Theoretical Expectations for Neutrino Parameters: Mixing Schemes, Models and Deviations. Werner Rodejohann (MPIK, Heidelberg) IPMU, 09/11/10

Size: px
Start display at page:

Download "Theoretical Expectations for Neutrino Parameters: Mixing Schemes, Models and Deviations. Werner Rodejohann (MPIK, Heidelberg) IPMU, 09/11/10"

Transcription

1 Theoretical Expectations for Neutrino Parameters: Mixing Schemes, Models and Deviations Werner Rodejohann (MPIK, Heidelberg) IPMU, 09/11/10 1

2 Neutrino oscillations : Jose What to talk about? Neutrino models with flavor symmetry : Morimitsu try to cover the middle 2

3 Outline Current Status of PMNS Tri-bimaximal Mixing (TBM) Alternatives to TBM Importance of θ 13 Deviating Neutrino Mixing Schemes: example U e3 0.1 from zero Expectation for Non-Standard Neutrino Physics application to MINOS anomaly Importance of neutrino mass observables 3

4 Pontecorvo-Maki-Nakagawa-Sakata (PMNS) Matrix U = 0 B c 23 s 23 0 s 23 c 23 1 C C A {z } 0 B c 13 0 s 13 e iδ s 13 e iδ 0 c 13 1 C C A {z } 0 B c 12 s 12 0 s 12 c C C A {z } atmospheric and LBL SBL reactor solar and LBL reactor 0 B B q 1 2 q q 1 2 q C C C A 0 B C C A 0 B B q 2 3 q q 1 3 q C C C A (sin 2 θ 23 = 1 2 ) (sin2 θ 13 = 0) (sin 2 θ 12 = 1 3 ) = 0 B B q 2 3 q q 1 6 q 1 3 q 1 2 q 1 6 q 1 3 q C C C A Harrison,Perkins,Scott (2002) 4

5 Mixing close to TBM expand around it ( U = R 23 π ) ( R 23 (ǫ 23 ) 4 R 13 (ǫ 13 ; δ)r 12 (ǫ 12 ) R 12 sin 1 1 ) 3 Only one small ǫ ij responsible for deviation of (and only of) θ ij from θij TBM sin 2 θ 12 = 1 (cosǫ 12 + ) 2 2 sinǫ ǫ ǫ2 12 sin 2 θ 23 = sinǫ 23 cos ǫ ǫ 23 U e3 = sinǫ 13 e iδ Triminimal Parametrization Pakvasa, W.R., Weiler, PRL 100, (2008) 5

6 Mass Matrix Special case of µ τ symmetry A B B (m ν ) TBM = UTBM m diag ν U TBM = 1 2 (A + B + D) 1 2 (A + B D) 1 2 (A + B + D) where A = 1 3 ( 2 m1 + m 2 e 2iα), B = 1 3 ( m2 e 2iα m 1 ), D = m3 e 2iβ m ee + m eµ + m eτ = m µe + m µµ + m µτ = m τe + m τµ + m ττ masses independent on mixing (i.e., not V us = m d /m s ) Correlations between mass matrix elements flavor symmetries: A 4, (27), Σ(81), T, PSL 2 (7), SU(3),... 6

7 Comment on Model Zoo Example: 58 models based on A 4 leading to tri-bimaximal mixing: Barry, W.R., PRD 81, (2010) 7

8 Bari GM-I GM-II STV TBM sinθ sin 2 θ sin 2 θ all groups find deviations from one or more TBM values 8

9 = 0 U = c 23 s 23 0 s 23 c Taking Bari results as example: 1 C A 1 0 C B 0 c 13 0 s 13 e iδ s 13 e iδ 0 c e iδ C A C B c 12 s 12 0 s 12 c C A e iδ e iδ = e iδ e iδ C A e iδ e iδ C A Abbas, Smirnov, PRD 82, (2010): deviations from m TBM ν possible: TBM accidental? 9

10 Define e = (m ν) eµ (m ν ) eτ (m ν ) eµ, µ = (m ν) µµ (m ν ) ττ (m ν ) ττ, Σ 10 8 φ =0 φ =π/6 φ =π/5 φ =π/4 φ =π 6 e s 13 Abbas, Smirnov, PRD 82, (2010) 10

11 µ τ symmetry (Z 2, D 4,...): a b b m ν = d e d Alternatives to TBM U e3 = 0, θ 23 = π/4 solar neutrino mixing unconstrained (θ 12 = O(1)) 11

12 Alternatives to TBM Golden Ratio ϕ 1 (A 5 ) cotθ 12 = ϕ sin 2 θ 12 = ϕ 2 = (Datta, Ling, Ramond; Kajiyama, Raidal, Strumia; Everett, Stuart) Golden Ratio ϕ 2 (D 5 ) cos θ 12 = ϕ 2 sin 2 θ 12 = 1 4 (3 ϕ) = (W.R.; Adulpravitchai, Blum, W.R.) 12

13 Golden Ratio Prediction ϕ 1 can be generated by m ν = cotθ 12 = ϕ or: tan2θ 12 = Z 2 : S = Model based on A 5 (isomorphic to rotational icosahedral symmetry group)? Cartesian coordinates of its 12 vertices: (0, ±1, ±ϕ) (±1, ±ϕ, 0) (±ϕ, 0, ±1) 13

14 S 3 = 1 2 Golden Ratio Prediction ϕ 1 A 5 has irreps 1, 3, 3, 4, 5 e.g., generators for triplet representation 3 1 ϕ 1/ϕ ϕ 1/ϕ 1 and T 3 = 1 1 ϕ 1/ϕ 2 ϕ 1/ϕ 1 1/ϕ 1 ϕ 1/ϕ 1 ϕ Everett, Stuart, PRD 79, (2009) 14

15 Golden Ratio Prediction ϕ 2 cos θ 12 = ϕ/2 or: θ 12 = π 5 sin 2 θ 12 = sin 2 π/5 = (best-fit: 0.32) (W.R., PLB 671, 267 (2009)) AD = ϕ AB symmetry group of pentagon: D 5 15

16 Golden Ratio Prediction ϕ 2 symmetry group of decagon: D 10 16

17 Dihedral Groups Blum, Hagedorn, Lindner, Hohenegger, PRD 77, (2008): A = D n has several 2 j, generated by e2πi j n 0 and B = e 2πi j n 1 0 and Z 2 is generated by B A k = 0 e 2πi j n k e 2πi j n k 0 Thus, break D n such that m ν invariant under B A k ν and m l under B A k l : U e1 2 = cosπ j 2 n (k ν k l ) Again, D 5 or D 10 to obtain π/5 17

18 A Model based on D 10 Adulpravitchai, Blum, W.R., New J. Phys. 11, (2009) Field l 1,2 l 3 e c 1,2 e c 3 h u,d σ e χ e 1,2 ξ e 1,2 ρ e 1,2 σ ν ϕ ν 1,2 χ ν 1,2 ξ ν 1,2 D Z 5 ω ω ω 2 ω 2 1 ω 2 ω 2 ω 2 ω 2 ω 3 ω 3 ω 3 ω 3 18

19 χe 1 χ e A = v 1 e 2πik 5 1 A, A Model based on D 10 ξe 1 ξ e A = w 1 e 3πik 5 1 A, ρe 1 ρ e A = z 1 e 4πik 5 1 A ϕν 1 ϕ ν 2 = v ν 1 1 where k is an odd integer between 1 and 9, and, χν 1 = w ν 1, ξν 1 χ ν 2 1 ξ2 ν = z ν 1 1 σ e = x e, σ ν = x ν 19

20 U l = diag(e 2iΦ, 1, e i(φ+δ) ) cosθ 23 sinθ 23 0 sinθ 23 cosθ 23 U ν = where Φ = 4π P θ 12 = π/5 vanishing U e3 in general non-maximal θ 23 20

21 VEV alignment SUSY and driving fields Field ψ 0e ϕ 0e 1,2 ξ 0e 1,2 ψ 0ν χ 0ν 1,2 ξ 0ν 1,2 D Z 5 ω ω ω ω 4 ω 4 ω 4 flavon superpotential w f = w f,e + w f,ν flavor symmetry broken at high scale, thus minimize in supersymmetric limit 21

22 determine supersymmetric minimum by setting F-terms of driving fields to zero: w f,e ψ 0e = a e (χ e 1 ξ e 1 + χ e 2 ξ e 2) = 0 w f,e ϕ 0e 1 w f,e ϕ 0e 2 w f,u ξ1 0e w f,u ξ 0e 2 = b e χ e 1 ξ e 2 + c e ξ e 1 ρ e 2 = 0 = b e χ e 2 ξ e 1 + c e ξ e 2 ρ e 1 = 0 = d e ξ e 2σ e + f e ξ e 1 ρ e 1 = 0 = d e ξ e 1 σ e + f e ξ e 2 ρ e 2 = 0 solved by vev configuration given above... 22

23 Alternatives to TBM U BM = Bi-maximal S 4 : Altarelli, Feruglio, Merlo, JHEP 0905, 020 (2009) (needs large NLO corrections) CKM(-like) charged lepton corrections may also resurrect it: QLC 0 : θ 12 = π 4 θ C sin 2 θ QLC 1 : U = V U BM sin 2 θ λ/ 2 cosφ QLC 2 : U = U BM V sin 2 θ λ cos φ Quark-Lepton Complementarity 23

