Semi-supervised Discriminant Analysis

Size: px
Start display at page:

Download "Semi-supervised Discriminant Analysis"

Transcription

1 Sem-supervsed Dscrmnnt Anlyss Deng C UIUC dengc2@cs.uuc.edu Xofe He Yhoo! hex@yhoo-nc.com Jwe Hn UIUC hnj@cs.uuc.edu Abstrct Lner Dscrmnnt Anlyss (LDA) hs been populr method for extrctng fetures whch preserve clss seprblty. The projecton vectors re commonly obtned by mxmzng the between clss covrnce nd smultneously mnmzng the wthn clss covrnce. In prctce, when there s no suffcent trnng smples, the covrnce mtrx of ech clss my not be ccurtely estmted. In ths pper, we propose novel method, clled Semsupervsed Dscrmnnt Anlyss (SDA), whch mkes use of both lbeled nd unlbeled smples. The lbeled dt ponts re used to mxmze the seprblty between dfferent clsses nd the unlbeled dt ponts re used to estmte the ntrnsc geometrc structure of the dt. Specfclly, we m to lern dscrmnnt functon whch s s smooth s possble on the dt mnfold. Expermentl results on sngle trnng mge fce recognton nd relevnce feedbck mge retrevl demonstrte the effectveness of our lgorthm. 1. Introducton In mny vsul nlyss pplctons, such s mge retrevl, fce recognton, etc., one s often confronted wth hgh-dmensonl dt. However, there mght be reson to suspect tht the nturlly generted hgh-dmensonl dt probbly resdes on lower dmensonl mnfold. Ths leds one to consder methods of dmensonlty reducton tht llow one to represent the dt n lower dmensonl spce. Two of the most populr technques for ths purpose re Prncpl Component Anlyss (PCA) [16] nd Lner Dscrmnnt Anlyss (LDA) [9]. PCA s n unsupervsed method. It performs dmensonlty reducton by projectng the orgnl n-dmensonl The work ws supported n prt by the U.S. Ntonl Scence Foundton NSF IIS , NSF BDI nd MIAS ( DHS Insttute of Dscrete Scence Center for Multmodl Informton Access nd Synthess). Any opnons, fndngs, nd conclusons or recommendtons expressed here re those of the uthors nd do not necessrly reflect the vews of the fundng gences. dt onto the d( n)-dmensonl lner subspce spnned by the ledng egenvectors of the dt s covrnce mtrx. Its gol s to fnd set of mutully orthogonl bss functons tht cpture the drectons of mxmum vrnce n the dt so tht the prwse Euclden dstnces cn be best preserved. If the dt s embedded n lner subspce, PCA s gurnteed to dscover the dmensonlty of the subspce nd produces compct representton. LDA s supervsed method. It serches for the project xes on whch the dt ponts of dfferent clsses re fr from ech other whle requrng dt ponts of the sme clss to be close to ech other. When lbel nformton vlble, e.g., for clssfcton tsk, LDA cn cheve sgnfcnt better performnce thn PCA [1]. However, when there s no suffcent trnng smples reltve to the number of dmensons, the covrnce mtrx of ech clss my not be ccurtely estmted. In ths cse, the generlzton cpblty on testng smples cn not be gurnteed. A possble soluton to del wth nsuffcent trnng (lbeled) smples could be lernng on both lbeled nd unlbeled dt (sem-supervsed nd trnsductve lernng). It s nturl nd resonble snce n relty we usully hve only prt of nput dt lbeled, long wth lrge number of unlbeled dt. In the lst decdes, sem-supervsed lernng (or trnsductve lernng) hs ttrcted n ncresng mount of ttenton. Two welnown lgorthms re Trnsductve SVM (TSVM) [23] nd Co-Trnng. Recently, there re consderble nterest nd succuss on grph bsed sem-supervsed lernng lgorthms [3, 20, 26, 27], whch consder the grph over ll the smples s pror to gude the decson mkng. All these lgorthms consdered the problem of clssfcton, ether trnsductve or nductve. In ths pper, we m t dmensonlty reducton n the sem-supervsed cse. We proposed sem-supervsed dmensonlty reducton lgorthm, clled Sem-supervsed Dscrmnnt Anlyss (SDA). SDA ms to fnd projecton whch respects the dscrmnnt structure nferred from the lbeled dt ponts, s well s the ntrnsc geometrcl structure nferred from both lbeled nd unlbeled dt ponts. Specfclly, the lbeled dt ponts, combned wth

2 the unlbeled dt ponts, re used to buld grph ncorportng neghborhood nformton of the dt set. The grph provdes dscrete pproxmton to the locl geometry of the dt mnfold. Usng the noton of grph Lplcn, smoothness penlty on the grph cn be ncorported nto the objectve functon. In ths wy, our SDA lgorthm cn optmlly preserves the mnfold structure. The rest of ths pper s orgnzed s follows. In Secton 2, we provde bref revew of LDA. We ntroduce our Sem-supervsed Dscrmnnt Anlyss (SDA) lgorthm for dmensonlty reducton n Secton 3. The expermentl results re presented n Secton 4. Fnlly, we conclude the pper nd provde suggestons for future work n Secton Grph Perspectve of LDA Lner Dscrmnnt Anlyss (LDA) seeks drectons on whch the dt ponts of dfferent clsses re fr from ech other whle requrng dt ponts of the sme clss to be close to ech other [9]. Suppose we hve set of l smples x 1, x 2,, x l R n, belongng to c clsses. The objectve functon of LDA s s follows: S w = S b = opt = rg mx T S b T S w, (1) (µ (k) µ)(µ (k) µ) T, (2) ( lk =1 (x (k) µ (k) )(x (k) µ (k) ) T ), (3) where µ s the totl smple men vector, s the number of smples n the k-th clss, µ (k) s the verge vector of the k- th clss, nd x (k) s the -thsmplenthek-th clss. We cll S w the wthn-clss sctter mtrx nd S b the between-clss sctter mtrx. Defne the totl sctter mtrx S t = l =1 (x µ)(x µ) T,wehveS t = S b + S w [9]. The objectve functon of LDA n Eqn. (1) s equvlent to opt = rg mx T S b T S t. (4) The optml s re the egenvectors correspondng to the non-zero egenvlue of egen-problem: S b = λs t. (5) Snce the rnk of S b s bounded by c 1, there re t most c 1 egenvectors correspondng to non-zero egenvlues [9]. Wthout loss of generlty, we ssume µ = 0 1.Wehve S b = = = (µ (k) )(µ (k) ) T ( 1 =1 x (k) )( 1 X (k) W (k) (X (k) ) T =1 x (k) ) T where W (k) s mtrx wth ll the elements equl to 1/ nd X (k) =[x (k) 1,, x(k) ] denote the dt mtrx of k-th clss. Let the dt mtrx X =[X (1),,X (c) ] nd defne l l mtrx W l l s: We hve W (1) W (2) 0 W l l = W (c) S b = (6) X (k) W (k) (X (k) ) T = XW l l X T. (7) Thus, the objectve functon of LDA n Eqn. (4) cn be rewrtten s opt = rg mx T S b T = rg mx S t T XW l l X T T XX T. (8) Ths formulton of LDA objectve functon wll be very helpful n developng our lgorthm. It s frst ntroduced n [14]. 3. Sem-supervsed Dscrmnnt Anlyss LDA consders seekng the optml projectons purely on the trnng (lbeled) set. In relty, t s possble to cqure lrge set of unlbeled dt. In ths secton, we re tryng to extend LDA model to ncorporte the mnfold structure llustrted by unlbeled dt The Objectve Functon LDA ms to fnd projecton vector such tht the rto between T S b nd T S t s mxmzed. When there s no suffcent trnng smple, overfttng my hppen. A typcl wy to prevent overfttng s to mpose regulrzer 1 Ths cn be cheved by centerng the dt,.e., subtrct the men vector from ll the smple vectors.

