Midterm Exam #1: Solutions

Size: px
Start display at page:

Download "Midterm Exam #1: Solutions"

Transcription

1 Midterm Exam #: Solutions. If m = 3.8ft., convert the speed of sound, v sound = 344 m/s, into units of feet per minute, i.e, ft/min ( min = 60 s ). A).85 0 ft/min ; B) C).75 0 ft/min D) ft/min E) ft/min ft/min Use your factors of : 344 m 3.8 ft 60 s = ft/min, i.e., (D) s m min The next questions refer to the following two position versus time plots describing the motion of two mass-spring combinations. The horizontal scale (time) is the same for each (i.e., each tick is equal to 0. s). Amplitude A Time Amplitude B Time The period of A compared to B is: A) shorter; B) longer; or C) the same. Period = time for one complete oscillation. The horizontal scale is time. Wave A clearly has a longer period. (B). Midterm Exam #, P05, Basic Physics of Sound 9 Sept. 000

2 3. The frequency of A compared to B is: A) higher; B) lower; or C) the same. If A has a period longer than B, and f = ---, then A has a lower frequency than B. T Answer: (B) 4. The amplitude of A compared to B is: A) larger; B) smaller; or C) the same. Amplitude is the maximum value of displacement which is clearly larger for A compared to B. Answer: (A). 5. Suppose a xylophone mallet with a hard-rubber head remains in contact with the wooden bar for only a very short time. During that time, it exerts a force of F = 500 N. If that force is concentrated in a contact area of only 5.0 square millimeters (i.e., A = 5.0 mm ), how much pressure is being exerted on that part of the bar during the time of contact? ( 000 mm = m ). A) 00 N/m ; B) 500 N/m ; 5 C).0 0 N/m ; 6 D).0 0 N/m ; 8 E).0 0 N/m. F 500 N P mm. Many people forgot to square A 5.0 mm = = =.0 0 N/m m the conversion factor properly. There are 000 mm in a meter, but many more square millimeters in a square meter... Answer: (E) Midterm Exam #, P05, Basic Physics of Sound 9 Sept. 000

3 6. The Roadrunner zips forward at a speed of 50 m/s for 000 m, and then instantly slows down to a speed of 40 m/s for the next 3000 m in the same direction. What is his/ her (have you ever wondered?) average speed for the total distance? A) 4. m/s; B) 4.5 m/s; C) 45.0 m/s; D) 47.3 m/s; E) 4.6 m/s. t 000 m = = = 0 s, t 3000 m, 50 m/s = = = 75 s 40 m/s v Average speed m m = = = t t + t = 0 s + 75 s 4.m/s 7. A mass of m = 3.0 kg hanging at the end of a spring lazily oscillates up and down with a period of T =.0 s. What is the spring constant, k, of the spring? A) 37 N/m; B) 59. N/m; C) 474 N/m; D) 4.7 N/m; E) 9.6 N/m. v f k = , rearranging, k = ( π) f m = ( π) ( 0.5 Hz) ( 3.0 kg) = 9.6 N/m, π m Answer: (E) 8. Rita accelerates a violin bow with mass of m = 0. kg from rest to a speed of v = 9.0 m/s in a time of t = 0.5 s. What average force does she apply to the bow during this time? A) 4 N; B) 36 N; C) N; D) 30 N; E) 6.0 N. v v First, acceleration: a i 9.0 m/s 0 m/s = = = = 60 m/s, and F = ma, t 0.5 s so F = ( 0. kg) 60 m/s v f t f ( ) = N, Answer: (C). t i Midterm Exam #, P05, Basic Physics of Sound 9 Sept

4 Position, x [m] Time, t [s] k x x=0 m + x - 9. The graph above is the position versus time plot of the mass-spring combination shown to the right. At what times is the potential energy stored in the spring maximum? A) At times t = 3579,,,, s; B) At times t = 59,, s; C) At times t = 04680,,,,, s; D) At times t = 048,, s; E) At times t = 60,, s. PE = --kx, so PE occurs when, i.e., Answer: (C). Note that since x max x = ± x max is squared, we have to include the times when the spring is compressed too (i.e., when x =. x max Position (m) Time (s) Midterm Exam #, P05, Basic Physics of Sound 9 Sept

5 0. The graph above shows the position versus time plot of a student walking down a hallway. During a certain time interval, the student has negative velocity. The velocity during this time interval is: A) 0.5 m/s; B).0 m/s; C).3 m/s; D).0 m/s; E) 4.0 m/s. Velocity is the slope of the position vs. time plot as given. Taking the straight line segment between 8 and s, rise 4 m 4 m velocity = = slope = =. Don t confuse position t run = s 8 s.0 m/s and time! Answer: (D). I attach a block with mass of m =.0 kg to a spring with a spring constant of k = 50 N/m. I first pull the mass stretching the spring.0 cm beyond its equilibrium position and release it to get it oscillating. I then stop the system completely and pull the spring by 4.0 cm to get it oscillating. In this second case with x max = 4.0 cm, compared to the first case ( =.0 cm ): x max A) the period is longer, speed at equilibrium position is larger; B) the period is longer, speed at equilibrium position is smaller; C) the period is shorter, speed at equilibrium position is larger; D) the period is shorter, speed at equilibrium position is smaller; E) the period is the same, speed at equilibrium position is larger; F) the period is the same, speed at equilibrium position is smaller. This is an example of simple harmonic motion where we learned that the frequency and period are independent of initial amplitude. Also, from energy conservation, PE i + KE i = PE f + KE f. Initially, PE i = --kx and KE i = 0, and if final is at the equilibrium point, PE f = 0, so PE i KE f --kx = ; = --mv. If I increase, then must increase. Answer: (E) f x max v f Midterm Exam #, P05, Basic Physics of Sound 9 Sept

