ESTIMATION: ONE DIMENSION (PART 1)

Size: px
Start display at page:

Download "ESTIMATION: ONE DIMENSION (PART 1)"

Transcription

1 ESTIMATION: ONE DIMENSION (PART 1) 1

2 Goals of this Unit Examine how we can use real world data to estimate the location of ideal points (and cut points). Interest group scores. Optimal classification. Nominate. Show how some of these models can be estimated in R. Introduce methods for determining the appropriate number of dimensions next week. i.e. how many dimensions explain most of the data?

3 Interest Group Scores U.S. examples: Americans for Democratic Action (ADA), American Conservative Union (ACU), National Taxpayers Union, etc. How they work: Count the number of times a legislator supports the interest group s position on a bill and divide it by the number of votes studied by the interest group. Consider the ADA...

4

5 Let s focus on these.

6 Interest Group Scores Place the scores on a line: Ki Gi Gr Ba Br Bi J If you don t like liberals on the right, multiply the score, s, by -1 Or rescale to [0,1] using s+1. Often called Reversed ADA scores in the converted form. Liberal (ADA position)

7 Interest Group Scores Ki J Bi Br Ba Gr Gi Liberal Problems with interest group scores 1. The measure is granular (i.e. a legislator can be -.95 but not ). 2. Interest groups study votes with clear positions for and against their interest, pushing legislators near the extremes of the scale. For example, interest groups are not analyzing whether we should fund relief from Hurricane Katrina.

8 Interest Group Scores Ki J Bi Br Ba Gr Gi Liberal 3. Interest groups often announce which bills they will study, so legislators adjust their votes to get a good score. Why is Paul Broun agreeing with the liberals on 30% of the ADA votes? Why is Jack Kingston never voting the liberal position? 4. A bill cannot be included if you don t know the interest group s side of a bill.

9 Interest Group Scores cut point Ki ADA x ADA q J Bi Br Ba Gr Gi D E 5. They implicitly assume the interest group is exterior to the legislators. a. Cut Point: a point that demarcates the yeas on one side from the nays on the other side. It is half the distance between the proposal x and the status quo q. b. To see this point, suppose the ADA was at -.85 and one of the votes was a choice between x = -1 and q = -.8, as shown above. With perfect spatial voting, two legislators, D = -.89 and E = -.8, would agree with the ADA position (nay) and be counted as more liberal on this vote than J = -.95, who votes against the ADA position. which is weird, because J is more liberal in the latent dimension.

10 Interest Group Scores Interest group scores in disguise. Segal-Cover Scores count how many editorials describe a justice as liberal vs conservative using six major newspapers. McGuire s and Oshfeldt s Pro-Nationalism count the percentage of times a delegate voted a pro-national position among sixteen roll calls. What happens when we scale the runaway slave clause based on pronationalism, but a delegate votes based on their opposition to slavery? We might interpret their no on the runaway slave clause as a vote against nationalism, even though they strongly support strengthening the government. Put differently, there can be problems pre-determining the scale.

11 Optimal Classification A non-parametric scaling technique i.e. it s computational, not statistical. Assumptions Voters have single peaked and symmetric preferences. Choices are binary (e.g., yes-no). Voting is sincere. i.e. for each vote, individuals vote for the alternative closest to themselves without thinking about the consequences for the end of the game. The number of dimensions is fixed (today it s one).

12 Optimal Classification How it works 1. Find an optimal cut point for each vote. 2. Optimally classify the voters in the intervals created by the cut points. 3. Repeat the process until the number of classification errors are minimized (or more specifically cannot be reduced). A classification error occurs if someone on the yea (resp. nay) side of the cut point votes nay (resp. yea).

13 Optimal Classification To illustrate, consider four bills B-2: Sept 1989 amendment to a bill that would cut funding for the B-2 bomber. Cambodia: July 1989 amendment to a bill that would give the President the power to fund non-communist forces in Cambodia. Tower: March 1989 proposal to confirm John Tower as secretary of defense. MLK: May 1989 amendment to a bill that would eliminate funding for a commission establishing MLK day.

14 Optimal Classification Five Senators in an initial (say random) order 1. Find optimal cut points We want to minimize these. Nunn Helms Gore Kerry Dole ERRORS B-2 (B) N N N Y N Cambodia (C) Y Y N N Y Tower (T) N Y N N Y MLK (M) N Y N N N C T M B sum = 5

15 Optimal Classification 2. Move Voters to Reduce Error Nunn Helms Gore Kerry Dole ERRORS B-2 (B) N N N Y N Cambodia (C) Y Y N N Y Tower (T) N Y N N Y MLK (M) N Y N N N C T M B sum = 5 Move Dole to eliminate error on B

16 Optimal Classification 2. Move Voters to Reduce Error Nunn Helms Gore Dole Kerry ERRORS B-2 (B) N N N N Y Cambodia (C) Y Y N Y N Tower (T) N Y N Y N MLK (M) N Y N N N C T M B sum = 4 Technically, B remained fixed. It just appears to have moved in my table. Next, move Dole again to eliminate error on C and T.

17 Optimal Classification 2. Move Voters to Reduce Error Nunn Helms Dole Gore Kerry ERRORS B-2 (B) N N N N Y Cambodia (C) Y Y Y N N Tower (T) N Y Y N N MLK (M) N Y N N N C T M B sum = 2 Technically, C,T, and M remained fixed. They just appear to have moved. Next, move Nunn to eliminate T error.

18 Optimal Classification 2. Move Voters to Reduce Error Helms Dole Nunn Gore Kerry ERRORS B-2 (B) N N N N Y Cambodia (C) Y Y Y N N Tower (T) Y Y N N N MLK (M) Y N N N N C T M B sum = 2 Technically, C,T, and M remained fixed. They just appear to have moved. Note, by moving Nunn we added a classification error.

