Complex Numbers. December 6, Introduction of Complex Numbers. (a, b) (c, d) =(ac bd, ad + bc) (3)

Size: px
Start display at page:

Download "Complex Numbers. December 6, Introduction of Complex Numbers. (a, b) (c, d) =(ac bd, ad + bc) (3)"

Transcription

1 Complex Numbers December 6, Introduction of Complex Numbers 1.1 Definition A complex number z is a pair of real numbers Definition of addition: Definition of multiplication: Definition of multiplication by a scalar z =(a, b) (1) (a, b)+(c, d) =(a + b, c + d) () (a, b) (c, d) =(ac bd, ad + bc) (3) (a, b) c =(ac, bc) (4) Note that multiplying by a scalar c yeilds the same result as muliplying by the complex number (c, 0). Notation.1 The zero Adding (0, 0) to a complex number leaves the latter unchanged, so (0, 0) is the "0" of addition. The additive inverse of z =(a, b) is ( a, b) since (a, b)+( a, b) =(0, 0) (5) 1

2 . The unity Multiplying a complex number by (1, 0) leaves the former unchanged, so (1, 0) is the "1" of multiplication. ³ a b The multiplicative inverse of (a, b) is a +b, a +b since (try it!).3 The complex conjugate µ a (a, b) a + b, b a + b =(1, 0) (6) The complex conjugate of z =(a, b) denoted by z = (a, b), isdefined to be (a, b): z =(a, b) A complex number times its complex conjugate has 0 for the second component (a, b) (a b) = a + b, 0 (7).4 Real and Imaginary parts Two real valued functions, Re and Im, are defined on the field of complex numbers.5 Absolute value Re (a, b) = a (8) Im (a, b) = b (9) Another real valued function, the absolute value denoted by (a, b), isdefined for complex numbers: (a, b) = p a + b (10) This is the length of the vector (a, b) in the D sense..6 Argument The argument of the comlex number also comes from the vector intepreation. It is the angle formed by the vector and the positive x-axis quoted so that it falls in ( π, π]. The function is denote by α =Arg(a, b)..7 The i notation In order to remember the complicated and seemingly arbitrary definition of multiplication, use the following pneumonic rule. Write (a, b) =a + ib (11)

3 and, when multiplying, pretend that it is real addition and multiplication by i and that i = 1. Then so it works. (a, b) (c, d) = (a + ib)(c + id) (1) = ac + i bd + i (ad + bc) (13) = ac bd + i (ad + bc) (14) = (ac bd, ad + bc) (15) 3 Connection to trigonometry 3.1 The basic relationship Recall that sin (α + β) = sinα cos β +cosαsin β (16) cos (α + β) = cosα cos β sin α sin β (17) Therefore, (cos α + i sin α)(cosβ + i sin β) =cos(α + β)+isin (α + β) (18) 3. Euler s notation Define e iα according to Then e iα =cosα + i sin α (19) e iα e iβ = e i(α+β) (0) so the exponentiation formally works. Everything that you might guess works actually works: e iα 1 de iα dα = e iα (1) = ie iα () 3.3 A pretty relation The equation e iπ = 1 (3) expresses a relationship among the most fundamental constant e, π, 1 and, if you believe that i is a number, i. 3

4 3.4 Roots of unity The equation x N =1 (4) always has exactly N roots in complex numbers. They can be expressed as x = e i πn N, 0 n<n. (5) The equation x N = e iα (6) also has exactly N roots. They are the same roots as 1 except "turned" by e i α N x = e i α+πn N (7) 4 Polar form of the complex number 4.1 Definition Acompexnumberz = a + ib can be rewritten as z = a + ib = p µ a + b a a + b + i b a + b (8) Let r = a + b and α be the angle between π and π such that cos α = a a + b (9) sin α = b a + b (30) You recognize that r = z and α =Arg(z). Then This is the polar form of the complex number. 4. Multiplication Let z 1 = r 1 e iα 1 and z = r e iα.then z = re iα (31) z 1 z = r 1 e iα 1 r e iα (3) = r 1 r e i(α 1+α ) (33) Multiplying two complex numbers is equivalent to multiplying their absolute values and adding their agruments. If z = re iα,then1/z =(1/r) e iα. 4

5 5 Analytic functions 5.1 Introduction For the sake of this writeup, a complex function f of z is called analytic if it isa"valid"expressionpurelyintermsofz. By "valid" we mean (let a be a complex constant) az n (34) e az (35) ln z (36) cos z, sin z (37) and sums, products, and compozition thereof. "Invalid" are the following expressions z (38) Arg z (39) z (40) Re z, Im z (41) Analytic functions will have a number of very many attractive and useful properties. 5. Definitions Letting z = x + iy or, in polar form, z = re iα.then z n = r n (cos nα + i sin nα) (4) z n = (x + iy) n (43) e z = e x (cos y + i sin y) (44) ln z = lnr + iα (45) cos z = eiz + e iz (46) sin z = eiz e iz (47) c z = e z ln c (48) 6 Cauchy-Riemann Equations Suppose that z = x + iy and that f (z) is analytic and f (z) =u (x, y)+iv (x, y) (49) 5

