Machine learning, ALAMO, and constrained regression

Size: px
Start display at page:

Download "Machine learning, ALAMO, and constrained regression"

Transcription

1 Machine learning, ALAMO, and constrained regression Nick Sahinidis Acknowledgments: Alison Cozad, David Miller, Zach Wilson

2 MACHINE LEARNING PROBLEM Build a model of output variables as a function of input variables x over a specified interval Process simulation or Experiment Independent variables: Operating conditions, inlet flow properties, unit geometry Dependent variables: Efficiency, outlet flow conditions, conversions, heat flow, etc. 2

3 DESIRED MODEL ATTRIBUTES Accurate We want to reflect the true nature of the system Simple Interpretable Usable for algebraic optimization Generated from a minimal data set Reduce experimental and simulation requirements 3

4 FITTING MODELS TO DATA

5 FITTING MODELS TO DATA

6 FITTING MODELS TO DATA

7 EXAMPLE ALAMO INPUT FILE 128 alternative models 7

8 ALAMO OUTPUT 8

9 ALAMO Automated Learning of Algebraic MOdels Start Initial sampling Build surrogate model Update training data set false Adaptive sampling Model converged? true Stop Model error Black-box function New model Current model 9

10 MODEL COMPLEXITY TRADEOFF Kriging [Krige, 63] Neural nets [McCulloch-Pitts, 43] Radial basis functions [Buhman, 00] Model accuracy Preferred region Linear response surface Model complexity 10

11 MODEL IDENTIFICATION Identify the functional form and complexity of the surrogate models Seek models that are combinations of basis functions 1. Simple basis functions 2. Radial basis functions for parametric regression 3. User specified basis functions for tailored regression 11

12 OVERFITTING AND TRUE ERROR Step 1: Define a large set of potential basis functions Step 2: Model reduction Error Ideal Model True error Empirical error Complexity Underfitting Overfitting 12

13 MODEL SELECTION CRITERIA Balance fit (sum of square errors) with model complexity (number of terms in the model; denoted by p) Corrected Akaike Information Criterion log 1 2 Mallows Cp 2 Hannan Quinn Information Criterion log 1 Bayes Information Criterion Mean Squared Error log log log 1 13

14 BRANCH AND BOUND Falk and Soland, 1969; Soland

15 BRANCH AND REDUCE Constraint propagation and duality based bounds tightening Ryoo and Sahinidis, 1995, 1996 Tawarmalani and Sahinidis, 2004 Finite branching rules Shectman and Sahinidis, 1998 Ahmed, Tawarmalani and Sahinidis, 2004 Convexification Tawarmalani and Sahinidis, 2001, 2002, 2004, 2005 Khajavirad and Sahinidis, 2012, 2013, 2014, 2016 Zorn and Sahinidis, 2013, 2013, 2014 Implemented in BARON First deterministic global optimization solver for NLP and MINLP 15

16 GLOBAL MINLP SOLVERS IN GAMS LindoGlobal (2007) If then else SCIP (2012) MIP technology BARON (2002) Couenne (2009) Trigonometrics Antigone (2013) Transformations 16

17 GLOBAL MINLP SOLVERS ON MINLPLIB2 CAN_SOLVE BARON SCIP ANTIGONE LINDOGLOBAL COUENNE Con: 1893 (1 164,321), Var: 1027 (3 107,223), Disc: 137 (1 31,824) 17

18 CPU TIME COMPARISON OF METRICS Eight benchmarks from the UCI and CMU data sets Seventy noisy data sets were generated with multicolinearity and increasing problem size (number of bases) Cp BIC AIC, MSE, HQC CPU time (s) Problem Size BIC solves more than two orders of magnitude faster than AIC, MSE and HQC Optimized directly via a single mixed integer convex quadratic model 18

19 MODEL QUALITY COMPARISON BIC leads to smaller, more accurate models Larger penalty for model complexity Spurious Variables Included Cp BIC AIC HQC MSE Problem Size % Deviation from True Model Problem Size 19

20 ALAMO Automated Learning of Algebraic MOdels Start Initial sampling Build surrogate model Update training data set Adaptive sampling Model error false Model converged? true Stop Error maximization sampling 20

21 ERROR MAXIMIZATION SAMPLING Search the problem space for areas of model inconsistency or model mismatch Find points that maximize the model error with respect to the independent variables Surrogate model Optimized using derivative free solver SNOBFIT (Huyer and Neumaier, 2008) SNOBFIT outperforms most derivative free solvers (Rios and Sahinidis, 2013) 21

22 COMPUTATIONAL RESULTS Goal Compare methods on three target metrics 1 Model accuracy 2 Data efficiency 3 Model simplicity Modeling methods compared ALAMO modeler Proposed best subset methodology The LASSO The lasso regularization Ordinary regression Ordinary least squares regression Sampling methods compared (over the same data set size) ALAMO sampler Proposed error maximization technique Single LH Single Latin hypercube (no feedback) 22