6 Worksheet Midterm Exam #, P05, Basic Physics of Sound 9 Sept

7 Formulae Sheet Conversion Factors: m = 3.8 ft ; in =.54 cm ; mile = 580 ft ; kg =.0 lbs ; hour = 3, 600 s ; liter =, 000 cm 3 ; π radians = 360 ; N = kg m ; kg m J = N m = ; Hz = cycle s s Standard Prefixes: mega M kilo k centi c milli m micro nano n µ s Velocity, speed v = ; Average speed over time interval t : v t v f t f v v Acceleration: a = = i ; t t i = = t x f t f x i t i Newton s Second Law: F = ma; Acceleration due to gravity: g = 9.8 m/s ; Weight: w = mg; Force due to a spring: F = kx F Pressure: P = ; Work: W = Fd = KE ; Conservation of energy: KE + PE = constant A Potential Energy due to Gravity: PE = mgh Potential Energy stored in Spring: PE --kx = ; Kinetic Energy: KE = --mv W E Power: P = ---- = --- t t Midterm Exam #, P05, Basic Physics of Sound 9 Sept

8 Frequency, period: f = --- ; Frequency mass/spring system: f T = π k --- m Motion of Simple Harmonic Oscillator: πt x = x cos max T Midterm Exam #, P05, Basic Physics of Sound 9 Sept

The Long List of Things to Memorize

The Long List of Things to Memorize 8 th Grade Physics BASIS Peoria Pre Comprehensive Exam Prep The Long List of Things to Memorize How to use this guide o This is a list of items that must be memorized in order to have success on the precomprehensive

More information

Chapter 12 Vibrations and Waves Simple Harmonic Motion page

Chapter 12 Vibrations and Waves Simple Harmonic Motion page Chapter 2 Vibrations and Waves 2- Simple Harmonic Motion page 438-45 Hooke s Law Periodic motion the object has a repeated motion that follows the same path, the object swings to and fro. Examples: a pendulum

More information

Simple Harmonic Motion Investigating a Mass Oscillating on a Spring

Simple Harmonic Motion Investigating a Mass Oscillating on a Spring 17 Investigating a Mass Oscillating on a Spring A spring that is hanging vertically from a support with no mass at the end of the spring has a length L (called its rest length). When a mass is added to

More information

Chapter 13. Simple Harmonic Motion

Chapter 13. Simple Harmonic Motion Chapter 13 Simple Harmonic Motion Hooke s Law F s = - k x F s is the spring force k is the spring constant It is a measure of the stiffness of the spring A large k indicates a stiff spring and a small

More information

Lab: Energy-Rubber Band Cannon C O N C E P T U A L P H Y S I C S : U N I T 4

Lab: Energy-Rubber Band Cannon C O N C E P T U A L P H Y S I C S : U N I T 4 Name Date Period Objectives: Lab: Energy-Rubber Band Cannon C O N C E P T U A L P H Y S I C S : U N I T 4 1) Find the energy stored within the rubber band cannon for various displacements. 2) Find the

More information

AP Physics. Harmonic Motion. Multiple Choice. Test E

AP Physics. Harmonic Motion. Multiple Choice. Test E AP Physics Harmonic Motion Multiple Choice Test E A 0.10-Kg block is attached to a spring, initially unstretched, of force constant k = 40 N m as shown below. The block is released from rest at t = 0 sec.

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. PH105-007 Exam 2 VERSION A Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A 1.0-kg block and a 2.0-kg block are pressed together on a horizontal

More information

Chapter 6 Energy and Oscillations

Chapter 6 Energy and Oscillations Chapter 6 Energy and Oscillations Conservation of Energy In this chapter we will discuss one of the most important and fundamental principles in the universe. Energy is conserved. This means that in any

More information

Physics 161 Lecture 17 Simple Harmonic Motion. October 30, 2018

Physics 161 Lecture 17 Simple Harmonic Motion. October 30, 2018 Physics 161 Lecture 17 Simple Harmonic Motion October 30, 2018 1 Lecture 17: learning objectives Review from lecture 16 - Second law of thermodynamics. - In pv cycle process: ΔU = 0, Q add = W by gass

More information

General Physics I Spring Oscillations

General Physics I Spring Oscillations General Physics I Spring 2011 Oscillations 1 Oscillations A quantity is said to exhibit oscillations if it varies with time about an equilibrium or reference value in a repetitive fashion. Oscillations