3 [11]. The optmzton problem of the regulrzed verson of LDA cn be wrtten s follows: mx T S b T S t + αj() where J() controls the lernng complexty of the hypothess fmly, nd the coeffcent α controls blnce between the model complexty nd the emprcl loss. One of the most populr regulrzers s the Tkhonov regulrzer [21]: J() = 2. LDA model wth Tkhonov regulrzer s usully referred s Regulrzed Dscrmnnt Anlyss (RDA) [8]. The regulrzer term J() provdes us the flexblty to ncorporte our pror knowledge on some prtculr pplctons. When set of unlbeled exmples vlble, we m to construct J() ncorportng the mnfold structure. The key to sem-supervsed lernng lgorthm s the pror ssumpton of consstency. For clssfcton, t mens nerby ponts re lkely to hve the sme lbel [26]. For dmensonlty reducton, t cn be nterpreted s nerby ponts wll hve smlr embeddngs (low-dmensonl representtons). Gven set of exmples {x } m =1, we cn use p-nerest neghbor grph G to model the reltonshp between nerby dt ponts. Specfclly, we put n edge between nodes nd j f x nd x j re close,.e., x nd x j re mong p nerest neghbors of ech other. Let the correspondng weght mtrx be S, defned by { 1, f x N S j = p (x j ) or x j N p (x ) (10) 0, otherwse. where N p (x ) denotes the set of p nerest neghbors of x. In generl, the mppng functon should be s smooth s possble on the grph. Specfclly, f two dt ponts re lnked by n edge, they re lkely to be n the sme clss. Moreover, the dt ponts lyng on densely lnked subgrph re lkely to hve the sme lbel. Thus, nturl regulrzer cn be defned s follows: J() = ( T x T ) 2 x j Sj (11) j Ths formulton s motvted from spectrl dmensonlty reducton [2, 13], whch lso plys key role n spectrl clusterng [17] nd vrous knds of grph bsed semsupervsed lernng lgorthms [3, 6, 20]. Let X =[x 1, x 2,, x m ].Wehve J() = ( T x T x j ) 2 S j j = 2 T x D x T 2 j = 2 T X(D S)X T = 2 T XLX T T x S j x T j (9) where D s dgonl mtrx; ts entres re column (or row, snce S s symmetrc) sum of S, D =Σ j S j. L = D S s the Lplcn mtrx [7]. Wth ths dt dependent regulrzer, we get the objectve functon of our sem-supervsed dscrmnnt nlyss: mx T S b T ( S t + αxlx T ). (12) The projectve vector tht mxmzes the objectve functon s gven by the mxmum egenvlue soluton to the generlzed egenvlue problem: 3.2. The Algorthm S b = λ(s t + αxlx T ) (13) Gven lbeled set {(x,y )} l =1 belongng to c clsses nd n unlbeled set {x } m =l+1.thek-th clss hve smples, c = l. Wthout loss of generlty, we ssume tht the dt ponts n {x 1,, x l } re ordered ccordng to ther lbels. The lgorthmc procedure of sem-supervsed dscrmnnt nlyss s stted below: 1. Construct the djcency grph: Construct the p- nerest neghbors grph mtrx S s n Eqn. (10) nd clculte the grph Lplcn L = D S. 2. Construct the lbeled grph: Construct the weght mtrx W R m m for lbeled grph s [ ] Wl l 0 W = 0 0 where W l l R l l s defned n Eqn. (6). Defne [ ] I 0 Ĩ = 0 0 where I s n dentty mtrx of sze l l. 3. Egen-problem: Compute the egenvectors wth respect to the non-zero egenvlues for the generlzed egenvector problem: XWX T = λx(ĩ + αl)xt, (14) where X =[x 1,, x l, x l+1,, x m ]. It s esy to check tht W s of rnk c nd we wll hve c egenvectors wth respect to non-zero egenvlues 2 [10]. We denote them s 1,, c. 4. SDA Embeddng: Let A =[ 1, 2,, c ], A s n c trnsformton mtrx. The smples cn be embedded nto c dmensonl subspce by x z = A T x 2 We consder the cse tht the number of fetures n>c.

4 Let X l =[x 1,, x l ] be the lbeled dt mtrx. It s esy to check tht XWX T = X l W l l X T l = S b nd XĨXT = X l Xl T = S t. Thus, the egen-problem n Eqn. (14) s sme s the egenproblem n Eqn. (13). To get stble soluton of the egen-problem n Eqn. (14), the mtrx X(Ĩ + αl)xt s requred to be nonsngulr [10] whch s not true when the number of fetures s lrger thn the number of smples. In ths cse, we cn pply the Tkhonov regulrzton de s the wy n regulrzed dscrmnnt nlyss [8]. Thus, our generlzed egen-problem becomes: ( ) XWX T = λ X(Ĩ + αl)xt + βi (15) For β>0, the mtrx X(Ĩ +αl)xt +βi s certnly nonsngulr. We cn lso use the spectrl regresson technque to solve ths sngulrty problem, plese see [5] for detls Kernel SDA The lgorthm descrbed bove s lner method. It my fl to dscover the ntrnsc geometry when the dt mnfold s hghly nonlner. In ths subsecton, we dscuss how to perform SDA n Reproducng Kernel Hlbert Spce (RKHS), whch gves rse to kernel SDA. The pproch used here s essentlly smlr to [13]. We consder the problem n feture spce F nduced by some nonlner mppng φ : R n F For proper chosen φ, n nner product, cn be defned on F whch mkes for so-clled reproducng kernel Hlbert spce (RKHS). More specfclly, φ(x),φ(y) = K(x, y) holds where K(.,.) s postve sem-defnte kernel functon. Severl populr kernel functons re: Gussn kernel K(x, y) = exp( x y 2 /σ 2 ); polynomernel K(x, y) = (1 + x, y ) d ; Sgmod kernel K(x, y) = tnh( x, y + α). Gven set of vectors {v F =1, 2,,d} whch re orthonorml ( v, v j = δ,j ), the projecton of φ(x ) F to these v 1,, v d leds to mppng from R n to Euclden spce R d through y = ( v 1,φ(x ), v 2,φ(x ),, v d,φ(x ) ) T We look for such {v F = 1, 2,,d} tht helps {y =1,,m} preserve locl geometrcl nd dscrmnnt structure of the dt mnfold. Let Φ denote the dt mtrx n RKHS: Φ=[φ(x 1 ),φ(x 2 ),,φ(x m )] Now, the egenvector problem of Eqn. (14) n RKHS cn be wrtten s follows: ΦW Φ T v = λφ ( Ĩ + αl ) Φ T v (16) Becuse the egenvector of (16) re lner combntons of φ(x 1 ),φ(x 2 ),,φ(x m ), there exst coeffcents α, = 1, 2,, msuch tht v = m α φ(x )=Φα =1 where α =(α 1,α 2,,α m ) T R m. Followng some lgebrc formultons, we get: ΦW Φ T v = λφ ( Ĩ + αl ) Φ T v ΦW Φ T Φα = λφ ( Ĩ + αl ) Φ T Φα Φ T ΦW Φ T Φα = λφ T Φ ( Ĩ + αl ) Φ T Φα KWKα = λk ( Ĩ + αl ) Kα (17) where K s the kernel mtrx, K j = K(x, x j ). Let the column vectors α 1,α 2,,α c be the egenvectors wth respect to the non-zero egenvlues of egen-problem n Eqn. (17) nd the m c trnsformton mtrx Θ=[α 1,,α c ]. A dt pont cn be embedded nto c dmensonl subspce by x z =Θ T K(:, x) (18) where K(:, x) =[K(x. 1, x),, K(x m, x)] T 4. Expermentl Results In ths secton, severl experments re performed to test our lgorthm. We choose two scenros n whch semsupervsed lernng s nturl nd necessry. They re sngle trnng mge fce recognton [4] nd relevnce feedbck mge retrevl [18]. Mny of proposed grph bsed sem-supervsed lernng lgorthms [26, 27] cn only work on trnsductve settng. Tht s, both the trnng nd test set (wthout lbel nformton) re vlble durng the lernng process. In relty (e.g., fce recognton), more nturl settng for sem-supervsed lernng s s follows. The vlble trnng set contns both lbeled nd unlbeled exmples, nd the testng set s not vlble durng the trnng phrse, whch we refer here s sem-supervsed settng. Toths end, mnfold regulrzton [3, 20] s one of the most successful pproches tht ddress both two settngs. Mnfold regulrzton extends mny of the exstng nductve lgorthms (e.g., SVM, Regresson) to sem-supervsed lernng by ddng geometrclly bsed regulrzton term.