23 1 Model accuracy 2 Data efficiency 3 Model simplicity 70% of problems solved exactly Fraction of problems solved (0.005, 0.80) 80% of the problems had 0.5% error error maximization sampling ALAMO modeler the lasso Ordinary regression Normalized test error ALAMO modeler Ordinary regression the lasso single Latin hypercube Normalized test error 23

24 1 Model accuracy 2 Data efficiency 3 Model simplicity Modeling type, Median more complexity than required Number of terms in the surrogate model _ Number of terms in the true function Results over a test set of 45 known functions treated as black boxes with bases that are available to all modeling methods. 24

25 KEY INGREDIENT: OPTIMIZATION Surrogate model New surrogate model Surrogate model identification Simple, accurate model identification Integer optimization Error maximization sampling More information found per simulated data point Derivative free optimization 25

26 CONSTRAINED REGRESSION Fits the true function better Fits the data better Extrapolation zone Data space Safe extrapolation 26

27 CONSTRAINED REGRESSION Standard regression Constrained regression easy Surrogate model tough Challenging due to the semi infinite nature of the regression constraints Use intuitive restrictions among predictor and response variables to infer nonintuitive relationships between regression parameters 27

28 IMPLIED PARAMETER RESTRICTIONS Step 1: Formulate constraint in z and x space Step 2: Identify a sufficient set of β space constraints 1 parametric constraint 4 β constraints Global optimization problems solved with BARON 28

29 TYPES OF RESTRICTIONS Response bounds Individual responses Multiple responses pressure, temperature, compositions mass and energy balances, physical limitations mass balances, sum toone, state variables Response derivatives Alternative domains Boundary conditions Extrapolation zone velocity profile model monotonicity, numerical properties, convexity Problem Space safe extrapolation, boundary conditions Add no slip 29

30 CARBON CAPTURE SYSTEM DESIGN Surrogate models for each reactor and technology used Discrete decisions: How many units? Parallel trains? What technology used for each reactor? Continuous decisions: Unit geometries Operating conditions: Vessel temperature and pressure, flow rates, compositions 30

31 BUBBLING FLUIDIZED BED Bubbling fluidized bed adsorber diagram Outlet gas Solid feed Cooling water CO 2 rich gas Model inputs (16 total) Geometry (3) Operating conditions (5) Gas mole fractions (2) Solid compositions (2) Flow rates (4) CO 2 rich solid outlet Model outputs (14 total) Geometry required (2) Operating condition required (1) Gas mole fractions (3) Solid compositions (3) Flow rates (2) Outlet temperatures (3) Model created by Andrew Lee at the National Energy Technology Laboratory 31

32 EXAMPLE MODELS ADSORBER Cooling water CO 2 rich gas Solid feed 32

33 SUPERSTRUCTURE OPTIMIZATION Mixed-integer nonlinear programming model Economic model Process model Material balances Hydrodynamic/Energy balances Reactor surrogate models Link between economic model and process model Binary variable constraints Bounds for variables MINLP solved with BARON 33

34 CONCLUSIONS ALAMO provides algebraic models that are Accurate Simple Generated from a minimal number of data points ALAMO s constrained regression facility allows modeling of Bounds on response variables Convexity/monotonicity of response variables Variable groups Built on top of state of the art optimization solvers ALAMO site: archimedes.cheme.cmu.edu/?q=alamo 34

ISyE 691 Data mining and analytics

ISyE 691 Data mining and analytics ISyE 691 Data mining and analytics Regression Instructor: Prof. Kaibo Liu Department of Industrial and Systems Engineering UW-Madison Email: kliu8@wisc.edu Office: Room 3017 (Mechanical Engineering Building)

More information

GLOBAL OPTIMIZATION WITH GAMS/BARON

GLOBAL OPTIMIZATION WITH GAMS/BARON GLOBAL OPTIMIZATION WITH GAMS/BARON Nick Sahinidis Chemical and Biomolecular Engineering University of Illinois at Urbana Mohit Tawarmalani Krannert School of Management Purdue University MIXED-INTEGER

More information

Direct Learning: Linear Regression. Donglin Zeng, Department of Biostatistics, University of North Carolina

Direct Learning: Linear Regression. Donglin Zeng, Department of Biostatistics, University of North Carolina Direct Learning: Linear Regression Parametric learning We consider the core function in the prediction rule to be a parametric function. The most commonly used function is a linear function: squared loss:

More information

From structures to heuristics to global solvers

From structures to heuristics to global solvers From structures to heuristics to global solvers Timo Berthold Zuse Institute Berlin DFG Research Center MATHEON Mathematics for key technologies OR2013, 04/Sep/13, Rotterdam Outline From structures to

More information

Mixed Integer Non Linear Programming

Mixed Integer Non Linear Programming Mixed Integer Non Linear Programming Claudia D Ambrosio CNRS Research Scientist CNRS & LIX, École Polytechnique MPRO PMA 2016-2017 Outline What is a MINLP? Dealing with nonconvexities Global Optimization

More information

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2013

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2013 UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2013 Exam policy: This exam allows two one-page, two-sided cheat sheets; No other materials. Time: 2 hours. Be sure to write your name and