More information

PHYSICS 1 Simple Harmonic Motion

PHYSICS 1 Simple Harmonic Motion Advanced Placement PHYSICS 1 Simple Harmonic Motion Student 014-015 What I Absolutely Have to Know to Survive the AP* Exam Whenever the acceleration of an object is proportional to its displacement and

More information

Physics 4A Lab: Simple Harmonic Motion

Physics 4A Lab: Simple Harmonic Motion Name: Date: Lab Partner: Physics 4A Lab: Simple Harmonic Motion Objective: To investigate the simple harmonic motion associated with a mass hanging on a spring. To use hook s law and SHM graphs to calculate

More information

Chapter 6 Work and Energy

Chapter 6 Work and Energy Chapter 6 Work and Energy Midterm exams will be available next Thursday. Assignment 6 Textbook (Giancoli, 6 th edition), Chapter 6: Due on Thursday, November 5 1. On page 162 of Giancoli, problem 4. 2.

More information

Oscillations. PHYS 101 Previous Exam Problems CHAPTER. Simple harmonic motion Mass-spring system Energy in SHM Pendulums

Oscillations. PHYS 101 Previous Exam Problems CHAPTER. Simple harmonic motion Mass-spring system Energy in SHM Pendulums PHYS 101 Previous Exam Problems CHAPTER 15 Oscillations Simple harmonic motion Mass-spring system Energy in SHM Pendulums 1. The displacement of a particle oscillating along the x axis is given as a function

More information

Pre Comp Review Questions 7 th Grade

Pre Comp Review Questions 7 th Grade Pre Comp Review Questions 7 th Grade Section 1 Units 1. Fill in the missing SI and English Units Measurement SI Unit SI Symbol English Unit English Symbol Time second s second s. Temperature Kelvin K Fahrenheit

More information

Slide 1 / 70. Simple Harmonic Motion

Slide 1 / 70. Simple Harmonic Motion Slide 1 / 70 Simple Harmonic Motion Slide 2 / 70 SHM and Circular Motion There is a deep connection between Simple Harmonic Motion (SHM) and Uniform Circular Motion (UCM). Simple Harmonic Motion can be

More information

Another Method to get a Sine Wave. X = A cos θ V = Acc =

Another Method to get a Sine Wave. X = A cos θ V = Acc = LAST NAME FIRST NAME DATE PER CJ Wave Assignment 10.3 Energy & Simple Harmonic Motion Conceptual Questions 3, 4, 6, 7, 9 page 313 6, 7, 33, 34 page 314-316 Tracing the movement of the mass on the end of

More information

Name: Lab Partner: Section:

Name: Lab Partner: Section: Chapter 7 Energy Name: Lab Partner: Section: 7.1 Purpose In this experiment, energy and work will be explored. The relationship between total energy, kinetic energy and potential energy will be observed.

More information

Work and energy. 15 m. c. Find the work done by the normal force exerted by the incline on the crate.

Work and energy. 15 m. c. Find the work done by the normal force exerted by the incline on the crate. Work and energy 1. A 10.0-kg crate is pulled 15.0 m up along a frictionless incline as shown in the figure below. The crate starts at rest and has a final speed of 6.00 m/s. motor 15 m 5 a. Draw the free-body

More information

Test, Lesson 7 Waves - Answer Key Page 1

Test, Lesson 7 Waves - Answer Key Page 1 Test, Lesson 7 Waves - Answer Key Page 1 1. Match the proper units with the following: W. wavelength 1. nm F. frequency 2. /sec V. velocity 3. m 4. ms -1 5. Hz 6. m/sec (A) W: 1, 3 F: 2, 4, 5 V: 6 (B)

More information

WORK, POWER & ENERGY

WORK, POWER & ENERGY WORK, POWER & ENERGY Work An applied force acting over a displacement. The force being applied must be parallel to the displacement for work to be occurring. Work Force displacement Units: Newton meter

More information

The Spring: Hooke s Law and Oscillations

The Spring: Hooke s Law and Oscillations Experiment 10 The Spring: Hooke s Law and Oscillations 10.1 Objectives Investigate how a spring behaves when it is stretched under the influence of an external force. To verify that this behavior is accurately

More information

Block 1: General Physics. Chapter 1: Making Measurements

Block 1: General Physics. Chapter 1: Making Measurements Chapter 1: Making Measurements Make measurements of length, volume, and time. Increase precision of measurements. Determine densities of solids and liquids Rulers and measuring cylinders are used to measure

More information

Simple Harmonic Motion Test Tuesday 11/7

Simple Harmonic Motion Test Tuesday 11/7 Simple Harmonic Motion Test Tuesday 11/7 Chapter 11 Vibrations and Waves 1 If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is

More information

Pre Comp Review Questions 8 th Grade Answers

Pre Comp Review Questions 8 th Grade Answers Pre Comp Review Questions 8 th Grade Answers Section 1 Units 1. Fill in the missing SI and English Units Measurement SI Unit SI Symbol English Unit English Symbol Time second s second s. Temperature Kelvin

More information

AP Physics 1. April 11, Simple Harmonic Motion. Table of Contents. Period. SHM and Circular Motion