6 Then u x = v y (50) u = u y x (51) It follows (see Exercises) that both u and v are harmonic: u xx + u yy = 0 (5) v xx + v yy = 0 (53) 7 Exercises 1. Show that e ln z = z and that ln e z = z. In other words, e z and ln z are, in fact, the inverses of each other.. Show that if u (x, y) and v (x, y) satisfy the Cauchy-Riemann equations, then both u (x, y) and v (x, y) are harmonic. 3. Show that all basic analytic functions z, e z,andln z satisfy the Cauchy- Rieman equations. 4. Suppose that f 1 (z) and f (z) are analytic according to the formal definition. Show that a. f 1 (z)+f (z) is analytic (easy) b. cf 1 (z) is analytic, where c = a + ib is a complex constant (easy) c. f 1 (z) f (z) is analytic (more difficult). Note that b. is a special case of c. d. f 1 (f (z)) is analytic. You have now shown that any "valid" expression of z is an analytic function. For example, cos e z + z is analytic and its real an imaginary parts (both exeedingly cumbersome) are harmonic. 5. Reduce to the form a + bi: e i π (54) e iπ (55) e π/6 (56) i 5 (57) 5 i (58) i i (59) i ii (60) 6. a. Derive an expression for arccos z. b. arccos i (61) arccos 1 (6) arccos (63) 6

With this expanded version of what we mean by a solution to an equation we can solve equations that previously had no solution.

With this expanded version of what we mean by a solution to an equation we can solve equations that previously had no solution. M 74 An introduction to Complex Numbers. 1 Solving equations Throughout the calculus sequence we have limited our discussion to real valued solutions to equations. We know the equation x 1 = 0 has distinct

More information

Complex Numbers. 1 Introduction. 2 Imaginary Number. December 11, Multiplication of Imaginary Number

Complex Numbers. 1 Introduction. 2 Imaginary Number. December 11, Multiplication of Imaginary Number Complex Numbers December, 206 Introduction 2 Imaginary Number In your study of mathematics, you may have noticed that some quadratic equations do not have any real number solutions. For example, try as

More information

C. Complex Numbers. 1. Complex arithmetic.

C. Complex Numbers. 1. Complex arithmetic. C. Complex Numbers. Complex arithmetic. Most people think that complex numbers arose from attempts to solve quadratic equations, but actually it was in connection with cubic equations they first appeared.

More information

Complex numbers, the exponential function, and factorization over C

Complex numbers, the exponential function, and factorization over C Complex numbers, the exponential function, and factorization over C 1 Complex Numbers Recall that for every non-zero real number x, its square x 2 = x x is always positive. Consequently, R does not contain

More information

Math 632: Complex Analysis Chapter 1: Complex numbers

Math 632: Complex Analysis Chapter 1: Complex numbers Math 632: Complex Analysis Chapter 1: Complex numbers Spring 2019 Definition We define the set of complex numbers C to be the set of all ordered pairs (a, b), where a, b R, and such that addition and multiplication

More information

Considering our result for the sum and product of analytic functions, this means that for (a 0, a 1,..., a N ) C N+1, the polynomial.

Considering our result for the sum and product of analytic functions, this means that for (a 0, a 1,..., a N ) C N+1, the polynomial. Lecture 3 Usual complex functions MATH-GA 245.00 Complex Variables Polynomials. Construction f : z z is analytic on all of C since its real and imaginary parts satisfy the Cauchy-Riemann relations and

More information

In Z: x + 3 = 2 3x = 2 x = 1 No solution In Q: 3x = 2 x 2 = 2. x = 2 No solution. In R: x 2 = 2 x = 0 x = ± 2 No solution Z Q.

In Z: x + 3 = 2 3x = 2 x = 1 No solution In Q: 3x = 2 x 2 = 2. x = 2 No solution. In R: x 2 = 2 x = 0 x = ± 2 No solution Z Q. THE UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH 1141 HIGHER MATHEMATICS 1A ALGEBRA. Section 1: - Complex Numbers. 1. The Number Systems. Let us begin by trying to solve various

More information

Overview of Complex Numbers

Overview of Complex Numbers Overview of Complex Numbers Definition 1 The complex number z is defined as: z = a+bi, where a, b are real numbers and i = 1. General notes about z = a + bi Engineers typically use j instead of i. Examples

More information

Quick Overview: Complex Numbers

Quick Overview: Complex Numbers Quick Overview: Complex Numbers February 23, 2012 1 Initial Definitions Definition 1 The complex number z is defined as: z = a + bi (1) where a, b are real numbers and i = 1. Remarks about the definition:

More information

MTH 362: Advanced Engineering Mathematics

MTH 362: Advanced Engineering Mathematics MTH 362: Advanced Engineering Mathematics Lecture 1 Jonathan A. Chávez Casillas 1 1 University of Rhode Island Department of Mathematics September 7, 2017 Course Name and number: MTH 362: Advanced Engineering

More information

1 Review of complex numbers

1 Review of complex numbers 1 Review of complex numbers 1.1 Complex numbers: algebra The set C of complex numbers is formed by adding a square root i of 1 to the set of real numbers: i = 1. Every complex number can be written uniquely

More information

Complex Numbers. Basic algebra. Definitions. part of the complex number a+ib. ffl Addition: Notation: We i write for 1; that is we

Complex Numbers. Basic algebra. Definitions. part of the complex number a+ib. ffl Addition: Notation: We i write for 1; that is we Complex Numbers Definitions Notation We i write for 1; that is we define p to be p 1 so i 2 = 1. i Basic algebra Equality a + ib = c + id when a = c b = and d. Addition A complex number is any expression

More information

B Elements of Complex Analysis

B Elements of Complex Analysis Fourier Transform Methods in Finance By Umberto Cherubini Giovanni Della Lunga Sabrina Mulinacci Pietro Rossi Copyright 21 John Wiley & Sons Ltd B Elements of Complex Analysis B.1 COMPLEX NUMBERS The purpose

More information

Here are brief notes about topics covered in class on complex numbers, focusing on what is not covered in the textbook.