More information

Analyzing the computational impact of individual MINLP solver components

Analyzing the computational impact of individual MINLP solver components Analyzing the computational impact of individual MINLP solver components Ambros M. Gleixner joint work with Stefan Vigerske Zuse Institute Berlin MATHEON Berlin Mathematical School MINLP 2014, June 4,

More information

A Fast Heuristic for GO and MINLP

A Fast Heuristic for GO and MINLP A Fast Heuristic for GO and MINLP John W. Chinneck, M. Shafique, Systems and Computer Engineering Carleton University, Ottawa, Canada Introduction Goal: Find a good quality GO/MINLP solution quickly. Trade

More information

Final Overview. Introduction to ML. Marek Petrik 4/25/2017

Final Overview. Introduction to ML. Marek Petrik 4/25/2017 Final Overview Introduction to ML Marek Petrik 4/25/2017 This Course: Introduction to Machine Learning Build a foundation for practice and research in ML Basic machine learning concepts: max likelihood,

More information

Indicator Constraints in Mixed-Integer Programming

Indicator Constraints in Mixed-Integer Programming Indicator Constraints in Mixed-Integer Programming Andrea Lodi University of Bologna, Italy - andrea.lodi@unibo.it Amaya Nogales-Gómez, Universidad de Sevilla, Spain Pietro Belotti, FICO, UK Matteo Fischetti,

More information

Machine Learning Linear Regression. Prof. Matteo Matteucci

Machine Learning Linear Regression. Prof. Matteo Matteucci Machine Learning Linear Regression Prof. Matteo Matteucci Outline 2 o Simple Linear Regression Model Least Squares Fit Measures of Fit Inference in Regression o Multi Variate Regession Model Least Squares

More information

Outline Introduction OLS Design of experiments Regression. Metamodeling. ME598/494 Lecture. Max Yi Ren

Outline Introduction OLS Design of experiments Regression. Metamodeling. ME598/494 Lecture. Max Yi Ren 1 / 34 Metamodeling ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University March 1, 2015 2 / 34 1. preliminaries 1.1 motivation 1.2 ordinary least square 1.3 information

More information

Solving Mixed-Integer Nonlinear Programs

Solving Mixed-Integer Nonlinear Programs Solving Mixed-Integer Nonlinear Programs (with SCIP) Ambros M. Gleixner Zuse Institute Berlin MATHEON Berlin Mathematical School 5th Porto Meeting on Mathematics for Industry, April 10 11, 2014, Porto

More information

Development of the new MINLP Solver Decogo using SCIP - Status Report

Development of the new MINLP Solver Decogo using SCIP - Status Report Development of the new MINLP Solver Decogo using SCIP - Status Report Pavlo Muts with Norman Breitfeld, Vitali Gintner, Ivo Nowak SCIP Workshop 2018, Aachen Table of contents 1. Introduction 2. Automatic

More information

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2014

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2014 UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2014 Exam policy: This exam allows two one-page, two-sided cheat sheets (i.e. 4 sides); No other materials. Time: 2 hours. Be sure to write

More information

CSE 417T: Introduction to Machine Learning. Final Review. Henry Chai 12/4/18

CSE 417T: Introduction to Machine Learning. Final Review. Henry Chai 12/4/18 CSE 417T: Introduction to Machine Learning Final Review Henry Chai 12/4/18 Overfitting Overfitting is fitting the training data more than is warranted Fitting noise rather than signal 2 Estimating! "#$

More information

Model Selection. Frank Wood. December 10, 2009

Model Selection. Frank Wood. December 10, 2009 Model Selection Frank Wood December 10, 2009 Standard Linear Regression Recipe Identify the explanatory variables Decide the functional forms in which the explanatory variables can enter the model Decide

More information

A MIXED-INTEGER FRACTIONAL OPTIMIZATION APPROACH TO BEST SUBSET SELECTION

A MIXED-INTEGER FRACTIONAL OPTIMIZATION APPROACH TO BEST SUBSET SELECTION A MIXED-INTEGER FRACTIONAL OPTIMIZATION APPROACH TO BEST SUBSET SELECTION Abstract. We consider the best subset selection problem in linear regression, i.e., finding a parsimonious subset of the regression

More information

Dimension Reduction Methods

Dimension Reduction Methods Dimension Reduction Methods And Bayesian Machine Learning Marek Petrik 2/28 Previously in Machine Learning How to choose the right features if we have (too) many options Methods: 1. Subset selection 2.

