Professor, Department of Mechanical Engineering

Size: px
Start display at page:

Download "Professor, Department of Mechanical Engineering"

Transcription

1 State Space Approach in Modelling Dr Bishakh Bhattacharya Professor, Departent of Mechanical Engineering IIT Kanpur Joint Initiative of IITs and IISc - Funded by MHRD

2 Answer of the Last Assignent Following Mason s law, there are two forward paths in the SFG: T 1 = G 1 G 2 G 3 and T 2 = G 4 There are four loops: L 1 = G 1 H 1 L 2 = G 3 H 2 L 3 = G 1 G 2 G 3 H 3 L 4 = G 4 H 3 Δ = 1 (L 1 + L 2 + L 3 + L 4 ) + L 1 L 2 Δ 1 = 1 Δ 2 = 1 Hence, the transfer function could be epressed as (T 1 + T 2 )/ Δ 2

3 The Lecture Contains State Space Modeling EOM of a SDOF syste in State Space For Response of a State Space Syste Eaples to Solve Joint Initiative of IITs and IISc - Funded by MHRD

4 State Space Modelling The state of a odel of a dynaic syste is a set of independent physical quantities, the specification of which (in the absence of ecitation) copletely deterines the future positions of the syste Dynaics describes how the state evolves The dynaics of a odel is an update rule for the syste state that describes how the state evolves, as a function on the current state and any eternal inputs 1 2 X n A X ( t) BU ( t)

5 When we talk tlkabout electro echanical lsystes odeled dldby differential equations, such as asses and springs, electric circuits or satellites (rigid bodies) rotating in space, we can attach soe additional intuition: the variables in the state should be adequate to specify the energy of the syste For eaple, take a ball free falling to earth: we can specify the position of the ball by specifying the height (h) above the ground, but we also need to include the velocity of the ball (dh/dt) to specify the total energy (E = 1/2**(dh/dt)^2 + gh) Therefore, the state of the ball is (h,dh/dt)

6 State t Space Modelling of a Single Degree of Freedo Syste Consider a SDOF syste (with ass M, stiffness K and Daping constant C) such that t the equation of otion corresponding to force ecitation ti is given by: M C K F ( t ) The following pair of states or their linear cobinations could be considered for the odelling:,,, 6

7 The EOM in State Space For p Consider for eaple, the position and velocity as the state coordinates The state vector could be written as: X Based on these states, the EOM could be rewritten as: f c k dt d ) / ( 1 0 / / 1 0 BU A X X f U B c k A /, 1, / /

8 Output of a State-space Syste Many a ties states of a syste are not directly easurable and hence are not of direct interest For eaple, if you consider, state space representation of a finite eleent odel pertaining to a Spacecraft The nuber of states could be as high as three to four thousand! However, one cannot have so any sensors to easure all the states In such cases, we fi a feasible nuber of outputs that are observable/easurable Suppose for a syste of n states sa there eare r outputs that are easurable ab e Then the output vector Y(t) of size r could be represented as a linear cobination of input to the syste and the states as follows: y1 ( t ) y2( t) Y ( t) C X ( t) DU ( t) y ( t) r Where C &D are constants for an LTIV syste For ajority of dynaic systes it is observed that D = 0, eaning outputs are not directly affected by the syste inputs 8

9 Tie Doain Solution for a Vector State t Equation X(t) = e At X A(t-τ) o + t o e BU(t) dt e At = I + At + (At) 2 /2! + (At) 3 /3! X(s) = (si-a) -1 B U(s) Find out the eigen values and eigen vectors of si A, Obtain the transforation atri and convert the state atri into diagonal for Solve using a Discrete Tie -Model

10 Special References for this Lecture Feedback Control of Dynaic Systes Franklin, Powell and Naeini, Pearson Education Asia Control Systes Engineering Noran S Nise, John Wiley & Sons Modern Control Engineering K Ogata, Prentice Hall Control Syste Design B Friedland, Dover 10

11 Find out the EOM for the following echanical syste in state space for :

NPTEL >> Mechanical Engineering >> Modeling and Control of Dynamic electro-mechanical System Module 4- Lecture 31. Observer Design

NPTEL >> Mechanical Engineering >> Modeling and Control of Dynamic electro-mechanical System Module 4- Lecture 31. Observer Design Observer Design Dr. Bishakh Bhattacharya h Professor, Department of Mechanical Engineering IIT Kanpur Joint Initiative of IITs and IISc - Funded by MHRD This Lecture Contains Full State Feedback Control

