Singularites in Fermi liquids and the instability of a ferromagnetic quantum-critical point

Size: px
Start display at page:

Download "Singularites in Fermi liquids and the instability of a ferromagnetic quantum-critical point"

Transcription

1 Singularites in ermi liquids and the instability of a ferromagnetic quantum-critical point Andrey Chubukov Dmitrii Maslov lorida University of Wisconsin Catherine Pepin Jerome Rech SPhT Saclay Dima Kveshchenko KIAS workshop, July 19, 006 University of North Carolina

2 Interest to isotropic models of fermions interacting with low-energy, long-wavelength bosons ermions with ε (k) = v (k - k Landau-overdamped bosons with ) χ (q, Ω) q + γ 1 Ω q Residual spin-fermion coupling g + (c ck+ q bq k + h.c) The most known example a ferromagnetic quantum-critical point

3 The case of a ferromagnetic (Stoner) instability for itinerant electron system erromagnetic phase ermi liquid What is the critical theory?

4 Interest to isotropic models of fermions interacting with low-energy, long-wavelength bosons ermions with ε (k) = v (k - k Landau-overdamped bosons with ) χ (q, Ω) q + γ 1 Ω q Residual spin-fermion coupling g + (c ck+ q bq k + h.c) Other examples: interaction with gauge fields, an instability towards nematic ordering, quarks interacting with gluons,.. P.A. Lee, Nagaosa, Wen; Ioffe & Larkin, Kee & Kim, Lawler & radkin, A.C. & Schmalian The problem is particularly interesting in D =

5 Three issues: What happens with fermions near criticality? (fluctuations are strong and destroy a ermi liquid behavior. What replaces a ermi liquid?) Whether the Landau-overdamped form of the bosonic propagator 1 Ω χ (q, Ω) q + γ survives? (is a second order continuous transition protected against fluctuations?) q Is there a superconductivity near a QCP?

6 What happens with fermions near criticality? (fluctuations are strong and destroy a ermi liquid behavior. What replaces a ermi liquid?) Not an academic issue: Essential for the calculation of the specific heat near a quantum-critical point C L (T) m * T m* diverges at QCP

7 Whether the Landau-overdamped form of the bosonic propagator 1 Ω χ (q, ) q γ survives? (is a second order continuous transition protected against fluctuations?) Ω + q erromagnetic transition is often 1 st order erromagnetic phase ZrZn 1 st order pressure

8 Is there a superconductivity near a QCP? UGe

9 ermions at QCP Eliashberg-type theory (D=) Σ (k, ω) = Σ( ω) + no vertex corrections Altshuler, Ioffe, Millis, Kopietz; Metzner et al; Morr, A.C., fermionic self-energy Σ /3 1/3 ( ω ) = (i ω) ω0 ω = π g E g non ermi liquid at QCP G -1 (k, ω) = i( ω + Σ( ω)) - v (k - k ) i( ω /3 ω 1/3 0 - v (k - k )) G(r, t = 0) G 0 (r, t = 0) / r ~ 1/r

10 Issue of (still) current interest: /3 Is the Eliashberg theory with Σ ( ω) ~ ω stable? Earlier perturbative calculations yes Altshuler, Ioffe, Millis, Metzner, A.C. Recent calculations based on bosonization no (argued that Eliashberg theory is broken below some ) ω min radkin, Lawler Our results: or a charge QCP, Eliashberg theory survives, but controllable calculations are only possible if one extends the model to a large number of fermionic flavors N or SU() symmetric spin case, Eliashberg theory of a ferromagnetic QCP is internally unstable

11 A conventional reasoning for the Eliashberg theory: If G -1 (k, ω) ~ (i ω) /3 v (k - k ) and Then, for the same frequency, χ (q, ω) q + γ 1 ω q typical fermionic momenta typical bosonic momenta /3 k - k ~ ω fermions are much q ~ ω 1/3 faster than bosons (much larger) Quite generally, in this situation, Migdal theorem must be valid

12 Σ /3 1/3 ( ω ) = (i ω) ω0 ω = π g E ermions must remain fast up to ω ~ ω 0 α = g E << 1 If α << 1, vertex corrections and k-dependent self-energy are small Static vertex in the limit of vanishing momentum α 1/ = O( )

13 This is not enough. The theory must satisfy Ward identities, associated with the conservation of the total number of particles, and the total spin χ tot (q = 0, Ω 0) = 0 q, Ω m (q, ) Ω χ0 Ω = 1 = 0 when q = 0 π v q Ω + However, Eliashberg susceptibility m (q, ) Ω χ0 Ω = 1 0 when q = 0 π ( ( )) v q Ω + Σ Ω + Vertex corrections are NOT small when q=0, and Ω is nonzero 0, Ω 1/ 3 δ g Σ ( ω) ω0 = ~ g ω ω

14 inite momentum, zero frequency Q, 0 α 1/ = O( ) vertex corrections are small inite frequency, zero momentum 1/3 0, Ω δ g Σ ( ω) ω vertex corrections 0 = ~ g ω ω are large inite frequency, finite momentum v Q ~ Σ( ω) δ g = g O(1)

15 As a result, the theory is NOT under control: /3 1/3 Σ ( ω) = Σ ( ω) ~ ω ω0 ~ Σ1 Σ ( ω) ~ 3 Σ and so on This is dangerous Example: 0, Ω δ g g Σ ( ω) = ω ~ ω0 ω 1/3 In order by order perturbation theory δ g g ω= 0 = = infinity

16 Another powerful way to do calculations is bosonization. Lawler & radkin 1/3 The bosonization result in D: G(r, t = 0) = G (r, t = 0) (-r/r ) 0 is consistent 0 e /3 with divergent series for the self-energy (i.e., ω does not survive) If /3 Σ( ω) ~ ω G(r, t = 0) G 0 (r, t = 0) / r ~ 1/r One detail bosonization assumes that the curvature of the ermi surface is irrelevant