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Vapnik Chervonenkis Theory Barnabás Póczos Empirical Risk and True Risk 2 Empirical Risk Shorthand: True risk of f (deterministic): Bayes risk: Let us use the empirical

More information

A Test Set of Semi-Infinite Programs

A Test Set of Semi-Infinite Programs A Test Set of Semi-Infinite Programs Alexander Mitsos, revised by Hatim Djelassi Process Systems Engineering (AVT.SVT), RWTH Aachen University, Aachen, Germany February 26, 2016 (first published August

More information

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo Group Prof. Daniel Cremers 10a. Markov Chain Monte Carlo Markov Chain Monte Carlo In high-dimensional spaces, rejection sampling and importance sampling are very inefficient An alternative is Markov Chain

More information

Linear Model Selection and Regularization

Linear Model Selection and Regularization Linear Model Selection and Regularization Recall the linear model Y = β 0 + β 1 X 1 + + β p X p + ɛ. In the lectures that follow, we consider some approaches for extending the linear model framework. In

More information

Contents. Preface. 1 Introduction Optimization view on mathematical models NLP models, black-box versus explicit expression 3

Contents. Preface. 1 Introduction Optimization view on mathematical models NLP models, black-box versus explicit expression 3 Contents Preface ix 1 Introduction 1 1.1 Optimization view on mathematical models 1 1.2 NLP models, black-box versus explicit expression 3 2 Mathematical modeling, cases 7 2.1 Introduction 7 2.2 Enclosing

More information

Machine Learning for OR & FE

Machine Learning for OR & FE Machine Learning for OR & FE Regression II: Regularization and Shrinkage Methods Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

Some Recent Advances in Mixed-Integer Nonlinear Programming

Some Recent Advances in Mixed-Integer Nonlinear Programming Some Recent Advances in Mixed-Integer Nonlinear Programming Andreas Wächter IBM T.J. Watson Research Center Yorktown Heights, New York andreasw@us.ibm.com SIAM Conference on Optimization 2008 Boston, MA

More information

Kernel Methods and Support Vector Machines

Kernel Methods and Support Vector Machines Kernel Methods and Support Vector Machines Oliver Schulte - CMPT 726 Bishop PRML Ch. 6 Support Vector Machines Defining Characteristics Like logistic regression, good for continuous input features, discrete

More information

Introduction to Statistical modeling: handout for Math 489/583

Introduction to Statistical modeling: handout for Math 489/583 Introduction to Statistical modeling: handout for Math 489/583 Statistical modeling occurs when we are trying to model some data using statistical tools. From the start, we recognize that no model is perfect

More information

Lecture 2 Machine Learning Review

Lecture 2 Machine Learning Review Lecture 2 Machine Learning Review CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago March 29, 2017 Things we will look at today Formal Setup for Supervised Learning Things

More information

Software for Integer and Nonlinear Optimization

Software for Integer and Nonlinear Optimization Software for Integer and Nonlinear Optimization Sven Leyffer, leyffer@mcs.anl.gov Mathematics & Computer Science Division Argonne National Laboratory Roger Fletcher & Jeff Linderoth Advanced Methods and

More information

Lecture Data Science

Lecture Data Science Web Science & Technologies University of Koblenz Landau, Germany Lecture Data Science Regression Analysis JProf. Dr. Last Time How to find parameter of a regression model Normal Equation Gradient Decent

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Matrix Data: Prediction Instructor: Yizhou Sun yzsun@ccs.neu.edu September 14, 2014 Today s Schedule Course Project Introduction Linear Regression Model Decision Tree 2 Methods

More information

Lecture 3: Statistical Decision Theory (Part II)

Lecture 3: Statistical Decision Theory (Part II) Lecture 3: Statistical Decision Theory (Part II) Hao Helen Zhang Hao Helen Zhang Lecture 3: Statistical Decision Theory (Part II) 1 / 27 Outline of This Note Part I: Statistics Decision Theory (Classical

More information

Linear regression methods

Linear regression methods Linear regression methods Most of our intuition about statistical methods stem from linear regression. For observations i = 1,..., n, the model is Y i = p X ij β j + ε i, j=1 where Y i is the response

More information

CSC2515 Winter 2015 Introduction to Machine Learning. Lecture 2: Linear regression

CSC2515 Winter 2015 Introduction to Machine Learning. Lecture 2: Linear regression CSC2515 Winter 2015 Introduction to Machine Learning Lecture 2: Linear regression All lecture slides will be available as.pdf on the course website: http://www.cs.toronto.edu/~urtasun/courses/csc2515/csc2515_winter15.html

More information

Computer Sciences Department

Computer Sciences Department Computer Sciences Department Valid Inequalities for the Pooling Problem with Binary Variables Claudia D Ambrosio Jeff Linderoth James Luedtke Technical Report #682 November 200 Valid Inequalities for the

More information

MS-C1620 Statistical inference

MS-C1620 Statistical inference MS-C1620 Statistical inference 10 Linear regression III Joni Virta Department of Mathematics and Systems Analysis School of Science Aalto University Academic year 2018 2019 Period III - IV 1 / 32 Contents

More information

Model Selection and Geometry

Model Selection and Geometry Model Selection and Geometry Pascal Massart Université Paris-Sud, Orsay Leipzig, February Purpose of the talk! Concentration of measure plays a fundamental role in the theory of model selection! Model

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Matrix Data: Prediction Instructor: Yizhou Sun yzsun@ccs.neu.edu September 21, 2015 Announcements TA Monisha s office hour has changed to Thursdays 10-12pm, 462WVH (the same

More information

Basic notions of Mixed Integer Non-Linear Programming

Basic notions of Mixed Integer Non-Linear Programming Basic notions of Mixed Integer Non-Linear Programming Claudia D Ambrosio CNRS & LIX, École Polytechnique 5th Porto Meeting on Mathematics for Industry, April 10, 2014 C. D Ambrosio (CNRS) April 10, 2014