24 TM 2 (S 3,4, (27)) (Lam; Grimus, Lavoura) Alternatives to TBM Tri-maximal Mixing(s) U e2 2 U µ2 2 U τ2 2 = 1/3 1/3 1/3 TM 1, TM 3, TM 1, TM 2, TM 3, e.g., ( TM 1 : Ue1 2, U e2 2, U e3 2) = ( 2 3, 1 3, 0) U e1 2 2/3 TM 1 : U µ1 2 = 1/6 U τ1 2 1/6 (Lam; Albright, W.R.; Friedberg, Lee) 24

25 Alternatives to TBM tetra-maximal (Xing) U = diag(1, 1, i) R 23 (π/4; π/2) R 13 (π/4; 0) R 12 (π/4; 0) R 13 (π/4; π) symmetric mixing U = U T (Joshipura, Smirnov; Hochmuth, W.R.) U e3 = sinθ 12 sinθ 23 1 sin 2 δ cos 2 θ 12 cos 2 θ 23 + cos δ cosθ 12 cos θ 23 hexagonal mixing (D 6 ) (Albright, Dueck, W.R.; Kim, Seo) θ 12 = π/6 sin 2 θ 12 = 1 4 θ 12 = π/6, θ C = π/12: dodecal (D 12 model) 25

26 Scenario sin 2 θ 12 sin 2 θ 23 sin 2 θ 13 TBM µ τ TM ** TM ** TM TM TM 2 ** TM 3 ** T 4 M U=U T BM HM ϕ ϕ QLC QLC QLC Albright, Dueck, W.R.,

27 sin 2 θ best-fit 1σ 3σ TBM TM 1 TM 2 TM 2 TM 3 T 4 M U=U T HM QLC 1 QLC U e3 27

28 sin 2 θ best-fit 1σ 3σ TBM TM 1 TM 2 TM 2 TM 3 T 4 M U=U T HM QLC 1 QLC U e3 28

29 sin 2 θ best-fit 1σ 3σ TM 1 TM 2 TM 2 TM 3 T 4 M U=U T HM QLC 0 QLC 1 QLC sin 2 θ 12 29

30 "Typical" values for U e3 m 2 sol / m2 atm sqrt( m 2 sol / m2 atm ) m e /m µ m e /m τ U e3 0,1 0,01 0,001 0,0001 1e-05 # $ & λ ℵ m µ /m τ sqrt(m e /m µ ) sqrt(m e /m τ ) sqrt(m µ /m τ ) m d /m s m d /m b # m s /m b $ sqrt(m d /m s ) % sqrt(m d /m b ) & sqrt(m s /m b m u /m c m u /m t m c /m t sqrt(m u /m c ) sqrt(m u /m t ) sqrt(m c /m t ) λ λ λ/sqrt(2) λ/(3 sqrt(2)) λ 2 1/3 - sin 2 θ 12 sqrt( 1/3 - sin 2 θ 12 ) 1/2 - sin 2 θ 23 ℵ sqrt( 1/2 - sin 2 θ 23 ) 1/3 - sin 2 θ /2 - sin 2 θ

31 "Typical" values for U e3 normal ordering U e3 0,1 0,01 m 1 /m 2 m 1 /m 3 m 2 /m 3 sqrt(m 1 /m 2 ) sqrt(m 1 /m 3 ) sqrt(m 2 /m 3 ) (m 1 /m 2 ) 2 (m 1 /m 3 ) 2 (m 2 /m 3 ) 2 m 2 sol / m2 atm sqrt( m 2 sol / m2 atm ) 0,001 1e-05 0,0001 0,001 0,01 0,1 m 1 [ev] 31

32 "Typical" values for U e3 inverted ordering 0,1 U e3 0,01 0,001 1e-05 0,0001 0,001 0,01 0,1 m 3 [ev] m 3 /m 1 m 1 /m 2 sqrt(m 3 /m 1 ) sqrt(m 1 m 2 ) (m 3 /m 1 ) 2 (m 1 /m 2 ) 2 m 2 sol / m2 atm sqrt( m 2 sol / m2 atm ) 32

33 sin 2 θ E 6 SU(5) SO(10) lopsided SO(10) sym/antisym SRND sin 2 θ 12 Albright, Chen 33

34 Predictions of All 63 Models 12 Number of Models anarchy texture zero SO(3) A 4 S 3, S 4 L e -L µ -L τ SRND SO(10) lopsided SO(10) symmetric/asym e sin 2 θ /11/10 Albright, Chen, PRD 74, (2006) 34

35 The value U e3 0.1 seems to be interesting: little bit smaller than current limit Bari hint two numbers a, b of order one: a/b > 0.1 experimentally probed very soon Atm & LBL & CHOOZ Solar & KamLAND ALL ν oscillation data sin 2 2Θ 13 discovery reach 3Σ MINOS CNGS D CHOOZ T2K NO A Reactor II NO A FPD 2 nd GenPDExp NuFact Superbeams Reactor exps Conv. beams Superbeam upgrades Ν factories Branching point θ CHOOZ Solar excluded sin 0 Year 35

36 Log mee ev Disfavored by 0ΝΒΒ m m Disfavored by Cosmology 3.5 U e3 0.0 Best fit & 3Σ Log m ev Log mee ev Disfavored by 0ΝΒΒ m m Disfavored by Cosmology 3.5 U e Best fit & 3Σ Log m ev importance of U e3 in neutrino-less double beta decay 36

37 How to perturb a mixing scenario/model VEV misalignment, NLO terms explicit naive breaking renormalization charged leptons 37

38 naive misalignment : VEV misalignment, NLO terms if flavon = (1, 1, 1) T, perturb it to flavon = (1, 1 + ǫ 1, 1 + ǫ 2 ) T Honda, Tanimoto Barry, W.R. - typically of the same order for θ 23 and U e3 - of order flavon /Λ or flavon /M R, typically O(0.1) or O(λ C ) or O(0.01) - solar neutrino mixing angle receives larger corrections 38

39 VEV misalignment, NLO terms NLO terms, VEV misalignment due to terms allowed by the symmetry model-dependent! Altarelli, Feruglio, Merlo, JHEP 0905: δ sin 2 θ 12 δ U e3 = O(λ) and δ sin 2 θ 23 = O(λ 2 ) 39

40 Altarelli, Feruglio, Hagedorn, JHEP 0803: corrections O(λ 2 ) to all mixing angles Lin, NPB 824: δ U e3 = O(λ) and δ sin 2 θ 12 δ sin 2 θ 23 = O(λ 2 ) Hagedorn, Ziegler, : δ U e3 2 = O(λ 2 ) and δ sin 2 θ 12 = O(λ) Ishimori et al., : δ U e3 2 = O(ǫ 2 ) and δ sin 2 θ 12 = O(ǫ) and δ sin 2 θ 23 = O(ǫ 2 ) etc.: etc. 40

41 How to perturb a mixing scenario/model explicit (naive) breaking A (1 + ǫ 1 ) B (1 + ǫ 2 ) B (1 + ǫ 3 ) m ν = 1 2 (A + B + D) (1 + ǫ 1 4) 2 (A + B D) (1 + ǫ 5) 1 2 (A + B + D) (1 + ǫ 6) small complex parameters ǫ i = ǫ i e iφ 1 with ǫ i 0.2 Albright, W.R., Phys. Lett. B 665, 378 (2008) 41

42 U e U e m 1 [ev] m 3 [ev] U e requires m 1 > 0.02 ev in normal ordering ( ǫ 2 (m m 2 )/ m 2 A ) nothing in inverted ordering ( ǫ 2 ) 42

43 Normal hierarchy U e e-05 1e-06 1e-07 > + < # A AB # BB BM BO CM CY DR GK + JLM < VR > YW 1e sin 2 θ 12 sin 2 θ 12 very unstable connected to two very close eigenvalues 43

44 How to perturb a mixing scenario/model Radiative corrections θ ij θ TBM ij + k ij ǫ RG 2 m 1 + m 2 e iα 2 2 k 12 = 3 ( m 2 2 m 2 + m 3 e i(α 3 α 2 ) 2 k 23 = 3 m m 1 + m 3 e iα 3 m2 2 3 m 2 3 m2 1 ( 2 m 2 + m 3 e i(α 3 α 2 ) 2 m 1 + m 3 e iα 3 k 13 = 3 m 2 3 m2 2 m 2 3 m ) ) ǫ RG = c m 2 τ 16π 2 v 2 ln M X m Z and c = 3/2 or 1 + tan 2 β 44

45 Sign of RG correction (all best-fits have sin 2 θ ): Model mass ordering θ 12 θ 23 SM MSSM m 2 31 > 0 ց ց m 2 31 < 0 ց ր m 2 31 > 0 ր ր m 2 31 < 0 ր ց Size of RG correction (phases ignored...): Angle NH IH QD θ 12 1 m 2 A / m2 m 2 0/ m 2 θ m 2 0/ m 2 A θ m 2 0/ m 2 A 45

46 46

47 47

48 48

49 Large U e3 and RG aim: get U e3 = 0.1 from TBM constraint: keep sin 2 θ 12 close to TBM value what is sin 2 θ 23? Goswami, Petcov, Ray, W.R., PRD 80 (2009)