17 The curvature of the ermi surface is crucial to the physics in D one can extend the theory to N fermionic flavors Σ /3 1/3 ( ω) ~ ω ω0 * ((Log N)/N) Altshuler et al, Rech et al The factor 1/N comes from the curvature of the ermi surface Σ ( ω) ~ Σ1 ( ω) Without the curvature, we would still have, even at N >>1

18 One can improve bosonization to include the curvature Khveshchenko & A.C. Result: G(r) = G 0(r) e -Z(r) Without curvature With curvature Z(r) 1/3 ~ r Z(r ) ~ log r G(r, t η = 0) 1/r at the largest r, => small frequency behavior of the Green s function is consistent with Σ( ω) ( ω) /3 (perturbation theory does not diverge)

19 Intermediate conclusion or D fermions, interacting with a given χ (q, Ω) q + γ 1 Ω q Σ( ω) ( ω) /3 is very likely the exact solution. This was the effect from bosons on fermions. What about the opposite effect? Does the bosonic propagator preserve its form when one includes the corrections due to fermions?

20 A conventinal answer fermions only account for Landau damping of bosons Then, once the fermions are integrated out, d ω 4 S = d Q d ω [Q + ] η + bη Q +... Z=3, Dcr =1 (Dcr + Z =4) Bosonic propagator is not affected by fluctuations in D >1

21 In reality, ferromagnetic transition is 1 st order ZrZn erromagnetic phase pressure 1 st order pressure

22 d ω 4 S = d Q d ω [Q + ] η + bη Q +... Verify this Apply a magnetic field and use the exact formula for the thermodynamic potential in the Eliashberg theory Ω = Ω free + 1 Π d q d Ω (π ) + Π ( log (1+ gπ ) + log (1+ g )) G + G -, Π ++ G + G = = Betouras, Efremov, A.C. Maslov & A.C. χ = Ω H -

23 Diagrams for χ (q) in the Eliashberg theory δχ s pin (Q) = Q 3/ p 1/ Comes from processes in which bosons are vibrating at fermionic frequencies (opposite to Migdal processes)

24 Corrections: go outside Eliashberg theory δχ () spin (Q) Q 3/ p 1/ * log N N Same corrections as for the self-energy Σ log N ( ω) ~ Σ1 ( ω) * N

25 Physics -- Landau damping χ (q, Ω) Ω 1 q Long-range dynamic interaction between fermions Ω/r Ω q A magnetic field changes into, i.e. restores analyticity Ω q + (ih) As a result, the derivative with respect to H is singular χ or the charge susceptibility, measures the response to the change of the chemical potential. Ω / q survives this change, hence the charge susceptibility should be regular.

26 Charge susceptibility + = 0 + = 0 δχ charge (Q) Q = 0(q )

27 χ Back to the static spin susceptibility 3/ 1/ (Q) = (Q Q p ) spin χ spin (Q) Q/p Internal instability of z=3 QC theory in D=

28 Another way to see the instability of a ferromagnetic QCP is to calculate the q=0 susceptibility at a finite T χ 1 T T0 (q = 0, T) = - log T T 0 Or calculate the thermodynamic potential at a finite magnetization Ξ (M) = b M 4 - a M 3 Maslov & A.C., Belitz, Kirkpatrick & Vojta

29 What can happen? χ spin (Q) Ω Ω Q/p M a transition into a spiral state a first order transition to a M Belitz, Kirkpatrick, Vojta, Maslov and A.C., Rech, Pepin, A.C. Both scenarios are possible

30 The instability of the erromagnetic QCP can be also understood in the frameworks of the Hertz-Millis-Morya theory How one obtains Hertz theory Stage one: obtain the spin-fermion model (fermions, collective spin fluctuations, and interacton) (integrate out high energy fermions) spin channel χ 0 (q) q 1 + ξ - low-energy fermions spin-fermion interaction static collective spin fluctuations

31 Stage two: obtain the theory for collective modes (integrate out low energy fermions) Hertz theory d - Ω 4 S = d Q d Ω [Q + ζ + ] η + bη Q +... Ω = Landau damping q Ω b = const + ( v q) vertex is non-analytic in 3 Ω + momentum and frequency

32 = Ω ( Ω + v q) n-1 fermions produce long-range dynamic interaction between collective modes 3/ This dynamic interactions fits back into term in the static susceptibility q

33 The non-analyticity of the spin susceptibility is NOT specific to a ferromagnetic quantum criticality The same effect is already seen in weak coupling perturbation theory, the only difference is that 3/ q is replaced by q as the effect of fermionic self-energy is weak at small coupling. T=0, finite Q δ χ spin (Q) = 4m 3π m U(p 4π ) Q p Q=0, finite T δ χ spin (T) = m π m U(p 4 π ) T E

34 Why only U(p) matters? In perturbation theory, only bubbles with the same spin projection are present. The k bubble is singular and is affected by the magnetic field Π (q p m, ω) = 1- π q - p p + q - p p ω - v p 1/ ω/ p q singularity In the presence of H, p p 1 Ω ~ T ω d q ω p q p q ~ T ω log (H + ω ) Ω χ(t) = - H T

35 or a constant, but arbitrary interaction U -1 δχ (T) T log (1+ Γ) - 1 Γ + Γ δχ Γ = -1 U N(0) 1- U N(0) (T) T Γ at QCP at two - loop order -1 δχ (T) T log ζ ( T log T at QCP) or arbitrary U (q), near a ferromagnetic QCP δχ -1 (T) = - χ -1 Pauli T E ( log (1 + f ) + O(f )) o,s i, s Instability of a ferromagnetic QCP in D Component of the Landau function

36 What would happen if δχ (q, T) was positive? s Self-consistent calculations: χ (q, Ω) (q α + Ω / -1 q ) α =1 χ (q, ω) ( q log q + ω / q ) -1 Σ ( ω) ω log( log ω ) Marginal ermi liquid in D=

37 Conclusions The QCP towards charge (e.g., nematic) ordering is stable in D. The /3 fermionic self-energy is Σ ( ω) ~ ω,, and the theory is controllable at N >>1. A ferromagnetic Hertz-Millis critical theory is internally unstable in D= (and also in D = 3) static spin propagator is negative at QCP up to Q~ p 3 free energy has an term M Either an incommensurate ordering, or 1st order transition to a ferromagnet

38 Collaborators Jerome Rech (Saclay) Catherine Pepin (Saclay) Dima Khveshchenko (U. of North Carolina) Mitya Maslov (U. of lorida) Andy Millis (Columbia) Joseph Betouras (St. Andew) Dima Efremov (TU Dresden) THANK YOU!