AP Physics 1. April 11, Simple Harmonic Motion. Table of Contents. Period. SHM and Circular Motion AP Physics 1 2016-07-20 www.njctl.org Table of Contents Click on the topic to go to that section Period and Frequency SHM and UCM Spring Pendulum Simple Pendulum Sinusoidal Nature of SHM Period and Frequency

More information

9.1 Harmonic Motion. Motion in cycles. linear motion - motion that goes from one place to another without repeating.

9.1 Harmonic Motion. Motion in cycles. linear motion - motion that goes from one place to another without repeating. 9.1 Harmonic Motion A bicyclist pedaling past you on the street moves in linear motion. Linear motion gets us from one place to another (Figure 9.1A). This chapter is about another kind of motion called

More information

ME 201 Engineering Mechanics: Statics. Unit 1.1 Mechanics Fundamentals Newton s Laws of Motion Units

ME 201 Engineering Mechanics: Statics. Unit 1.1 Mechanics Fundamentals Newton s Laws of Motion Units ME 201 Engineering Mechanics: Statics Unit 1.1 Mechanics Fundamentals Newton s Laws of Motion Units Additional Assistance Tutoring Center Mck 272 Engineering Walk-In Help Lab Aus??? Schedule to

More information

AP Physics C Mechanics

AP Physics C Mechanics 1 AP Physics C Mechanics Simple Harmonic Motion 2015 12 05 www.njctl.org 2 Table of Contents Click on the topic to go to that section Spring and a Block Energy of SHM SHM and UCM Simple and Physical Pendulums

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS LSN 11-1: SIMPLE HARMONIC MOTION LSN 11-: ENERGY IN THE SIMPLE HARMONIC OSCILLATOR LSN 11-3: PERIOD AND THE SINUSOIDAL NATURE OF SHM Introductory Video:

More information

AP Physics 1: Algebra-Based

AP Physics 1: Algebra-Based 08 AP Physics : Algebra-Based Free-Response Questions 08 The College Board. College Board, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks of the College Board.

More information

Chapter 5 Oscillatory Motion

Chapter 5 Oscillatory Motion Chapter 5 Oscillatory Motion Simple Harmonic Motion An object moves with simple harmonic motion whenever its acceleration is proportional to its displacement from some equilibrium position and is oppositely

More information

PHYSICS 1 Simple Harmonic Motion

PHYSICS 1 Simple Harmonic Motion Advanced Placement PHYSICS Simple Harmonic Motion Presenter 04-05 Simple Harmonic Motion What I Absolutely Have to Know to Survive the AP* Exam Whenever the acceleration of an object is proportional to

More information

Oscillations! (Today: Springs)

Oscillations! (Today: Springs) Oscillations! (Today: Springs) Extra Practice: 5.34, 5.35, C13.1, C13.3, C13.11, 13.1, 13.3, 13.5, 13.9, 13.11, 13.17, 13.19, 13.21, 13.23, 13.25, 13.27, 13.31 Test #3 is this Wednesday! April 12, 7-10pm,

More information

Physics 1C. Lecture 12B

Physics 1C. Lecture 12B Physics 1C Lecture 12B SHM: Mathematical Model! Equations of motion for SHM:! Remember, simple harmonic motion is not uniformly accelerated motion SHM: Mathematical Model! The maximum values of velocity

More information

Hooke s law. F s =-kx Hooke s law

Hooke s law. F s =-kx Hooke s law Hooke s law F s =-kx Hooke s law If there is no friction, the mass continues to oscillate back and forth. If a force is proportional to the displacement x, but opposite in direction, the resulting motion

More information

Simple Harmonic Motion

Simple Harmonic Motion Chapter 9 Simple Harmonic Motion In This Chapter: Restoring Force Elastic Potential Energy Simple Harmonic Motion Period and Frequency Displacement, Velocity, and Acceleration Pendulums Restoring Force

More information

ENERGY. Conservative Forces Non-Conservative Forces Conservation of Mechanical Energy Power

ENERGY. Conservative Forces Non-Conservative Forces Conservation of Mechanical Energy Power ENERGY Conservative Forces Non-Conservative Forces Conservation of Mechanical Energy Power Conservative Forces A force is conservative if the work it does on an object moving between two points is independent

More information

Pre-Class. List everything you remember about circular motion...

Pre-Class. List everything you remember about circular motion... Pre-Class List everything you remember about circular motion... Quote of the Day I'm addicted to brake fluid......but I can stop anytime I want. Table of Contents Click on the topic to go to that section

More information

Simple Harmonic Motion Practice Problems PSI AP Physics 1

Simple Harmonic Motion Practice Problems PSI AP Physics 1 Simple Harmonic Motion Practice Problems PSI AP Physics 1 Name Multiple Choice Questions 1. A block with a mass M is attached to a spring with a spring constant k. The block undergoes SHM. Where is the

More information

KINETIC ENERGY AND WORK

KINETIC ENERGY AND WORK Chapter 7: KINETIC ENERGY AND WORK 1 Which of the following is NOT a correct unit for work? A erg B ft lb C watt D newton meter E joule 2 Which of the following groups does NOT contain a scalar quantity?