50 k 12 = 2 3 m 1 + m 2 e iα 2 m 2 Effect on θ 12 2 m 2 A m 2 m 2 0 m 2 1 NH (1 + e iα 2 ) IH (1 + e iα 2 ) QD strong effect for IH and QD suppress with α 2 = π m ee m 0 1 sin 2 2θ 12 sin 2 α 2 /2 α 2=π m 0 cos2θ 12 large cancellations in 0νββ! 50

51 Renormalization and U e3 0.1 m λ (ev) Inverted tanβ = 5 m λ (ev) Inverted tanβ = m λ 0 (ev) m λ 0 (ev) m ee c 2 13 m 0 c s 2 12 e iα 2 tanβ = 5: m ee takes values between 0.26 and 0.50 ev; general upper and lower limits: 0.2 ev and 1.4 ev tanβ = 20: m ee takes values between 0.07 and 0.11 ev; general upper and lower limits: 0.05 ev and 0.34 ev 51

52 Renormalization and U e Normal Inverted sin 2 θ sin 2 θ m 0 (ev) m 0 (ev) SM: doesn t work 52

53 Renormalization and U e sin 2 θ sin 2 θ m 0 (ev) Normal tanβ = m 0 (ev) Normal tanβ = 20 MSSM: 4 < (m 0 /ev) tanβ < 7 53

54 Renormalization and U e Normal tanβ = 5, Inverted tanβ = 5, 20 sin 2 θ sin 2 θ sin 2 θ sin 2 θ 23 θ 23 π/4 = O( U e3 ) can NOT be maximal 54

55 Planck-scale? but can be zero Lower Limits on θ 13? L = 1 M Pl (L Φ) 2 U e3 < v 2 M Pl 1 m 2 A RG for m 1 = 0: U e3 > yτ 2 sin2θ 12 sin2θ 23 m 2 32 π 2 m 2 + m 2 A ln Λ λ SM (1 + tan 2 β) MSSM increases for non-zero neutrino masses with a factor 8 m 2 0 ( m 2 + ) m 2 A m ( m0 ) ev 55

56 A case without RG? θ 13 ṁ 3 m 3 inverted hierarchy with m 3 = θ 13 = 0 receives no corrections! need 2-loop RGEs, to obtain most minimal value of U e3 ṁ ν = 2 (16π 2 ) 2 Y T m ν Y with Y = diag(y 2 e, y 2 µ, y 2 τ) (Davidson, Isidori, Strumia, PLB 646 (2007) 100 have used it to get smallest neutrino mass ev) 56

57 Most minimal value of U e3 U e3 y 4 τ 2 (16π 2 ) 2 s 2 23 m 1 m 2 sin2θ 12 sin2θ 23 m 1 m 2 e i ϕ m 1 s m 2 c 2 12 e i ϕ lies between and Ray, W.R., Schmidt,

58 Most minimal value of U e3 MSSM: from SUSY breaking with sleptons in the loop, or additive terms LH u LH u U e3 MSSM U e3 SM (1 + tan 2 β) 2 / ln Λ λ Supernova physics (collective effects) rx (km) log 10 θ v Fuller et al., PRL 99, (2007) 58

59 How to perturb a mixing scenario/model Charged lepton corrections U = U l U (T)BM 1 λ λ 3 U l λ 1 λ 2 λ 3 λ 2 1 gives sin 2 θ λcosφ or sin2 θ λ cosφ U e3 1 2 λ, J CP = λ 6 sinφ sin 2 θ O(λ2 ) Direct correlation between U e3, sin 2 θ 12 and CP violation! For BM: small CP violation For TBM: large CP violation 59

60 Charged Lepton Corrections and U e sin 2 θ J CP U e U e3 CP violation maximal! θ 23 π/4 = O( U e3 2 ) θ 23 can be maximal Goswami, Petcov, Ray, W.R., PRD 80, (2009) 60

61 sin 2 θ charged leptons renormalization (MSSM) explicit breaking U e3 λ 2 m2 0 m 2 A ( m 2 A > 0) ( m 2 A < 0) (1 + tan 2 β) ǫ q ǫ m 1 / m 2 A mass QD: m 0 tan β (4 7) ev IH, PD, QD m ee m 0 c 2 13 cos 2θ 12 CP oscillations: almost maximal CP violation α 2 π m 0 c 2 13 cos 2θ 12 q m 2 A c2 13 cos 2θ 12 large U e3 requires (IH) (PD/QD) suppressed m ee only when initially α 2 π (QD) (IH) U e

62 Summary so far Corrections to U e3 and θ 23 similar do we need precision experiments for θ 12? could distinguish very different approaches sin 2 θ 12 = 1 2 λ/ vs. sin 2 θ 12 = 1 3 BUT: Corrections to θ 12 tend to be largest... where else is θ 12 important? 62

63 63

64 Testing Inverted Ordering Nature gives us a scale: m ee IH min = ( 1 U e3 2) m 2 A ( 1 2 sin 2 θ 12 ) = ( ) ev 1σ ( ) ev 3σ Desiderata: small U e3 large m 2 A small sin 2 θ 12 Recall: a limit m ee lim scales with Talk by Kishimoto ( E B M t )1 4 64

65 Testing Inverted Ordering Nature gives us another scale: m ee IH max = ( 1 U e3 2) m 2 A = ( ) ev 1σ ( ) ev 3σ small U e3 large m 2 A Desiderata: 65

66 m ee [ev] m 0 = ev m A 2 [10-3 ev 2 ] IH, 3σ IH, BF T 0ν 1/2 [10 28 y] m ee [ev] m 0 = ev sin 2 (θ 12 ) IH, 3σ IH, BF T 0ν 1/2 [10 28 y] m ee [ev] m 0 = ev sin 2 (θ 13 ) IH, 3σ IH, BF T 0ν 1/2 [10 28 y] m ee vs. m 2 A m ee vs. sin 2 θ 12 m ee vs. U e3 2 sin 2 θ 12 gives strongest dependence! 66

67 m 0 = ev m ee IH min, bf m ee IH max, bf 0.1 m ee [ev] sin (θ 12 ) m 2 A [10-3 ev 2 m ee vs. sin 2 θ 12 and U e3 2 67

68 sterile neutrinos Non-Standard Neutrino Physics LSND/MiniBooNE, return of the 3+1 scenarios cosmology: N eff 4 phenomenology: mass-related observables expected from theory? Non-Standard Interactions effective approach: L = ǫ αβ G F (ν α γ µ ν β ) (fγ µ f) ( ) 2 m expectation ǫ αβ = O W m NP flavorαβ gauge invariance reduces neutrino limits... 68

69 Unitarity violation U U 1, or N = (1 + η)u 0 sub-percent bounds already there (Antusch et al.) expected from type I and III seesaw, but tiny unless mild hierarchy in M ν and/or extended see-saws, e.g. inverse see-saw (Mohapatra, Valle) 0 m T D 0 M = m D 0 m T RS M S m D m RS 0 m RS M S m ν ( m D ) ( ) 2 2 ( TeV MS 10 2 GeV m RS 0.1keV) ev η 1 2 m D (m RS ) 1 (m T RS ) 1 m D equivalent: NLO term m 1 ν = O(m 4 D m 4 RS M S) at percent level natural also in E 6 models with < TeV exotic new leptons (Stech) 69

70 Non-Standard Neutrino Physics new U(1) generating interactions/potential for neutrinos ( leptonic forces, Z, etc.) no real expectation on scale neutrinos can give best limits on such forces (better than equivalence principle) exotic exotics Lorentz invariance violation CPT violation for mass scale m expect it to be order m/m Pl see-saw: M R /M Pl permille? Fermi-Dirac statistics violation... 70

71 Example MINOS anomaly m 2 = ( ) 10 3 ev 2, sin 2 2θ > 0.91 m 2 = ( ) 10 3 ev 2, sin 2 2θ = 0.86 ±

72 Is this......non-standard Interaction (Mann, Cherdack, Musial, Kafka, ; Kopp, Machado, Parke, )?...sterile neutrino (plus gauged Z from U(1) according to B L) (Engelhardt, Nelson, Walsh, )?...gauged ultra-light Z from U(1) according to L µ L τ (Heeck, W.R., )?...CPT violation? (Barenboim, Lykken, ; Choudhury, Datta, Kundu, )?...nothing and will go away (common sense)? 72

73 Gauged L α L β L e L µ or L e L τ or L µ L τ can be gauged without anomaly in SM (Foot, 1991) 73

74 SM: Y i = 0 in each family extra U(1): anomalies cancel among different (lepton) generations example L e L µ : ν e, L e have Q = 1, ν µ, L µ have Q = 1 there is an extra Z which couples to ν e, L e and ν µ, L µ with coupling g no expectation for mass scale... 74

75 if Z from L e L α is ultra-light: particles in Sun (or Earth) create potential for terrestrial neutrinos (Joshipura, Mohanty, PLB 584, 103 (2004)) V = g 2 4π Scale: m Z 1/A.U ev... V must be added to Hamiltonian: H eµ = m2 cos2θ 4 E sin2θ N e R αn e R sin2θ cos2θ + V 0 0 V looks like NSI, but does not depend on matter density! also works for vacuum oscillations! V changes sign for anti-neutrinos! P(ν α ν α ) P( ν α ν α ) without CPT violation 75