Wilsonian and large N theories of quantum critical metals. Srinivas Raghu (Stanford)

Wilsonian and large N theories of quantum critical metals. Srinivas Raghu (Stanford) Wilsonian and large N theories of quantum critical metals Srinivas Raghu (Stanford) Collaborators and References R. Mahajan, D. Ramirez, S. Kachru, and SR, PRB 88, 115116 (2013). A. Liam Fitzpatrick, S.

More information

Can superconductivity emerge out of a non Fermi liquid.

Can superconductivity emerge out of a non Fermi liquid. Can superconductivity emerge out of a non Fermi liquid. Andrey Chubukov University of Wisconsin Washington University, January 29, 2003 Superconductivity Kamerling Onnes, 1911 Ideal diamagnetism High Tc

More information

Quantum critical metals and their instabilities. Srinivas Raghu (Stanford)

Quantum critical metals and their instabilities. Srinivas Raghu (Stanford) Quantum critical metals and their instabilities Srinivas Raghu (Stanford) Collaborators and References R. Mahajan, D. Ramirez, S. Kachru, and SR, PRB 88, 115116 (2013). A. Liam Fitzpatrick, S. Kachru,

More information

Quantum Melting of Stripes

Quantum Melting of Stripes Quantum Melting of Stripes David Mross and T. Senthil (MIT) D. Mross, TS, PRL 2012 D. Mross, TS, PR B (to appear) Varieties of Stripes Spin, Charge Néel 2π Q c 2π Q s ``Anti-phase stripes, common in La-based

More information

Quantum critical itinerant ferromagnetism

Quantum critical itinerant ferromagnetism Quantum critical itinerant ferromagnetism Belitz et al., PRL 2005 Gareth Conduit Cavendish Laboratory University of Cambridge Two types of ferromagnetism Localized ferromagnetism: moments localised in

More information

Quantum phase transitions

Quantum phase transitions Quantum phase transitions Thomas Vojta Department of Physics, University of Missouri-Rolla Phase transitions and critical points Quantum phase transitions: How important is quantum mechanics? Quantum phase

More information

Inhomogeneous phase formation on the border of itinerant ferromagnetism

Inhomogeneous phase formation on the border of itinerant ferromagnetism Inhomogeneous phase formation on the border of itinerant ferromagnetism Belitz et al., PRL 005 Gareth Conduit1, Andrew Green, Ben Simons1 1. University of Cambridge,. University of St Andrews Itinerant

More information

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Quantum phase transitions of insulators, superconductors and metals in two dimensions Quantum phase transitions of insulators, superconductors and metals in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Phenomenology of the cuprate superconductors (and other

More information

Revealing fermionic quantum criticality from new Monte Carlo techniques. Zi Yang Meng ( 孟子杨 )

Revealing fermionic quantum criticality from new Monte Carlo techniques. Zi Yang Meng ( 孟子杨 ) Revealing fermionic quantum criticality from new Monte Carlo techniques Zi Yang Meng ( 孟子杨 ) http://ziyangmeng.iphy.ac.cn Collaborators and References Xiao Yan Xu Zi Hong Liu Chuang Chen Gao Pei Pan Yang

More information

Quantum Monte Carlo investigations of correlated electron systems, present and future. Zi Yang Meng ( 孟子杨 )

Quantum Monte Carlo investigations of correlated electron systems, present and future. Zi Yang Meng ( 孟子杨 ) Quantum Monte Carlo investigations of correlated electron systems, present and future Zi Yang Meng ( 孟子杨 ) http://ziyangmeng.iphy.ac.cn Collaborators Xiao Yan Xu Yoni Schattner Zi Hong Liu Erez Berg Chuang

More information

Superconductivity due to massless boson exchange.

Superconductivity due to massless boson exchange. Superconductivity due to massless boson exchange. Andrey Chubukov University of Wisconsin Consultations Artem Abanov Mike Norman Joerg Schmalian Boris Altshuler Emil Yuzbashyan Texas A&M ANL ISU Columbia

More information

arxiv: v2 [cond-mat.str-el] 30 Nov 2009

arxiv: v2 [cond-mat.str-el] 30 Nov 2009 Sin conservation and Fermi liquid near a ferromagnetic quantum critical oint arxiv:98.4433v2 [cond-mat.str-el] 3 Nov 29 Andrey V. Chubukov 1,3 and Dmitrii L. Maslov 2,3 1 Deartment of Physics, University

More information

Vertex corrections for impurity scattering at a ferromagnetic quantum critical point

Vertex corrections for impurity scattering at a ferromagnetic quantum critical point PHYSICAL REVIEW B 8, 5 Vertex corrections for impurity scattering at a ferromagnetic quantum critical point Enrico Rossi, * and Dirk K. Morr, Department of Physics, University of Illinois at Chicago, Chicago,

More information

Quantum disordering magnetic order in insulators, metals, and superconductors

Quantum disordering magnetic order in insulators, metals, and superconductors Quantum disordering magnetic order in insulators, metals, and superconductors Perimeter Institute, Waterloo, May 29, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Cenke Xu, Harvard arxiv:1004.5431

More information

Quantum criticality of Fermi surfaces

Quantum criticality of Fermi surfaces Quantum criticality of Fermi surfaces Subir Sachdev Physics 268br, Spring 2018 HARVARD Quantum criticality of Ising-nematic ordering in a metal y Occupied states x Empty states A metal with a Fermi surface

More information

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics.