More information

EXPERIMENT 11 The Spring Hooke s Law and Oscillations

EXPERIMENT 11 The Spring Hooke s Law and Oscillations Objectives EXPERIMENT 11 The Spring Hooke s Law and Oscillations To investigate how a spring behaves when it is stretched under the influence of an external force. To verify that this behavior is accurately

More information

Physics 41 HW Set 1 Chapter 15 Serway 8 th ( 7 th )

Physics 41 HW Set 1 Chapter 15 Serway 8 th ( 7 th ) Conceptual Q: 4 (7), 7 (), 8 (6) Physics 4 HW Set Chapter 5 Serway 8 th ( 7 th ) Q4(7) Answer (c). The equilibrium position is 5 cm below the starting point. The motion is symmetric about the equilibrium

More information

The Spring-Mass Oscillator

The Spring-Mass Oscillator The Spring-Mass Oscillator Goals and Introduction In this experiment, we will examine and quantify the behavior of the spring-mass oscillator. The spring-mass oscillator consists of an object that is free

More information

CHAPTER 7: OSCILLATORY MOTION REQUIRES A SET OF CONDITIONS

CHAPTER 7: OSCILLATORY MOTION REQUIRES A SET OF CONDITIONS CHAPTER 7: OSCILLATORY MOTION REQUIRES A SET OF CONDITIONS 7.1 Period and Frequency Anything that vibrates or repeats its motion regularly is said to have oscillatory motion (sometimes called harmonic

More information

Oscillatory Motion and Wave Motion

Oscillatory Motion and Wave Motion Oscillatory Motion and Wave Motion Oscillatory Motion Simple Harmonic Motion Wave Motion Waves Motion of an Object Attached to a Spring The Pendulum Transverse and Longitudinal Waves Sinusoidal Wave Function

More information

5.3: Calculate kinetic energy, gravitational potential energy, and elastic potential energy. Do Now: 1. Hand in your Forms of Energy Wheel

5.3: Calculate kinetic energy, gravitational potential energy, and elastic potential energy. Do Now: 1. Hand in your Forms of Energy Wheel Do Now: 1. Hand in your Forms of Energy Wheel 2. Identify the following forms of energy: a. A hiker at the top of a mountain b. A dog chasing a cat c. A rubber band being stretched Agenda: How can we calculate

More information

Outline. Hook s law. Mass spring system Simple harmonic motion Travelling waves Waves in string Sound waves

Outline. Hook s law. Mass spring system Simple harmonic motion Travelling waves Waves in string Sound waves Outline Hook s law. Mass spring system Simple harmonic motion Travelling waves Waves in string Sound waves Hooke s Law Force is directly proportional to the displacement of the object from the equilibrium

More information

Investigating Springs (Simple Harmonic Motion)

Investigating Springs (Simple Harmonic Motion) Investigating Springs (Simple Harmonic Motion) INTRODUCTION The purpose of this lab is to study the well-known force exerted by a spring The force, as given by Hooke s Law, is a function of the amount

More information

Chapter One Introduction to Oscillations

Chapter One Introduction to Oscillations Chapter One Introduction to Oscillations This chapter discusses simple oscillations. This chapter also discusses simple functions to model oscillations like the sine and cosine functions. Part One Sine

More information

Physics 231. Topic 7: Oscillations. Alex Brown October MSU Physics 231 Fall

Physics 231. Topic 7: Oscillations. Alex Brown October MSU Physics 231 Fall Physics 231 Topic 7: Oscillations Alex Brown October 14-19 2015 MSU Physics 231 Fall 2015 1 Key Concepts: Springs and Oscillations Springs Periodic Motion Frequency & Period Simple Harmonic Motion (SHM)

More information

Simple Harmonic Motion - 1 v 1.1 Goodman & Zavorotniy

Simple Harmonic Motion - 1 v 1.1 Goodman & Zavorotniy Simple Harmonic Motion, Waves, and Uniform Circular Motion Introduction he three topics: Simple Harmonic Motion (SHM), Waves and Uniform Circular Motion (UCM) are deeply connected. Much of what we learned

More information

APPLICATIONS OF INTEGRATION

APPLICATIONS OF INTEGRATION 6 APPLICATIONS OF INTEGRATION APPLICATIONS OF INTEGRATION 6.4 Work In this section, we will learn about: Applying integration to calculate the amount of work done in performing a certain physical task.

More information

Name Lesson 7. Homework Work and Energy Problem Solving Outcomes

Name Lesson 7. Homework Work and Energy Problem Solving Outcomes Physics 1 Name Lesson 7. Homework Work and Energy Problem Solving Outcomes Date 1. Define work. 2. Define energy. 3. Determine the work done by a constant force. Period 4. Determine the work done by a

More information

Lab 14 - Simple Harmonic Motion and Oscillations on an Incline

Lab 14 - Simple Harmonic Motion and Oscillations on an Incline Lab 14 - Simple Harmonic Motion and Oscillations on an Incline Name I. Introduction/Theory Partner s Name The purpose of this lab is to measure the period of oscillation of a spring and mass system on

More information

ANSWER'SHEET' 'STAPLE'TO'FRONT'OF'EXAM'! Name:!!!CWID:!!! Lab'section'(circle'one):' 6!(W!3pm)! 8!(W!7pm)!!!