More information

Outline. 1 Introduction. 2 Modeling and Applications. 3 Algorithms Convex. 4 Algorithms Nonconvex. 5 The Future of MINLP? 2 / 126

Outline. 1 Introduction. 2 Modeling and Applications. 3 Algorithms Convex. 4 Algorithms Nonconvex. 5 The Future of MINLP? 2 / 126 Outline 1 Introduction 2 3 Algorithms Convex 4 Algorithms Nonconvex 5 The Future of MINLP? 2 / 126 Larry Leading Off 3 / 126 Introduction Outline 1 Introduction Software Tools and Online Resources Basic

More information

MS&E 226: Small Data

MS&E 226: Small Data MS&E 226: Small Data Lecture 6: Model complexity scores (v3) Ramesh Johari ramesh.johari@stanford.edu Fall 2015 1 / 34 Estimating prediction error 2 / 34 Estimating prediction error We saw how we can estimate

More information

Machine Learning and Data Mining. Linear classification. Kalev Kask

Machine Learning and Data Mining. Linear classification. Kalev Kask Machine Learning and Data Mining Linear classification Kalev Kask Supervised learning Notation Features x Targets y Predictions ŷ = f(x ; q) Parameters q Program ( Learner ) Learning algorithm Change q

More information

Machine Learning, Fall 2009: Midterm

Machine Learning, Fall 2009: Midterm 10-601 Machine Learning, Fall 009: Midterm Monday, November nd hours 1. Personal info: Name: Andrew account: E-mail address:. You are permitted two pages of notes and a calculator. Please turn off all

More information

Machine Learning (CSE 446): Multi-Class Classification; Kernel Methods

Machine Learning (CSE 446): Multi-Class Classification; Kernel Methods Machine Learning (CSE 446): Multi-Class Classification; Kernel Methods Sham M Kakade c 2018 University of Washington cse446-staff@cs.washington.edu 1 / 12 Announcements HW3 due date as posted. make sure

More information

CSC 411 Lecture 17: Support Vector Machine

CSC 411 Lecture 17: Support Vector Machine CSC 411 Lecture 17: Support Vector Machine Ethan Fetaya, James Lucas and Emad Andrews University of Toronto CSC411 Lec17 1 / 1 Today Max-margin classification SVM Hard SVM Duality Soft SVM CSC411 Lec17

More information

Bayesian Machine Learning

Bayesian Machine Learning Bayesian Machine Learning Andrew Gordon Wilson ORIE 6741 Lecture 2: Bayesian Basics https://people.orie.cornell.edu/andrew/orie6741 Cornell University August 25, 2016 1 / 17 Canonical Machine Learning

More information

Week 5 Quantitative Analysis of Financial Markets Modeling and Forecasting Trend

Week 5 Quantitative Analysis of Financial Markets Modeling and Forecasting Trend Week 5 Quantitative Analysis of Financial Markets Modeling and Forecasting Trend Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg : 6828 0364 :

More information

Exact Computation of Global Minima of a Nonconvex Portfolio Optimization Problem

Exact Computation of Global Minima of a Nonconvex Portfolio Optimization Problem Frontiers In Global Optimization, pp. 1-2 C. A. Floudas and P. M. Pardalos, Editors c 2003 Kluwer Academic Publishers Exact Computation of Global Minima of a Nonconvex Portfolio Optimization Problem Josef

More information

Regression, Ridge Regression, Lasso

Regression, Ridge Regression, Lasso Regression, Ridge Regression, Lasso Fabio G. Cozman - fgcozman@usp.br October 2, 2018 A general definition Regression studies the relationship between a response variable Y and covariates X 1,..., X n.

More information

ECE521 week 3: 23/26 January 2017

ECE521 week 3: 23/26 January 2017 ECE521 week 3: 23/26 January 2017 Outline Probabilistic interpretation of linear regression - Maximum likelihood estimation (MLE) - Maximum a posteriori (MAP) estimation Bias-variance trade-off Linear

More information

Online generation via offline selection - Low dimensional linear cuts from QP SDP relaxation -

Online generation via offline selection - Low dimensional linear cuts from QP SDP relaxation - Online generation via offline selection - Low dimensional linear cuts from QP SDP relaxation - Radu Baltean-Lugojan Ruth Misener Computational Optimisation Group Department of Computing Pierre Bonami Andrea

More information

Introduction to Machine Learning Midterm, Tues April 8

Introduction to Machine Learning Midterm, Tues April 8 Introduction to Machine Learning 10-701 Midterm, Tues April 8 [1 point] Name: Andrew ID: Instructions: You are allowed a (two-sided) sheet of notes. Exam ends at 2:45pm Take a deep breath and don t spend

More information

Simulation optimization via bootstrapped Kriging: Survey

Simulation optimization via bootstrapped Kriging: Survey Simulation optimization via bootstrapped Kriging: Survey Jack P.C. Kleijnen Department of Information Management / Center for Economic Research (CentER) Tilburg School of Economics & Management (TiSEM)

More information

STAT 100C: Linear models

STAT 100C: Linear models STAT 100C: Linear models Arash A. Amini June 9, 2018 1 / 21 Model selection Choosing the best model among a collection of models {M 1, M 2..., M N }. What is a good model? 1. fits the data well (model

More information

Machine Learning. Regularization and Feature Selection. Fabio Vandin November 14, 2017

Machine Learning. Regularization and Feature Selection. Fabio Vandin November 14, 2017 Machine Learning Regularization and Feature Selection Fabio Vandin November 14, 2017 1 Regularized Loss Minimization Assume h is defined by a vector w = (w 1,..., w d ) T R d (e.g., linear models) Regularization

More information

Why Forecast Recruitment?