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Bertrand Delamotte Saclay, march 3, 2009 Introduction Field theory: - infinitely many degrees of

More information

Quantum criticality of Fermi surfaces in two dimensions

Quantum criticality of Fermi surfaces in two dimensions Quantum criticality of Fermi surfaces in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Yejin Huh, Harvard Max Metlitski, Harvard HARVARD Outline 1. Quantum criticality of Fermi points:

More information

Three Lectures on Soft Modes and Scale Invariance in Metals. Quantum Ferromagnets as an Example of Universal Low-Energy Physics

Three Lectures on Soft Modes and Scale Invariance in Metals. Quantum Ferromagnets as an Example of Universal Low-Energy Physics Three Lectures on Soft Modes and Scale Invariance in Metals Quantum Ferromagnets as an Example of Universal Low-Energy Physics Soft Modes and Scale Invariance in Metals Quantum Ferromagnets as an Example

More information

Quantum critical itinerant ferromagnetism

Quantum critical itinerant ferromagnetism Quantum critical itinerant ferromagnetism Belitz et al., PRL 2005 Cavendish Laboratory University of Cambridge Two types of ferromagnetism Localised ferromagnetism: moments localised in real space Ferromagnet

More information

High Tc superconductivity in cuprates: Determination of pairing interaction. Han-Yong Choi / SKKU SNU Colloquium May 30, 2018

High Tc superconductivity in cuprates: Determination of pairing interaction. Han-Yong Choi / SKKU SNU Colloquium May 30, 2018 High Tc superconductivity in cuprates: Determination of pairing interaction Han-Yong Choi / SKKU SNU Colloquium May 30 018 It all began with Discovered in 1911 by K Onnes. Liquid He in 1908. Nobel prize

More information

arxiv:cond-mat/ v3 [cond-mat.supr-con] 15 Jan 2001

arxiv:cond-mat/ v3 [cond-mat.supr-con] 15 Jan 2001 Europhysics Letters PREPRINT arxiv:cond-mat/000563v3 [cond-mat.supr-con] 5 Jan 200 Quantum-critical superconductivity in underdoped cuprates Ar. Abanov, Andrey V. Chubukov and Jörg Schmalian 2 Department

More information

Examples of Lifshitz topological transition in interacting fermionic systems

Examples of Lifshitz topological transition in interacting fermionic systems Examples of Lifshitz topological transition in interacting fermionic systems Joseph Betouras (Loughborough U. Work in collaboration with: Sergey Slizovskiy (Loughborough, Sam Carr (Karlsruhe/Kent and Jorge

More information

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT). Ideas on non-fermi liquid metals and quantum criticality T. Senthil (MIT). Plan Lecture 1: General discussion of heavy fermi liquids and their magnetism Review of some experiments Concrete `Kondo breakdown

More information

Color Superconductivity in High Density QCD

Color Superconductivity in High Density QCD Color Superconductivity in High Density QCD Roberto Casalbuoni Department of Physics and INFN - Florence Bari,, September 9 October 1, 004 1 Introduction Motivations for the study of high-density QCD:

More information

FRG approach to interacting fermions with partial bosonization: from weak to strong coupling

FRG approach to interacting fermions with partial bosonization: from weak to strong coupling FRG approach to interacting fermions with partial bosonization: from weak to strong coupling Talk at conference ERG08, Heidelberg, June 30, 2008 Peter Kopietz, Universität Frankfurt collaborators: Lorenz

More information

The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions

The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions Niels Bohr Institute, Copenhagen, May 6, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Max Metlitski,

More information

Orbital magnetic field effects in spin liquid with spinon Fermi sea: Possible application to (ET)2Cu2(CN)3

Orbital magnetic field effects in spin liquid with spinon Fermi sea: Possible application to (ET)2Cu2(CN)3 Orbital magnetic field effects in spin liquid with spinon Fermi sea: Possible application to (ET)2Cu2(CN)3 Olexei Motrunich (KITP) PRB 72, 045105 (2005); PRB 73, 155115 (2006) with many thanks to T.Senthil

More information

arxiv:cond-mat/ v1 23 Jan 1996

arxiv:cond-mat/ v1 23 Jan 1996 Gauge Fields and Pairing in Double-Layer Composite Fermion Metals N. E. Bonesteel National High Magnetic Field Laboratory and Department of Physics, Florida State University, arxiv:cond-mat/9601112v1 23

More information

arxiv: v1 [cond-mat.str-el] 15 Jan 2018

arxiv: v1 [cond-mat.str-el] 15 Jan 2018 Fluctuation effects at the onset of 2k F density wave order with one pair of hot spots in two-dimensional metals Jáchym Sýkora, Tobias Holder, 2 and Walter Metzner Max Planck Institute for Solid State

More information

Small and large Fermi surfaces in metals with local moments

Small and large Fermi surfaces in metals with local moments Small and large Fermi surfaces in metals with local moments T. Senthil (MIT) Subir Sachdev Matthias Vojta (Augsburg) cond-mat/0209144 Transparencies online at http://pantheon.yale.edu/~subir Luttinger

More information

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality Hans-Henning Klauss Institut für Festkörperphysik TU Dresden 1 References [1] Stephen Blundell, Magnetism in Condensed

More information

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets In collaboration with: Olexei Motrunich & Jason Alicea I. Background Outline Avoiding conventional symmetry-breaking in s=1/2 AF Topological

More information

The bosonic Kondo effect:

The bosonic Kondo effect: The bosonic Kondo effect: probing spin liquids and multicomponent cold gases Serge Florens Institut für Theorie der Kondensierten Materie (Karlsruhe) with: Lars Fritz, ITKM (Karlsruhe) Matthias Vojta,

More information

Quantum Phase Transitions

Quantum Phase Transitions Quantum Phase Transitions Subir Sachdev Department of Physics Yale University P.O. Box 208120, New Haven, CT 06520-8120 USA E-mail: subir.sachdev@yale.edu May 19, 2004 To appear in Encyclopedia of Mathematical

More information

Probing Universality in AdS/CFT

Probing Universality in AdS/CFT 1 / 24 Probing Universality in AdS/CFT Adam Ritz University of Victoria with P. Kovtun [0801.2785, 0806.0110] and J. Ward [0811.4195] Shifmania workshop Minneapolis May 2009 2 / 24 Happy Birthday Misha!

More information

Theory of Elementary Particles homework VIII (June 04)

Theory of Elementary Particles homework VIII (June 04) Theory of Elementary Particles homework VIII June 4) At the head of your report, please write your name, student ID number and a list of problems that you worked on in a report like II-1, II-3, IV- ).

More information

Superconductivity in Heavy Fermion Systems: Present Understanding and Recent Surprises. Gertrud Zwicknagl

Superconductivity in Heavy Fermion Systems: Present Understanding and Recent Surprises. Gertrud Zwicknagl Magnetism, Bad Metals and Superconductivity: Iron Pnictides and Beyond September 11, 2014 Superconductivity in Heavy Fermion Systems: Present Understanding and Recent Surprises Gertrud Zwicknagl Institut

More information

arxiv:cond-mat/ v1 [cond-mat.supr-con] 26 Jan 2007

arxiv:cond-mat/ v1 [cond-mat.supr-con] 26 Jan 2007 Competition of Fermi surface symmetry breaing and superconductivity arxiv:cond-mat/0701660v1 [cond-mat.supr-con] 26 Jan 2007 Hiroyui Yamase and Walter Metzner Max-Planc-Institute for Solid State Research,

More information

Universally diverging Grüneisen parameter and magnetocaloric effect close to quantum critical points

Universally diverging Grüneisen parameter and magnetocaloric effect close to quantum critical points united nations educational, scientific and cultural organization the abdus salam international centre for theoretical physics international atomic energy agency SMR.1572-3 Workshop on Novel States and

More information

Non equilibrium Ferromagnetism and Stoner transition in an ultracold Fermi gas

Non equilibrium Ferromagnetism and Stoner transition in an ultracold Fermi gas Non equilibrium Ferromagnetism and Stoner transition in an ultracold Fermi gas Gareth Conduit, Ehud Altman Weizmann Institute of Science See: Phys. Rev. A 82, 043603 (2010) and arxiv: 0911.2839 Disentangling

More information

A non-fermi liquid: Quantum criticality of metals near the Pomeranchuk instability

A non-fermi liquid: Quantum criticality of metals near the Pomeranchuk instability A non-fermi liquid: Quantum criticality of metals near the Pomeranchuk instability Subir Sachdev sachdev.physics.harvard.edu HARVARD y x Fermi surface with full square lattice symmetry y x Spontaneous

More information

Recent Developments in Holographic Superconductors. Gary Horowitz UC Santa Barbara

Recent Developments in Holographic Superconductors. Gary Horowitz UC Santa Barbara Recent Developments in Holographic Superconductors Gary Horowitz UC Santa Barbara Outline 1) Review basic ideas behind holographic superconductors 2) New view of conductivity and the zero temperature limit

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 3, 3 March 2006 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Caltech

More information

A quantum dimer model for the pseudogap metal

A quantum dimer model for the pseudogap metal A quantum dimer model for the pseudogap metal College de France, Paris March 27, 2015 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD Andrea Allais Matthias Punk Debanjan Chowdhury (Innsbruck)

More information

Spinons and triplons in spatially anisotropic triangular antiferromagnet

Spinons and triplons in spatially anisotropic triangular antiferromagnet Spinons and triplons in spatially anisotropic triangular antiferromagnet Oleg Starykh, University of Utah Leon Balents, UC Santa Barbara Masanori Kohno, NIMS, Tsukuba PRL 98, 077205 (2007); Nature Physics

More information

Strongly correlated Cooper pair insulators and superfluids

Strongly correlated Cooper pair insulators and superfluids Strongly correlated Cooper pair insulators and superfluids Predrag Nikolić George Mason University Acknowledgments Collaborators Subir Sachdev Eun-Gook Moon Anton Burkov Arun Paramekanti Affiliations and

More information

From Gutzwiller Wave Functions to Dynamical Mean-Field Theory

From Gutzwiller Wave Functions to Dynamical Mean-Field Theory From utzwiller Wave Functions to Dynamical Mean-Field Theory Dieter Vollhardt Autumn School on Correlated Electrons DMFT at 25: Infinite Dimensions Forschungszentrum Jülich, September 15, 2014 Supported

More information

the renormalization group (RG) idea

the renormalization group (RG) idea the renormalization group (RG) idea Block Spin Partition function Z =Tr s e H. block spin transformation (majority rule) T (s, if s i ; s,...,s 9 )= s i > 0; 0, otherwise. b Block Spin (block-)transformed

More information

Quasi-1d Antiferromagnets

Quasi-1d Antiferromagnets Quasi-1d Antiferromagnets Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah Quantum Fluids, Nordita 2007 Outline Motivation: Quantum magnetism and the search for spin liquids Neutron

More information

arxiv:hep-ph/ v1 19 Feb 1999

arxiv:hep-ph/ v1 19 Feb 1999 ELECTRICAL CONDUCTION IN THE EARLY UNIVERSE arxiv:hep-ph/9902398v1 19 Feb 1999 H. HEISELBERG Nordita, Blegdamsvej 17, 2100 Copenhagen Ø, Denmark E-mail: hh@nordita.dk The electrical conductivity has been