5 Fgure 1. Smple fce mges from the CMU PIE fce dtbse. For ech subject, there re 43 fce mges under dfferent llumnton wth fxed pose nd expresson. The SDA lgorthm essentlly shres the smlr de whle focuses on dmensonlty reducton. In the SDA subspce, ny ordnry clssfer cn then be used. In our experments, we smply choose the nerest centrod method Sngle Trnng Imge Fce Recognton One of the most successful nd well-studed technques to fce recognton s the ppernce-bsed method [22]. Prevous works hve demonstrted tht the fce recognton performnce cn be mproved sgnfcntly n lower dmensonl lner subspces [1, 14, 22]. Two of the most populr ppernce-bsed methods nclude Egenfce [22] (bsed on PCA) nd Fsherfce [1] (bsed on LDA). In generl, fce ppernce does not depend solely on dentty. It s lso nfluenced by llumnton nd vewpont. Chnges n pose nd llumnton wll cuse lrge chnges n the ppernce of fce. Thus, ppernce-bsed methods need number of trnng mges for ech subject, n order to cope wth pose nd llumnton vrbltes. One of the clsscl chllenges n fce recognton s recognton from sngle trnng mge [4]. In ths settng, the ordnry ppernce-bsed methods (e.g., Egenfce nd Fsherfce) tend to fl. Actully, wth sngle trnng smple per clss, t s esy to check tht the between-clss sctter mtrx wll be sme s the totl sctter mtrx. Thus, LDA cn not be ppled. Recent studes show tht the fce mges re smpled from nonlner low-dmensonl mnfold whch s embedded n the hgh-dmensonl mbent spce [14]. If we hve lrge set of unlbeled fce mges (whch s possble due to the fst growth of dgtl photogrphy ndustry), the ntrnsc mge mnfold cn stll be estmted even wth sngle lbeled fce mge per subject. In ths experment, we test our SDA lgorthm n ths sngle trnng mge fce recognton settng. The CMU PIE fce dtbse [19] s used n ths experment. It contns 68 subjects wth 41,368 fce mges s whole. The fce mges were cptured under vryng pose, llumnton nd expresson. In ths experment, we choose the frontl pose (C27) wth vryng lghtng nd llumnton whch leves us 43 mges per subject. The sze of ech cropped fce mge s pxels, wth 256 grey levels per pxel. Fgure 1 shows some smple mges for certn subject. For ech subject, 30 mges re rndomly selected s the trnng set. Among these 30 mges, 1 m- Tble 1. Recognton error rtes on PIE (men±std-dev%) Unlbeled error Test error Bselne 74.7± ±1.6 Egenfce (PCA) [22] 74.7± ±1.6 Lplcnfce (LPP) [14] 43.9± ±2.4 Consstency [26] 48.0±1.8 LpSVM [3] 43.5± ±2.6 LpRLS [3] 42.5± ±2.6 SDA 41.0± ±2.7 ge s rndomly selected nd lbeled whch leves other 29 mges unlbeled. We verge the results over 20 rndom splt. Tble 1 shows the performnce comprson of dfferent lgorthms. The Bselne pproch s smply the nerest neghbor clssfcton on the orgnl mge spce. For other pproches, ll the trnng mges (lbeled nd unlbeled) re used to lern ether subspce or clssfer. The nerest neghbor clssfer s then performed n the subspce 3. The Bselne nd Egenfce pproches do not consder the mnfold structure nd get very poor performnce due to the llumnton chnge. All the other sem-supervsed lernng pproches mke use of the mnfold structure nd cheved sgnfcnt mprovements. Prtculrly, our SDA method cheved the best performnce mong ll the compred lgorthms Relevnce Feedbck Imge Retrevl Relevnce feedbck s well estblshed nd effectve frmework for nrrowng down the gp between low-level vsul fetures nd hgh-level semntc concepts n Content- Bsed Imge Retrevl (CBIR) [18]. Due to the lmtton of the user s feedbcks nd the hgh dmensonlty of the feture spce, one hopes to fnd subspce wth certn dmensonlty reducton lgorthms. The semntc reltonshp between mges cn be better reveled n ths subspce. The relevnce feedbck settng s certnly semsupervsed settng, wth lrge number of unlbeled dt (mges n the dtbse) nd smll number of lbeled dt (feedbcks provded by the user). Recently, there re consderble nterests on developng sem-supervsed dmensonlty reducton lgorthms for CBIR. Some populr ones nclude ncrementl Locl- 3 Snce we hve only one lbeled smple per clss, nerest neghbor clssfer nd the nerest centrod method re the sme.

6 Precson Bselne LPP ARE SSP SDA Precson Bselne LPP ARE SSP SDA Precson Bselne LPP ARE SSP SDA Scope Scope Scope () Feedbck Iterton 1 (b) Feedbck Iterton 2 (c) Feedbck Iterton 4 (d) (e) (f) Fgure 2. Compre the retrevl performnce of dfferent lgorthms. ()-(c) V llustrtng wth the precson-scope curves, we plot the results n the 1st, 2nd, nd 4th feedbck terton, respectvely. Our SDA lgorthm performs the best on the entre scope for ll the three feedbck tertons. (d) (f) Smple mges from ctegory 24, 25, nd 30, respectvely. ty Preservng Projecton (LPP) [12], Augmented Relton Embeddng (ARE) [15] nd Semntc Subspce Projecton (SSP) [25]. In ths experment, we compre our SDA wth these three lgorthms for relevnce feedbck mge retrevl Imge Dtbse nd Low Level Fetures The COREL dt set s wdely used n mny CBIR systems, such s [12, 15, 25]. For the ske of evlutons, we lso choose ths dt set for testng. 79 ctegores of color mges were selected, where ech conssts of 100 mges. Some smple mges re shown n Fgure 2. We combne 64-dmensonl color hstogrm nd 64- dmensonl Color Texture Moment (CTM, [24]) to represent the mges. The color hstogrm s clculted usng bns n HSV spce. The Color Texture Moment s proposed by Yu et l. [24], whch ntegrtes the color nd texture chrcterstcs of the mge n compct form. CTM dopts locl Fourer trnsform s texture representton scheme nd derves eght chrcterstc mps for descrbng dfferent spects of co-occurrence reltons of mge pxels n ech chnnel of the (SVcosH, SVsnH, V) color spce. Then CTM clcultes the frst nd second moment of these mps s representton of the nturl color mge pxel dstrbuton. Plese see [24] for detls Evluton Settngs To exhbt the dvntges of usng our pproch, we need relble wy of evlutng the retrevl performnce nd the comprsons wth other systems. Dfferent spects of the expermentl desgn re descrbed below. Evluton Metrcs: We use precson-scope curve [15] to evlute the effectveness of the mge retrevl lgorthms. The scope s specfed by the number (N) of top-rnked mges presented to the user. The precson s the rto of the number of relevnt mges presented to the user to the scope N. The precson-scope curve descrbes the precson wth vrous scopes nd thus gves n overll performnce evluton of the lgorthms. In rel mge retrevl system, query mge s usully not n the mge dtbse. To smulte such envronment, we use fve-fold cross vldton to evlute the lgorthms whch s lso dopted n the pper [15]. More precsely, we dvde the whole mge dtbse nto fve subsets wth equl sze. Thus, there re 20 mges per ctegory n ech subset. At ech run of cross vldton, one subset s selected s the query set, nd the other four subsets re used s the dtbse for retrevl. The precson-scope curve nd precson rte re computed by vergng the results from the fve-fold cross vldton. Automtc Relevnce Feedbck Scheme: We desgned n utomtc feedbck scheme to model the retrevl process. For ech submtted query, our system retreves nd rnks the mges n the dtbse. The top 10 rnked mges were selected s the feedbck mges, nd ther lbel nformton (relevnt or rrelevnt) s used for re-rnkng. Note tht, the mges whch hve been selected t prevous tertons re excluded from lter selectons. For ech query, the utomtc relevnce feedbck mechnsm s performed for four tertons. The smlr scheme ws used n [12], [15], [25].