19 Optimal Classification 2. Move Voters to Reduce Error Helms Dole Nunn Gore Kerry ERRORS B-2 (B) N N N N Y Cambodia (C) Y Y Y N N Tower (T) Y Y N N N MLK (M) Y N N N N C T M B sum = 2 If the cut points are fixed, we cannot get rid of the classification error for M. Hence, this step is done.

20 Optimal Classification 1. Repeat step 1: find optimal cut points given voter positions. Helms Dole Nunn Gore Kerry ERRORS B-2 (B) N N N N Y Cambodia (C) Y Y Y N N Tower (T) Y Y N N N MLK (M) Y N N N N C T M C B sum = 21

21 Optimal Classification 1. Repeat step 1: find optimal cut points given voter positions. Helms Dole Nunn Gore Kerry ERRORS B-2 (B) N N N N Y Cambodia (C) Y Y Y N N Tower (T) Y Y N N N MLK (M) Y N N N N M T C B M sum = 01

22 Optimal Classification 1. Repeat step 1: find optimal cut points given voter positions. Helms Dole Nunn Gore Kerry ERRORS B-2 (B) N N N N Y 0 Cambodia (C) Y Y Y N N 0 Tower (T) Y Y N N N 0 MLK (M) Y N N N N 0 M T C B sum = 0 No more errors, we re done! In general, the process repeats until it cannot reduce the error (which is usually more than zero errors).

23 Optimal Classification Advantages Does not require knowing the interest group s position on a bill (e.g., whether the bill is liberal or conservative). Does not push legislators to the extreme of the scale. Does not require the assumption that the interest group is exterior of the ideal points. Disadvantages Produces an ordering, not cardinal distances. Because it is non-parametric, there is no statistical error for the ideal points. Hence, there are no confidence intervals.

24 NOMINATE NOMINATE (Nominal Three-Step Estimation) Multidimensional scaling technique based on pseudo-maximum likelihood estimation. Two flavors and a groovy application W-NOMINATE: scales fixed ideal points from a single chamber. DW-NOMINATE: allows for linear changes in ideal points over time. Common Space Scores: applies DW-NOMINATE to a roll call matrix of all congress people throughout U.S. history. Thus making the House and Senate comparable throughout time. Does not allow movement of ideal points over time.

25 W-NOMINATE Assumptions Voters have single peaked and symmetric preferences. Choices are binary (e.g., yes-no). Voting is sincere. i.e. for each vote, individuals vote for the alternative closest to themselves without thinking about the consequences for the end of the game. The number of dimensions is fixed (today it s one). Individual utility contains a deterministic component and a random component, both of which are normally distributed this one s new Note, each voter has the same standard deviation for their normal distribution.

26 W-NOMINATE How it works Assume: p legislators, indexed i = 1,, p. q roll calls, indexed j = 1,, q. s dimensions, indexed k = 1,, s. Today s = 1. Legislator i s utility for the yea outcome on roll call j is: deterministic random where y indicates yea.

27 W-NOMINATE Without error, a legislator would vote yea if u i,j,y > u i,j,n, or u i,j,y u i,j,n > 0. With error, a legislator would vote yea if U i,j,y U i,j,n > 0, or u i,j,y u i,j,n + ε i,j,y ε i,j,n > 0. And the probabilities a legislator votes yea or nay are: P(legislator i votes yea) = P(u i,j,y u i,j,n > ε i,j,n ε i,j,y ) P(legislator i votes nay) = P(u i,j,y u i,j,n < ε i,j,n ε i,j,y )

28 W-NOMINATE This allows us to assume the difference in utility is distributed: We then find parameter values that maximize the likelihood of observing the roll call data, using the likelihood function: where τ is the index for yea and nay, P i,j,τ is the probability of voting for choice τ, and C i,j,τ = 1 if the legislator s actual choice is τ; 0 otherwise. The log of the likelihood is:

29 W-NOMINATE And the regression model is: where is the logistic distribution function, x i are the legislators ideal points, Y j and N j are the locations of the yea and nay positions on roll call j, and w and β are scaling parameters. As a further restriction, the outcome points (i.e., alternatives) are estimated in terms of the midpoint, m j, between Y j and N j, and the distance d j between each of those outcomes and the midpoint.

30 W-NOMINATE Normally, we maximize the log-likelihood function by taking the first derivatives w.r.t. each of the parameters, setting the equations equal to zero, and solving. But there are too many parameters and the r.h.s data is missing. So W-NOMINATE estimates in three steps: 1. Estimates m j and d j, conditional on x i, β, and w. 2. Estimates x i, conditional on m j, d j, β, and w. 3. Estimates β and w, conditional on m j, d j, and x i. The procedure repeats until the m j, d j, and x i parameters all correlate at 0.99 or better with the set estimated in the previous estimation.

31 W-NOMINATE Advantages Does not require knowing the interest group s position on a bill (e.g., whether the bill is liberal or conservative) same as before. Does not push legislators to the extreme of the scale same as before. Does not require the assumption that the interest group is exterior of the ideal points same as before. Produces a cardinal ranking based on the likelihood of each ideal point location. Allows for statistical error (with a special boot strap program). Hence, it can provide confidence intervals. Disadvantages Does not work if there is perfect spatial voting (i.e. no error). By assuming everyone has the same utility distribution (just a different mean), it implicitly assumes interpersonal comparability of utility. OC may be better for small samples.