Here are brief notes about topics covered in class on complex numbers, focusing on what is not covered in the textbook. Phys374, Spring 2008, Prof. Ted Jacobson Department of Physics, University of Maryland Complex numbers version 5/21/08 Here are brief notes about topics covered in class on complex numbers, focusing on

More information

2 Complex Functions and the Cauchy-Riemann Equations

2 Complex Functions and the Cauchy-Riemann Equations 2 Complex Functions and the Cauchy-Riemann Equations 2.1 Complex functions In one-variable calculus, we study functions f(x) of a real variable x. Likewise, in complex analysis, we study functions f(z)

More information

1. COMPLEX NUMBERS. z 1 + z 2 := (a 1 + a 2 ) + i(b 1 + b 2 ); Multiplication by;

1. COMPLEX NUMBERS. z 1 + z 2 := (a 1 + a 2 ) + i(b 1 + b 2 ); Multiplication by; 1. COMPLEX NUMBERS Notations: N the set of the natural numbers, Z the set of the integers, R the set of real numbers, Q := the set of the rational numbers. Given a quadratic equation ax 2 + bx + c = 0,

More information

) z r θ ( ) ( ) ( ) = then. Complete Solutions to Examination Questions Complete Solutions to Examination Questions 10.

) z r θ ( ) ( ) ( ) = then. Complete Solutions to Examination Questions Complete Solutions to Examination Questions 10. Complete Solutions to Examination Questions 0 Complete Solutions to Examination Questions 0. (i We need to determine + given + j, j: + + j + j (ii The product ( ( + j6 + 6 j 8 + j is given by ( + j( j

More information

Complex Analysis Homework 1

Complex Analysis Homework 1 Comlex Analysis Homework 1 Steve Clanton Sarah Crimi January 27, 2009 Problem Claim. If two integers can be exressed as the sum of two squares, then so can their roduct. Proof. Call the two squares that

More information

Synopsis of Complex Analysis. Ryan D. Reece

Synopsis of Complex Analysis. Ryan D. Reece Synopsis of Complex Analysis Ryan D. Reece December 7, 2006 Chapter Complex Numbers. The Parts of a Complex Number A complex number, z, is an ordered pair of real numbers similar to the points in the real

More information

P3.C8.COMPLEX NUMBERS

P3.C8.COMPLEX NUMBERS Recall: Within the real number system, we can solve equation of the form and b 2 4ac 0. ax 2 + bx + c =0, where a, b, c R What is R? They are real numbers on the number line e.g: 2, 4, π, 3.167, 2 3 Therefore,

More information

CHAPTER 8. COMPLEX NUMBERS

CHAPTER 8. COMPLEX NUMBERS CHAPTER 8. COMPLEX NUMBERS Why do we need complex numbers? First of all, a simple algebraic equation like x = 1 may not have a real solution. Introducing complex numbers validates the so called fundamental

More information

z = a + ib (4.1) i 2 = 1. (4.2) <(z) = a, (4.3) =(z) = b. (4.4)

z = a + ib (4.1) i 2 = 1. (4.2) <(z) = a, (4.3) =(z) = b. (4.4) Chapter 4 Complex Numbers 4.1 Definition of Complex Numbers A complex number is a number of the form where a and b are real numbers and i has the property that z a + ib (4.1) i 2 1. (4.2) a is called the

More information

MATH MIDTERM 1 SOLUTION. 1. (5 points) Determine whether the following statements are true of false, no justification is required.

MATH MIDTERM 1 SOLUTION. 1. (5 points) Determine whether the following statements are true of false, no justification is required. MATH 185-4 MIDTERM 1 SOLUTION 1. (5 points Determine whether the following statements are true of false, no justification is required. (1 (1pointTheprincipalbranchoflogarithmfunctionf(z = Logz iscontinuous

More information

z = x + iy ; x, y R rectangular or Cartesian form z = re iθ ; r, θ R polar form. (1)

z = x + iy ; x, y R rectangular or Cartesian form z = re iθ ; r, θ R polar form. (1) 11 Complex numbers Read: Boas Ch. Represent an arb. complex number z C in one of two ways: z = x + iy ; x, y R rectangular or Cartesian form z = re iθ ; r, θ R polar form. (1) Here i is 1, engineers call

More information

Mathematical Review for AC Circuits: Complex Number

Mathematical Review for AC Circuits: Complex Number Mathematical Review for AC Circuits: Complex Number 1 Notation When a number x is real, we write x R. When a number z is complex, we write z C. Complex conjugate of z is written as z here. Some books use

More information

Complex Variables. Chapter 2. Analytic Functions Section Harmonic Functions Proofs of Theorems. March 19, 2017

Complex Variables. Chapter 2. Analytic Functions Section Harmonic Functions Proofs of Theorems. March 19, 2017 Complex Variables Chapter 2. Analytic Functions Section 2.26. Harmonic Functions Proofs of Theorems March 19, 2017 () Complex Variables March 19, 2017 1 / 5 Table of contents 1 Theorem 2.26.1. 2 Theorem