76 V = α N e = α R A.U ev α ev atmospheric neutrinos m 2 ( ) A GeV 4E ev E Limits α eµ and α eτ (Joshipura, Mohanty, PLB 584, 103 (2004)) solar neutrinos m 2 4E ( ) MeV ev E Limits (θ 13 = 0) α eµ and α eτ (Bandyopadhyay, Dighe, Joshipura, PRD 75, (2007)) stronger than limits from equivalence principle! 76

77 Gauged L µ L τ never considered for oscillation physics, but very interesting because 0 0 a L e L τ : m ν = b 0 not successful 0 but L µ L τ has zeroth order mass matrix a 0 0 L µ L τ : m ν = 0 b 0 masses a, ±b and U e3 = 0, θ 23 = π/4 automatically µ τ symmetric! flavor gauge 77

78 Gauged L µ L τ L = 1 4 Z µν Z µν M 2 Z Z µ Z µ g j µ Z µ sinχ 2 with new current j µ = µ γ µ µ + ν µ γ µ P L ν µ τ γ µ τ ν τ γ µ P L ν τ Diagonalizing kinetic and mass terms gives Z µν B µν + δm 2 Z µ Z µ L A = e (j EM ) µ A µ ( ) e ( L Z1 = (j3 ) µ s 2 ) W (j EM ) µ + g ξ (j ) µ Z µ 1 s W c W ( L Z2 = g (j ) µ e (ξ s W χ) ( ) (j 3 ) µ s 2 ) W (j EM ) µ e cw χ (j EM ) µ s W c W Z-Z mixing Z µ 2 78

79 Potential through Z-Z mixing (Heeck, W.R., ): V = g (ξ s W χ) e 4 s W c W N n 4πR A.U. α e 4 s W c W N n 4πR A.U. sin 2 2θ V = With η = 2 E V / m 2 : sin 2 2θ 1 4 η cos2θ + 4 η 2 m 2 V = m η cos2θ + 4 η 2 Recall: V changes sign for anti-neutrinos!! 79

80 sin 2 2θ V = sin 2 2θ 1 4 η cos2θ + 4 η 2 m 2 V = m η cos2θ + 4 η 2 m 2 V m 2 V = m2 1 4 η cos2θ + 4 η 2 m η cos2θ + 4 η 2 4 η m 2 cos 2θ works only with non-maximal θ 80

81 Gauged L µ L τ m 2 V m 2 V 4 η m2 cos2θ goes only with non-maximal θ sin 2 2θ = 0.83±0.08, m 2 = ( 2.48±0.19) 10 3 ev 2, α = ( ) with χ 2 min /N dof = 47.77/50, (without α: χ 2 min /N dof = 49.43/51) Heeck, W.R.,

82 60 Χ 2 with 1, 2 and 3Σ ranges Χ sin 2 2Θ 82

83 looks in H like NSI, hence apply NSI limits α = ǫ µµ 0.25 current limit ǫ µµ < α flavor effects...? 83

84 GLoBES Experiment Sensitivity to α/10 50 at 99.73% CL T2K (ν-run) 11.8 T2K 4.3 T2HK 1.7 SPL 7.5 NOνA 1.9 Combined Superbeams 1.4 Nufact

85 a µ = g 2 /(8π 2 ) Other aspects/limits of L µ L τ BBN: Γ(Z Z ν µ,τ ν µ,τ ) g 2 T g < 10 5 other EW precision: there are only 10 8 Z... 85

86 Other aspects/limits of L µ L τ coupling of Z with electromagnetic current gives modified charge Q(µ + ( ) Q(e + ) 1 + g (ξ s W χ)( 1 ) e 4 s2 W)/(s W c W ) + c W χ measured to be 1 ±

87 H = 1 2E Non-Standard Interactions L eff = G F 2 ǫ f αβ (ν αγ µ ν β ) (fγ µ f) and ǫ αβ ǫ αβ for anti-neutrinos U 0 0 U + A 0 m 2 32 ǫ µµ ǫ µτ ǫ µτ ǫ ττ Kopp, Machado, Parke, (only ǫ µτ: Mann et al., ) 87

88 H = 1 2E U NSIs 0 0 U + A ǫ µµ ǫ µτ 0 m 2 32 ǫ µτ ǫ ττ 88

89 Charged Current NSIs L NSI 2 2 G F ǫ d τµ V ud [ūγ µ d] [ µγ µ P L ν τ ] leads to interference of ν µ ν τ + N X + µ and ν µ + N X + µ Kopp, Machado, Parke,

90 Gauge Invariance strikes back! L NSI 2 2 G F ǫ d τµ V ud [ūγ µ d] [ µγ µ P L ν τ ] gives 1-loop diagram for τ µ π 0 : ǫ d τµ 0.2 BUT: gauge invariant term L NSI 2 2 G F ǫ d τµ V ud [Ūγ µ U] [ L µ γ µ L τ ] gives tree-level diagram for τ µ π 0 : ǫ d τµ 10 4 Gavela, Talk@NOW2010 this argument does not apply to gauged U(1)! 90

91 Mass Observables Example: 58 models based on A 4 leading to tri-bimaximal mixing: Barry, W.R., PRD 81, (2010) 91

92 How to distinguish? LFV low scale scalars: Higgs, LFV compatible with GUTs? leptogenesis possible? neutrino mass sum-rules! 92

93 0-nu DBD & FLAVOR PRL 99 (2007) PRD78: (2008) A4 PRD72, (2005) 12 Valle 93

94 Sum-rules in Models and 0νββ Normal Inverted <m ee > (ev) σ 30% error 3σ exact TBM exact 2m 2 + m 3 = m 1 m 1 + m 2 = m m β (ev) Barry, W.R., NPB 842, 33 (2011) 94

95 Sum-rules in Models and 0νββ Normal Inverted <m ee > (ev) σ 30% error 3σ exact TBM exact 2/m 2 + 1/m 3 = 1/m 1 1/m 1 + 1/m 2 = 1/m m β (ev) Barry, W.R., NPB 842, 33 (2011) 95

96 Mass Observables and New Physics LSND/MiniBooNE/cosmology are compatible with a sterile neutrino having ev mass and 0.1 mixing m ee st (0.1) ev m st β (0.1) ev is of order of inverted hierarchy contribution 96

97 Suppose there are 2 sterile neutrinos 8 Orderings 4 phenomenologies 4 cases to the right usually NOT considered in fits... 97

98 scheme KATRIN 0νββ feature SSN maybe maybe NH plus ν s1, ν s2 SSI maybe maybe IH plus ν s1, ν s2 NSS, ISS, SNSb, SISb yes yes QD with m 2 s1 SNSa, SISa yes yes QD with m 2 s2 Goswami, W.R., JHEP 0710, 073 (2007) 98

99 Summary Corrections/Predictions for θ 13 and θ 23 π/4 are typically similar to test them on a level of 0.1 is a good idea... once θ 13 will be determined, deviation from maximal θ 23 will become crucial interesting theoretical speculations on θ 12, but receives typically large corrections (of phenomenological interest for 0νββ) Non-standard neutrino physics: various speculations and hints, with different theoretical expectation/motivation not really comparable to SUSY in quark flavor physics but: neutrino mass generation different: keep on looking! 99

100 Go seisho arigato gozaimashita 100

Scaling in the Neutrino Mass Matrix and the See-Saw Mechanism. Werner Rodejohann (MPIK, Heidelberg) Erice, 20/09/09

Scaling in the Neutrino Mass Matrix and the See-Saw Mechanism. Werner Rodejohann (MPIK, Heidelberg) Erice, 20/09/09 Scaling in the Neutrino Mass Matrix and the See-Saw Mechanism Werner Rodejohann (MPIK, Heidelberg) Erice, 20/09/09 1 A. S. Joshipura, W.R., Phys. Lett. B 678, 276 (2009) [arxiv:0905.2126 [hep-ph]] A. Blum,

More information

Leptonic CP violation theory

Leptonic CP violation theory p. 1/30 Leptonic CP violation theory C. Hagedorn CP 3 -Origins, SDU, Odense, Denmark XXVII International Conference on Neutrino Physics and Astrophysics, 04.07.-09.07.2016, London, UK p. 2/30 Low energy

More information

Neutrino Models with Flavor Symmetry

Neutrino Models with Flavor Symmetry Neutrino Models with Flavor Symmetry November 11, 2010 Mini Workshop on Neutrinos IPMU, Kashiwa, Japan Morimitsu Tanimoto (Niigata University) with H. Ishimori, Y. Shimizu, A. Watanabe 1 Plan of my talk

More information

Gauged Flavor Symmetries

Gauged Flavor Symmetries Gauged Flavor Symmetries NOW 2012 Julian Heeck Max-Planck-Institut für Kernphysik, Heidelberg 15.9.2012 based on J.H., Werner Rodejohann, PRD 84 (2011), PRD 85 (2012); Takeshi Araki, J.H., Jisuke Kubo,

More information

RG evolution of neutrino parameters

RG evolution of neutrino parameters RG evolution of neutrino parameters ( In TeV scale seesaw models ) Sasmita Mishra Physical Research Laboratory, Ahmedabad, India Based on arxiv:1310.1468 November 12, 2013 Institute of Physics, Bhubaneswar.