ANSWER'SHEET' 'STAPLE'TO'FRONT'OF'EXAM'! Name:!!!CWID:!!! Lab'section'(circle'one):' 6!(W!3pm)! 8!(W!7pm)!!! ANSWER'SHEET' 'STAPLE'TO'FRONT'OF'EXAM' Name: CWID: Lab'section'(circle'one):' 6(W3pm) 8(W7pm) Multiplechoice: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. Shortanswer: 16. 17. 18. 19. 20. 5(R7pm)

More information

ANSWER'SHEET' 'STAPLE'TO'FRONT'OF'EXAM'! Name:!!!CWID:!!! Lab'section'(circle'one):' 6!(W!3pm)! 8!(W!7pm)!!!

ANSWER'SHEET' 'STAPLE'TO'FRONT'OF'EXAM'! Name:!!!CWID:!!! Lab'section'(circle'one):' 6!(W!3pm)! 8!(W!7pm)!!! ANSWER'SHEET' 'STAPLE'TO'FRONT'OF'EXAM' Name: CWID: Lab'section'(circle'one):' 6(W3pm) 8(W7pm) Multiplechoice: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. Shortanswer: 16. 17. 18. 19. 20. 5(R7pm)

More information

Periodic Motion. Periodic motion is motion of an object that. regularly repeats

Periodic Motion. Periodic motion is motion of an object that. regularly repeats Periodic Motion Periodic motion is motion of an object that regularly repeats The object returns to a given position after a fixed time interval A special kind of periodic motion occurs in mechanical systems

More information

Chapter 6: Applications of Integration

Chapter 6: Applications of Integration Chapter 6: Applications of Integration Section 6.4 Work Definition of Work Situation There is an object whose motion is restricted to a straight line (1-dimensional motion) There is a force applied to

More information

s_3x03 Page 1 Physics Samples

s_3x03 Page 1 Physics Samples Physics Samples KE, PE, Springs 1. A 1.0-kilogram rubber ball traveling east at 4.0 meters per second hits a wall and bounces back toward the west at 2.0 meters per second. Compared to the kinetic energy

More information

Elastic Potential Energy

Elastic Potential Energy Elastic Potential Energy If you pull on a spring and stretch it, then you do work. That is because you are applying a force over a displacement. Your pull is the force and the amount that you stretch the

More information

Review. Kinetic Energy Work Hooke s s Law Potential Energy Conservation of Energy Power 1/91

Review. Kinetic Energy Work Hooke s s Law Potential Energy Conservation of Energy Power 1/91 Review Kinetic Energy Work Hooke s s Law Potential Energy Conservation of Energy Power 1/91 The unit of work is the A. Newton B. Watt C. Joule D. Meter E. Second 2/91 The unit of work is the A. Newton

More information

CHAPTER 11 TEST REVIEW

CHAPTER 11 TEST REVIEW AP PHYSICS Name: Period: Date: 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response DEVIL PHYSICS BADDEST CLASS ON CAMPUS AP EXAM CHAPTER TEST

More information

Momentum, Impulse, Work, Energy, Power, and Conservation Laws

Momentum, Impulse, Work, Energy, Power, and Conservation Laws Momentum, Impulse, Work, Energy, Power, and Conservation Laws 1. Cart A has a mass of 2 kilograms and a speed of 3 meters per second. Cart B has a mass of 3 kilograms and a speed of 2 meters per second.

More information

Work and Energy. computer masses (200 g and 500 g) If the force is constant and parallel to the object s path, work can be calculated using

Work and Energy. computer masses (200 g and 500 g) If the force is constant and parallel to the object s path, work can be calculated using Work and Energy OBJECTIVES Use a Motion Detector and a Force Sensor to measure the position and force on a hanging mass, a spring, and a dynamics cart. Determine the work done on an object using a force

More information

Healy/DiMurro. Vibrations 2016

Healy/DiMurro. Vibrations 2016 Name Vibrations 2016 Healy/DiMurro 1. In the diagram below, an ideal pendulum released from point A swings freely through point B. 4. As the pendulum swings freely from A to B as shown in the diagram to

More information

Phys 111 Exam 1 September 20, You cannot use CELL PHONES, ipad, IPOD... Good Luck!!! Name Section University ID

Phys 111 Exam 1 September 20, You cannot use CELL PHONES, ipad, IPOD... Good Luck!!! Name Section University ID Phys 111 Exam 1 September 0, 016 Name Section University ID Please fill in your computer answer sheet as follows: 1) In the NAME grid, fill in your last name, leave one blank space, then your first name.