More information

Leplace s Equations. Analyzing the Analyticity of Analytic Analysis DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING. Engineering Math EECE

Leplace s Equations. Analyzing the Analyticity of Analytic Analysis DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING. Engineering Math EECE Leplace s Analyzing the Analyticity of Analytic Analysis Engineering Math EECE 3640 1 The Laplace equations are built on the Cauchy- Riemann equations. They are used in many branches of physics such as

More information

AH Complex Numbers.notebook October 12, 2016

AH Complex Numbers.notebook October 12, 2016 Complex Numbers Complex Numbers Complex Numbers were first introduced in the 16th century by an Italian mathematician called Cardano. He referred to them as ficticious numbers. Given an equation that does

More information

3 COMPLEX NUMBERS. 3.0 Introduction. Objectives

3 COMPLEX NUMBERS. 3.0 Introduction. Objectives 3 COMPLEX NUMBERS Objectives After studying this chapter you should understand how quadratic equations lead to complex numbers and how to plot complex numbers on an Argand diagram; be able to relate graphs

More information

Physics 307. Mathematical Physics. Luis Anchordoqui. Wednesday, August 31, 16

Physics 307. Mathematical Physics. Luis Anchordoqui. Wednesday, August 31, 16 Physics 307 Mathematical Physics Luis Anchordoqui 1 Bibliography L. A. Anchordoqui and T. C. Paul, ``Mathematical Models of Physics Problems (Nova Publishers, 2013) G. F. D. Duff and D. Naylor, ``Differential

More information

Solutions to Tutorial for Week 3

Solutions to Tutorial for Week 3 The University of Sydney School of Mathematics and Statistics Solutions to Tutorial for Week 3 MATH9/93: Calculus of One Variable (Advanced) Semester, 08 Web Page: sydney.edu.au/science/maths/u/ug/jm/math9/

More information

3 Elementary Functions

3 Elementary Functions 3 Elementary Functions 3.1 The Exponential Function For z = x + iy we have where Euler s formula gives The note: e z = e x e iy iy = cos y + i sin y When y = 0 we have e x the usual exponential. When z

More information

(x 1, y 1 ) = (x 2, y 2 ) if and only if x 1 = x 2 and y 1 = y 2.

(x 1, y 1 ) = (x 2, y 2 ) if and only if x 1 = x 2 and y 1 = y 2. 1. Complex numbers A complex number z is defined as an ordered pair z = (x, y), where x and y are a pair of real numbers. In usual notation, we write z = x + iy, where i is a symbol. The operations of

More information

1 Discussion on multi-valued functions

1 Discussion on multi-valued functions Week 3 notes, Math 7651 1 Discussion on multi-valued functions Log function : Note that if z is written in its polar representation: z = r e iθ, where r = z and θ = arg z, then log z log r + i θ + 2inπ

More information

Math Homework 2

Math Homework 2 Math 73 Homework Due: September 8, 6 Suppose that f is holomorphic in a region Ω, ie an open connected set Prove that in any of the following cases (a) R(f) is constant; (b) I(f) is constant; (c) f is

More information

CHAPTER 3 ELEMENTARY FUNCTIONS 28. THE EXPONENTIAL FUNCTION. Definition: The exponential function: The exponential function e z by writing

CHAPTER 3 ELEMENTARY FUNCTIONS 28. THE EXPONENTIAL FUNCTION. Definition: The exponential function: The exponential function e z by writing CHAPTER 3 ELEMENTARY FUNCTIONS We consider here various elementary functions studied in calculus and define corresponding functions of a complex variable. To be specific, we define analytic functions of

More information

Mathematics of Imaging: Lecture 3

Mathematics of Imaging: Lecture 3 Mathematics of Imaging: Lecture 3 Linear Operators in Infinite Dimensions Consider the linear operator on the space of continuous functions defined on IR. J (f)(x) = x 0 f(s) ds Every function in the range

More information

Lecture 5. Complex Numbers and Euler s Formula

Lecture 5. Complex Numbers and Euler s Formula Lecture 5. Complex Numbers and Euler s Formula University of British Columbia, Vancouver Yue-Xian Li March 017 1 Main purpose: To introduce some basic knowledge of complex numbers to students so that they

More information

1. DO NOT LIFT THIS COVER PAGE UNTIL INSTRUCTED TO DO SO. Write your student number and name at the top of this page. This test has SIX pages.

1. DO NOT LIFT THIS COVER PAGE UNTIL INSTRUCTED TO DO SO. Write your student number and name at the top of this page. This test has SIX pages. Student Number Name (Printed in INK Mathematics 54 July th, 007 SIMON FRASER UNIVERSITY Department of Mathematics Faculty of Science Midterm Instructor: S. Pimentel 1. DO NOT LIFT THIS COVER PAGE UNTIL

More information

MTH3101 Spring 2017 HW Assignment 4: Sec. 26: #6,7; Sec. 33: #5,7; Sec. 38: #8; Sec. 40: #2 The due date for this assignment is 2/23/17.