More information

Finite Temperature Field Theory

Finite Temperature Field Theory Finite Temperature Field Theory Dietrich Bödeker, Universität Bielefeld 1. Thermodynamics (better: thermo-statics) (a) Imaginary time formalism (b) free energy: scalar particles, resummation i. pedestrian

More information

arxiv: v2 [cond-mat.str-el] 2 Apr 2014

arxiv: v2 [cond-mat.str-el] 2 Apr 2014 Transport near the Ising-nematic quantum critical point of metals in two dimensions Sean A. Hartnoll, 1 Raghu Mahajan, 1 Matthias Punk, 2, 3 and Subir Sachdev 4 1 Department of Physics, Stanford University,

More information

arxiv: v2 [cond-mat.str-el] 28 Jul 2015

arxiv: v2 [cond-mat.str-el] 28 Jul 2015 UV/IR mixing in on-ermi Liquids Ipsita Mandal 1 and Sung-Sik Lee 1, 1 Perimeter Institute for Theoretical Physics, 1 Caroline St.., Waterloo O L Y5, Canada Department of Physics & Astronomy, McMaster University,

More information

Preface Introduction to the electron liquid

Preface Introduction to the electron liquid Table of Preface page xvii 1 Introduction to the electron liquid 1 1.1 A tale of many electrons 1 1.2 Where the electrons roam: physical realizations of the electron liquid 5 1.2.1 Three dimensions 5 1.2.2

More information

An imbalanced Fermi gas in 1 + ɛ dimensions. Andrew J. A. James A. Lamacraft

An imbalanced Fermi gas in 1 + ɛ dimensions. Andrew J. A. James A. Lamacraft An imbalanced Fermi gas in 1 + ɛ dimensions Andrew J. A. James A. Lamacraft 2009 Quantum Liquids Interactions and statistics (indistinguishability) Some examples: 4 He 3 He Electrons in a metal Ultracold

More information

How might a Fermi surface die? Unconventional quantum criticality in metals. T. Senthil (MIT)

How might a Fermi surface die? Unconventional quantum criticality in metals. T. Senthil (MIT) How might a Fermi surface die? Unconventional quantum criticality in metals T. Senthil (MIT) Fermi Liquid Theory (FLT) of conventional metals Electron retains integrity at low energies as a `quasiparticle

More information

Strange metal from local quantum chaos

Strange metal from local quantum chaos Strange metal from local quantum chaos John McGreevy (UCSD) hello based on work with Daniel Ben-Zion (UCSD) 2017-08-26 Compressible states of fermions at finite density The metallic states that we understand

More information

Universal Post-quench Dynamics at a Quantum Critical Point

Universal Post-quench Dynamics at a Quantum Critical Point Universal Post-quench Dynamics at a Quantum Critical Point Peter P. Orth University of Minnesota, Minneapolis, USA Rutgers University, 10 March 2016 References: P. Gagel, P. P. Orth, J. Schmalian Phys.

More information

3. Quantum matter without quasiparticles

3. Quantum matter without quasiparticles 1. Review of Fermi liquid theory Topological argument for the Luttinger theorem 2. Fractionalized Fermi liquid A Fermi liquid co-existing with topological order for the pseudogap metal 3. Quantum matter

More information

Landau s Fermi Liquid Theory

Landau s Fermi Liquid Theory Thors Hans Hansson Stockholm University Outline 1 Fermi Liquids Why, What, and How? Why Fermi liquids? What is a Fermi liquids? Fermi Liquids How? 2 Landau s Phenomenological Approach The free Fermi gas

More information

Magnetism at finite temperature: molecular field, phase transitions

Magnetism at finite temperature: molecular field, phase transitions Magnetism at finite temperature: molecular field, phase transitions -The Heisenberg model in molecular field approximation: ferro, antiferromagnetism. Ordering temperature; thermodynamics - Mean field

More information

Metals without quasiparticles

Metals without quasiparticles Metals without quasiparticles A. Review of Fermi liquid theory B. A non-fermi liquid: the Ising-nematic quantum critical point C. Fermi surfaces and gauge fields Metals without quasiparticles A. Review

More information

Critical Phenomena in Gravitational Collapse

Critical Phenomena in Gravitational Collapse Critical Phenomena in Gravitational Collapse Yiruo Lin May 4, 2008 I briefly review the critical phenomena in gravitational collapse with emphases on connections to critical phase transitions. 1 Introduction

More information

HIGH DENSITY NUCLEAR CONDENSATES. Paulo Bedaque, U. of Maryland (Aleksey Cherman & Michael Buchoff, Evan Berkowitz & Srimoyee Sen)

HIGH DENSITY NUCLEAR CONDENSATES. Paulo Bedaque, U. of Maryland (Aleksey Cherman & Michael Buchoff, Evan Berkowitz & Srimoyee Sen) HIGH DENSITY NUCLEAR CONDENSATES Paulo Bedaque, U. of Maryland (Aleksey Cherman & Michael Buchoff, Evan Berkowitz & Srimoyee Sen) What am I talking about? (Gabadadze 10, Ashcroft 89) deuterium/helium at

More information

Temperature crossovers in cuprates

Temperature crossovers in cuprates J. Phys.: Condens. Matter 8 (1996) 10017 10036. Printed in the UK Temperature crossovers in cuprates Andrey V Chubukov, David Pines and Branko P Stojković Department of Physics, University of Wisconsin,

More information

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 7: Magnetic excitations - Phase transitions and the Landau mean-field theory. - Heisenberg and Ising models. - Magnetic excitations. External parameter, as for

More information

Derivation of Electro Weak Unification and Final Form of Standard Model with QCD and Gluons 1 W W W 3