Why Forecast Recruitment? Predictability of Future Recruitment by Parametric and Non-parametric models : Case study of G. of Alaska walleye pollock. Yong-Woo Lee 1* Bernard A. Megrey 1 S. Allen Macklin 2 National Oceanic and Atmospheric

More information

10-701/ Machine Learning, Fall

10-701/ Machine Learning, Fall 0-70/5-78 Machine Learning, Fall 2003 Homework 2 Solution If you have questions, please contact Jiayong Zhang .. (Error Function) The sum-of-squares error is the most common training

More information

On Autoregressive Order Selection Criteria

On Autoregressive Order Selection Criteria On Autoregressive Order Selection Criteria Venus Khim-Sen Liew Faculty of Economics and Management, Universiti Putra Malaysia, 43400 UPM, Serdang, Malaysia This version: 1 March 2004. Abstract This study

More information

Last updated: Oct 22, 2012 LINEAR CLASSIFIERS. J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition

Last updated: Oct 22, 2012 LINEAR CLASSIFIERS. J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition Last updated: Oct 22, 2012 LINEAR CLASSIFIERS Problems 2 Please do Problem 8.3 in the textbook. We will discuss this in class. Classification: Problem Statement 3 In regression, we are modeling the relationship

More information

Support Vector Machine (continued)

Support Vector Machine (continued) Support Vector Machine continued) Overlapping class distribution: In practice the class-conditional distributions may overlap, so that the training data points are no longer linearly separable. We need

More information

Introduction to Machine Learning and Cross-Validation

Introduction to Machine Learning and Cross-Validation Introduction to Machine Learning and Cross-Validation Jonathan Hersh 1 February 27, 2019 J.Hersh (Chapman ) Intro & CV February 27, 2019 1 / 29 Plan 1 Introduction 2 Preliminary Terminology 3 Bias-Variance

More information

18.6 Regression and Classification with Linear Models

18.6 Regression and Classification with Linear Models 18.6 Regression and Classification with Linear Models 352 The hypothesis space of linear functions of continuous-valued inputs has been used for hundreds of years A univariate linear function (a straight

More information

STAT 535 Lecture 5 November, 2018 Brief overview of Model Selection and Regularization c Marina Meilă

STAT 535 Lecture 5 November, 2018 Brief overview of Model Selection and Regularization c Marina Meilă STAT 535 Lecture 5 November, 2018 Brief overview of Model Selection and Regularization c Marina Meilă mmp@stat.washington.edu Reading: Murphy: BIC, AIC 8.4.2 (pp 255), SRM 6.5 (pp 204) Hastie, Tibshirani

More information

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others)

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others) Machine Learning Neural Networks (slides from Domingos, Pardo, others) Human Brain Neurons Input-Output Transformation Input Spikes Output Spike Spike (= a brief pulse) (Excitatory Post-Synaptic Potential)

More information

Resampling techniques for statistical modeling

Resampling techniques for statistical modeling Resampling techniques for statistical modeling Gianluca Bontempi Département d Informatique Boulevard de Triomphe - CP 212 http://www.ulb.ac.be/di Resampling techniques p.1/33 Beyond the empirical error

More information

Linear Methods for Regression. Lijun Zhang

Linear Methods for Regression. Lijun Zhang Linear Methods for Regression Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Outline Introduction Linear Regression Models and Least Squares Subset Selection Shrinkage Methods Methods Using Derived

More information

On prediction. Jussi Hakanen Post-doctoral researcher. TIES445 Data mining (guest lecture)

On prediction. Jussi Hakanen Post-doctoral researcher. TIES445 Data mining (guest lecture) On prediction Jussi Hakanen Post-doctoral researcher jussi.hakanen@jyu.fi Learning outcomes To understand the basic principles of prediction To understand linear regression in prediction To be aware of

More information

Sparse Linear Models (10/7/13)

Sparse Linear Models (10/7/13) STA56: Probabilistic machine learning Sparse Linear Models (0/7/) Lecturer: Barbara Engelhardt Scribes: Jiaji Huang, Xin Jiang, Albert Oh Sparsity Sparsity has been a hot topic in statistics and machine

More information

Valid inequalities for sets defined by multilinear functions

Valid inequalities for sets defined by multilinear functions Valid inequalities for sets defined by multilinear functions Pietro Belotti 1 Andrew Miller 2 Mahdi Namazifar 3 3 1 Lehigh University 200 W Packer Ave Bethlehem PA 18018, USA belotti@lehighedu 2 Institut