More information

spring mass equilibrium position +v max

spring mass equilibrium position +v max Lecture 20 Oscillations (Chapter 11) Review of Simple Harmonic Motion Parameters Graphical Representation of SHM Review of mass-spring pendulum periods Let s review Simple Harmonic Motion. Recall we used

More information

Work and Energy. This sum can be determined graphically as the area under the plot of force vs. distance. 1

Work and Energy. This sum can be determined graphically as the area under the plot of force vs. distance. 1 Work and Energy Experiment 18 Work is a measure of energy transfer. In the absence of friction, when positive work is done on an object, there will be an increase in its kinetic or potential energy. In

More information

the spring is compressed and x is the compression

the spring is compressed and x is the compression Lecture 4 Spring problem and conservation of mechanical energy Hooke's Law The restoring force exerted by the spring is directly proportional to its displacement. The restoring force acts in a direction

More information

Physics Comprehensive Review Part-1

Physics Comprehensive Review Part-1 Physics 1010 Comprehensive Review Part-1 Extra Credit Grades Will be posted on website by Tuesday for the current EC assignment EC credits for the surveys will be posted after all surveys have been completed,

More information

CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CHAPTER 6 WORK AND ENERGY ANSWERS TO FOCUS ON CONCEPTS QUESTIONS (e) When the force is perpendicular to the displacement, as in C, there is no work When the force points in the same direction as the displacement,

More information

Chapter 2 Physics in Action Sample Problem 1 A weightlifter uses a force of 325 N to lift a set of weights 2.00 m off the ground. How much work did th

Chapter 2 Physics in Action Sample Problem 1 A weightlifter uses a force of 325 N to lift a set of weights 2.00 m off the ground. How much work did th Chapter Physics in Action Sample Problem 1 A weightlifter uses a force of 35 N to lift a set of weights.00 m off the ground. How much work did the weightlifter do? Strategy: You can use the following equation

More information

Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1

Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1 Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1 Closed book and closed notes. No work needs to be shown. 1. Three rocks are thrown with identical speeds from the top of the same building.

More information

What happens if one pulls on the spring? The spring exerts a restoring force which is proportional to the distance it is stretched, F = - k x (1)

What happens if one pulls on the spring? The spring exerts a restoring force which is proportional to the distance it is stretched, F = - k x (1) Physics 244 Harmonic Motion Introduction In this lab you will observe simple harmonic motion qualitatively in the laboratory and use a program run in Excel to find the mathematical description of the motion

More information

Physics. Chapter 7 Energy

Physics. Chapter 7 Energy Physics Chapter 7 Energy Work How long does a force act? Last week, we meant time as in impulse (Ft) This week, we will take how long to mean distance Force x distance (Fd) is what we call WORK W = Fd

More information

The content contained in all sections of chapter 6 of the textbook is included on the AP Physics B exam.

The content contained in all sections of chapter 6 of the textbook is included on the AP Physics B exam. WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system is always

More information

Momentum and Impulse. Prefixes. Impulse F * t = delta(mv) / t OR area under Force time graph

Momentum and Impulse. Prefixes. Impulse F * t = delta(mv) / t OR area under Force time graph Momentum and Impulse 2 of 20 How do we calculate momentum (P)? P = m * v Newton's first and second laws: An object remains at rest or in uniform motion unless acted on by a force Rate of change of momentum

More information

Worksheet #05 Kinetic Energy-Work Theorem

Worksheet #05 Kinetic Energy-Work Theorem Physics Summer 08 Worksheet #05 June. 8, 08. A 0-kg crate is pulled 5 m up along a frictionless incline as shown in the figure below. The crate starts at rest and has a final speed of 6.0 m/s. (a) Draw

More information

Chapter 6 Work, Energy, and Power. Copyright 2010 Pearson Education, Inc.

Chapter 6 Work, Energy, and Power. Copyright 2010 Pearson Education, Inc. Chapter 6 Work, Energy, and Power What Is Physics All About? Matter Energy Force Work Done by a Constant Force The definition of work, when the force is parallel to the displacement: W = Fs SI unit: newton-meter

More information

Unit 7: Oscillations

Unit 7: Oscillations Text: Chapter 15 Unit 7: Oscillations NAME: Problems (p. 405-412) #1: 1, 7, 13, 17, 24, 26, 28, 32, 35 (simple harmonic motion, springs) #2: 45, 46, 49, 51, 75 (pendulums) Vocabulary: simple harmonic motion,

More information

The Spring: Hooke s Law and Oscillations

The Spring: Hooke s Law and Oscillations Experiment 9 The Spring: Hooke s Law and Oscillations 9.1 Objectives Investigate how a spring behaves when it is stretched under the influence of an external force. To verify that this behavior is accurately

More information

General Physics I Work & Energy

General Physics I Work & Energy General Physics I Work & Energy Forms of Energy Kinetic: Energy of motion. A car on the highway has kinetic energy. We have to remove this energy to stop it. The brakes of a car get HOT! This is an example

More information

161 Spring 2018 Exam 1 Version A Name: No cell phones or electronic devices (except scientific calculators). = 4 3 = = =

161 Spring 2018 Exam 1 Version A Name: No cell phones or electronic devices (except scientific calculators). = 4 3 = = = 161 Spring 2018 Exam 1 Version A Name: No cell phones or electronic devices (except scientific calculators). = 4 3 = = = = 4 = h h = = ± 4 2 = 2 = = 2 1609 m = 1 mi 12 in = 1 ft 60 s = 1 min 1000 g = 1

More information

Exam III Physics 101: Lecture 19 Elasticity and Oscillations

Exam III Physics 101: Lecture 19 Elasticity and Oscillations Exam III Physics 101: Lecture 19 Elasticity and Oscillations Physics 101: Lecture 19, Pg 1 Overview Springs (review) Restoring force proportional to displacement F = -k x (often a good approximation) U