Derivation of Electro Weak Unification and Final Form of Standard Model with QCD and Gluons 1 W W W 3 Derivation of Electro Weak Unification and Final Form of Standard Model with QCD and Gluons 1 W 1 + 2 W 2 + 3 W 3 Substitute B = cos W A + sin W Z 0 Sum over first generation particles. up down Left handed

More information

Ginzburg-Landau Theory of Phase Transitions

Ginzburg-Landau Theory of Phase Transitions Subedi 1 Alaska Subedi Prof. Siopsis Physics 611 Dec 5, 008 Ginzburg-Landau Theory of Phase Transitions 1 Phase Transitions A phase transition is said to happen when a system changes its phase. The physical

More information

The mass of the Higgs boson

The mass of the Higgs boson The mass of the Higgs boson LHC : Higgs particle observation CMS 2011/12 ATLAS 2011/12 a prediction Higgs boson found standard model Higgs boson T.Plehn, M.Rauch Spontaneous symmetry breaking confirmed

More information

Cold and dense QCD matter

Cold and dense QCD matter Cold and dense QCD matter GCOE sympodium Feb. 15, 2010 Yoshimasa Hidaka Quantum ChromoDynamics Atom Electron 10-10 m Quantum ChromoDynamics Atom Nucleon Electron 10-10 m 10-15 m Quantum ElectroDynamics

More information

MHV Vertices and On-Shell Recursion Relations

MHV Vertices and On-Shell Recursion Relations 0-0 MHV Vertices and On-Shell Recursion Relations Peter Svrček Stanford University/SLAC QCD 2006 May 12th 2006 In December 2003, Witten proposed a string theory in twistor space dual to perturbative gauge

More information

Let There Be Topological Superconductors

Let There Be Topological Superconductors Let There Be Topological Superconductors K K d Γ ~q c µ arxiv:1606.00857 arxiv:1603.02692 Eun-Ah Kim (Cornell) Boulder 7.21-22.2016 Q. Topological Superconductor material? Bulk 1D proximity 2D proximity?

More information

Subir Sachdev. Yale University. C. Buragohain K. Damle M. Vojta

Subir Sachdev. Yale University. C. Buragohain K. Damle M. Vojta C. Buragohain K. Damle M. Vojta Subir Sachdev Phys. Rev. Lett. 78, 943 (1997). Phys. Rev. B 57, 8307 (1998). Science 286, 2479 (1999). cond-mat/9912020 Quantum Phase Transitions, Cambridge University Press

More information

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke BCS-BEC Crossover Hauptseminar: Physik der kalten Gase Robin Wanke Outline Motivation Cold fermions BCS-Theory Gap equation Feshbach resonance Pairing BEC of molecules BCS-BEC-crossover Conclusion 2 Motivation

More information

Quark matter and the high-density frontier. Mark Alford Washington University in St. Louis

Quark matter and the high-density frontier. Mark Alford Washington University in St. Louis Quark matter and the high-density frontier Mark Alford Washington University in St. Louis Outline I Quarks at high density Confined, quark-gluon plasma, color superconducting II Color superconducting phases

More information

Lecture Notes, Field Theory in Condensed Matter Physics: Quantum Criticality and the Renormalization Group

Lecture Notes, Field Theory in Condensed Matter Physics: Quantum Criticality and the Renormalization Group Lecture Notes, Field Theory in Condensed Matter Physics: Quantum Criticality and the Renormalization Group Jörg Schmalian Institute for Theory of Condensed Matter (TKM) Karlsruhe Institute of Technology

More information

Fermi Liquid and BCS Phase Transition

Fermi Liquid and BCS Phase Transition Fermi Liquid and BCS Phase Transition Yu, Zhenhua November 2, 25 Abstract Landau fermi liquid theory is introduced as a successful theory describing the low energy properties of most fermi systems. Besides

More information

Properties of monopole operators in 3d gauge theories

Properties of monopole operators in 3d gauge theories Properties of monopole operators in 3d gauge theories Silviu S. Pufu Princeton University Based on: arxiv:1303.6125 arxiv:1309.1160 (with Ethan Dyer and Mark Mezei) work in progress with Ethan Dyer, Mark

More information

Part 1. March 5, 2014 Quantum Hadron Physics Laboratory, RIKEN, Wako, Japan 2

Part 1. March 5, 2014 Quantum Hadron Physics Laboratory, RIKEN, Wako, Japan 2 MAR 5, 2014 Part 1 March 5, 2014 Quantum Hadron Physics Laboratory, RIKEN, Wako, Japan 2 ! Examples of relativistic matter Electrons, protons, quarks inside compact stars (white dwarfs, neutron, hybrid

More information

When Landau and Lifshitz meet

When Landau and Lifshitz meet Yukawa International Seminar 2007 "Interaction and Nanostructural Effects in Low-Dimensional Systems" November 5-30, 2007, Kyoto When Landau and Lifshitz meet Unconventional Quantum Criticalities November

More information

QCD at finite Temperature

QCD at finite Temperature QCD at finite Temperature II in the QGP François Gelis and CEA/Saclay General outline Lecture I : Quantum field theory at finite T Lecture II : in the QGP Lecture III : Out of equilibrium systems François

More information

YFe 2 Al 10. unravelling the origin of quantum criticality

YFe 2 Al 10. unravelling the origin of quantum criticality YFe Al unravelling the origin of quantum criticality André Strydom Physics Department, University of Johannesburg Acknowledgements Frank Steglich (MPI CPfS, Dresden) Michael Baenitz and co workers (MPI

More information

Renormalization of microscopic Hamiltonians. Renormalization Group without Field Theory

Renormalization of microscopic Hamiltonians. Renormalization Group without Field Theory Renormalization of microscopic Hamiltonians Renormalization Group without Field Theory Alberto Parola Università dell Insubria (Como - Italy) Renormalization Group Universality Only dimensionality and