More information

Machine Learning 4771

Machine Learning 4771 Machine Learning 4771 Instructor: Tony Jebara Topic 3 Additive Models and Linear Regression Sinusoids and Radial Basis Functions Classification Logistic Regression Gradient Descent Polynomial Basis Functions

More information

Optimizing forecasts for inflation and interest rates by time-series model averaging

Optimizing forecasts for inflation and interest rates by time-series model averaging Optimizing forecasts for inflation and interest rates by time-series model averaging Presented at the ISF 2008, Nice 1 Introduction 2 The rival prediction models 3 Prediction horse race 4 Parametric bootstrap

More information

VBM683 Machine Learning

VBM683 Machine Learning VBM683 Machine Learning Pinar Duygulu Slides are adapted from Dhruv Batra Bias is the algorithm's tendency to consistently learn the wrong thing by not taking into account all the information in the data

More information

Midterm exam CS 189/289, Fall 2015

Midterm exam CS 189/289, Fall 2015 Midterm exam CS 189/289, Fall 2015 You have 80 minutes for the exam. Total 100 points: 1. True/False: 36 points (18 questions, 2 points each). 2. Multiple-choice questions: 24 points (8 questions, 3 points

More information

PATTERN CLASSIFICATION

PATTERN CLASSIFICATION PATTERN CLASSIFICATION Second Edition Richard O. Duda Peter E. Hart David G. Stork A Wiley-lnterscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim Brisbane Singapore Toronto CONTENTS

More information

Structural Multiplicity and Redundancy in Chemical Process Synthesis with MINLP

Structural Multiplicity and Redundancy in Chemical Process Synthesis with MINLP Structural Multiplicity and Redundancy in Chemical Process Synthesis with MINLP Tivadar Farkas, Endre Rev and Zoltan Lelkes * Chemical Engineering Department, Budapest University of Technology and Economics

More information

CMU-Q Lecture 24:

CMU-Q Lecture 24: CMU-Q 15-381 Lecture 24: Supervised Learning 2 Teacher: Gianni A. Di Caro SUPERVISED LEARNING Hypotheses space Hypothesis function Labeled Given Errors Performance criteria Given a collection of input

More information

Linear Models for Regression CS534

Linear Models for Regression CS534 Linear Models for Regression CS534 Example Regression Problems Predict housing price based on House size, lot size, Location, # of rooms Predict stock price based on Price history of the past month Predict

More information

Linear Regression. CSL603 - Fall 2017 Narayanan C Krishnan

Linear Regression. CSL603 - Fall 2017 Narayanan C Krishnan Linear Regression CSL603 - Fall 2017 Narayanan C Krishnan ckn@iitrpr.ac.in Outline Univariate regression Multivariate regression Probabilistic view of regression Loss functions Bias-Variance analysis Regularization

More information

Support Vector Machines.

Support Vector Machines. Support Vector Machines www.cs.wisc.edu/~dpage 1 Goals for the lecture you should understand the following concepts the margin slack variables the linear support vector machine nonlinear SVMs the kernel

More information

Linear Regression. CSL465/603 - Fall 2016 Narayanan C Krishnan

Linear Regression. CSL465/603 - Fall 2016 Narayanan C Krishnan Linear Regression CSL465/603 - Fall 2016 Narayanan C Krishnan ckn@iitrpr.ac.in Outline Univariate regression Multivariate regression Probabilistic view of regression Loss functions Bias-Variance analysis

More information

Linear classifiers Lecture 3

Linear classifiers Lecture 3 Linear classifiers Lecture 3 David Sontag New York University Slides adapted from Luke Zettlemoyer, Vibhav Gogate, and Carlos Guestrin ML Methodology Data: labeled instances, e.g. emails marked spam/ham

More information

Chance Constrained Programs with Mixture Distributions

Chance Constrained Programs with Mixture Distributions Chance Constrained Programs with Mixture Distributions Zhaolin Hu, Wenie Sun School of Economics and Management, Tongi University, Shanghai 200092, China Shushang Zhu Department of Finance and Investment,

More information

Holdout and Cross-Validation Methods Overfitting Avoidance

Holdout and Cross-Validation Methods Overfitting Avoidance Holdout and Cross-Validation Methods Overfitting Avoidance Decision Trees Reduce error pruning Cost-complexity pruning Neural Networks Early stopping Adjusting Regularizers via Cross-Validation Nearest

More information

Machine Learning. Linear Models. Fabio Vandin October 10, 2017

Machine Learning. Linear Models. Fabio Vandin October 10, 2017 Machine Learning Linear Models Fabio Vandin October 10, 2017 1 Linear Predictors and Affine Functions Consider X = R d Affine functions: L d = {h w,b : w R d, b R} where ( d ) h w,b (x) = w, x + b = w

More information

Day 3: Classification, logistic regression

Day 3: Classification, logistic regression Day 3: Classification, logistic regression Introduction to Machine Learning Summer School June 18, 2018 - June 29, 2018, Chicago Instructor: Suriya Gunasekar, TTI Chicago 20 June 2018 Topics so far Supervised

More information

Indirect Rule Learning: Support Vector Machines. Donglin Zeng, Department of Biostatistics, University of North Carolina

Indirect Rule Learning: Support Vector Machines. Donglin Zeng, Department of Biostatistics, University of North Carolina Indirect Rule Learning: Support Vector Machines Indirect learning: loss optimization It doesn t estimate the prediction rule f (x) directly, since most loss functions do not have explicit optimizers. Indirection

More information

How the mean changes depends on the other variable. Plots can show what s happening...

