC PROGRAMMING: BAYESIAN MODELLING MADE EASY

PROBABILISTIC PROGRAMMING: BAYESIAN MODELLING MADE EASY PROBABILISTIC PROGRAMMING: BAYESIAN MODELLING MADE EASY Arto Klami Adapted from my talk in AIHelsinki seminar Dec 15, 2016 1 MOTIVATING INTRODUCTION Most of the artificial intelligence success stories

More information

Machine Learning. Instructor: Pranjal Awasthi

Machine Learning. Instructor: Pranjal Awasthi Machine Learning Instructor: Pranjal Awasthi Course Info Requested an SPN and emailed me Wait for Carol Difrancesco to give them out. Not registered and need SPN Email me after class No promises It s a

More information

Machine Learning Basics Lecture 4: SVM I. Princeton University COS 495 Instructor: Yingyu Liang

Machine Learning Basics Lecture 4: SVM I. Princeton University COS 495 Instructor: Yingyu Liang Machine Learning Basics Lecture 4: SVM I Princeton University COS 495 Instructor: Yingyu Liang Review: machine learning basics Math formulation Given training data x i, y i : 1 i n i.i.d. from distribution

More information

Major Matrix Mathematics Education 7-12 Licensure - NEW

Major Matrix Mathematics Education 7-12 Licensure - NEW Course Name(s) Number(s) Choose One: MATH 303Differential Equations MATH 304 Mathematical Modeling MATH 305 History and Philosophy of Mathematics MATH 405 Advanced Calculus MATH 406 Mathematical Statistics

More information

Introduction. Chapter 1

Introduction. Chapter 1 Chapter 1 Introduction In this book we will be concerned with supervised learning, which is the problem of learning input-output mappings from empirical data (the training dataset). Depending on the characteristics

More information

Discriminative Models

Discriminative Models No.5 Discriminative Models Hui Jiang Department of Electrical Engineering and Computer Science Lassonde School of Engineering York University, Toronto, Canada Outline Generative vs. Discriminative models

More information

Algorithmisches Lernen/Machine Learning

Algorithmisches Lernen/Machine Learning Algorithmisches Lernen/Machine Learning Part 1: Stefan Wermter Introduction Connectionist Learning (e.g. Neural Networks) Decision-Trees, Genetic Algorithms Part 2: Norman Hendrich Support-Vector Machines

More information

IE598 Big Data Optimization Introduction

IE598 Big Data Optimization Introduction IE598 Big Data Optimization Introduction Instructor: Niao He Jan 17, 2018 1 A little about me Assistant Professor, ISE & CSL UIUC, 2016 Ph.D. in Operations Research, M.S. in Computational Sci. & Eng. Georgia

More information

Learning with Noisy Labels. Kate Niehaus Reading group 11-Feb-2014

Learning with Noisy Labels. Kate Niehaus Reading group 11-Feb-2014 Learning with Noisy Labels Kate Niehaus Reading group 11-Feb-2014 Outline Motivations Generative model approach: Lawrence, N. & Scho lkopf, B. Estimating a Kernel Fisher Discriminant in the Presence of

More information

Course Introduction. Probabilistic Modelling and Reasoning. Relationships between courses. Dealing with Uncertainty. Chris Williams.

Course Introduction. Probabilistic Modelling and Reasoning. Relationships between courses. Dealing with Uncertainty. Chris Williams. Course Introduction Probabilistic Modelling and Reasoning Chris Williams School of Informatics, University of Edinburgh September 2008 Welcome Administration Handout Books Assignments Tutorials Course

More information

Part IV: Monte Carlo and nonparametric Bayes

Part IV: Monte Carlo and nonparametric Bayes Part IV: Monte Carlo and nonparametric Bayes Outline Monte Carlo methods Nonparametric Bayesian models Outline Monte Carlo methods Nonparametric Bayesian models The Monte Carlo principle The expectation

More information

Prerequisite: STATS 7 or STATS 8 or AP90 or (STATS 120A and STATS 120B and STATS 120C). AP90 with a minimum score of 3

Prerequisite: STATS 7 or STATS 8 or AP90 or (STATS 120A and STATS 120B and STATS 120C). AP90 with a minimum score of 3 University of California, Irvine 2017-2018 1 Statistics (STATS) Courses STATS 5. Seminar in Data Science. 1 Unit. An introduction to the field of Data Science; intended for entering freshman and transfers.

More information

Related Concepts: Lecture 9 SEM, Statistical Modeling, AI, and Data Mining. I. Terminology of SEM

Related Concepts: Lecture 9 SEM, Statistical Modeling, AI, and Data Mining. I. Terminology of SEM Lecture 9 SEM, Statistical Modeling, AI, and Data Mining I. Terminology of SEM Related Concepts: Causal Modeling Path Analysis Structural Equation Modeling Latent variables (Factors measurable, but thru

More information

Mining Classification Knowledge

Mining Classification Knowledge Mining Classification Knowledge Remarks on NonSymbolic Methods JERZY STEFANOWSKI Institute of Computing Sciences, Poznań University of Technology COST Doctoral School, Troina 2008 Outline 1. Bayesian classification

More information

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2014

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2014 UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2014 Exam policy: This exam allows two one-page, two-sided cheat sheets (i.e. 4 sides); No other materials. Time: 2 hours. Be sure to write

More information

Pei Wang( 王培 ) Temple University, Philadelphia, USA

Pei Wang( 王培 ) Temple University, Philadelphia, USA Pei Wang( 王培 ) Temple University, Philadelphia, USA Artificial General Intelligence (AGI): a small research community in AI that believes Intelligence is a general-purpose capability Intelligence should

More information

Stochastic Processes, Kernel Regression, Infinite Mixture Models

Stochastic Processes, Kernel Regression, Infinite Mixture Models Stochastic Processes, Kernel Regression, Infinite Mixture Models Gabriel Huang (TA for Simon Lacoste-Julien) IFT 6269 : Probabilistic Graphical Models - Fall 2018 Stochastic Process = Random Function 2

More information

Subjective and Objective Bayesian Statistics

Subjective and Objective Bayesian Statistics Subjective and Objective Bayesian Statistics Principles, Models, and Applications Second Edition S. JAMES PRESS with contributions by SIDDHARTHA CHIB MERLISE CLYDE GEORGE WOODWORTH ALAN ZASLAVSKY \WILEY-

More information

Monte Carlo in Bayesian Statistics

Monte Carlo in Bayesian Statistics Monte Carlo in Bayesian Statistics Matthew Thomas SAMBa - University of Bath m.l.thomas@bath.ac.uk December 4, 2014 Matthew Thomas (SAMBa) Monte Carlo in Bayesian Statistics December 4, 2014 1 / 16 Overview

More information

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function.

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Bayesian learning: Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Let y be the true label and y be the predicted

More information

Recent Advances in Bayesian Inference Techniques

Recent Advances in Bayesian Inference Techniques Recent Advances in Bayesian Inference Techniques Christopher M. Bishop Microsoft Research, Cambridge, U.K. research.microsoft.com/~cmbishop SIAM Conference on Data Mining, April 2004 Abstract Bayesian

More information

Hidden Markov Models. Vibhav Gogate The University of Texas at Dallas

Hidden Markov Models. Vibhav Gogate The University of Texas at Dallas Hidden Markov Models Vibhav Gogate The University of Texas at Dallas Intro to AI (CS 4365) Many slides over the course adapted from either Dan Klein, Luke Zettlemoyer, Stuart Russell or Andrew Moore 1

More information