MTH3101 Spring 2017 HW Assignment 4: Sec. 26: #6,7; Sec. 33: #5,7; Sec. 38: #8; Sec. 40: #2 The due date for this assignment is 2/23/17. MTH0 Spring 07 HW Assignment : Sec. 6: #6,7; Sec. : #5,7; Sec. 8: #8; Sec. 0: # The due date for this assignment is //7. Sec. 6: #6. Use results in Sec. to verify that the function g z = ln r + iθ r >

More information

III.2. Analytic Functions

III.2. Analytic Functions III.2. Analytic Functions 1 III.2. Analytic Functions Recall. When you hear analytic function, think power series representation! Definition. If G is an open set in C and f : G C, then f is differentiable

More information

Math 312 Fall 2013 Final Exam Solutions (2 + i)(i + 1) = (i 1)(i + 1) = 2i i2 + i. i 2 1

Math 312 Fall 2013 Final Exam Solutions (2 + i)(i + 1) = (i 1)(i + 1) = 2i i2 + i. i 2 1 . (a) We have 2 + i i Math 32 Fall 203 Final Exam Solutions (2 + i)(i + ) (i )(i + ) 2i + 2 + i2 + i i 2 3i + 2 2 3 2 i.. (b) Note that + i 2e iπ/4 so that Arg( + i) π/4. This implies 2 log 2 + π 4 i..

More information

The shortest route between two truths in the real domain passes through the complex domain. J. Hadamard

The shortest route between two truths in the real domain passes through the complex domain. J. Hadamard Chapter 6 Harmonic Functions The shortest route between two truths in the real domain passes through the complex domain. J. Hadamard 6.1 Definition and Basic Properties We will now spend a chapter on certain

More information

Complex Numbers Introduction. Number Systems. Natural Numbers ℵ Integer Z Rational Q Real Complex C

Complex Numbers Introduction. Number Systems. Natural Numbers ℵ Integer Z Rational Q Real Complex C Number Systems Natural Numbers ℵ Integer Z Rational Q R Real Complex C Number Systems Natural Numbers ℵ Integer Z Rational Q R Real Complex C The Natural Number System All whole numbers greater then zero

More information

Chapter II. Complex Variables

Chapter II. Complex Variables hapter II. omplex Variables Dates: October 2, 4, 7, 2002. These three lectures will cover the following sections of the text book by Keener. 6.1. omplex valued functions and branch cuts; 6.2.1. Differentiation

More information

Complex Variables. Instructions Solve any eight of the following ten problems. Explain your reasoning in complete sentences to maximize credit.

Complex Variables. Instructions Solve any eight of the following ten problems. Explain your reasoning in complete sentences to maximize credit. Instructions Solve any eight of the following ten problems. Explain your reasoning in complete sentences to maximize credit. 1. The TI-89 calculator says, reasonably enough, that x 1) 1/3 1 ) 3 = 8. lim

More information

COMPLEX NUMBERS

COMPLEX NUMBERS COMPLEX NUMBERS 1. Any number of the form x+iy where x, y R and i -1 is called a Complex Number.. In the complex number x+iy, x is called the real part and y is called the imaginary part of the complex

More information

M361 Theory of functions of a complex variable

M361 Theory of functions of a complex variable M361 Theory of functions of a complex variable T. Perutz U.T. Austin, Fall 2012 Lecture 4: Exponentials and logarithms We have already been making free use of the sine and cosine functions, cos: R R, sin:

More information

Chapter 3 Elementary Functions

Chapter 3 Elementary Functions Chapter 3 Elementary Functions In this chapter, we will consier elementary functions of a complex variable. We will introuce complex exponential, trigonometric, hyperbolic, an logarithmic functions. 23.

More information

Chapter 2: Complex numbers

Chapter 2: Complex numbers Chapter 2: Complex numbers Complex numbers are commonplace in physics and engineering. In particular, complex numbers enable us to simplify equations and/or more easily find solutions to equations. We

More information

Leplace s Equations. Analyzing the Analyticity of Analytic Analysis DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING. Engineering Math 16.

Leplace s Equations. Analyzing the Analyticity of Analytic Analysis DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING. Engineering Math 16. Leplace s Analyzing the Analyticity of Analytic Analysis Engineering Math 16.364 1 The Laplace equations are built on the Cauchy- Riemann equations. They are used in many branches of physics such as heat

More information

1 Complex Numbers. 1.1 Sums and Products

1 Complex Numbers. 1.1 Sums and Products 1 Complex Numbers 1.1 Sums Products Definition: The complex plane, denoted C is the set of all ordered pairs (x, y) with x, y R, where Re z = x is called the real part Imz = y is called the imaginary part.

More information

CHAPTER 2. CONFORMAL MAPPINGS 58

CHAPTER 2. CONFORMAL MAPPINGS 58 CHAPTER 2. CONFORMAL MAPPINGS 58 We prove that a strong form of converse of the above statement also holds. Please note we could apply the Theorem 1.11.3 to prove the theorem. But we prefer to apply the

More information

Part IB. Complex Analysis. Year

Part IB. Complex Analysis. Year Part IB Complex Analysis Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2018 Paper 1, Section I 2A Complex Analysis or Complex Methods 7 (a) Show that w = log(z) is a conformal

More information

Math 20B Supplement August 2017 version Linked to Calculus: Early Transcendentals, by Jon Rogawski, Edition 3, c 2015