7 4.2.3 Imge Retrevl Results In rel world, t s not prctcl to requre the user to provde mny rounds of feedbcks. The retrevl performnce fter the frst severl rounds of feedbcks s the most mportnt. Fgure 2 shows the verge precson-scope curves of the dfferent lgorthms for the 1st, 2nd nd 4th feedbck tertons. The bselne curve descrbes the ntl retrevl result wthout feedbck nformton. Specfclly, t the begnnng of retrevl, the Euclden dstnces n the orgnl 128-dmensonl spce re used to rnk the mges n the dtbse. After the user provdes relevnce feedbcks, the LPP, ARE, SSP, nd SDA lgorthms re then ppled to rernk the mges n the dtbse. Our SDA lgorthm sgnfcntly outperforms the other three lgorthms on the entre scope. ARE performs better thn the other two, especlly wth smll scope. All these four lgorthms re sgnfcntly better thn the bselne, whch ndctes tht the user provded relevnce feedbcks re very helpful for mprovng the retrevl performnce. 5. Concluson In ths pper, we propose new lner dmensonlty reducton lgorthm clled Sem-supervsed Dscrmnnt Anlyss. It cn mke effcent use of both lbeled nd unlbeled dt ponts. The lbeled dt ponts re used to mxmze the dscrmntng power, whle the unlbeled dt ponts re used to mxmze the loclty preservng power. Expermentl results on sngle trnng mge fce recognton nd relevnce feedbck mge retrevl demonstrte the effectveness of our lgorthm. References [1] P. N. Belhumeur, J. P. Hepnh, nd D. J. Kregmn. Egenfces vs. fsherfces: recognton usng clss specfc lner projecton. IEEE Trnsctons on Pttern Anlyss nd Mchne Intellgence, 19(7): , [2] M. Belkn nd P. Nyog. Lplcn egenmps nd spectrl technques for embeddng nd clusterng. In Advnces n Neurl Informton Processng Systems [3] M. Belkn, P. Nyog, nd V. Sndhwn. Mnfold regulrzton: A geometrc frmework for lernng from exmples. Journl of Mchne Lernng Reserch, [4] D. Beymer nd T. Poggo. Fce recognton from one exmple vew. In Proceedngs of the Ffth Interntonl Conference on Computer Vson (ICCV 95), [5] D. C, X. He, nd J. Hn. Spectrl regresson: A unfed subspce lernng frmework for content-bsed mge retrevl. In Proceedngs of the ACM Conference on Multmed, [6] O. Chpelle, J. Weston, nd B. Schölkopf. Cluster kernels for sem-supervsed lernng. In Advnces n Neurl Informton Processng Systems 16, [7] F. R. K. Chung. Spectrl Grph Theory, volume 92 of Regonl Conference Seres n Mthemtcs. AMS, [8] J. H. Fredmn. Regulrzed dscrmnnt nlyss. Journl of the Amercn Sttstcl Assocton, 84(405): , [9] K. Fukung. Introducton to Sttstcl Pttern Recognton. Acdemc Press, 2nd edton, [10] G. H. Golub nd C. F. V. Lon. Mtrx computtons. Johns Hopkns Unversty Press, 3rd edton, [11] T. Hste, R. Tbshrn, nd J. Fredmn. The Elements of Sttstcl Lernng: Dt Mnng, Inference, nd Predcton. New York: Sprnger-Verlg, [12] X. He. Incrementl sem-supervsed subspce lernng for mge retrevl. In Proceedngs of the ACM Conference on Multmed, New York, October [13] X. He nd P. Nyog. Loclty preservng projectons. In Advnces n Neurl Informton Processng Systems 16. MIT Press, Cmbrdge, MA, [14] X. He, S. Yn, Y. Hu, P. Nyog, nd H.-J. Zhng. Fce recognton usng lplcnfces. IEEE Trnsctons on Pttern Anlyss nd Mchne Intellgence, 27(3): , [15] Y.-Y. Ln, T.-L. Lu, nd H.-T. Chen. Semntc mnfold lernng for mge retrevl. In Proceedngs of the ACM Conference on Multmed, Sngpore, November [16] K. V. Mrd, J. T. Kent, nd J. M. Bbby. Multvrte Anlyss. Acdemc Press, [17] A. Y. Ng, M. Jordn, nd Y. Wess. On spectrl clusterng: Anlyss nd n lgorthm. In Advnces n Neurl Informton Processng Systems 14, pges MIT Press, Cmbrdge, MA, [18] Y. Ru, T. S. Hung, M. Orteg, nd S. Mehrotr. Relevnce feedbck: A power tool for ntertve content-bsed mge retrevl. IEEE Trnsctons on Crcuts nd Systems for Vdeo Technology, 8(5), [19] T. Sm, S. Bker, nd M. Bst. The CMU pose, llumnlton, nd expresson dtbse. IEEE Trnsctons on PAMI, 25(12): , [20] V. Sndhwn, P. Nyog, nd M. Belkn. Beyond the pont cloud: from trnsductve to sem-supervsed lernng. In Proc Int. Conf. Mchne Lernng (ICML 05), [21] A. N. Tkhonov. Regulrzton of ncorrectly posed problems. Sovet Mth., (4), 1963 (Englsh Trnslton). [22] M. Turk nd A. Pentlnd. Egenfces for recognton. Journl of Cogntve Neuroscence, 3(1):71 86, [23] V. N. Vpnk. Sttstcl lernng theory. John Wley & Sons, [24] H. Yu, M. L, H.-J. Zhng, nd J. Feng. Color texture moments for content-bsed mge retrevl. In Interntonl Conference on Imge Processng, pges 24 28, [25] J. Yu nd Q. Tn. Lernng mge mnfolds by semntc subspce projecton. In Proceedngs of the ACM Conference on Multmed, Snt Brbr, October [26] D. Zhou, O. Bousquet, T. Ll, J. Weston, nd B. Schölkopf. Lernng wth locl nd globl consstency. In Advnces n Neurl Informton Processng Systems 16, [27] X. Zhu, Z. Ghhrmn, nd J. Lfferty. Sem-supervsed lernng usng gussn felds nd hrmonc functons. In Proc. of the twenteth Internton Conference on Mchne Lernng, 2003.

Principle Component Analysis

Principle Component Analysis Prncple Component Anlyss Jng Go SUNY Bufflo Why Dmensonlty Reducton? We hve too mny dmensons o reson bout or obtn nsghts from o vsulze oo much nose n the dt Need to reduce them to smller set of fctors

More information

Applied Statistics Qualifier Examination

Applied Statistics Qualifier Examination Appled Sttstcs Qulfer Exmnton Qul_june_8 Fll 8 Instructons: () The exmnton contns 4 Questons. You re to nswer 3 out of 4 of them. () You my use ny books nd clss notes tht you mght fnd helpful n solvng

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter.4 Newton-Rphson Method of Solvng Nonlner Equton After redng ths chpter, you should be ble to:. derve the Newton-Rphson method formul,. develop the lgorthm of the Newton-Rphson method,. use the Newton-Rphson

More information

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC Introducton Rnk One Updte And the Google Mtrx y Al Bernsten Sgnl Scence, LLC www.sgnlscence.net here re two dfferent wys to perform mtrx multplctons. he frst uses dot product formulton nd the second uses

More information

18.7 Artificial Neural Networks

18.7 Artificial Neural Networks 310 18.7 Artfcl Neurl Networks Neuroscence hs hypotheszed tht mentl ctvty conssts prmrly of electrochemcl ctvty n networks of brn cells clled neurons Ths led McCulloch nd Ptts to devse ther mthemtcl model

More information

Two Coefficients of the Dyson Product

Two Coefficients of the Dyson Product Two Coeffcents of the Dyson Product rxv:07.460v mth.co 7 Nov 007 Lun Lv, Guoce Xn, nd Yue Zhou 3,,3 Center for Combntorcs, LPMC TJKLC Nnk Unversty, Tnjn 30007, P.R. Chn lvlun@cfc.nnk.edu.cn gn@nnk.edu.cn

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter 0.04 Newton-Rphson Method o Solvng Nonlner Equton Ater redng ths chpter, you should be ble to:. derve the Newton-Rphson method ormul,. develop the lgorthm o the Newton-Rphson method,. use the Newton-Rphson

More information

Lecture 4: Piecewise Cubic Interpolation

Lecture 4: Piecewise Cubic Interpolation Lecture notes on Vrtonl nd Approxmte Methods n Appled Mthemtcs - A Perce UBC Lecture 4: Pecewse Cubc Interpolton Compled 6 August 7 In ths lecture we consder pecewse cubc nterpolton n whch cubc polynoml

More information

Machine Learning Support Vector Machines SVM

Machine Learning Support Vector Machines SVM Mchne Lernng Support Vector Mchnes SVM Lesson 6 Dt Clssfcton problem rnng set:, D,,, : nput dt smple {,, K}: clss or lbel of nput rget: Construct functon f : X Y f, D Predcton of clss for n unknon nput

More information

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x)

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x) DCDM BUSINESS SCHOOL NUMEICAL METHODS (COS -8) Solutons to Assgnment Queston Consder the followng dt: 5 f() 8 7 5 () Set up dfference tble through fourth dfferences. (b) Wht s the mnmum degree tht n nterpoltng

More information

Computing a complete histogram of an image in Log(n) steps and minimum expected memory requirements using hypercubes

Computing a complete histogram of an image in Log(n) steps and minimum expected memory requirements using hypercubes Computng complete hstogrm of n mge n Log(n) steps nd mnmum expected memory requrements usng hypercubes TAREK M. SOBH School of Engneerng, Unversty of Brdgeport, Connectcut, USA. Abstrct Ths work frst revews

More information

Dennis Bricker, 2001 Dept of Industrial Engineering The University of Iowa. MDP: Taxi page 1

Dennis Bricker, 2001 Dept of Industrial Engineering The University of Iowa. MDP: Taxi page 1 Denns Brcker, 2001 Dept of Industrl Engneerng The Unversty of Iow MDP: Tx pge 1 A tx serves three djcent towns: A, B, nd C. Ech tme the tx dschrges pssenger, the drver must choose from three possble ctons:

More information

An Introduction to Support Vector Machines

An Introduction to Support Vector Machines An Introducton to Support Vector Mchnes Wht s good Decson Boundry? Consder two-clss, lnerly seprble clssfcton problem Clss How to fnd the lne (or hyperplne n n-dmensons, n>)? Any de? Clss Per Lug Mrtell

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 9

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 9 CS434/541: Pttern Recognton Prof. Olg Veksler Lecture 9 Announcements Fnl project proposl due Nov. 1 1-2 prgrph descrpton Lte Penlt: s 1 pont off for ech d lte Assgnment 3 due November 10 Dt for fnl project

More information

Review of linear algebra. Nuno Vasconcelos UCSD

Review of linear algebra. Nuno Vasconcelos UCSD Revew of lner lgebr Nuno Vsconcelos UCSD Vector spces Defnton: vector spce s set H where ddton nd sclr multplcton re defned nd stsf: ) +( + ) (+ )+ 5) λ H 2) + + H 6) 3) H, + 7) λ(λ ) (λλ ) 4) H, - + 8)