More information

Fermion Mixing Angles and the Connection to Non-Trivially Broken Flavor Symmetries

Fermion Mixing Angles and the Connection to Non-Trivially Broken Flavor Symmetries Fermion Mixing ngles and the Connection to Non-Trivially Broken Flavor Symmetries C. Hagedorn hagedorn@mpi-hd.mpg.de Max-Planck-Institut für Kernphysik, Heidelberg, Germany. Blum, CH, M. Lindner numerics:.

More information

CP Violation Predictions from Flavour Symmetries

CP Violation Predictions from Flavour Symmetries CP Violation Predictions from Flavour Symmetries Arsenii V. Titov in collaboration with Ivan Girardi and Serguey T. Petcov SISSA and INFN, Trieste, Italy Neutrino Oscillation Workshop 016 September 6,

More information

Neutrinos: Three-Flavor Effects in Sparse and Dense Matter

Neutrinos: Three-Flavor Effects in Sparse and Dense Matter Neutrinos: Three-Flavor Effects in Sparse and Dense Matter Tommy Ohlsson tommy@theophys.kth.se Royal Institute of Technology (KTH) & Royal Swedish Academy of Sciences (KVA) Stockholm, Sweden Neutrinos

More information

Updating the Status of Neutrino Physics

Updating the Status of Neutrino Physics Updating the Status of Neutrino Physics J. W. F. Valle IFIC-CSIC/U. Valencia Based on hep-ph/36 and hep-ph/3792 String Phenomenology 23, Durham p. Atmospheric zenith distribution Maltoni, Schwetz, Tortola

More information

A Novel and Simple Discrete Symmetry for Non-zero θ 13

A Novel and Simple Discrete Symmetry for Non-zero θ 13 A Novel and Simple Discrete Symmetry for Non-zero θ 13 Yang-Hwan, Ahn (KIAS) Collaboration with Seungwon Baek and Paolo Gondolo NRF workshop Yonsei Univ., Jun 7-8, 2012 Contents Introduction We propose

More information

Neutrino masses respecting string constraints

Neutrino masses respecting string constraints Neutrino masses respecting string constraints Introduction Neutrino preliminaries The GUT seesaw Neutrinos in string constructions The triplet model (Work in progress, in collaboration with J. Giedt, G.

More information

Is nonstandard interaction a solution to the three neutrino tensions?

Is nonstandard interaction a solution to the three neutrino tensions? 1/28 Is nonstandard interaction a solution to the three neutrino tensions? Osamu Yasuda Tokyo Metropolitan University Dec. 18 @Miami 2016 Based on arxiv:1609.04204 [hep-ph] Shinya Fukasawa, Monojit Ghosh,OY

More information

Flavor Models with Sterile Neutrinos. NuFact 11 Geneva, Aug, He Zhang

Flavor Models with Sterile Neutrinos. NuFact 11 Geneva, Aug, He Zhang Flavor Models with Sterile Neutrinos NuFact 11 Geneva, Aug, 2011 Contents: Sterile neutrinos in ν-osc. and 0νββ decays Mechanisms for light sterile neutrino masses Flavor symmetry with sterile neutrinos

More information

Theoretical Particle Physics Yonsei Univ.

Theoretical Particle Physics Yonsei Univ. Yang-Hwan Ahn (KIAS) Appear to arxiv : 1409.xxxxx sooooon Theoretical Particle Physics group @ Yonsei Univ. Introduction Now that the Higgs boson has been discovered at 126 GeV, assuming that it is indeed

More information

Neutrino Anomalies & CEνNS

Neutrino Anomalies & CEνNS Neutrino Anomalies & CEνNS André de Gouvêa University PIRE Workshop, COFI February 6 7, 2017 Something Funny Happened on the Way to the 21st Century ν Flavor Oscillations Neutrino oscillation experiments

More information

Lepton Flavor and CPV

Lepton Flavor and CPV Lepton Flavor and CPV Alexander J. Stuart 25 May 2017 Based on: L.L. Everett, T. Garon, and AS, JHEP 1504, 069 (2015) [arxiv:1501.04336]; L.L. Everett and AS, arxiv:1611.03020 [hep-ph]. The Standard Model

More information

Yang-Hwan, Ahn (KIAS)

Yang-Hwan, Ahn (KIAS) Yang-Hwan, Ahn (KIAS) Collaboration with Paolo Gondolo (Univ. of Utah) Appear to 1312.xxxxx 2013 Particle Theory Group @ Yonsei Univ. 1 The SM as an effective theory Several theoretical arguments (inclusion

More information

Neutrino Masses & Flavor Mixing 邢志忠. Zhi-zhong Xing. (IHEP, Winter School 2010, Styria, Austria. Lecture B

Neutrino Masses & Flavor Mixing 邢志忠. Zhi-zhong Xing. (IHEP, Winter School 2010, Styria, Austria. Lecture B Neutrino Masses & Flavor Mixing Zhi-zhong Xing 邢志忠 (IHEP, Beijing) @Schladming Winter School 2010, Styria, Austria Lecture B Lepton Flavors & Nobel Prize 2 1975 1936 = 1936 1897 = 39 Positron: Predicted

More information

Flavor Symmetries: Models and Implications

Flavor Symmetries: Models and Implications Flavor Symmetries: Models and Implications Lisa L. Everett Nakatani, 1936 U. Wisconsin, Madison squared splittings and angles ra, Valle the first who made snow crystal in a laboratory *, The symmetry group

More information

Neutrino Physics II. Neutrino Phenomenology. Arcadi Santamaria. TAE 2014, Benasque, September 19, IFIC/Univ. València

Neutrino Physics II. Neutrino Phenomenology. Arcadi Santamaria. TAE 2014, Benasque, September 19, IFIC/Univ. València Neutrino Physics II Neutrino Phenomenology Arcadi Santamaria IFIC/Univ. València TAE 2014, Benasque, September 19, 2014 Neutrino Physics II Outline 1 Neutrino oscillations phenomenology Solar neutrinos

More information

Searching for non-standard interactions at the future long baseline experiments

Searching for non-standard interactions at the future long baseline experiments Searching for non-standard interactions at the future long baseline experiments Osamu Yasuda Tokyo Metropolitan University Dec. 18 @Miami 015 1/34 1. Introduction. New Physics in propagation 3. Sensitivity

More information

Puzzles of Neutrinos and Anti-Matter: Hidden Symmetries and Symmetry Breaking. Hong-Jian He

Puzzles of Neutrinos and Anti-Matter: Hidden Symmetries and Symmetry Breaking. Hong-Jian He Puzzles of Neutrinos and Anti-Matter: Hidden Symmetries and Symmetry Breaking Tsinghua University 2009-1-13 Collaborators: Shao-Feng Ge & Fu-Rong Yin Based on arxiv:1001.0940 (and works in preparation)

More information

Lecture 3. A. Yu. Smirnov International Centre for Theoretical Physics, Trieste, Italy

Lecture 3. A. Yu. Smirnov International Centre for Theoretical Physics, Trieste, Italy Lecture 3 A. Yu. Smirnov International Centre for Theoretical Physics, Trieste, Italy 25 Spring School on Particles and Fields, National Taiwan University, Taipei April 5-8, 2012 E, GeV contours of constant

More information

Exotic Charges, Multicomponent Dark Matter and Light Sterile Neutrinos

Exotic Charges, Multicomponent Dark Matter and Light Sterile Neutrinos Exotic Charges, Multicomponent and Light Sterile Neutrinos Julian Heeck Max-Planck-Institut für Kernphysik, Heidelberg 2.10.2012 based on J.H., He Zhang, arxiv:1210.xxxx. Sterile Neutrinos Hints for ev

More information

Models of Neutrino Masses & Mixings

Models of Neutrino Masses & Mixings Frascati, 27 November '04 Models of Neutrino Masses & Mixings CERN Some recent work by our group G.A., F. Feruglio, I. Masina, hep-ph/0210342 (Addendum: v2 in Nov. 03), hep-ph/0402155. Reviews: G.A., F.

More information

Neutrino Basics. m 2 [ev 2 ] tan 2 θ. Reference: The Standard Model and Beyond, CRC Press. Paul Langacker (IAS) LSND 90/99% SuperK 90/99% MINOS K2K

Neutrino Basics. m 2 [ev 2 ] tan 2 θ. Reference: The Standard Model and Beyond, CRC Press. Paul Langacker (IAS) LSND 90/99% SuperK 90/99% MINOS K2K Neutrino Basics CDHSW m 2 [ev 2 ] 10 0 10 3 10 6 10 9 KARMEN2 Cl 95% NOMAD MiniBooNE Ga 95% Bugey CHOOZ ν X ν µ ν τ ν τ NOMAD all solar 95% SNO 95% CHORUS NOMAD CHORUS LSND 90/99% SuperK 90/99% MINOS K2K

More information

Neutrino oscillation phenomenology

Neutrino oscillation phenomenology Neutrino oscillation phenomenology Tokyo Metropolitan University Osamu Yasuda INO-KEK meeting 7 November 007@KEK Contents 1. Introduction. Future long baseline experiments 3. Deviation from the standard

More information

SYMMETRY BEHIND FLAVOR PHYSICS: THE STRUCTURE OF MIXING MATRIX. Min-Seok Seo (Seoul National University)

SYMMETRY BEHIND FLAVOR PHYSICS: THE STRUCTURE OF MIXING MATRIX. Min-Seok Seo (Seoul National University) SYMMETRY BEHIND FLAVOR PHYSICS: THE STRUCTURE OF MIXING MATRIX Min-Seok Seo (Seoul National University) INTRODUCTION Flavor Issues in Standard Model: 1. Mass hierarchy of quarks and leptons 2. Origin of

More information

Quo vadis, neutrino flavor models. Stefano Morisi Università Federico II di Napoli, INFN sez. Napoli

Quo vadis, neutrino flavor models. Stefano Morisi Università Federico II di Napoli, INFN sez. Napoli Quo vadis, neutrino flavor models Stefano Morisi Università Federico II di Napoli, INFN sez. Napoli The flavor problem t Mass hierarchy? Mixing hierarchy? b e d u mu c tau s why 3 generations? origin of

More information

Overview of mass hierarchy, CP violation and leptogenesis.