Math 20B Supplement August 2017 version Linked to Calculus: Early Transcendentals, by Jon Rogawski, Edition 3, c 2015 Math 0B Supplement August 07 version Linked to Calculus: Early Transcendentals, by Jon Rogawski, Edition 3, c 05 Written by Ed Bender, Bill Helton and John Eggers Contributions by Magdelana Musat and Al

More information

10.3. The Exponential Form of a Complex Number. Introduction. Prerequisites. Learning Outcomes

10.3. The Exponential Form of a Complex Number. Introduction. Prerequisites. Learning Outcomes The Exponential Form of a Complex Number 10.3 Introduction In this Section we introduce a third way of expressing a complex number: the exponential form. We shall discover, through the use of the complex

More information

Functions 45. Integrals, and Contours 55

Functions 45. Integrals, and Contours 55 MATH 43 COMPLEX ANALYSIS TRISTAN PHILLIPS These are notes from an introduction to complex analysis at the undergraduate level as taught by Paul Taylor at Shippensburg University during the Fall 26 semester.

More information

Complex Numbers. Introduction

Complex Numbers. Introduction 10 Assessment statements 1.5 Complex numbers: the number i 5 1 ; the term s real part, imaginary part, conjugate, modulus and argument. Cartesian form z 5 a 1 ib. Sums, products and quotients of complex

More information

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

COMPLEX NUMBERS AND QUADRATIC EQUATIONS Chapter 5 COMPLEX NUMBERS AND QUADRATIC EQUATIONS 5. Overview We know that the square of a real number is always non-negative e.g. (4) 6 and ( 4) 6. Therefore, square root of 6 is ± 4. What about the square

More information

COMPLEX NUMBERS AND SERIES

COMPLEX NUMBERS AND SERIES COMPLEX NUMBERS AND SERIES MIKE BOYLE Contents 1. Complex Numbers 1 2. The Complex Plane 2 3. Addition and Multiplication of Complex Numbers 2 4. Why Complex Numbers Were Invented 3 5. The Fundamental

More information

Section 3: Complex numbers

Section 3: Complex numbers Essentially: Section 3: Complex numbers C (set of complex numbers) up to different notation: the same as R 2 (euclidean plane), (i) Write the real 1 instead of the first elementary unit vector e 1 = (1,

More information

Assignment 10. Arfken Show that Stirling s formula is an asymptotic expansion. The remainder term is. B 2n 2n(2n 1) x1 2n.

Assignment 10. Arfken Show that Stirling s formula is an asymptotic expansion. The remainder term is. B 2n 2n(2n 1) x1 2n. Assignment Arfken 5.. Show that Stirling s formula is an asymptotic expansion. The remainder term is R N (x nn+ for some N. The condition for an asymptotic series, lim x xn R N lim x nn+ B n n(n x n B

More information

Math 185 Fall 2015, Sample Final Exam Solutions

Math 185 Fall 2015, Sample Final Exam Solutions Math 185 Fall 2015, Sample Final Exam Solutions Nikhil Srivastava December 12, 2015 1. True or false: (a) If f is analytic in the annulus A = {z : 1 < z < 2} then there exist functions g and h such that

More information

COMPLEX NUMBERS AND DIFFERENTIAL EQUATIONS

COMPLEX NUMBERS AND DIFFERENTIAL EQUATIONS COMPLEX NUMBERS AND DIFFERENTIAL EQUATIONS BORIS HASSELBLATT CONTENTS. Introduction. Why complex numbers were first introduced (digression) 3. Complex numbers, Euler s formula 3 4. Homogeneous differential

More information

+ py 1v + py 1 v + qy 1 v = 0

+ py 1v + py 1 v + qy 1 v = 0 September 25, 2012 8-1 8. Reduction of Order and more on complex roots Reduction of Order: Suppose we are given a general homogeneous second order d.e. L(y) = y + p(t)y + q(t)y = 0. (1) We know that, in

More information

ANoteonEuler sformula

ANoteonEuler sformula ANoteonEuler sformula Dr. Mike Wilkes ASC Chastain Indian River State College 4/1/014 1 Euler s Formula The general complex exponential function e z,wherez is any complex number of the form (a + ib), has

More information

Solutions to Exercises 1.1

Solutions to Exercises 1.1 Section 1.1 Complex Numbers 1 Solutions to Exercises 1.1 1. We have So a 0 and b 1. 5. We have So a 3 and b 4. 9. We have i 0+ 1i. i +i because i i +i 1 {}}{ 4+4i + i 3+4i. 1 + i 3 7 i 1 3 3 + i 14 1 1

More information

10 Motivation for Fourier series

10 Motivation for Fourier series 10 Motivation for Fourier series Donkeys and scholars in the middle! French soldiers, forming defensive squares in Egypt, during Napoleon s campaign The central topic of our course is the so-called Fourier

More information

1) INTERGAL POWER OF IOTA, EQUALITY

1) INTERGAL POWER OF IOTA, EQUALITY COMPLEX NUMBERS Q.1) If 1) INTERGAL POWER OF IOTA, EQUALITY OF COMPLEX NUMBERS 200 = a + ib a) a = 2 b = -1 b) a = 1 b = 0 c) a = 0 b = 1 d) a = -1 b = 2 2) The sum of the series i 2 + i 4 + i 6 + -------(2n

More information

FINAL EXAM { SOLUTION

FINAL EXAM { SOLUTION United Arab Emirates University ollege of Sciences Department of Mathematical Sciences FINAL EXAM { SOLUTION omplex Analysis I MATH 5 SETION 0 RN 56 9:0 { 0:45 on Monday & Wednesday Date: Wednesday, January