More information

Physics 106 Group Problems Summer 2015 Oscillations and Waves

Physics 106 Group Problems Summer 2015 Oscillations and Waves Physics 106 Group Problems Summer 2015 Oscillations and Waves Name: 1. (5 points) The tension in a string with a linear mass density of 0.0010 kg/m is 0.40 N. What is the frequency of a sinusoidal wave

More information

1 of 6 10/21/2009 6:33 PM

1 of 6 10/21/2009 6:33 PM 1 of 6 10/21/2009 6:33 PM Chapter 10 Homework Due: 9:00am on Thursday, October 22, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment

More information

Work and Energy Experiments

Work and Energy Experiments Work and Energy Experiments Experiment 16 When a juggler tosses a bean ball straight upward, the ball slows down until it reaches the top of its path and then speeds up on its way back down. In terms of

More information

The Spring: Hooke s Law and Oscillations

The Spring: Hooke s Law and Oscillations Experiment 7 The Spring: Hooke s Law and Oscillations 7.1 Objectives Investigate how a spring behaves when it is stretched under the influence of an external force. To verify that this behavior is accurately

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsndMathsTutor.com 1 Q1. baby bouncer consisting of a harness and elastic ropes is suspended from a doorway. When a baby of mass 10 kg is placed in the harness, the ropes stretch by 0.25 m. When the

More information

Phys 111 Exam 1 September 22, 2015

Phys 111 Exam 1 September 22, 2015 Phys 111 Exam 1 September 22, 2015 1. The time T required for one complete oscillation of a mass m on a spring of force constant k is T = 2π m k. Find the dimension of k to be dimensionally correct for

More information

5.6 Work. Common Units Force Distance Work newton (N) meter (m) joule (J) pound (lb) foot (ft) Conversion Factors

5.6 Work. Common Units Force Distance Work newton (N) meter (m) joule (J) pound (lb) foot (ft) Conversion Factors 5.6 Work Page 1 of 7 Definition of Work (Constant Force) If a constant force of magnitude is applied in the direction of motion of an object, and if that object moves a distance, then we define the work

More information

Chapter 5: Energy. Energy is one of the most important concepts in the world of science. Common forms of Energy

Chapter 5: Energy. Energy is one of the most important concepts in the world of science. Common forms of Energy Chapter 5: Energy Energy is one of the most important concepts in the world of science. Common forms of Energy Mechanical Chemical Thermal Electromagnetic Nuclear One form of energy can be converted to

More information

Chapter 7. Work and Kinetic Energy

Chapter 7. Work and Kinetic Energy Chapter 7 Work and Kinetic Energy P. Lam 7_16_2018 Learning Goals for Chapter 7 To understand the concept of kinetic energy (energy of motion) To understand the meaning of work done by a force. To apply

More information

LECTURE 3 ENERGY AND PENDULUM MOTION. Instructor: Kazumi Tolich

LECTURE 3 ENERGY AND PENDULUM MOTION. Instructor: Kazumi Tolich LECTURE 3 ENERGY AND PENDULUM MOTION Instructor: Kazumi Tolich Lecture 3 2 14.4: Energy in simple harmonic motion Finding the frequency for simple harmonic motion 14.5: Pendulum motion Physical pendulum

More information

PHYSICS - CLUTCH CH 15: PERIODIC MOTION (OSCILLATIONS)

PHYSICS - CLUTCH CH 15: PERIODIC MOTION (OSCILLATIONS) !! www.clutchprep.com REVIEW SPRINGS When you push/pull against a spring with FA, the spring pushes back (Newton s Law): - x = ( or ). - NOT the spring s length, but its change x =. - k is the spring s

More information

AP Physics C - Mechanics

AP Physics C - Mechanics Slide 1 / 84 Slide 2 / 84 P Physics C - Mechanics Energy Problem Solving Techniques 2015-12-03 www.njctl.org Table of Contents Slide 3 / 84 Introduction Gravitational Potential Energy Problem Solving GPE,

More information

Oakland Technical High School. AP PHYSICS SUMMER ASSIGNMENT Due Monday, August 22 nd

Oakland Technical High School. AP PHYSICS SUMMER ASSIGNMENT Due Monday, August 22 nd Oakland Technical High School P PHYSICS SUMME SSIGNMENT Due Monday, ugust nd I. This packet is a review to brush up on valuable skills, and perhaps a means to assess whether you are correctly placed in

More information

INDIANA UNIVERSITY, DEPT. OF PHYSICS P105, Basic Physics of Sound, Spring 2010

INDIANA UNIVERSITY, DEPT. OF PHYSICS P105, Basic Physics of Sound, Spring 2010 Name: Joe E. Physics ID#: 999 999 999 INDIANA UNIVERSITY, DEPT. OF PHYSICS P105, Basic Physics of Sound, Spring 2010 Midterm Exam #1 Thursday, 11 Feb. 2010, 7:30 9:30 p.m. Closed book. You are allowed

More information

Work and Energy. Work

Work and Energy. Work Work and Energy Objectives: Students will define work. Students will define and give examples of different forms of energy. Students will describe and give examples of kinetic energy and potential energy.

More information