Overview of mass hierarchy, CP violation and leptogenesis. Overview of mass hierarchy, CP violation and leptogenesis. (Theory and Phenomenology) Walter Winter DESY International Workshop on Next Generation Nucleon Decay and Neutrino Detectors (NNN 2016) 3-5 November

More information

Non oscillation flavor physics at future neutrino oscillation facilities

Non oscillation flavor physics at future neutrino oscillation facilities Non oscillation flavor physics at future neutrino oscillation facilities Tokyo Metropolitan University Osamu Yasuda 2 July 2008 @nufact08 (SM+m ν ) + (correction due to New physics) which can be probed

More information

Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation

Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation Mu-Chun Chen Fermilab (Jan 1, 27: UC Irvine) M.-C. C & K.T. Mahanthappa, hep-ph/69288, to appear in Phys. Rev. D; Phys. Rev. D71, 351 (25)

More information

Overview of Reactor Neutrino

Overview of Reactor Neutrino Overview of Reactor Neutrino Chan-Fai (Steven) Wong, Wei Wang Sun Yat-Sen University 22 September 2016 The 14th International Workshop on Tau Lepton Physics Many thanks to Jia Jie Ling, Liang Jian Wen

More information

On Minimal Models with Light Sterile Neutrinos

On Minimal Models with Light Sterile Neutrinos On Minimal Models with Light Sterile Neutrinos Pilar Hernández University of Valencia/IFIC Donini, López-Pavón, PH, Maltoni arxiv:1106.0064 Donini, López-Pavón, PH, Maltoni, Schwetz arxiv:1205.5230 SM

More information

Yang-Hwan, Ahn (KIAS)

Yang-Hwan, Ahn (KIAS) Yang-Hwan, Ahn (KIAS) Collaboration with Paolo Gondolo (Univ. of Utah) Appear to 1311.xxxxx The 3 rd KIAS workshop on Particle physics and Cosmology 1 The SM as an effective theory Several theoretical

More information

Puzzles of Neutrino Mixing and Anti-Matter: Hidden Symmetries and Symmetry Breaking. Shao-Feng Ge

Puzzles of Neutrino Mixing and Anti-Matter: Hidden Symmetries and Symmetry Breaking. Shao-Feng Ge Puzzles of Neutrino Mixing and Anti-Matter: Hidden Symmetries and Symmetry Breaking Shao-Feng Ge (gesf02@mails.thu.edu.cn) Center for High Energy Physics, Tsinghua Univeristy 200-4-8 Collaborators: Hong-Jian

More information

Theoretical Models of neutrino parameters. G.G.Ross, Paris, September 2008

Theoretical Models of neutrino parameters. G.G.Ross, Paris, September 2008 Theoretical Models of neutrino parameters. G.G.Ross, Paris, September 2008 Theoretical Models of neutrino parameters. G.G.Ross, Paris, September 2008 Number of light neutrinos 3? Masses + Mixing Angles

More information

COLLIDER STUDIES OF HIGGS TRIPLET MODEL

COLLIDER STUDIES OF HIGGS TRIPLET MODEL LHC Symposium @ 2011 PSROC Annual Meeting January 26, 2011 COLLIDER STUDIES OF HIGGS TRIPLET MODEL Cheng-Wei Chiang ( ) National Central Univ. and Academia Sinica A. G. Akeroyd and CC: PRD 80, 113010 (2009)

More information

JIGSAW 07. Neutrino Mixings and Leptonic CP Violation from CKM Matrix and Majorana Phases. Sanjib Kumar Agarwalla

JIGSAW 07. Neutrino Mixings and Leptonic CP Violation from CKM Matrix and Majorana Phases. Sanjib Kumar Agarwalla JIGSAW 07 Neutrino Mixings and Leptonic CP Violation from CKM Matrix and Majorana Phases Sanjib Kumar Agarwalla Harish-Chandra Research Institute, Allahabad, India work done in collaboration with M. K.

More information

Steve King, DCPIHEP, Colima

Steve King, DCPIHEP, Colima !!! 1/6/11 Lecture I. The Flavour Problem in the Standard Model with Neutrino Mass Lecture II. Family Symmetry and SUSY Lecture III. SUSY GUTs of Flavour with Discrete Family Symmetry Steve King, DCPIHEP,

More information

COLLIDER STUDIES OF HIGGS TRIPLET MODEL

COLLIDER STUDIES OF HIGGS TRIPLET MODEL Miami 2010 December 16, 2010 COLLIDER STUDIES OF HIGGS TRIPLET MODEL Cheng-Wei Chiang National Central Univ. and Academia Sinica (on leave at Univ. of Wisconsin - Madison) A. G. Akeroyd and CC: PRD 80,

More information

THE SEESAW MECHANISM AND RENORMALIZATION GROUP EFFECTS

THE SEESAW MECHANISM AND RENORMALIZATION GROUP EFFECTS THE SEESAW MECHANISM AND RENORMALIZATION GROUP EFFECTS M. LINDNER Physik Department, Technische Universität München James-Franck-Str., D-85748 Garching/München, Germany E-mail: lindner@ph.tum.de Neutrino

More information

Predicting the Leptonic Dirac CP Violation Phase from Sum Rules

Predicting the Leptonic Dirac CP Violation Phase from Sum Rules Predicting the Leptonic Dirac CP Violation Phase from Sum Rules Ivan Girardi SISSA/INFN, Trieste, Italy E-mail: igirardi@sissa.it S. T. Petcov SISSA/INFN, Trieste, Italy and Kavli IPMU, Kashiwa, Japan

More information

Lepton-flavor violation in tau-lepton decay and the related topics

Lepton-flavor violation in tau-lepton decay and the related topics Lepton-flavor violation in tau-lepton decay and the related topics Junji Hisano Institute for Cosmic Ray Research Univ. of Tokyo International Workshop On Discoveries In Flavour Physics At E+ E- Colliders

More information

Flavor Symmetry L e L µ L τ, Atmospheric Neutrino Mixing and CP Violation in the Lepton Sector

Flavor Symmetry L e L µ L τ, Atmospheric Neutrino Mixing and CP Violation in the Lepton Sector SISSA 63/004/EP hep-ph/0409135 Flavor Symmetry L e L µ L τ, Atmospheric Neutrino Mixing and CP Violation in the Lepton Sector arxiv:hep-ph/0409135v3 9 Mar 005 S.T. Petcov and W. Rodejohann Scuola Internazionale

More information

Superb prospects: Physics at Belle II/SuperKEKB

Superb prospects: Physics at Belle II/SuperKEKB PANIC July 28, 2011 Superb prospects: Physics at Belle II/SuperKEKB cf G. Varner, talk 3H-1 SuperKEKB & Belle II projects 2 Primary goal: establish unitarity & complex phase of CKM matrix Kobayashi & Maskawa

More information

arxiv:hep-ph/ v2 20 Jul 2005

arxiv:hep-ph/ v2 20 Jul 2005 OSU-HEP-05-10 July 005 Model of Geometric Neutrino Mixing arxiv:hep-ph/050717v 0 Jul 005 K.S. Babu 1 and Xiao-Gang He, 1 Oklahoma Center for High Energy Physics Department of Physics, Oklahoma State University

More information

Physics beyond the Standard Model: Neutrinos & Dark matter

Physics beyond the Standard Model: Neutrinos & Dark matter Physics beyond the Standard Model: Neutrinos & Dark matter José W F Valle http://astroparticles.ific.uv.es/ PASCOS 2013, Taiwan 1 Where do neutrinos come from? 336 / cm3: bilions of Cosmic neutrinos Cross

More information

Leaving Plato s Cave: Beyond The Simplest Models of Dark Matter

Leaving Plato s Cave: Beyond The Simplest Models of Dark Matter Leaving Plato s Cave: Beyond The Simplest Models of Dark Matter Alexander Natale Korea Institute for Advanced Study Nucl. Phys. B914 201-219 (2017), arxiv:1608.06999. High1 2017 February 9th, 2017 1/30

More information

Status and prospects of neutrino oscillations

Status and prospects of neutrino oscillations Status and prospects of neutrino oscillations S. Bilenky JINR(Dubna)TRIUMF June 10, 2017 The award of the 2015 Nobel Prize to T. Kajita and A. McDonald for the discovery of neutrino oscillations, which

More information

Neutrinos: status, models, string theory expectations

Neutrinos: status, models, string theory expectations Neutrinos: status, models, string theory expectations Introduction Neutrino preliminaries and status Models String embeddings Intersecting brane The Z 3 heterotic orbifold Embedding the Higgs triplet Outlook