More information

Chapter 9: Complex Numbers

Chapter 9: Complex Numbers Chapter 9: Comple Numbers 9.1 Imaginary Number 9. Comple Number - definition - argand diagram - equality of comple number 9.3 Algebraic operations on comple number - addition and subtraction - multiplication

More information

Chapter 1: Complex Numbers

Chapter 1: Complex Numbers Chapter 1: Complex Numbers Why do we need complex numbers? First of all, a simple algebraic equation like X 2 = 1 may not have a real solution. Introducing complex numbers validates the so called fundamental

More information

3 + 4i 2 + 3i. 3 4i Fig 1b

3 + 4i 2 + 3i. 3 4i Fig 1b The introduction of complex numbers in the 16th century was a natural step in a sequence of extensions of the positive integers, starting with the introduction of negative numbers (to solve equations of

More information

MATH 311: COMPLEX ANALYSIS CONFORMAL MAPPINGS LECTURE

MATH 311: COMPLEX ANALYSIS CONFORMAL MAPPINGS LECTURE MATH 311: COMPLEX ANALYSIS CONFORMAL MAPPINGS LECTURE 1. Introduction Let D denote the unit disk and let D denote its boundary circle. Consider a piecewise continuous function on the boundary circle, {

More information

10.1 Complex Arithmetic Argand Diagrams and the Polar Form The Exponential Form of a Complex Number De Moivre s Theorem 29

10.1 Complex Arithmetic Argand Diagrams and the Polar Form The Exponential Form of a Complex Number De Moivre s Theorem 29 10 Contents Complex Numbers 10.1 Complex Arithmetic 2 10.2 Argand Diagrams and the Polar Form 12 10.3 The Exponential Form of a Complex Number 20 10.4 De Moivre s Theorem 29 Learning outcomes In this Workbook

More information

2.4 Lecture 7: Exponential and trigonometric

2.4 Lecture 7: Exponential and trigonometric 154 CHAPTER. CHAPTER II.0 1 - - 1 1 -.0 - -.0 - - - - - - - - - - 1 - - - - - -.0 - Figure.9: generalized elliptical domains; figures are shown for ǫ = 1, ǫ = 0.8, eps = 0.6, ǫ = 0.4, and ǫ = 0 the case

More information

A Primer on Complex Numbers

A Primer on Complex Numbers ams 10/10A supplementary notes ucsc A Primer on Complex Numbers c 2013, Yonatan Katznelson 1. Imaginary and complex numbers. The real numbers are can be thought of as numbers that represent quantities

More information

Exercises for Part 1

Exercises for Part 1 MATH200 Complex Analysis. Exercises for Part Exercises for Part The following exercises are provided for you to revise complex numbers. Exercise. Write the following expressions in the form x + iy, x,y

More information

How to Solve Linear Differential Equations

How to Solve Linear Differential Equations How to Solve Linear Differential Equations Definition: Euler Base Atom, Euler Solution Atom Independence of Atoms Construction of the General Solution from a List of Distinct Atoms Euler s Theorems Euler

More information

Complex Practice Exam 1

Complex Practice Exam 1 Complex Practice Exam This practice exam contains sample questions. The actual exam will have fewer questions, and may contain questions not listed here.. Be prepared to explain the following concepts,

More information

Math221: HW# 7 solutions

Math221: HW# 7 solutions Math22: HW# 7 solutions Andy Royston November 7, 25.3.3 let x = e u. Then ln x = u, x2 = e 2u, and dx = e 2u du. Furthermore, when x =, u, and when x =, u =. Hence x 2 ln x) 3 dx = e 2u u 3 e u du) = e

More information

A Learning Progression for Complex Numbers

A Learning Progression for Complex Numbers A Learning Progression for Complex Numbers In mathematics curriculum development around the world, the opportunity for students to study complex numbers in secondary schools is decreasing. Given that the

More information

Examples: Solving nth Order Equations

Examples: Solving nth Order Equations Atoms L. Euler s Theorem The Atom List First Order. Solve 2y + 5y = 0. Examples: Solving nth Order Equations Second Order. Solve y + 2y + y = 0, y + 3y + 2y = 0 and y + 2y + 5y = 0. Third Order. Solve

More information

MAT389 Fall 2016, Problem Set 4

MAT389 Fall 2016, Problem Set 4 MAT389 Fall 2016, Problem Set 4 Harmonic conjugates 4.1 Check that each of the functions u(x, y) below is harmonic at every (x, y) R 2, and find the unique harmonic conjugate, v(x, y), satisfying v(0,

More information

Exercises involving elementary functions

Exercises involving elementary functions 017:11:0:16:4:09 c M. K. Warby MA3614 Complex variable methods and applications 1 Exercises involving elementary functions 1. This question was in the class test in 016/7 and was worth 5 marks. a) Let

More information

1 Complex numbers and the complex plane

1 Complex numbers and the complex plane L1: Complex numbers and complex-valued functions. Contents: The field of complex numbers. Real and imaginary part. Conjugation and modulus or absolute valued. Inequalities: The triangular and the Cauchy.

More information

1 z n = 1. 9.(Problem) Evaluate each of the following, that is, express each in standard Cartesian form x + iy. (2 i) 3. ( 1 + i. 2 i.