How the mean changes depends on the other variable. Plots can show what s happening... Chapter 8 (continued) Section 8.2: Interaction models An interaction model includes one or several cross-product terms. Example: two predictors Y i = β 0 + β 1 x i1 + β 2 x i2 + β 12 x i1 x i2 + ɛ i. How

More information

COMPUTATIONAL INTELLIGENCE (INTRODUCTION TO MACHINE LEARNING) SS16

COMPUTATIONAL INTELLIGENCE (INTRODUCTION TO MACHINE LEARNING) SS16 COMPUTATIONAL INTELLIGENCE (INTRODUCTION TO MACHINE LEARNING) SS6 Lecture 3: Classification with Logistic Regression Advanced optimization techniques Underfitting & Overfitting Model selection (Training-

More information

Regularization and Variable Selection via the Elastic Net

Regularization and Variable Selection via the Elastic Net p. 1/1 Regularization and Variable Selection via the Elastic Net Hui Zou and Trevor Hastie Journal of Royal Statistical Society, B, 2005 Presenter: Minhua Chen, Nov. 07, 2008 p. 2/1 Agenda Introduction

More information

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others)

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others) Machine Learning Neural Networks (slides from Domingos, Pardo, others) For this week, Reading Chapter 4: Neural Networks (Mitchell, 1997) See Canvas For subsequent weeks: Scaling Learning Algorithms toward

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Le Song Machine Learning I CSE 6740, Fall 2013 Naïve Bayes classifier Still use Bayes decision rule for classification P y x = P x y P y P x But assume p x y = 1 is fully factorized

More information

A Branch-and-Refine Method for Nonconvex Mixed-Integer Optimization

A Branch-and-Refine Method for Nonconvex Mixed-Integer Optimization A Branch-and-Refine Method for Nonconvex Mixed-Integer Optimization Sven Leyffer 2 Annick Sartenaer 1 Emilie Wanufelle 1 1 University of Namur, Belgium 2 Argonne National Laboratory, USA IMA Workshop,

More information

ECE 5424: Introduction to Machine Learning

ECE 5424: Introduction to Machine Learning ECE 5424: Introduction to Machine Learning Topics: Ensemble Methods: Bagging, Boosting PAC Learning Readings: Murphy 16.4;; Hastie 16 Stefan Lee Virginia Tech Fighting the bias-variance tradeoff Simple

More information

Package ForecastCombinations

Package ForecastCombinations Type Package Title Forecast Combinations Version 1.1 Date 2015-11-22 Author Eran Raviv Package ForecastCombinations Maintainer Eran Raviv November 23, 2015 Description Aim: Supports

More information

Minimization of Akaike s Information Criterion in Linear Regression Analysis via Mixed Integer Nonlinear Program

Minimization of Akaike s Information Criterion in Linear Regression Analysis via Mixed Integer Nonlinear Program Minimization of Akaike s Information Criterion in Linear Regression Analysis via Mixed Integer Nonlinear Program Keiji Kimura 1 and Hayato Waki 2 arxiv:1606.05030v2 [math.oc] 24 Jun 2016 1 Faculty of Mathematics,

More information

Machine Learning and Data Mining. Linear regression. Kalev Kask

Machine Learning and Data Mining. Linear regression. Kalev Kask Machine Learning and Data Mining Linear regression Kalev Kask Supervised learning Notation Features x Targets y Predictions ŷ Parameters q Learning algorithm Program ( Learner ) Change q Improve performance

More information

Generative v. Discriminative classifiers Intuition

Generative v. Discriminative classifiers Intuition Logistic Regression (Continued) Generative v. Discriminative Decision rees Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University January 31 st, 2007 2005-2007 Carlos Guestrin 1 Generative

More information

Artificial Neural Networks" and Nonparametric Methods" CMPSCI 383 Nov 17, 2011!

Artificial Neural Networks and Nonparametric Methods CMPSCI 383 Nov 17, 2011! Artificial Neural Networks" and Nonparametric Methods" CMPSCI 383 Nov 17, 2011! 1 Todayʼs lecture" How the brain works (!)! Artificial neural networks! Perceptrons! Multilayer feed-forward networks! Error

More information

Warm up: risk prediction with logistic regression

Warm up: risk prediction with logistic regression Warm up: risk prediction with logistic regression Boss gives you a bunch of data on loans defaulting or not: {(x i,y i )} n i= x i 2 R d, y i 2 {, } You model the data as: P (Y = y x, w) = + exp( yw T

More information