32 Where to Find Existing Ideal Point Estimates Optimal Classification W-NOMINATE DW_NOMINATE Common Space Scores

33 Estimation using R Install TextPad (optional) Install R (click downloads on first page) Install some R packages polc, oc, wnominate, gdata Code for Basic Estimation n_1d.r

SPATIAL VOTING (MULTIPLE DIMENSIONS)

SPATIAL VOTING (MULTIPLE DIMENSIONS) SPATIAL VOTING (MULTIPLE DIMENSIONS) 1 Assumptions Alternatives are points in an n-dimensional space. Examples for 2D: Social Issues and Economic Issues Domestic Spending and Foreign Spending Single-peaked

More information

Binary Logistic Regression

Binary Logistic Regression The coefficients of the multiple regression model are estimated using sample data with k independent variables Estimated (or predicted) value of Y Estimated intercept Estimated slope coefficients Ŷ = b

More information

6.207/14.15: Networks Lecture 24: Decisions in Groups

6.207/14.15: Networks Lecture 24: Decisions in Groups 6.207/14.15: Networks Lecture 24: Decisions in Groups Daron Acemoglu and Asu Ozdaglar MIT December 9, 2009 1 Introduction Outline Group and collective choices Arrow s Impossibility Theorem Gibbard-Satterthwaite

More information

Fast Estimation of Ideal Points with Massive Data

Fast Estimation of Ideal Points with Massive Data Fast Estimation of Ideal Points with Massive Data Kosuke Imai James Lo Jonathan Olmsted First Draft: December, 014 This Draft: February 5, 015 Abstract Estimating ideological preferences across time and

More information

Constitution Day. PreK- 6th A FREE RESOURCE PACK FROM EDUCATIONCITY. Topical Teaching Resources. Grade Range

Constitution Day. PreK- 6th A FREE RESOURCE PACK FROM EDUCATIONCITY. Topical Teaching Resources. Grade Range A FREE RESOURCE PACK FROM EDUCATIONCITY Constitution Day PreK- 6th Topical Teaching Resources Grade Range Free school resources by EducationCity. This may be reproduced for class use. Topical Teaching

More information

Lecture #11: Classification & Logistic Regression

Lecture #11: Classification & Logistic Regression Lecture #11: Classification & Logistic Regression CS 109A, STAT 121A, AC 209A: Data Science Weiwei Pan, Pavlos Protopapas, Kevin Rader Fall 2016 Harvard University 1 Announcements Midterm: will be graded

More information

Chapter 9 Regression with a Binary Dependent Variable. Multiple Choice. 1) The binary dependent variable model is an example of a

Chapter 9 Regression with a Binary Dependent Variable. Multiple Choice. 1) The binary dependent variable model is an example of a Chapter 9 Regression with a Binary Dependent Variable Multiple Choice ) The binary dependent variable model is an example of a a. regression model, which has as a regressor, among others, a binary variable.

More information

Classification 1: Linear regression of indicators, linear discriminant analysis

Classification 1: Linear regression of indicators, linear discriminant analysis Classification 1: Linear regression of indicators, linear discriminant analysis Ryan Tibshirani Data Mining: 36-462/36-662 April 2 2013 Optional reading: ISL 4.1, 4.2, 4.4, ESL 4.1 4.3 1 Classification

More information

1 The Basic Counting Principles

1 The Basic Counting Principles 1 The Basic Counting Principles The Multiplication Rule If an operation consists of k steps and the first step can be performed in n 1 ways, the second step can be performed in n ways [regardless of how

More information

Supplementary Materials for Congressional Decision Making and the Separation of Powers

Supplementary Materials for Congressional Decision Making and the Separation of Powers Supplementary Materials for Congressional Decision Making and the Separation of Powers Andrew D. Martin February 19, 2001 1 Table 1: House Hierarchical Probit Estimates Strategic Model (Nominate Second

More information

Click to edit Master title style

Click to edit Master title style Impact Evaluation Technical Track Session IV Click to edit Master title style Instrumental Variables Christel Vermeersch Amman, Jordan March 8-12, 2009 Click to edit Master subtitle style Human Development

More information

Introduction to Statistical Data Analysis Lecture 4: Sampling

Introduction to Statistical Data Analysis Lecture 4: Sampling Introduction to Statistical Data Analysis Lecture 4: Sampling James V. Lambers Department of Mathematics The University of Southern Mississippi James V. Lambers Statistical Data Analysis 1 / 30 Introduction

More information

CS 188: Artificial Intelligence Spring Announcements

CS 188: Artificial Intelligence Spring Announcements CS 188: Artificial Intelligence Spring 2010 Lecture 22: Nearest Neighbors, Kernels 4/18/2011 Pieter Abbeel UC Berkeley Slides adapted from Dan Klein Announcements On-going: contest (optional and FUN!)

More information

Power Indices, Explaining Paradoxes Dealing With Power and Including Abstention

Power Indices, Explaining Paradoxes Dealing With Power and Including Abstention Power Indices, Explaining Paradoxes Dealing With Power and Including Abstention senior project of Stephanie Kuban Advisor: Dr. Adam Weyhaupt Southern Illinois University Edwardsville May 12, 2011 1 Introduction

More information

Machine Learning (CSE 446): Multi-Class Classification; Kernel Methods

Machine Learning (CSE 446): Multi-Class Classification; Kernel Methods Machine Learning (CSE 446): Multi-Class Classification; Kernel Methods Sham M Kakade c 2018 University of Washington cse446-staff@cs.washington.edu 1 / 12 Announcements HW3 due date as posted. make sure

More information

A Brief Primer on Ideal Point Estimates

A Brief Primer on Ideal Point Estimates Joshua D. Clinton Princeton University clinton@princeton.edu January 28, 2008 Really took off with growth of game theory and EITM. Claim: ideal points = player preferences. Widely used in American, Comparative

More information

Lecture 7: DecisionTrees

Lecture 7: DecisionTrees Lecture 7: DecisionTrees What are decision trees? Brief interlude on information theory Decision tree construction Overfitting avoidance Regression trees COMP-652, Lecture 7 - September 28, 2009 1 Recall:

More information

8 Nominal and Ordinal Logistic Regression

8 Nominal and Ordinal Logistic Regression 8 Nominal and Ordinal Logistic Regression 8.1 Introduction If the response variable is categorical, with more then two categories, then there are two options for generalized linear models. One relies on

More information

Randomized Decision Trees

Randomized Decision Trees Randomized Decision Trees compiled by Alvin Wan from Professor Jitendra Malik s lecture Discrete Variables First, let us consider some terminology. We have primarily been dealing with real-valued data,

More information

Probability COMP 245 STATISTICS. Dr N A Heard. 1 Sample Spaces and Events Sample Spaces Events Combinations of Events...