More information

Definition of Tracking

Definition of Tracking Trckng Defnton of Trckng Trckng: Generte some conclusons bout the moton of the scene, objects, or the cmer, gven sequence of mges. Knowng ths moton, predct where thngs re gong to project n the net mge,

More information

4. Eccentric axial loading, cross-section core

4. Eccentric axial loading, cross-section core . Eccentrc xl lodng, cross-secton core Introducton We re strtng to consder more generl cse when the xl force nd bxl bendng ct smultneousl n the cross-secton of the br. B vrtue of Snt-Vennt s prncple we

More information

International Journal of Pure and Applied Sciences and Technology

International Journal of Pure and Applied Sciences and Technology Int. J. Pure Appl. Sc. Technol., () (), pp. 44-49 Interntonl Journl of Pure nd Appled Scences nd Technolog ISSN 9-67 Avlle onlne t www.jopst.n Reserch Pper Numercl Soluton for Non-Lner Fredholm Integrl

More information

Variable time amplitude amplification and quantum algorithms for linear algebra. Andris Ambainis University of Latvia

Variable time amplitude amplification and quantum algorithms for linear algebra. Andris Ambainis University of Latvia Vrble tme mpltude mplfcton nd quntum lgorthms for lner lgebr Andrs Ambns Unversty of Ltv Tlk outlne. ew verson of mpltude mplfcton;. Quntum lgorthm for testng f A s sngulr; 3. Quntum lgorthm for solvng

More information

Introduction to Numerical Integration Part II

Introduction to Numerical Integration Part II Introducton to umercl Integrton Prt II CS 75/Mth 75 Brn T. Smth, UM, CS Dept. Sprng, 998 4/9/998 qud_ Intro to Gussn Qudrture s eore, the generl tretment chnges the ntegrton prolem to ndng the ntegrl w

More information

LOCAL FRACTIONAL LAPLACE SERIES EXPANSION METHOD FOR DIFFUSION EQUATION ARISING IN FRACTAL HEAT TRANSFER

LOCAL FRACTIONAL LAPLACE SERIES EXPANSION METHOD FOR DIFFUSION EQUATION ARISING IN FRACTAL HEAT TRANSFER Yn, S.-P.: Locl Frctonl Lplce Seres Expnson Method for Dffuson THERMAL SCIENCE, Yer 25, Vol. 9, Suppl., pp. S3-S35 S3 LOCAL FRACTIONAL LAPLACE SERIES EXPANSION METHOD FOR DIFFUSION EQUATION ARISING IN

More information

A Family of Multivariate Abel Series Distributions. of Order k

A Family of Multivariate Abel Series Distributions. of Order k Appled Mthemtcl Scences, Vol. 2, 2008, no. 45, 2239-2246 A Fmly of Multvrte Abel Seres Dstrbutons of Order k Rupk Gupt & Kshore K. Ds 2 Fculty of Scence & Technology, The Icf Unversty, Agrtl, Trpur, Ind

More information

523 P a g e. is measured through p. should be slower for lesser values of p and faster for greater values of p. If we set p*

523 P a g e. is measured through p. should be slower for lesser values of p and faster for greater values of p. If we set p* R. Smpth Kumr, R. Kruthk, R. Rdhkrshnn / Interntonl Journl of Engneerng Reserch nd Applctons (IJERA) ISSN: 48-96 www.jer.com Vol., Issue 4, July-August 0, pp.5-58 Constructon Of Mxed Smplng Plns Indexed

More information

Katholieke Universiteit Leuven Department of Computer Science

Katholieke Universiteit Leuven Department of Computer Science Updte Rules for Weghted Non-negtve FH*G Fctorzton Peter Peers Phlp Dutré Report CW 440, Aprl 006 Ktholeke Unverstet Leuven Deprtment of Computer Scence Celestjnenln 00A B-3001 Heverlee (Belgum) Updte Rules

More information

Model Fitting and Robust Regression Methods

Model Fitting and Robust Regression Methods Dertment o Comuter Engneerng Unverst o Clorn t Snt Cruz Model Fttng nd Robust Regresson Methods CMPE 64: Imge Anlss nd Comuter Vson H o Fttng lnes nd ellses to mge dt Dertment o Comuter Engneerng Unverst

More information

Statistics and Probability Letters

Statistics and Probability Letters Sttstcs nd Probblty Letters 79 (2009) 105 111 Contents lsts vlble t ScenceDrect Sttstcs nd Probblty Letters journl homepge: www.elsever.com/locte/stpro Lmtng behvour of movng verge processes under ϕ-mxng

More information

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism CS294-40 Lernng for Rootcs nd Control Lecture 10-9/30/2008 Lecturer: Peter Aeel Prtlly Oservle Systems Scre: Dvd Nchum Lecture outlne POMDP formlsm Pont-sed vlue terton Glol methods: polytree, enumerton,

More information

Attribute reduction theory and approach to concept lattice

Attribute reduction theory and approach to concept lattice Scence n Chn Ser F Informton Scences 2005 Vol48 No6 713 726 713 Attrbute reducton theory nd pproch to concept lttce ZHANG Wenxu 1, WEI Lng 1,2 & QI Jnun 3 1 Insttute for Informton nd System Scences, Fculty

More information

Semi-supervised Classification with Active Query Selection

Semi-supervised Classification with Active Query Selection Sem-supervsed Classfcaton wth Actve Query Selecton Jao Wang and Swe Luo School of Computer and Informaton Technology, Beng Jaotong Unversty, Beng 00044, Chna Wangjao088@63.com Abstract. Labeled samples

More information

Quiz: Experimental Physics Lab-I

Quiz: Experimental Physics Lab-I Mxmum Mrks: 18 Totl tme llowed: 35 mn Quz: Expermentl Physcs Lb-I Nme: Roll no: Attempt ll questons. 1. In n experment, bll of mss 100 g s dropped from heght of 65 cm nto the snd contner, the mpct s clled

More information

Non-Linear Data for Neural Networks Training and Testing

Non-Linear Data for Neural Networks Training and Testing Proceedngs of the 4th WSEAS Int Conf on Informton Securty, Communctons nd Computers, Tenerfe, Spn, December 6-8, 005 (pp466-47) Non-Lner Dt for Neurl Networks Trnng nd Testng ABDEL LATIF ABU-DALHOUM MOHAMMED

More information

A Regression-Based Approach for Scaling-Up Personalized Recommender Systems in E-Commerce

A Regression-Based Approach for Scaling-Up Personalized Recommender Systems in E-Commerce A Regresson-Bsed Approch for Sclng-Up Personlzed Recommender Systems n E-Commerce Slobodn Vucetc 1 nd Zorn Obrdovc 1, svucetc@eecs.wsu.edu, zorn@cs.temple.edu 1 Electrcl Engneerng nd Computer Scence, Wshngton

More information

Multiple view geometry

Multiple view geometry EECS 442 Computer vson Multple vew geometry Perspectve Structure from Moton - Perspectve structure from moton prolem - mgutes - lgerc methods - Fctorzton methods - Bundle djustment - Self-clrton Redng:

More information

A Tri-Valued Belief Network Model for Information Retrieval

A Tri-Valued Belief Network Model for Information Retrieval December 200 A Tr-Vlued Belef Networ Model for Informton Retrevl Fernndo Ds-Neves Computer Scence Dept. Vrgn Polytechnc Insttute nd Stte Unversty Blcsburg, VA 24060. IR models t Combnng Evdence Grphcl

More information

Remember: Project Proposals are due April 11.

Remember: Project Proposals are due April 11. Bonformtcs ecture Notes Announcements Remember: Project Proposls re due Aprl. Clss 22 Aprl 4, 2002 A. Hdden Mrov Models. Defntons Emple - Consder the emple we tled bout n clss lst tme wth the cons. However,

More information

Research Article On the Upper Bounds of Eigenvalues for a Class of Systems of Ordinary Differential Equations with Higher Order

Research Article On the Upper Bounds of Eigenvalues for a Class of Systems of Ordinary Differential Equations with Higher Order Hndw Publshng Corporton Interntonl Journl of Dfferentl Equtons Volume 0, Artcle ID 7703, pges do:055/0/7703 Reserch Artcle On the Upper Bounds of Egenvlues for Clss of Systems of Ordnry Dfferentl Equtons

More information

Math 497C Sep 17, Curves and Surfaces Fall 2004, PSU

Math 497C Sep 17, Curves and Surfaces Fall 2004, PSU Mth 497C Sep 17, 004 1 Curves nd Surfces Fll 004, PSU Lecture Notes 3 1.8 The generl defnton of curvture; Fox-Mlnor s Theorem Let α: [, b] R n be curve nd P = {t 0,...,t n } be prtton of [, b], then the