1 z n = 1. 9.(Problem) Evaluate each of the following, that is, express each in standard Cartesian form x + iy. (2 i) 3. ( 1 + i. 2 i. . 5(b). (Problem) Show that z n = z n and z n = z n for n =,,... (b) Use polar form, i.e. let z = re iθ, then z n = r n = z n. Note e iθ = cos θ + i sin θ =. 9.(Problem) Evaluate each of the following,

More information

Lecture 9. = 1+z + 2! + z3. 1 = 0, it follows that the radius of convergence of (1) is.

Lecture 9. = 1+z + 2! + z3. 1 = 0, it follows that the radius of convergence of (1) is. The Exponential Function Lecture 9 The exponential function 1 plays a central role in analysis, more so in the case of complex analysis and is going to be our first example using the power series method.

More information

MA3111S COMPLEX ANALYSIS I

MA3111S COMPLEX ANALYSIS I MA3111S COMPLEX ANALYSIS I 1. The Algebra of Complex Numbers A complex number is an expression of the form a + ib, where a and b are real numbers. a is called the real part of a + ib and b the imaginary

More information

Math Homework 1. The homework consists mostly of a selection of problems from the suggested books. 1 ± i ) 2 = 1, 2.

Math Homework 1. The homework consists mostly of a selection of problems from the suggested books. 1 ± i ) 2 = 1, 2. Math 70300 Homework 1 September 1, 006 The homework consists mostly of a selection of problems from the suggested books. 1. (a) Find the value of (1 + i) n + (1 i) n for every n N. We will use the polar

More information

(z 0 ) = lim. = lim. = f. Similarly along a vertical line, we fix x = x 0 and vary y. Setting z = x 0 + iy, we get. = lim. = i f

(z 0 ) = lim. = lim. = f. Similarly along a vertical line, we fix x = x 0 and vary y. Setting z = x 0 + iy, we get. = lim. = i f . Holomorphic Harmonic Functions Basic notation. Considering C as R, with coordinates x y, z = x + iy denotes the stard complex coordinate, in the usual way. Definition.1. Let f : U C be a complex valued

More information

Complex Algebra. Sajid Ali. September 7, 2015 SEECS-NUST CVT. Sajid Ali. Contents. Complex Numbers. I am iota i. Complex Magic.

Complex Algebra. Sajid Ali. September 7, 2015 SEECS-NUST CVT. Sajid Ali. Contents. Complex Numbers. I am iota i. Complex Magic. SEECS-NUST September 7, 2015 A combination of two real numbers coupled with iota i forms a complex number where x R, y R. z = x + iy A combination of two real numbers coupled with iota i forms a complex

More information

ROTATIONS OF THE RIEMANN SPHERE

ROTATIONS OF THE RIEMANN SPHERE ROTATIONS OF THE RIEMANN SPHERE A rotation of the sphere S is a map r = r p,α described by spinning the sphere (actually, spinning the ambient space R 3 ) about the line through the origin and the point

More information

Absolute Convergence and the Ratio Test

Absolute Convergence and the Ratio Test Absolute Convergence and the Ratio Test MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Bacground Remar: All previously covered tests for convergence/divergence apply only

More information

MA 201 Complex Analysis Lecture 6: Elementary functions

MA 201 Complex Analysis Lecture 6: Elementary functions MA 201 Complex Analysis : The Exponential Function Recall: Euler s Formula: For y R, e iy = cos y + i sin y and for any x, y R, e x+y = e x e y. Definition: If z = x + iy, then e z or exp(z) is defined

More information

18.03 LECTURE NOTES, SPRING 2014

18.03 LECTURE NOTES, SPRING 2014 18.03 LECTURE NOTES, SPRING 2014 BJORN POONEN 7. Complex numbers Complex numbers are expressions of the form x + yi, where x and y are real numbers, and i is a new symbol. Multiplication of complex numbers

More information

INTEGRATION WORKSHOP 2003 COMPLEX ANALYSIS EXERCISES

INTEGRATION WORKSHOP 2003 COMPLEX ANALYSIS EXERCISES INTEGRATION WORKSHOP 23 COMPLEX ANALYSIS EXERCISES DOUGLAS ULMER 1. Meromorphic functions on the Riemann sphere It s often useful to allow functions to take the value. This exercise outlines one way to

More information

Topic 4 Notes Jeremy Orloff

Topic 4 Notes Jeremy Orloff Topic 4 Notes Jeremy Orloff 4 Complex numbers and exponentials 4.1 Goals 1. Do arithmetic with complex numbers.. Define and compute: magnitude, argument and complex conjugate of a complex number. 3. Euler

More information

Number Systems III MA1S1. Tristan McLoughlin. December 4, 2013

Number Systems III MA1S1. Tristan McLoughlin. December 4, 2013 Number Systems III MA1S1 Tristan McLoughlin December 4, 2013 http://en.wikipedia.org/wiki/binary numeral system http://accu.org/index.php/articles/1558 http://www.binaryconvert.com http://en.wikipedia.org/wiki/ascii

More information

Designing Information Devices and Systems I Fall 2018 Lecture Notes Note 21

Designing Information Devices and Systems I Fall 2018 Lecture Notes Note 21 EECS 16A Designing Information Devices and Systems I Fall 2018 Lecture Notes Note 21 21.1 Module Goals In this module, we introduce a family of ideas that are connected to optimization and machine learning,

More information