Probability COMP 245 STATISTICS. Dr N A Heard. 1 Sample Spaces and Events Sample Spaces Events Combinations of Events... Probability COMP 245 STATISTICS Dr N A Heard Contents Sample Spaces and Events. Sample Spaces........................................2 Events........................................... 2.3 Combinations

More information

Announcements. CS 188: Artificial Intelligence Spring Classification. Today. Classification overview. Case-Based Reasoning

Announcements. CS 188: Artificial Intelligence Spring Classification. Today. Classification overview. Case-Based Reasoning CS 188: Artificial Intelligence Spring 21 Lecture 22: Nearest Neighbors, Kernels 4/18/211 Pieter Abbeel UC Berkeley Slides adapted from Dan Klein Announcements On-going: contest (optional and FUN!) Remaining

More information

Generalized Linear Models for Non-Normal Data

Generalized Linear Models for Non-Normal Data Generalized Linear Models for Non-Normal Data Today s Class: 3 parts of a generalized model Models for binary outcomes Complications for generalized multivariate or multilevel models SPLH 861: Lecture

More information

disc choice5.tex; April 11, ffl See: King - Unifying Political Methodology ffl See: King/Tomz/Wittenberg (1998, APSA Meeting). ffl See: Alvarez

disc choice5.tex; April 11, ffl See: King - Unifying Political Methodology ffl See: King/Tomz/Wittenberg (1998, APSA Meeting). ffl See: Alvarez disc choice5.tex; April 11, 2001 1 Lecture Notes on Discrete Choice Models Copyright, April 11, 2001 Jonathan Nagler 1 Topics 1. Review the Latent Varible Setup For Binary Choice ffl Logit ffl Likelihood

More information

Article from. Predictive Analytics and Futurism. July 2016 Issue 13

Article from. Predictive Analytics and Futurism. July 2016 Issue 13 Article from Predictive Analytics and Futurism July 2016 Issue 13 Regression and Classification: A Deeper Look By Jeff Heaton Classification and regression are the two most common forms of models fitted

More information

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall Machine Learning Gaussian Mixture Models Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall 2012 1 The Generative Model POV We think of the data as being generated from some process. We assume

More information

Estimating Legislators Ideal Points Using HOMALS

Estimating Legislators Ideal Points Using HOMALS Estimating Legislators Ideal Points Using HOMALS Applied to party-switching in the Brazilian Chamber of Deputies, 49th Session, 1991-1995 Scott W. Desposato, UCLA, swd@ucla.edu Party-Switching: Substantive

More information

Advanced Quantitative Data Analysis

Advanced Quantitative Data Analysis Chapter 24 Advanced Quantitative Data Analysis Daniel Muijs Doing Regression Analysis in SPSS When we want to do regression analysis in SPSS, we have to go through the following steps: 1 As usual, we choose

More information

Decision Trees: Overfitting

Decision Trees: Overfitting Decision Trees: Overfitting Emily Fox University of Washington January 30, 2017 Decision tree recap Loan status: Root 22 18 poor 4 14 Credit? Income? excellent 9 0 3 years 0 4 Fair 9 4 Term? 5 years 9

More information

CPSC 340: Machine Learning and Data Mining. MLE and MAP Fall 2017

CPSC 340: Machine Learning and Data Mining. MLE and MAP Fall 2017 CPSC 340: Machine Learning and Data Mining MLE and MAP Fall 2017 Assignment 3: Admin 1 late day to hand in tonight, 2 late days for Wednesday. Assignment 4: Due Friday of next week. Last Time: Multi-Class

More information

Spatial Theory in 2-space Fall 2016

Spatial Theory in 2-space Fall 2016 Spatial Theory in 2-space 17.251 Fall 2016 1 Throat-clearing Fundamental finding of unidimensional spatial model Pure majority rule: the median prevails More generally: the pivot prevails Fundamental finding

More information

3.2 Probability Rules

3.2 Probability Rules 3.2 Probability Rules The idea of probability rests on the fact that chance behavior is predictable in the long run. In the last section, we used simulation to imitate chance behavior. Do we always need

More information

Part 1: You are given the following system of two equations: x + 2y = 16 3x 4y = 2

Part 1: You are given the following system of two equations: x + 2y = 16 3x 4y = 2 Solving Systems of Equations Algebraically Teacher Notes Comment: As students solve equations throughout this task, have them continue to explain each step using properties of operations or properties

More information

APPLICATIONS OF MINING HETEROGENEOUS INFORMATION NETWORKS

APPLICATIONS OF MINING HETEROGENEOUS INFORMATION NETWORKS APPLICATIONS OF MINING HETEROGENEOUS INFORMATION NETWORKS Yizhou Sun College of Computer and Information Science Northeastern University yzsun@ccs.neu.edu July 25, 2015 Heterogeneous Information Networks

More information

ST3241 Categorical Data Analysis I Multicategory Logit Models. Logit Models For Nominal Responses