More information

Soft Set Theoretic Approach for Dimensionality Reduction 1

Soft Set Theoretic Approach for Dimensionality Reduction 1 Interntonl Journl of Dtbse Theory nd pplcton Vol No June 00 Soft Set Theoretc pproch for Dmensonlty Reducton Tutut Herwn Rozd Ghzl Mustf Mt Ders Deprtment of Mthemtcs Educton nversts hmd Dhln Yogykrt Indones

More information

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II Mcroeconomc Theory I UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS MSc n Economcs MICROECONOMIC THEORY I Techng: A Lptns (Note: The number of ndctes exercse s dffculty level) ()True or flse? If V( y )

More information

Transform Coding. C.M. Liu Perceptual Signal Processing Lab College of Computer Science National Chiao-Tung University

Transform Coding. C.M. Liu Perceptual Signal Processing Lab College of Computer Science National Chiao-Tung University Trnsform Codng C.M. Lu Perceptul Sgnl Processng Lb College of Computer Scence Ntonl Cho-Tung Unversty http://www.cse.nctu.edu.tw/~cmlu/courses/compresson/ Offce: EC538 (03)573877 cmlu@cs.nctu.edu.tw Motvtng

More information

Quantum Codes from Generalized Reed-Solomon Codes and Matrix-Product Codes

Quantum Codes from Generalized Reed-Solomon Codes and Matrix-Product Codes 1 Quntum Codes from Generlzed Reed-Solomon Codes nd Mtrx-Product Codes To Zhng nd Gennn Ge Abstrct rxv:1508.00978v1 [cs.it] 5 Aug 015 One of the centrl tsks n quntum error-correcton s to construct quntum

More information

Sparse and Overcomplete Representation: Finding Statistical Orders in Natural Images

Sparse and Overcomplete Representation: Finding Statistical Orders in Natural Images Sprse nd Overcomplete Representton: Fndng Sttstcl Orders n Nturl Imges Amr Rez Sffr Azr Insttute for Theoretcl Computer Scence, Grz Unversty of Technology mr@g.tugrz.t Outlne Vsul Cortex. Sprse nd Overcomplete

More information

Group-based active query selection. for rapid diagnosis in time-critical situations

Group-based active query selection. for rapid diagnosis in time-critical situations Group-bsed ctve query selecton for rpd dgnoss n tme-crtcl stutons *Gowthm Belll, Student Member, IEEE, Suresh K. Bhvnn, nd Clyton Scott, Member, IEEE Abstrct In pplctons such s ctve lernng or dsese/fult

More information

Reproducing Kernel Hilbert Space for. Penalized Regression Multi-Predictors: Case in Longitudinal Data

Reproducing Kernel Hilbert Space for. Penalized Regression Multi-Predictors: Case in Longitudinal Data Interntonl Journl of Mthemtcl Anlyss Vol. 8, 04, no. 40, 95-96 HIKARI Ltd, www.m-hkr.com http://dx.do.org/0.988/jm.04.47 Reproducng Kernel Hlbert Spce for Penlzed Regresson Mult-Predctors: Cse n Longudnl

More information

Tensor Subspace Analysis

Tensor Subspace Analysis Tensor Subspace Analyss Xaofe He 1 Deng Ca Partha Nyog 1 1 Department of Computer Scence, Unversty of Chcago {xaofe, nyog}@cs.uchcago.edu Department of Computer Scence, Unversty of Illnos at Urbana-Champagn

More information

GAUSS ELIMINATION. Consider the following system of algebraic linear equations

GAUSS ELIMINATION. Consider the following system of algebraic linear equations Numercl Anlyss for Engneers Germn Jordnn Unversty GAUSS ELIMINATION Consder the followng system of lgebrc lner equtons To solve the bove system usng clsscl methods, equton () s subtrcted from equton ()

More information

The Schur-Cohn Algorithm

The Schur-Cohn Algorithm Modelng, Estmton nd Otml Flterng n Sgnl Processng Mohmed Njm Coyrght 8, ISTE Ltd. Aendx F The Schur-Cohn Algorthm In ths endx, our m s to resent the Schur-Cohn lgorthm [] whch s often used s crteron for

More information

Sequences of Intuitionistic Fuzzy Soft G-Modules

Sequences of Intuitionistic Fuzzy Soft G-Modules Interntonl Mthemtcl Forum, Vol 13, 2018, no 12, 537-546 HIKARI Ltd, wwwm-hkrcom https://doorg/1012988/mf201881058 Sequences of Intutonstc Fuzzy Soft G-Modules Velyev Kemle nd Huseynov Afq Bku Stte Unversty,

More information

CALIBRATION OF SMALL AREA ESTIMATES IN BUSINESS SURVEYS

CALIBRATION OF SMALL AREA ESTIMATES IN BUSINESS SURVEYS CALIBRATION OF SMALL AREA ESTIMATES IN BUSINESS SURVES Rodolphe Prm, Ntle Shlomo Southmpton Sttstcl Scences Reserch Insttute Unverst of Southmpton Unted Kngdom SAE, August 20 The BLUE-ETS Project s fnnced

More information

Bi-level models for OD matrix estimation

Bi-level models for OD matrix estimation TNK084 Trffc Theory seres Vol.4, number. My 2008 B-level models for OD mtrx estmton Hn Zhng, Quyng Meng Abstrct- Ths pper ntroduces two types of O/D mtrx estmton model: ME2 nd Grdent. ME2 s mxmum-entropy

More information

Many-Body Calculations of the Isotope Shift

Many-Body Calculations of the Isotope Shift Mny-Body Clcultons of the Isotope Shft W. R. Johnson Mrch 11, 1 1 Introducton Atomc energy levels re commonly evluted ssumng tht the nucler mss s nfnte. In ths report, we consder correctons to tomc levels

More information

INTRODUCTION TO COMPLEX NUMBERS

INTRODUCTION TO COMPLEX NUMBERS INTRODUCTION TO COMPLEX NUMBERS The numers -4, -3, -, -1, 0, 1,, 3, 4 represent the negtve nd postve rel numers termed ntegers. As one frst lerns n mddle school they cn e thought of s unt dstnce spced

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

Online Appendix to. Mandating Behavioral Conformity in Social Groups with Conformist Members

Online Appendix to. Mandating Behavioral Conformity in Social Groups with Conformist Members Onlne Appendx to Mndtng Behvorl Conformty n Socl Groups wth Conformst Members Peter Grzl Andrze Bnk (Correspondng uthor) Deprtment of Economcs, The Wllms School, Wshngton nd Lee Unversty, Lexngton, 4450

More information

6 Roots of Equations: Open Methods

6 Roots of Equations: Open Methods HK Km Slghtly modfed 3//9, /8/6 Frstly wrtten t Mrch 5 6 Roots of Equtons: Open Methods Smple Fed-Pont Iterton Newton-Rphson Secnt Methods MATLAB Functon: fzero Polynomls Cse Study: Ppe Frcton Brcketng

More information

Statistics 423 Midterm Examination Winter 2009

Statistics 423 Midterm Examination Winter 2009 Sttstcs 43 Mdterm Exmnton Wnter 009 Nme: e-ml: 1. Plese prnt your nme nd e-ml ddress n the bove spces.. Do not turn ths pge untl nstructed to do so. 3. Ths s closed book exmnton. You my hve your hnd clcultor

More information

Nonnegative Shared Subspace Learning and Its Application to Social Media Retrieval

Nonnegative Shared Subspace Learning and Its Application to Social Media Retrieval Nonnegtve Shred Subspce Lernng nd Its Applcton to Socl Med Retrevl Sunl Kumr Gupt, Dnh Phung, Brett Adms, ruyen rn nd Sveth Venktesh Deprtment of Computng Curtn Unversty of echnology Perth, Western Austrl

More information

Announcements. Image Formation: Outline. The course. Image Formation and Cameras (cont.)