More information

arxiv: v2 [cond-mat.str-el] 22 Aug 2010

arxiv: v2 [cond-mat.str-el] 22 Aug 2010 Quantum phase transitions of metals in two spatial dimensions: II. Spin density wave order arxiv:005.88v [cond-mat.str-el] Aug 00 Max A. Metlitski and Subir Sachdev Department of Physics, Harvard University,

More information

Phase Transitions and the Renormalization Group

Phase Transitions and the Renormalization Group School of Science International Summer School on Topological and Symmetry-Broken Phases Phase Transitions and the Renormalization Group An Introduction Dietmar Lehmann Institute of Theoretical Physics,

More information

Physics 127c: Statistical Mechanics. Weakly Interacting Fermi Gas. The Electron Gas

Physics 127c: Statistical Mechanics. Weakly Interacting Fermi Gas. The Electron Gas Physics 7c: Statistical Mechanics Wealy Interacting Fermi Gas Unlie the Boson case, there is usually no ualitative change in behavior going from the noninteracting to the wealy interacting Fermi gas for

More information

8.334: Statistical Mechanics II Spring 2014 Test 2 Review Problems

8.334: Statistical Mechanics II Spring 2014 Test 2 Review Problems 8.334: Statistical Mechanics II Spring 014 Test Review Problems The test is closed book, but if you wish you may bring a one-sided sheet of formulas. The intent of this sheet is as a reminder of important

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Plan of the lectures 1. QCD and States of Matter 2. The High Temperature Phase: Theory 3. Exploring QCD at High Temperature: Experiment

More information

Deconfined Quantum Critical Points

Deconfined Quantum Critical Points Deconfined Quantum Critical Points Leon Balents T. Senthil, MIT A. Vishwanath, UCB S. Sachdev, Yale M.P.A. Fisher, UCSB Outline Introduction: what is a DQCP Disordered and VBS ground states and gauge theory

More information

Spin Superfluidity and Graphene in a Strong Magnetic Field

Spin Superfluidity and Graphene in a Strong Magnetic Field Spin Superfluidity and Graphene in a Strong Magnetic Field by B. I. Halperin Nano-QT 2016 Kyiv October 11, 2016 Based on work with So Takei (CUNY), Yaroslav Tserkovnyak (UCLA), and Amir Yacoby (Harvard)

More information

Lifshitz Hydrodynamics

Lifshitz Hydrodynamics Lifshitz Hydrodynamics Yaron Oz (Tel-Aviv University) With Carlos Hoyos and Bom Soo Kim, arxiv:1304.7481 Outline Introduction and Summary Lifshitz Hydrodynamics Strange Metals Open Problems Strange Metals

More information

Phase Transitions and Critical Behavior:

Phase Transitions and Critical Behavior: II Phase Transitions and Critical Behavior: A. Phenomenology (ibid., Chapter 10) B. mean field theory (ibid., Chapter 11) C. Failure of MFT D. Phenomenology Again (ibid., Chapter 12) // Windsor Lectures

More information

Lecture III: Higgs Mechanism

Lecture III: Higgs Mechanism ecture III: Higgs Mechanism Spontaneous Symmetry Breaking The Higgs Mechanism Mass Generation for eptons Quark Masses & Mixing III.1 Symmetry Breaking One example is the infinite ferromagnet the nearest

More information

Workshop on Principles and Design of Strongly Correlated Electronic Systems August 2010

Workshop on Principles and Design of Strongly Correlated Electronic Systems August 2010 2157-6 Workshop on Principles and Design of Strongly Correlated Electronic Systems 2-13 August 2010 Selection of Magnetic Order and Magnetic Excitations in the SDW State of Iron-based Superconductors Ilya

More information

arxiv:cond-mat/ v1 4 Aug 2003

arxiv:cond-mat/ v1 4 Aug 2003 Conductivity of thermally fluctuating superconductors in two dimensions Subir Sachdev arxiv:cond-mat/0308063 v1 4 Aug 2003 Abstract Department of Physics, Yale University, P.O. Box 208120, New Haven CT

More information

Effet Kondo dans les nanostructures: Morceaux choisis

Effet Kondo dans les nanostructures: Morceaux choisis Effet Kondo dans les nanostructures: Morceaux choisis Pascal SIMON Rencontre du GDR Méso: Aussois du 05 au 08 Octobre 2009 OUTLINE I. The traditional (old-fashioned?) Kondo effect II. Direct access to

More information

Field Theories in Condensed Matter Physics. Edited by. Sumathi Rao. Harish-Chandra Research Institute Allahabad. lop

Field Theories in Condensed Matter Physics. Edited by. Sumathi Rao. Harish-Chandra Research Institute Allahabad. lop Field Theories in Condensed Matter Physics Edited by Sumathi Rao Harish-Chandra Research Institute Allahabad lop Institute of Physics Publishing Bristol and Philadelphia Contents Preface xiii Introduction

More information

Lecture 2: Deconfined quantum criticality

Lecture 2: Deconfined quantum criticality Lecture 2: Deconfined quantum criticality T. Senthil (MIT) General theoretical questions Fate of Landau-Ginzburg-Wilson ideas at quantum phase transitions? (More precise) Could Landau order parameters

More information

Gapless Spin Liquids in Two Dimensions

Gapless Spin Liquids in Two Dimensions Gapless Spin Liquids in Two Dimensions MPA Fisher (with O. Motrunich, Donna Sheng, Matt Block) Boulder Summerschool 7/20/10 Interest Quantum Phases of 2d electrons (spins) with emergent rather than broken

More information

The Mott Metal-Insulator Transition

The Mott Metal-Insulator Transition Florian Gebhard The Mott Metal-Insulator Transition Models and Methods With 38 Figures Springer 1. Metal Insulator Transitions 1 1.1 Classification of Metals and Insulators 2 1.1.1 Definition of Metal

More information