ST3241 Categorical Data Analysis I Multicategory Logit Models. Logit Models For Nominal Responses ST3241 Categorical Data Analysis I Multicategory Logit Models Logit Models For Nominal Responses 1 Models For Nominal Responses Y is nominal with J categories. Let {π 1,, π J } denote the response probabilities

More information

9/12/17. Types of learning. Modeling data. Supervised learning: Classification. Supervised learning: Regression. Unsupervised learning: Clustering

9/12/17. Types of learning. Modeling data. Supervised learning: Classification. Supervised learning: Regression. Unsupervised learning: Clustering Types of learning Modeling data Supervised: we know input and targets Goal is to learn a model that, given input data, accurately predicts target data Unsupervised: we know the input only and want to make

More information

CSSS/STAT/SOC 321 Case-Based Social Statistics I. Levels of Measurement

CSSS/STAT/SOC 321 Case-Based Social Statistics I. Levels of Measurement CSSS/STAT/SOC 321 Case-Based Social Statistics I Levels of Measurement Christopher Adolph Department of Political Science and Center for Statistics and the Social Sciences University of Washington, Seattle

More information

Lecture 4 Logistic Regression

Lecture 4 Logistic Regression Lecture 4 Logistic Regression Dr.Ammar Mohammed Normal Equation Hypothesis hθ(x)=θ0 x0+ θ x+ θ2 x2 +... + θd xd Normal Equation is a method to find the values of θ operations x0 x x2.. xd y x x2... xd

More information

CS 340 Lec. 16: Logistic Regression

CS 340 Lec. 16: Logistic Regression CS 34 Lec. 6: Logistic Regression AD March AD ) March / 6 Introduction Assume you are given some training data { x i, y i } i= where xi R d and y i can take C different values. Given an input test data

More information

Statistics Boot Camp. Dr. Stephanie Lane Institute for Defense Analyses DATAWorks 2018

Statistics Boot Camp. Dr. Stephanie Lane Institute for Defense Analyses DATAWorks 2018 Statistics Boot Camp Dr. Stephanie Lane Institute for Defense Analyses DATAWorks 2018 March 21, 2018 Outline of boot camp Summarizing and simplifying data Point and interval estimation Foundations of statistical

More information

Limited Dependent Variable Models II

Limited Dependent Variable Models II Limited Dependent Variable Models II Fall 2008 Environmental Econometrics (GR03) LDV Fall 2008 1 / 15 Models with Multiple Choices The binary response model was dealing with a decision problem with two

More information

Chapter 3 Multiple Regression Complete Example

Chapter 3 Multiple Regression Complete Example Department of Quantitative Methods & Information Systems ECON 504 Chapter 3 Multiple Regression Complete Example Spring 2013 Dr. Mohammad Zainal Review Goals After completing this lecture, you should be

More information

Sparse vectors recap. ANLP Lecture 22 Lexical Semantics with Dense Vectors. Before density, another approach to normalisation.

Sparse vectors recap. ANLP Lecture 22 Lexical Semantics with Dense Vectors. Before density, another approach to normalisation. ANLP Lecture 22 Lexical Semantics with Dense Vectors Henry S. Thompson Based on slides by Jurafsky & Martin, some via Dorota Glowacka 5 November 2018 Previous lectures: Sparse vectors recap How to represent

More information

ANLP Lecture 22 Lexical Semantics with Dense Vectors

ANLP Lecture 22 Lexical Semantics with Dense Vectors ANLP Lecture 22 Lexical Semantics with Dense Vectors Henry S. Thompson Based on slides by Jurafsky & Martin, some via Dorota Glowacka 5 November 2018 Henry S. Thompson ANLP Lecture 22 5 November 2018 Previous

More information

The Clickers. PHY131 Summer 2011 Class 2 Notes 5/19/11. Your First Clicker Question!

The Clickers. PHY131 Summer 2011 Class 2 Notes 5/19/11. Your First Clicker Question! PHY131H1F Summer Introduction to Physics I Class 2 Today: Error Analysis Significant figures Constant Velocity Motion Constant Acceleration Motion Freefall Motion on an inclined plane Status Light When

More information

STA 303 H1S / 1002 HS Winter 2011 Test March 7, ab 1cde 2abcde 2fghij 3

STA 303 H1S / 1002 HS Winter 2011 Test March 7, ab 1cde 2abcde 2fghij 3 STA 303 H1S / 1002 HS Winter 2011 Test March 7, 2011 LAST NAME: FIRST NAME: STUDENT NUMBER: ENROLLED IN: (circle one) STA 303 STA 1002 INSTRUCTIONS: Time: 90 minutes Aids allowed: calculator. Some formulae

More information

Econ 325: Introduction to Empirical Economics

Econ 325: Introduction to Empirical Economics Econ 325: Introduction to Empirical Economics Chapter 9 Hypothesis Testing: Single Population Ch. 9-1 9.1 What is a Hypothesis? A hypothesis is a claim (assumption) about a population parameter: population

More information

1988 Chilean Elections

1988 Chilean Elections 1988 Chilean Elections Voting Intentions in Chile Team 6 Jason Andrew Carrie Boyle Greg Fries Ramana Reddy Agenda Background information-carrie Data set-jason Results of classification analysis- Ramana

More information

ANSWER KEY 2 GAME THEORY, ECON 395

ANSWER KEY 2 GAME THEORY, ECON 395 ANSWER KEY GAME THEORY, ECON 95 PROFESSOR A. JOSEPH GUSE (1) (Gibbons 1.6) Consider again the Cournot duopoly model with demand given by the marginal willingness to pay function: P(Q) = a Q, but this time

More information

Ideology and Social Networks in the U.S. Congress

Ideology and Social Networks in the U.S. Congress Ideology and Social Networks in the U.S. Congress James H. Fowler University of California, San Diego July 11, 2007 Improve connectedness scores (Fowler 2005) Cosponsorship is about 2 things: The idea