Announcements. Image Formation: Outline. The course. Image Formation and Cameras (cont.) nnouncements Imge Formton nd Cmers (cont.) ssgnment : Cmer & Lenses, gd Trnsformtons, nd Homogrph wll be posted lter tod. CSE 5 Lecture 5 CS5, Fll CS5, Fll CS5, Fll The course rt : The phscs of mgng rt

More information

LAPLACE TRANSFORM SOLUTION OF THE PROBLEM OF TIME-FRACTIONAL HEAT CONDUCTION IN A TWO-LAYERED SLAB

LAPLACE TRANSFORM SOLUTION OF THE PROBLEM OF TIME-FRACTIONAL HEAT CONDUCTION IN A TWO-LAYERED SLAB Journl of Appled Mthemtcs nd Computtonl Mechncs 5, 4(4), 5-3 www.mcm.pcz.pl p-issn 99-9965 DOI:.75/jmcm.5.4. e-issn 353-588 LAPLACE TRANSFORM SOLUTION OF THE PROBLEM OF TIME-FRACTIONAL HEAT CONDUCTION

More information

Frequency scaling simulation of Chua s circuit by automatic determination and control of step-size

Frequency scaling simulation of Chua s circuit by automatic determination and control of step-size Avlle onlne t www.scencedrect.com Appled Mthemtcs nd Computton 94 (7) 486 49 www.elsever.com/locte/mc Frequency sclng smulton of Chu s crcut y utomtc determnton nd control of step-sze E. Tlelo-Cuutle *,

More information

Machine Learning. Support Vector Machines. Le Song. CSE6740/CS7641/ISYE6740, Fall Lecture 8, Sept. 13, 2012 Based on slides from Eric Xing, CMU

Machine Learning. Support Vector Machines. Le Song. CSE6740/CS7641/ISYE6740, Fall Lecture 8, Sept. 13, 2012 Based on slides from Eric Xing, CMU Mchne Lernng CSE6740/CS764/ISYE6740 Fll 0 Support Vector Mchnes Le Song Lecture 8 Sept. 3 0 Bsed on sldes fro Erc Xng CMU Redng: Chp. 6&7 C.B ook Outlne Mu rgn clssfcton Constrned optzton Lgrngn dult Kernel

More information

Decomposition of Boolean Function Sets for Boolean Neural Networks

Decomposition of Boolean Function Sets for Boolean Neural Networks Decomposton of Boolen Functon Sets for Boolen Neurl Netorks Romn Kohut,, Bernd Stenbch Freberg Unverst of Mnng nd Technolog Insttute of Computer Scence Freberg (Schs), Germn Outlne Introducton Boolen Neuron

More information

Proof that if Voting is Perfect in One Dimension, then the First. Eigenvector Extracted from the Double-Centered Transformed

Proof that if Voting is Perfect in One Dimension, then the First. Eigenvector Extracted from the Double-Centered Transformed Proof tht f Votng s Perfect n One Dmenson, then the Frst Egenvector Extrcted from the Doule-Centered Trnsformed Agreement Score Mtrx hs the Sme Rn Orderng s the True Dt Keth T Poole Unversty of Houston

More information

The Number of Rows which Equal Certain Row

The Number of Rows which Equal Certain Row Interntonl Journl of Algebr, Vol 5, 011, no 30, 1481-1488 he Number of Rows whch Equl Certn Row Ahmd Hbl Deprtment of mthemtcs Fcult of Scences Dmscus unverst Dmscus, Sr hblhmd1@gmlcom Abstrct Let be X

More information

THE COMBINED SHEPARD ABEL GONCHAROV UNIVARIATE OPERATOR

THE COMBINED SHEPARD ABEL GONCHAROV UNIVARIATE OPERATOR REVUE D ANALYSE NUMÉRIQUE ET DE THÉORIE DE L APPROXIMATION Tome 32, N o 1, 2003, pp 11 20 THE COMBINED SHEPARD ABEL GONCHAROV UNIVARIATE OPERATOR TEODORA CĂTINAŞ Abstrct We extend the Sheprd opertor by

More information

NOTE AN INEQUALITY FOR KRUSKAL-MACAULAY FUNCTIONS

NOTE AN INEQUALITY FOR KRUSKAL-MACAULAY FUNCTIONS NOTE AN INEQUALITY FOR KRUSKAL-MACAULAY FUNCTIONS BERNARDO M. ÁBREGO, SILVIA FERNÁNDEZ-MERCHANT, AND BERNARDO LLANO Abstrct. Gven ntegers nd n, there s unque wy of wrtng n s n = n n... n so tht n <

More information

Study of Trapezoidal Fuzzy Linear System of Equations S. M. Bargir 1, *, M. S. Bapat 2, J. D. Yadav 3 1

Study of Trapezoidal Fuzzy Linear System of Equations S. M. Bargir 1, *, M. S. Bapat 2, J. D. Yadav 3 1 mercn Interntonl Journl of Reserch n cence Technology Engneerng & Mthemtcs vlble onlne t http://wwwsrnet IN (Prnt: 38-349 IN (Onlne: 38-3580 IN (CD-ROM: 38-369 IJRTEM s refereed ndexed peer-revewed multdscplnry

More information

Chapter 5 Supplemental Text Material R S T. ij i j ij ijk

Chapter 5 Supplemental Text Material R S T. ij i j ij ijk Chpter 5 Supplementl Text Mterl 5-. Expected Men Squres n the Two-fctor Fctorl Consder the two-fctor fxed effects model y = µ + τ + β + ( τβ) + ε k R S T =,,, =,,, k =,,, n gven s Equton (5-) n the textook.

More information

Accurate Instantaneous Frequency Estimation with Iterated Hilbert Transform and Its Application

Accurate Instantaneous Frequency Estimation with Iterated Hilbert Transform and Its Application Proceedngs of the 7th WSEAS Interntonl Conference on SIGAL PROCESSIG, ROBOTICS nd AUTOMATIO (ISPRA '8) Unversty of Cmbrdge, UK, Februry -, 8 Accurte Instntneous Frequency Estmton wth Iterted Hlbert Trnsform

More information

Linear Inferential Modeling: Theoretical Perspectives, Extensions, and Comparative Analysis

Linear Inferential Modeling: Theoretical Perspectives, Extensions, and Comparative Analysis Intellgent Control nd Automton, 2012, 3, 376-389 http://dx.do.org/10.4236/c.2012.34042 Publshed Onlne November 2012 (http://www.scrp.org/journl/c) Lner Inferentl Modelng: heoretcl Perspectves, Extensons,

More information

Analysis of Geometric, Zernike and United Moment Invariants Techniques Based on Intra-class Evaluation

Analysis of Geometric, Zernike and United Moment Invariants Techniques Based on Intra-class Evaluation 0 Ffth Interntonl Conference on Intellgent Systes, odellng nd Sulton Anlyss of Geoetrc, ernke nd Unted oent Invrnts Technques Bsed on Intr-clss Evluton ohd Wf srudn *, Shhrul z Ykob, Roze Rzf Othn, Iszdy

More information

In this Chapter. Chap. 3 Markov chains and hidden Markov models. Probabilistic Models. Example: CpG Islands

In this Chapter. Chap. 3 Markov chains and hidden Markov models. Probabilistic Models. Example: CpG Islands In ths Chpter Chp. 3 Mrov chns nd hdden Mrov models Bontellgence bortory School of Computer Sc. & Eng. Seoul Ntonl Unversty Seoul 5-74, Kore The probblstc model for sequence nlyss HMM (hdden Mrov model)

More information

Efficient, General Point Cloud Registration with Kernel Feature Maps

Efficient, General Point Cloud Registration with Kernel Feature Maps Effcent, General Pont Cloud Regstraton wth Kernel Feature Maps Hanchen Xong, Sandor Szedmak, Justus Pater Insttute of Computer Scence Unversty of Innsbruck 30 May 2013 Hanchen Xong (Un.Innsbruck) 3D Regstraton

More information

Online Stochastic Matching: New Algorithms with Better Bounds

Online Stochastic Matching: New Algorithms with Better Bounds Onlne Stochstc Mtchng: New Algorthms wth Better Bounds Ptrck Jllet Xn Lu My 202; revsed Jnury 203, June 203 Abstrct We consder vrnts of the onlne stochstc bprtte mtchng problem motvted by Internet dvertsng

More information

Online Learning Algorithms for Stochastic Water-Filling

Online Learning Algorithms for Stochastic Water-Filling Onlne Lernng Algorthms for Stochstc Wter-Fllng Y G nd Bhskr Krshnmchr Mng Hseh Deprtment of Electrcl Engneerng Unversty of Southern Clforn Los Angeles, CA 90089, USA Eml: {yg, bkrshn}@usc.edu Abstrct Wter-fllng

More information

Using Predictions in Online Optimization: Looking Forward with an Eye on the Past

Using Predictions in Online Optimization: Looking Forward with an Eye on the Past Usng Predctons n Onlne Optmzton: Lookng Forwrd wth n Eye on the Pst Nngjun Chen Jont work wth Joshu Comden, Zhenhu Lu, Anshul Gndh, nd Adm Wermn 1 Predctons re crucl for decson mkng 2 Predctons re crucl

More information

Research on prediction of transmembrane protein topology based on fuzzy theory

Research on prediction of transmembrane protein topology based on fuzzy theory Avlble onlne wwwjocprcom Journl of Chemcl nd Phrmceutcl Reserch, 013, 5(9):465-471 Reserch Artcle ISS : 0975-7384 CODE(USA) : JCPRC5 Reserch on predcton of trnsmembrne proten topology bsed on fuzzy theory

More information

Support vector machines for regression

Support vector machines for regression S 75 Mchne ernng ecture 5 Support vector mchnes for regresson Mos Huskrecht mos@cs.ptt.edu 539 Sennott Squre S 75 Mchne ernng he decson oundr: ˆ he decson: Support vector mchnes ˆ α SV ˆ sgn αˆ SV!!: Decson

More information

CONTEXTUAL MULTI-ARMED BANDIT ALGORITHMS FOR PERSONALIZED LEARNING ACTION SELECTION. Indu Manickam, Andrew S. Lan, and Richard G.