More information

The Leptonic CP Phases

The Leptonic CP Phases Shao-Feng Ge (gesf2@gmail.com) Max-Planck-Institut für Kernphysik, Heidelberg, Germany 217-5-22 SFG, Duane A. Dicus, Wayne W. Repko, PLB 72, 22 (211) [arxiv:114.62] SFG, Duane A. Dicus, Wayne W. Repko,

More information

Non-zero Ue3, Leptogenesis in A4 Symmetry

Non-zero Ue3, Leptogenesis in A4 Symmetry Non-zero Ue3, Leptogenesis in A4 Symmetry 2 nd International Workshop on Dark Matter, Dark Energy and Matter-Antimatter Asymmetry Y.H.Ahn (Academia Sinica) based on the paper with C.S.Kim and S. Oh 1 Outline

More information

Quark-Lepton Complementarity Predictions for θ pmns

Quark-Lepton Complementarity Predictions for θ pmns Quark-Lepton Complementarity Predictions for θ pmns 23 and CP Violation Gazal Sharma and B. C. Chauhan arxiv:1511.02143v2 [hep-ph] 6 May 2016 Department of Physics & Astronomical Science, School of Physical

More information

SNOW Global fits to neutrino oscillation data. Thomas Schwetz SISSA, Trieste

SNOW Global fits to neutrino oscillation data. Thomas Schwetz SISSA, Trieste SNOW 26 Global fits to neutrino oscillation data Thomas Schwetz SISSA, Trieste based on work in collaboration with M. Maltoni, M.A. Tortola, and J.W.F. Valle [hep-ph/3913, hep-ph/45172] T.S. is supported

More information

Modular Symmetry in Lepton Flavors

Modular Symmetry in Lepton Flavors Modular Symmetry in Lepton Flavors Morimitsu Tanimoto Niigata University September 4, 2018, @ Corfu, Greece Corfu Summer Institute, Workshop on Standard Model and Beyond Collaborated with T. Kobayashi,

More information

Duality in left-right symmetric seesaw

Duality in left-right symmetric seesaw Duality in left-right symmetric seesaw Evgeny Akhmedov KTH, Stockholm & Kurchatov Institute, Moscow In collaboration with Michele Frigerio Evgeny Akhmedov SNOW 2006 Stockholm May 4, 2006 p. 1 Why are neutrinos

More information

Neutrino phenomenology Lecture 2: Precision physics with neutrinos

Neutrino phenomenology Lecture 2: Precision physics with neutrinos Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 Masses and constants 01.03.2010 Walter Winter Universität Würzburg ν Contents (overall) Lecture 1: Testing

More information

A. Yu. Smirnov. A. Yu. Smirnov

A. Yu. Smirnov. A. Yu. Smirnov A. Yu. Smirnov A. Yu. Smirnov before nu2012 G. L. Fogli Serious implications for theory Non-zero, relatively Large 1-3 mixing Substantial deviation of the 2-3 mixing from maximal d CP ~ p DB new Robust?

More information

Higgs Bosons Phenomenology in the Higgs Triplet Model

Higgs Bosons Phenomenology in the Higgs Triplet Model Higgs Bosons Phenomenology in the Higgs Triplet Model Andrew Akeroyd National Cheng Kung University, Tainan, Taiwan TeV scale mechanisms ( testable ) for neutrino mass generation Higgs Triplet Model Production

More information

What is the impact of the observation of θ 13 on neutrino flavor structure?

What is the impact of the observation of θ 13 on neutrino flavor structure? What is the impact of the observation of θ 13 on neutrino flavor structure? 第 25 回宇宙ニュートリノ研究会 宇宙線研究所 March 29, 2012, Kashiwa Morimitsu Tanimoto (Niigata University) 1 Plan of my talk 1 Introduction Toward

More information

symmetries and unification

symmetries and unification Right unitarity triangles and tribimaximal mixing from discrete symmetries and unification Martin Spinrath FLASY 2011-12th July Based on collaborations with S. Antusch, S.F. King, C. Luhn and M. Malinsky:

More information

Neutrinos as Probes of new Physics

Neutrinos as Probes of new Physics Neutrinos as Probes of new Physics Manfred Lindner Max-Planck-Institut für Kernphysik, Heidelberg The Birth of the Neutrino energy-momentum conservation: postulate new particle invisible, since Q=0 spin

More information

Beyond Standard Model Effects in Flavour Physics: p.1

Beyond Standard Model Effects in Flavour Physics: p.1 Beyond Standard Model Effects in Flavour Physics: Alakabha Datta University of Mississippi Feb 13, 2006 Beyond Standard Model Effects in Flavour Physics: p.1 OUTLINE Standard Model (SM) and its Problems.

More information

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC Wei Chao (IHEP) Outline Brief overview of neutrino mass models. Introduction to a TeV-scale type-i+ii seesaw model. EW precision

More information

Neutrino Mass in Strings

Neutrino Mass in Strings Neutrino Mass in Strings Introduction Neutrino preliminaries Models String embeddings Intersecting brane The Z 3 heterotic orbifold Embedding the Higgs triplet Outlook Neutrino mass Nonzero mass may be

More information

What If U e3 2 < 10 4? Neutrino Factories and Other Matters

What If U e3 2 < 10 4? Neutrino Factories and Other Matters What If U e3 < 0 4? Neutrino Factories and Other Matters André de Gouvêa University DUSEL Theory Workshop Ohio State University, April 4 6, 008 April 5, 008 tiny U e3 : now what? Outline. What are We Aiming

More information

Neutrinos and Fundamental Symmetries: L, CP, and CP T

Neutrinos and Fundamental Symmetries: L, CP, and CP T Neutrinos and Fundamental Symmetries: L, CP, and CP T Outstanding issues Lepton number (L) CP violation CP T violation Outstanding issues in neutrino intrinsic properties Scale of underlying physics? (string,

More information

What We Know, and What We Would Like To Find Out. Boris Kayser Minnesota October 23,

What We Know, and What We Would Like To Find Out. Boris Kayser Minnesota October 23, What We Know, and What We Would Like To Find Out Boris Kayser Minnesota October 23, 2008 1 In the last decade, observations of neutrino oscillation have established that Neutrinos have nonzero masses and

More information

Yang-Hwan Ahn Based on arxiv:

Yang-Hwan Ahn Based on arxiv: Yang-Hwan Ahn (CTPU@IBS) Based on arxiv: 1611.08359 1 Introduction Now that the Higgs boson has been discovered at 126 GeV, assuming that it is indeed exactly the one predicted by the SM, there are several

More information

Minimal Neutrinoless Double Beta Decay Rates from Anarchy and Flavor Symmetries

Minimal Neutrinoless Double Beta Decay Rates from Anarchy and Flavor Symmetries Minimal Neutrinoless Double Beta Decay Rates from Anarchy and When is Γ ββ0ν unobservably small? Theoretical Division, T-2 Los Alamos National Laboratory Institute for Nuclear Theory, Seattle References

More information

Sinergie fra ricerche con neutrini da acceleratore e atmosferici

Sinergie fra ricerche con neutrini da acceleratore e atmosferici Sinergie fra ricerche con neutrini da acceleratore e atmosferici Michele Maltoni International Centre for Theoretical Physics IFAE 26, Pavia 2 Aprile 26 I. Parameter degeneracies and neutrino data II.

More information

Neutrinos and Cosmos. Hitoshi Murayama (Berkeley) Texas Conference at Stanford Dec 17, 2004

Neutrinos and Cosmos. Hitoshi Murayama (Berkeley) Texas Conference at Stanford Dec 17, 2004 Neutrinos and Cosmos Hitoshi Murayama (Berkeley) Texas Conference at Stanford Dec 17, 2004 Outline A Little Historical Perspective Interpretation of Data & Seven Questions Matter Anti-Matter Asymmetry

More information

Status of Light Sterile Neutrinos Carlo Giunti

Status of Light Sterile Neutrinos Carlo Giunti C. Giunti Status of Light Sterile Neutrinos EPS-HEP 05 3 July 05 /5 Status of Light Sterile Neutrinos Carlo Giunti INFN, Sezione di Torino and Dipartimento di Fisica, Università di Torino giunti@to.infn.it

More information

A. Yu. Smirnov International Centre for Theoretical Physics, Trieste, Italy. July 21, 2011, The international school Daniel Chalonge

A. Yu. Smirnov International Centre for Theoretical Physics, Trieste, Italy. July 21, 2011, The international school Daniel Chalonge A. Yu. Smirnov International Centre for Theoretical Physics, Trieste, Italy July 21, 2011, The international school Daniel Chalonge - nature of neutrino mass: Dirac vs. Majorana, soft vs. hard; - absolute

More information

arxiv:hep-ph/ v1 26 Jul 2006

arxiv:hep-ph/ v1 26 Jul 2006 Neutrino mass and baryogenesis arxiv:hep-ph/0607287v1 26 Jul 2006 D. Falcone Dipartimento di Scienze Fisiche, Università di Napoli, Via Cintia, Napoli, Italy A brief overview of the phenomenology related