More information

CPSC 340: Machine Learning and Data Mining

CPSC 340: Machine Learning and Data Mining CPSC 340: Machine Learning and Data Mining MLE and MAP Original version of these slides by Mark Schmidt, with modifications by Mike Gelbart. 1 Admin Assignment 4: Due tonight. Assignment 5: Will be released

More information

Power in the US Legislature

Power in the US Legislature Power in the US Legislature Victoria Powers May 16, 2017 Abstract Using a standard model of the US legislative system as a monotonic simple game, we look at rankings of the four types of players the president,

More information

CS 188: Artificial Intelligence Fall 2008

CS 188: Artificial Intelligence Fall 2008 CS 188: Artificial Intelligence Fall 2008 Lecture 23: Perceptrons 11/20/2008 Dan Klein UC Berkeley 1 General Naïve Bayes A general naive Bayes model: C E 1 E 2 E n We only specify how each feature depends

More information

General Naïve Bayes. CS 188: Artificial Intelligence Fall Example: Overfitting. Example: OCR. Example: Spam Filtering. Example: Spam Filtering

General Naïve Bayes. CS 188: Artificial Intelligence Fall Example: Overfitting. Example: OCR. Example: Spam Filtering. Example: Spam Filtering CS 188: Artificial Intelligence Fall 2008 General Naïve Bayes A general naive Bayes model: C Lecture 23: Perceptrons 11/20/2008 E 1 E 2 E n Dan Klein UC Berkeley We only specify how each feature depends

More information

Finding the Gold in Your Data

Finding the Gold in Your Data Finding the Gold in Your Data An introduction to Data Mining Originally presented @ SAS Global Forum David A. Dickey North Carolina State University Decision Trees A divisive method (splits) Start with

More information

Class 26: review for final exam 18.05, Spring 2014

Class 26: review for final exam 18.05, Spring 2014 Probability Class 26: review for final eam 8.05, Spring 204 Counting Sets Inclusion-eclusion principle Rule of product (multiplication rule) Permutation and combinations Basics Outcome, sample space, event

More information

What is a Hypothesis?

What is a Hypothesis? What is a Hypothesis? A hypothesis is a claim (assumption) about a population parameter: population mean Example: The mean monthly cell phone bill in this city is μ = $42 population proportion Example:

More information

Data-analysis and Retrieval Ordinal Classification

Data-analysis and Retrieval Ordinal Classification Data-analysis and Retrieval Ordinal Classification Ad Feelders Universiteit Utrecht Data-analysis and Retrieval 1 / 30 Strongly disagree Ordinal Classification 1 2 3 4 5 0% (0) 10.5% (2) 21.1% (4) 42.1%

More information

Generalized Linear Models

Generalized Linear Models Generalized Linear Models Lecture 7. Models with binary response II GLM (Spring, 2018) Lecture 7 1 / 13 Existence of estimates Lemma (Claudia Czado, München, 2004) The log-likelihood ln L(β) in logistic

More information

Using Entropy-Related Measures in Categorical Data Visualization

Using Entropy-Related Measures in Categorical Data Visualization Using Entropy-Related Measures in Categorical Data Visualization Jamal Alsakran The University of Jordan Xiaoke Huang, Ye Zhao Kent State University Jing Yang UNC Charlotte Karl Fast Kent State University

More information

Lecture 10: Alternatives to OLS with limited dependent variables. PEA vs APE Logit/Probit Poisson

Lecture 10: Alternatives to OLS with limited dependent variables. PEA vs APE Logit/Probit Poisson Lecture 10: Alternatives to OLS with limited dependent variables PEA vs APE Logit/Probit Poisson PEA vs APE PEA: partial effect at the average The effect of some x on y for a hypothetical case with sample

More information

Gov 2002: 4. Observational Studies and Confounding

Gov 2002: 4. Observational Studies and Confounding Gov 2002: 4. Observational Studies and Confounding Matthew Blackwell September 10, 2015 Where are we? Where are we going? Last two weeks: randomized experiments. From here on: observational studies. What

More information

The Category of Simple Voting Games

The Category of Simple Voting Games The Category of Simple Voting Games Simon Terrington July 11th, 2004 In this paper I describe a notation for simple voting games that has three properties: It facilitates the calculation of the measures

More information

Investigating Models with Two or Three Categories

Investigating Models with Two or Three Categories Ronald H. Heck and Lynn N. Tabata 1 Investigating Models with Two or Three Categories For the past few weeks we have been working with discriminant analysis. Let s now see what the same sort of model might

More information

Class President: A Network Approach to Popularity. Due July 18, 2014

Class President: A Network Approach to Popularity. Due July 18, 2014 Class President: A Network Approach to Popularity Due July 8, 24 Instructions. Due Fri, July 8 at :59 PM 2. Work in groups of up to 3 3. Type up the report, and submit as a pdf on D2L 4. Attach the code

More information

Lecture 5: Linear models for classification. Logistic regression. Gradient Descent. Second-order methods.