CONTEXTUAL MULTI-ARMED BANDIT ALGORITHMS FOR PERSONALIZED LEARNING ACTION SELECTION. Indu Manickam, Andrew S. Lan, and Richard G. CONTEXTUAL MULTI-ARMED BANDIT ALGORITHMS FOR PERSONALIZED LEARNING ACTION SELECTION Indu Mnckm, Andrew S. Ln, nd Rchrd G. Brnuk Rce Unversty ABSTRACT Optmzng the selecton of lernng resources nd prctce

More information

CSE 252C: Computer Vision III

CSE 252C: Computer Vision III CSE 252C: Computer Vson III Lecturer: Serge Belonge Scrbe: Catherne Wah LECTURE 15 Kernel Machnes 15.1. Kernels We wll study two methods based on a specal knd of functon k(x, y) called a kernel: Kernel

More information

Vol. 5, No. 5 May 2014 ISSN Journal of Emerging Trends in Computing and Information Sciences CIS Journal. All rights reserved.

Vol. 5, No. 5 May 2014 ISSN Journal of Emerging Trends in Computing and Information Sciences CIS Journal. All rights reserved. Vol. 5, No. 5 y 04 ISSN 079-8407 Jornl of Emergng Trends n Comptng nd Informton Scences 009-04 CIS Jornl. ll rghts reserved. http://www.csornl.org Notes on lt Soft trces D.Sngh, Onyeozl, I.., 3 lkl..j.,

More information

SVMs for regression Multilayer neural networks

SVMs for regression Multilayer neural networks Lecture SVMs for regresson Muter neur netors Mos Husrecht mos@cs.ptt.edu 539 Sennott Squre Support vector mchne SVM SVM mmze the mrgn round the seprtng hperpne. he decson functon s fu specfed suset of

More information

arxiv: v2 [cs.lg] 9 Nov 2017

arxiv: v2 [cs.lg] 9 Nov 2017 Renforcement Lernng under Model Msmtch Aurko Roy 1, Hun Xu 2, nd Sebstn Pokutt 2 rxv:1706.04711v2 cs.lg 9 Nov 2017 1 Google Eml: urkor@google.com 2 ISyE, Georg Insttute of Technology, Atlnt, GA, USA. Eml:

More information

CHI-SQUARE DIVERGENCE AND MINIMIZATION PROBLEM

CHI-SQUARE DIVERGENCE AND MINIMIZATION PROBLEM CHI-SQUARE DIVERGENCE AND MINIMIZATION PROBLEM PRANESH KUMAR AND INDER JEET TANEJA Abstrct The mnmum dcrmnton nformton prncple for the Kullbck-Lebler cross-entropy well known n the lterture In th pper

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

Audio De-noising Analysis Using Diagonal and Non-Diagonal Estimation Techniques

Audio De-noising Analysis Using Diagonal and Non-Diagonal Estimation Techniques Audo De-nosng Anlyss Usng Dgonl nd Non-Dgonl Estmton Technques Sugt R. Pwr 1, Vshl U. Gdero 2, nd Rhul N. Jdhv 3 1 AISSMS, IOIT, Pune, Ind Eml: sugtpwr@gml.com 2 Govt Polytechnque, Pune, Ind Eml: vshl.gdero@gml.com

More information

Linear and Nonlinear Optimization

Linear and Nonlinear Optimization Lner nd Nonlner Optmzton Ynyu Ye Deprtment of Mngement Scence nd Engneerng Stnford Unversty Stnford, CA 9430, U.S.A. http://www.stnford.edu/~yyye http://www.stnford.edu/clss/msnde/ Ynyu Ye, Stnford, MS&E

More information

Dynamic Power Management in a Mobile Multimedia System with Guaranteed Quality-of-Service

Dynamic Power Management in a Mobile Multimedia System with Guaranteed Quality-of-Service Dynmc Power Mngement n Moble Multmed System wth Gurnteed Qulty-of-Servce Qnru Qu, Qng Wu, nd Mssoud Pedrm Dept. of Electrcl Engneerng-Systems Unversty of Southern Clforn Los Angeles CA 90089 Outlne! Introducton

More information

CHAPTER - 7. Firefly Algorithm based Strategic Bidding to Maximize Profit of IPPs in Competitive Electricity Market

CHAPTER - 7. Firefly Algorithm based Strategic Bidding to Maximize Profit of IPPs in Competitive Electricity Market CHAPTER - 7 Frefly Algorthm sed Strtegc Bddng to Mxmze Proft of IPPs n Compettve Electrcty Mrket 7. Introducton The renovton of electrc power systems plys mjor role on economc nd relle operton of power

More information

SVMs for regression Non-parametric/instance based classification method

SVMs for regression Non-parametric/instance based classification method S 75 Mchne ernng ecture Mos Huskrecht mos@cs.ptt.edu 539 Sennott Squre SVMs for regresson Non-prmetrc/nstnce sed cssfcton method S 75 Mchne ernng Soft-mrgn SVM Aos some fet on crossng the seprtng hperpne

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

Let us look at a linear equation for a one-port network, for example some load with a reflection coefficient s, Figure L6.

Let us look at a linear equation for a one-port network, for example some load with a reflection coefficient s, Figure L6. ECEN 5004, prng 08 Actve Mcrowve Crcut Zoy Popovc, Unverty of Colordo, Boulder LECURE 5 IGNAL FLOW GRAPH FOR MICROWAVE CIRCUI ANALYI In mny text on mcrowve mplfer (e.g. the clc one by Gonzlez), gnl flow-grph

More information

Generalized Linear Methods

Generalized Linear Methods Generalzed Lnear Methods 1 Introducton In the Ensemble Methods the general dea s that usng a combnaton of several weak learner one could make a better learner. More formally, assume that we have a set

More information

Advanced Machine Learning. An Ising model on 2-D image

Advanced Machine Learning. An Ising model on 2-D image Advnced Mchne Lernng Vrtonl Inference Erc ng Lecture 12, August 12, 2009 Redng: Erc ng Erc ng @ CMU, 2006-2009 1 An Isng model on 2-D mge odes encode hdden nformton ptchdentty. They receve locl nformton

More information

Research on complex system evaluation based on fuzzy theory

Research on complex system evaluation based on fuzzy theory Avlble onlne www.jocpr.com Journl of Chemcl nd Phrmceutcl Reserch, 214, 67:2554-2559 Reserch Artcle ISSN : 975-7384 CODENUSA : JCPRC5 Reserch on complex system evluton bsed on fuzzy theory Yongqng Chen

More information

Identification of Robot Arm s Joints Time-Varying Stiffness Under Loads

Identification of Robot Arm s Joints Time-Varying Stiffness Under Loads TELKOMNIKA, Vol.10, No.8, December 2012, pp. 2081~2087 e-issn: 2087-278X ccredted by DGHE (DIKTI), Decree No: 51/Dkt/Kep/2010 2081 Identfcton of Robot Arm s Jonts Tme-Vryng Stffness Under Lods Ru Xu 1,

More information

Effects of polarization on the reflected wave

Effects of polarization on the reflected wave Lecture Notes. L Ros PPLIED OPTICS Effects of polrzton on the reflected wve Ref: The Feynmn Lectures on Physcs, Vol-I, Secton 33-6 Plne of ncdence Z Plne of nterfce Fg. 1 Y Y r 1 Glss r 1 Glss Fg. Reflecton

More information

10-701/ Machine Learning, Fall 2005 Homework 3

10-701/ Machine Learning, Fall 2005 Homework 3 10-701/15-781 Machne Learnng, Fall 2005 Homework 3 Out: 10/20/05 Due: begnnng of the class 11/01/05 Instructons Contact questons-10701@autonlaborg for queston Problem 1 Regresson and Cross-valdaton [40

More information

CHOVER-TYPE LAWS OF THE ITERATED LOGARITHM FOR WEIGHTED SUMS OF ρ -MIXING SEQUENCES

CHOVER-TYPE LAWS OF THE ITERATED LOGARITHM FOR WEIGHTED SUMS OF ρ -MIXING SEQUENCES CHOVER-TYPE LAWS OF THE ITERATED LOGARITHM FOR WEIGHTED SUMS OF ρ -MIXING SEQUENCES GUANG-HUI CAI Receved 24 September 2004; Revsed 3 My 2005; Accepted 3 My 2005 To derve Bum-Ktz-type result, we estblsh

More information

p (i.e., the set of all nonnegative real numbers). Similarly, Z will denote the set of all

p (i.e., the set of all nonnegative real numbers). Similarly, Z will denote the set of all th Prelmnry E 689 Lecture Notes by B. Yo 0. Prelmnry Notton themtcl Prelmnres It s ssumed tht the reder s fmlr wth the noton of set nd ts elementry oertons, nd wth some bsc logc oertors, e.g. x A : x s

More information