More information

Bimaximal Neutrino Mixing in a Zee-type Model with Badly Broken Flavor Symmetry

Bimaximal Neutrino Mixing in a Zee-type Model with Badly Broken Flavor Symmetry University of Shizuoka US-00-08 August 000 hep-ph/000xxx Bimaximal Neutrino Mixing in a Zee-type Model with Badly Broken Flavor Symmetry Yoshio Koide and Ambar Ghosal Department of Physics, University

More information

Mirror fermions, electroweak scale right-handed neutrinos and experimental implications

Mirror fermions, electroweak scale right-handed neutrinos and experimental implications Mirror fermions, electroweak scale right-handed neutrinos and experimental implications P. Q. Hung University of Virginia Ljubljana 2008 Plan of Talk The question of parity restoration at high energies:

More information

Neutrinos as a Unique Probe: cm

Neutrinos as a Unique Probe: cm Neutrinos as a Unique Probe: 10 33 10 +28 cm Particle Physics νn, µn, en scattering: existence/properties of quarks, QCD Weak decays (n pe ν e, µ e ν µ ν e ): Fermi theory, parity violation, quark mixing

More information

Phenomenology at neutrino oscillation experiments

Phenomenology at neutrino oscillation experiments Phenomenology at neutrino oscillation experiments Tracey Li IPPP, Durham University Supervisor: Dr. Silvia Pascoli LEPP particle theory seminar Cornell University 2nd April 2010 Talk overview Neutrino

More information

The Leptonic Dirac CP-Violating Phase from Sum Rules

The Leptonic Dirac CP-Violating Phase from Sum Rules The Leptonic Dirac CP-Violating Phase from Sum Rules Arsenii Titov in collaboration with I. Girardi and S.T. Petcov SISSA and INFN, Trieste, Italy XIV International Conference on Topics in Astroparticle

More information

Neutrinos and CP Violation. Silvia Pascoli

Neutrinos and CP Violation. Silvia Pascoli 0 Neutrinos and CP Violation XI Internat.Workshop on Neutrino Telescopes Venezia - 23 February 2005 Silvia Pascoli CERN Outline Outline Theoretical aspects of Dirac and Majorana CPV phases Determining

More information

Models of Neutrino Masses & Mixings

Models of Neutrino Masses & Mixings St. Andrews, August 06 Models of Neutrino Masses & Mixings G. Altarelli Universita' di Roma Tre/CERN Some recent work by our group G.A., F. Feruglio, I. Masina, hep-ph/0402155, G.A., F. Feruglio, hep-ph/0504165,hep-ph/0512103

More information

arxiv: v2 [hep-ph] 2 Mar 2018

arxiv: v2 [hep-ph] 2 Mar 2018 CP Violation in the Lepton Sector and Implications for Leptogenesis arxiv:1711.02866v2 [hep-ph] 2 Mar 2018 C. Hagedorn, R. N. Mohapatra, E. Molinaro 1, C. C. Nishi, S. T. Petcov 2 CP 3 -Origins, University

More information

arxiv: v1 [hep-ph] 27 Apr 2018

arxiv: v1 [hep-ph] 27 Apr 2018 HUPD181 Revisiting A 4 model for leptons in light of NuFIT 3. arxiv:184.1468v1 [hep-ph] 7 Apr 18 Sin Kyu Kang 1,, Yusuke Shimizu,, Kenta Takagi,, Shunya Takahashi,, Morimitsu Tanimoto 3, 1 School of Liberal

More information

A SUSY SU (5) T 0 Uni ed Model of Flavour with large θ13

A SUSY SU (5) T 0 Uni ed Model of Flavour with large θ13 A SUSY SU (5) T 0 Uni ed Model of Flavour with large θ13 What's nu? Invisibles12, Florence, June 2012 Aurora Meroni (SISSA) In collaboration with S. T. Petcov and M. Spinrath arxiv:1205.5241 Outline of

More information

Leptogenesis. Neutrino 08 Christchurch, New Zealand 30/5/2008

Leptogenesis. Neutrino 08 Christchurch, New Zealand 30/5/2008 Leptogenesis Neutrino 08 Christchurch, New Zealand 30/5/2008 Yossi Nir (Weizmann Institute of Science) Sacha Davidson, Enrico Nardi, YN Physics Reports, in press [arxiv:0802.2962] E. Roulet, G. Engelhard,

More information

Nonzero θ 13 and Models for Neutrino Masses and Mixing

Nonzero θ 13 and Models for Neutrino Masses and Mixing Nonzero θ 13 and Models for Neutrino Masses and Mixing Xiao-Gang He NCTS&NTHU&SJTU&NTU θ 13 has been measured T. Schwetz Neutrinos masses, m1, m2, m3. Forero et al, arxiv:1205.4018 Fogli et al, arxiv:1205.3204

More information

Supersymmetric Seesaws

Supersymmetric Seesaws Supersymmetric Seesaws M. Hirsch mahirsch@ific.uv.es Astroparticle and High Energy Physics Group Instituto de Fisica Corpuscular - CSIC Universidad de Valencia Valencia - Spain Thanks to: J. Esteves, S.

More information

Flavor symmetries: Tests & alternatives

Flavor symmetries: Tests & alternatives Flavor symmetries: finding tests & alternatives Miami 2010 The Higgs as a harbinger of flavor symmetry G. Bhattacharyya, P. Leser, H. Päs, arxiv:1006.5597 Knotted strings & leptonic flavor structure T.W.

More information

Neutrino Mass Models

Neutrino Mass Models Neutrino Mass Models S Uma Sankar Department of Physics Indian Institute of Technology Bombay Mumbai, India S. Uma Sankar (IITB) IWAAP-17, BARC (Mumbai) 01 December 2017 1 / 15 Neutrino Masses LEP experiments

More information

Sterile Neutrinos in July 2010

Sterile Neutrinos in July 2010 Sterile Neutrinos in July 0 Carlo Giunti INFN, Sezione di Torino Presidenza INFN, Roma, 19 July 0 Collaboration with Marco Laveder (Padova University) C. Giunti Sterile Neutrinos in July 0 Presidenza INFN,

More information

arxiv: v2 [hep-ph] 7 Apr 2018

arxiv: v2 [hep-ph] 7 Apr 2018 Neutrino mixing in SO0 GUTs with non-abelian flavor symmetry in the hidden sector arxiv:803.07933v [hep-ph] 7 Apr 08 Alexei Yu. Smirnov and Xun-Jie Xu Max-Planck-Institut für Kernphysik, Postfach 03980,

More information

NEUTRINO PROPERTIES PROBED BY LEPTON NUMBER VIOLATING PROCESSES AT LOW AND HIGH ENERGIES *

NEUTRINO PROPERTIES PROBED BY LEPTON NUMBER VIOLATING PROCESSES AT LOW AND HIGH ENERGIES * NEUTRINO PROPERTIES PROBED BY LEPTON NUMBER VIOLATING PROCESSES AT LOW AND HIGH ENERGIES * S. STOICA Horia Hulubei Fondation, P.O.Box MG-1, RO-07715 Bucharest-Magurele, Romania, E-mail: sabin.stoica@unescochair-hhf.ro

More information

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov Minimal Extension of the Standard Model of Particle Physics Dmitry Gorbunov Institute for Nuclear Research, Moscow, Russia 14th Lomonosov Conference on Elementary Paticle Physics, Moscow, MSU, 21.08.2009

More information

F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King. arxiv:

F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King. arxiv: F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King S FLASY 2015 arxiv:1503.03306 Standard Model Gauge theory SU(3)C X SU(2)L X U(1)Y Standard Model Gauge theory SU(3)C X SU(2)L X U(1)Y SM:

More information

arxiv: v1 [hep-ph] 20 May 2016

arxiv: v1 [hep-ph] 20 May 2016 Texture zeros in neutrino mass matrix Bartosz Dziewit, 1, Jacek Holeczek, 1, Monika Richter, 1, Sebastian Zajac, 2, and Marek Zralek 1, 1 Institute of Physics, University of Silesia arxiv:1605.06547v1

More information

Models of Neutrino Masses

Models of Neutrino Masses Models of Neutrino Masses Fernando Romero López 13.05.2016 1 Introduction and Motivation 3 2 Dirac and Majorana Spinors 4 3 SU(2) L U(1) Y Extensions 11 4 Neutrino masses in R-Parity Violating Supersymmetry

More information

Why neutrinos? Patrick Huber. Center for Neutrino Physics at Virginia Tech. KURF Users Meeting June 7, 2013, Virginia Tech. P. Huber VT-CNP p.

Why neutrinos? Patrick Huber. Center for Neutrino Physics at Virginia Tech. KURF Users Meeting June 7, 2013, Virginia Tech. P. Huber VT-CNP p. Why neutrinos? Patrick Huber Center for Neutrino Physics at Virginia Tech KURF Users Meeting June 7, 2013, Virginia Tech P. Huber VT-CNP p. 1 Neutrinos are massive so what? Neutrinos in the Standard Model

More information

Non-zero Ue3 and TeV-leptogenesis through A4 symmetry breaking

Non-zero Ue3 and TeV-leptogenesis through A4 symmetry breaking Non-zero Ue3 and TeV-leptogenesis through A4 symmetry breaking National Tsing-Hua Unv. Chian-Shu Chen (NCKU/AS) with Y.H. Ahn & S.K. Kang 11/1/009 ouline Introduction A 4 symmetry The model Neutrino mass

More information