Lecture 5: Linear models for classification. Logistic regression. Gradient Descent. Second-order methods. Lecture 5: Linear models for classification. Logistic regression. Gradient Descent. Second-order methods. Linear models for classification Logistic regression Gradient descent and second-order methods

More information

Introduction to Signal Detection and Classification. Phani Chavali

Introduction to Signal Detection and Classification. Phani Chavali Introduction to Signal Detection and Classification Phani Chavali Outline Detection Problem Performance Measures Receiver Operating Characteristics (ROC) F-Test - Test Linear Discriminant Analysis (LDA)

More information

Naïve Bayes Introduction to Machine Learning. Matt Gormley Lecture 18 Oct. 31, 2018

Naïve Bayes Introduction to Machine Learning. Matt Gormley Lecture 18 Oct. 31, 2018 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Naïve Bayes Matt Gormley Lecture 18 Oct. 31, 2018 1 Reminders Homework 6: PAC Learning

More information

Decision Making Beyond Arrow s Impossibility Theorem, with the Analysis of Effects of Collusion and Mutual Attraction

Decision Making Beyond Arrow s Impossibility Theorem, with the Analysis of Effects of Collusion and Mutual Attraction Decision Making Beyond Arrow s Impossibility Theorem, with the Analysis of Effects of Collusion and Mutual Attraction Hung T. Nguyen New Mexico State University hunguyen@nmsu.edu Olga Kosheleva and Vladik

More information

Probabilistic modeling. The slides are closely adapted from Subhransu Maji s slides

Probabilistic modeling. The slides are closely adapted from Subhransu Maji s slides Probabilistic modeling The slides are closely adapted from Subhransu Maji s slides Overview So far the models and algorithms you have learned about are relatively disconnected Probabilistic modeling framework

More information

SVMs, Duality and the Kernel Trick

SVMs, Duality and the Kernel Trick SVMs, Duality and the Kernel Trick Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University February 26 th, 2007 2005-2007 Carlos Guestrin 1 SVMs reminder 2005-2007 Carlos Guestrin 2 Today

More information

Survey of Voting Procedures and Paradoxes

Survey of Voting Procedures and Paradoxes Survey of Voting Procedures and Paradoxes Stanford University ai.stanford.edu/ epacuit/lmh Fall, 2008 :, 1 The Voting Problem Given a (finite) set X of candidates and a (finite) set A of voters each of

More information

Machine Learning Linear Classification. Prof. Matteo Matteucci

Machine Learning Linear Classification. Prof. Matteo Matteucci Machine Learning Linear Classification Prof. Matteo Matteucci Recall from the first lecture 2 X R p Regression Y R Continuous Output X R p Y {Ω 0, Ω 1,, Ω K } Classification Discrete Output X R p Y (X)

More information

Regression Discontinuity Designs

Regression Discontinuity Designs Regression Discontinuity Designs Kosuke Imai Harvard University STAT186/GOV2002 CAUSAL INFERENCE Fall 2018 Kosuke Imai (Harvard) Regression Discontinuity Design Stat186/Gov2002 Fall 2018 1 / 1 Observational

More information

CHAPTER 3. THE IMPERFECT CUMULATIVE SCALE

CHAPTER 3. THE IMPERFECT CUMULATIVE SCALE CHAPTER 3. THE IMPERFECT CUMULATIVE SCALE 3.1 Model Violations If a set of items does not form a perfect Guttman scale but contains a few wrong responses, we do not necessarily need to discard it. A wrong

More information

The Bayes classifier

The Bayes classifier The Bayes classifier Consider where is a random vector in is a random variable (depending on ) Let be a classifier with probability of error/risk given by The Bayes classifier (denoted ) is the optimal

More information

Correlation. We don't consider one variable independent and the other dependent. Does x go up as y goes up? Does x go down as y goes up?

Correlation. We don't consider one variable independent and the other dependent. Does x go up as y goes up? Does x go down as y goes up? Comment: notes are adapted from BIOL 214/312. I. Correlation. Correlation A) Correlation is used when we want to examine the relationship of two continuous variables. We are not interested in prediction.

More information

Hierarchical Generalized Linear Models. ERSH 8990 REMS Seminar on HLM Last Lecture!

Hierarchical Generalized Linear Models. ERSH 8990 REMS Seminar on HLM Last Lecture! Hierarchical Generalized Linear Models ERSH 8990 REMS Seminar on HLM Last Lecture! Hierarchical Generalized Linear Models Introduction to generalized models Models for binary outcomes Interpreting parameter

More information

MULTINOMIAL LOGISTIC REGRESSION

MULTINOMIAL LOGISTIC REGRESSION MULTINOMIAL LOGISTIC REGRESSION Model graphically: Variable Y is a dependent variable, variables X, Z, W are called regressors. Multinomial logistic regression is a generalization of the binary logistic

More information

Homework Solutions Applied Logistic Regression

Homework Solutions Applied Logistic Regression Homework Solutions Applied Logistic Regression WEEK 6 Exercise 1 From the ICU data, use as the outcome variable vital status (STA) and CPR prior to ICU admission (CPR) as a covariate. (a) Demonstrate that

More information

The classifier. Theorem. where the min is over all possible classifiers. To calculate the Bayes classifier/bayes risk, we need to know

The classifier. Theorem. where the min is over all possible classifiers. To calculate the Bayes classifier/bayes risk, we need to know The Bayes classifier Theorem The classifier satisfies where the min is over all possible classifiers. To calculate the Bayes classifier/bayes risk, we need to know Alternatively, since the maximum it is

More information

The classifier. Linear discriminant analysis (LDA) Example. Challenges for LDA

The classifier. Linear discriminant analysis (LDA) Example. Challenges for LDA The Bayes classifier Linear discriminant analysis (LDA) Theorem The classifier satisfies In linear discriminant analysis (LDA), we make the (strong) assumption that where the min is over all possible classifiers.

More information

Iterated Strict Dominance in Pure Strategies

Iterated Strict Dominance in Pure Strategies Iterated Strict Dominance in Pure Strategies We know that no rational player ever plays strictly dominated strategies. As each player knows that each player is rational, each player knows that his opponents

More information

1 Primals and Duals: Zero Sum Games

1 Primals and Duals: Zero Sum Games CS 124 Section #11 Zero Sum Games; NP Completeness 4/15/17 1 Primals and Duals: Zero Sum Games We can represent various situations of conflict in life in terms of matrix games. For example, the game shown

More information

On the Complexity of Exchanging

On the Complexity of Exchanging On the Complexity of Exchanging X. Molinero M. Olsen M. Serna March 20, 2015 Abstract We analyze the computational complexity of the problem of deciding whether, for a given simple game, there exists the

More information

Assignment 2 (Sol.) Introduction to Machine Learning Prof. B. Ravindran

Assignment 2 (Sol.) Introduction to Machine Learning Prof. B. Ravindran Assignment 2 (Sol.) Introduction to Machine Learning Prof. B. Ravindran 1. Let A m n be a matrix of real numbers. The matrix AA T has an eigenvector x with eigenvalue b. Then the eigenvector y of A T A

More information

Generative Learning. INFO-4604, Applied Machine Learning University of Colorado Boulder. November 29, 2018 Prof. Michael Paul

Generative Learning. INFO-4604, Applied Machine Learning University of Colorado Boulder. November 29, 2018 Prof. Michael Paul Generative Learning INFO-4604, Applied Machine Learning University of Colorado Boulder November 29, 2018 Prof. Michael Paul Generative vs Discriminative The classification algorithms we have seen so far

More information

Name Date Class. Figure 1. The Google Earth Pro drop-down menu.

Name Date Class. Figure 1. The Google Earth Pro drop-down menu. GIS Student Walk-Through Worksheet Procedure 1. Import historical tornado and hurricane data into Google Earth Pro by following these steps: A. In the Google Earth Pro drop-down menu > click File > Import

More information

TDT4173 Machine Learning

TDT4173 Machine Learning TDT4173 Machine Learning Lecture 3 Bagging & Boosting + SVMs Norwegian University of Science and Technology Helge Langseth IT-VEST 310 helgel@idi.ntnu.no 1 TDT4173 Machine Learning Outline 1 Ensemble-methods

More information

The Ties that Bind Characterizing Classes by Attributes and Social Ties

The Ties that Bind Characterizing Classes by Attributes and Social Ties The Ties that Bind WWW April, 2017, Bryan Perozzi*, Leman Akoglu Stony Brook University *Now at Google. Introduction Outline Our problem: Characterizing Community Differences Proposed Method Experimental

More information

Random Numbers and Simulation

Random Numbers and Simulation Random Numbers and Simulation Generating random numbers: Typically impossible/unfeasible to obtain truly random numbers Programs have been developed to generate pseudo-random numbers: Values generated

More information

Procedia - Social and Behavioral Sciences 109 ( 2014 )

Procedia - Social and Behavioral Sciences 109 ( 2014 ) Available online at www.sciencedirect.com ScienceDirect Procedia - Social and Behavioral Sciences 09 ( 04 ) 730 736 nd World Conference On Business, Economics And Management - WCBEM 03 Categorical Principal

More information

Modeling the Mean: Response Profiles v. Parametric Curves

Modeling the Mean: Response Profiles v. Parametric Curves Modeling the Mean: Response Profiles v. Parametric Curves Jamie Monogan University of Georgia Escuela de Invierno en Métodos y Análisis de Datos Universidad Católica del Uruguay Jamie Monogan (UGA) Modeling

More information

Classification: Linear Discriminant Analysis

Classification: Linear Discriminant Analysis Classification: Linear Discriminant Analysis Discriminant analysis uses sample information about individuals that are known to belong to one of several populations for the purposes of classification. Based

More information

POLI 7050 Spring 2008 February 27, 2008 Unordered Response Models I

POLI 7050 Spring 2008 February 27, 2008 Unordered Response Models I POLI 7050 Spring 2008 February 27, 2008 Unordered Response Models I Introduction For the next couple weeks we ll be talking about unordered, polychotomous dependent variables. Examples include: Voter choice

More information

Statistics 1. Edexcel Notes S1. Mathematical Model. A mathematical model is a simplification of a real world problem.

Statistics 1. Edexcel Notes S1. Mathematical Model. A mathematical model is a simplification of a real world problem. Statistics 1 Mathematical Model A mathematical model is a simplification of a real world problem. 1. A real world problem is observed. 2. A mathematical model is thought up. 3. The model is used to make

More information

5th March Unconditional Security of Quantum Key Distribution With Practical Devices. Hermen Jan Hupkes

5th March Unconditional Security of Quantum Key Distribution With Practical Devices. Hermen Jan Hupkes 5th March 2004 Unconditional Security of Quantum Key Distribution With Practical Devices Hermen Jan Hupkes The setting Alice wants to send a message to Bob. Channel is dangerous and vulnerable to attack.

More information

Rama Nada. -Ensherah Mokheemer. 1 P a g e

Rama Nada. -Ensherah Mokheemer. 1 P a g e - 9 - Rama Nada -Ensherah Mokheemer - 1 P a g e Quick revision: Remember from the last lecture that chi square is an example of nonparametric test, other examples include Kruskal Wallis, Mann Whitney and

More information

Chapter 11. Regression with a Binary Dependent Variable

Chapter 11. Regression with a Binary Dependent Variable Chapter 11 Regression with a Binary Dependent Variable 2 Regression with a Binary Dependent Variable (SW Chapter 11) So far the dependent variable (Y) has been continuous: district-wide average test score

More information

Binary Relation Review Questions

Binary Relation Review Questions CSE 191 Discrete Structures Fall 2016 Recursive sets Binary Relation Review Questions 1. For each of the relations below, answer the following three questions: Is the relation reflexive? Is the relation

More information

CS 188: Artificial Intelligence Spring Announcements

CS 188: Artificial Intelligence Spring Announcements CS 188: Artificial Intelligence Spring 2010 Lecture 24: Perceptrons and More! 4/22/2010 Pieter Abbeel UC Berkeley Slides adapted from Dan Klein Announcements W7 due tonight [this is your last written for

More information