More information

Reduced Order Observer Design

Reduced Order Observer Design NPTEL >> Mechanical Engineering >> Modeling and Control of Dynamic electro-mechanical System Module 4- Lecture 3 Reduced Order Observer Design Dr Bishakh Bhattacharya h Professor, Department of Mechanical

More information

Modeling of Electrical Elements

Modeling of Electrical Elements Modeling of Electrical Elements Dr. Bishakh Bhattacharya Professor, Department of Mechanical Engineering IIT Kanpur Joint Initiative of IITs and IISc - Funded by MHRD This Lecture Contains Modeling of

More information

Design of a Lead Compensator

Design of a Lead Compensator Design of a Lead Compensator Dr. Bishakh Bhattacharya Professor, Department of Mechanical Engineering IIT Kanpur Joint Initiative of IITs and IISc - Funded by MHRD The Lecture Contains Standard Forms of

More information

Nyquist Stability Criteria

Nyquist Stability Criteria Nyquist Stability Criteria Dr. Bishakh Bhattacharya h Professor, Department of Mechanical Engineering IIT Kanpur Joint Initiative of IITs and IISc - Funded by MHRD This Lecture Contains Introduction to

More information

Dynamic Modelling of Mechanical Systems

Dynamic Modelling of Mechanical Systems Dynamic Modelling of Mechanical Systems Dr. Bishakh Bhattacharya Professor, Department of Mechanical Engineering g IIT Kanpur Joint Initiative of IITs and IISc - Funded by MHRD Hints of the Last Assignment

More information

Simple Harmonic Motion

Simple Harmonic Motion Siple Haronic Motion Physics Enhanceent Prograe for Gifted Students The Hong Kong Acadey for Gifted Education and Departent of Physics, HKBU Departent of Physics Siple haronic otion In echanical physics,

More information

Frame with 6 DOFs. v m. determining stiffness, k k = F / water tower deflected water tower dynamic response model

Frame with 6 DOFs. v m. determining stiffness, k k = F / water tower deflected water tower dynamic response model CE 533, Fall 2014 Undaped SDOF Oscillator 1 / 6 What is a Single Degree of Freedo Oscillator? The siplest representation of the dynaic response of a civil engineering structure is the single degree of

More information

In the session you will be divided into groups and perform four separate experiments:

In the session you will be divided into groups and perform four separate experiments: Mechanics Lab (Civil Engineers) Nae (please print): Tutor (please print): Lab group: Date of lab: Experients In the session you will be divided into groups and perfor four separate experients: (1) air-track

More information

Modeling of vibration systems

Modeling of vibration systems Modeling of vibration systes Atual syste Mae design deision Choose physial paraeters, hange or augent syste if neessary Physial odeling Mae siple approiations based on engineering judgeent Physial odel

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering 2.010: Systems Modeling and Dynamics III. Final Examination Review Problems

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering 2.010: Systems Modeling and Dynamics III. Final Examination Review Problems ASSACHUSETTS INSTITUTE OF TECHNOLOGY Departent of echanical Engineering 2.010: Systes odeling and Dynaics III Final Eaination Review Probles Fall 2000 Good Luck And have a great winter break! page 1 Proble

More information

COMPONENT MODE SYNTHESIS, FIXED-INTERFACE MODEL Revision A

COMPONENT MODE SYNTHESIS, FIXED-INTERFACE MODEL Revision A COMPONEN MODE SYNHESS, FXED-NERFACE MODEL Revision A By o rvine Eail: toirvine@aol.co February, ntroduction Coponent ode synthesis is a ethod for analyzing the dynaic behavior of a syste consisting of

More information

Modern Control Systems (ECEG-4601) Instructor: Andinet Negash. Chapter 1 Lecture 3: State Space, II

Modern Control Systems (ECEG-4601) Instructor: Andinet Negash. Chapter 1 Lecture 3: State Space, II Modern Control Systes (ECEG-46) Instructor: Andinet Negash Chapter Lecture 3: State Space, II Eaples Eaple 5: control o liquid levels: in cheical plants, it is oten necessary to aintain the levels o liquids.

More information

A STUDY OF THE DESIGN OF A CANTILEVER TYPE MULTI-D.O.F. DYNAMIC VIBRATION ABSORBER FOR MICRO MACHINE TOOLS

A STUDY OF THE DESIGN OF A CANTILEVER TYPE MULTI-D.O.F. DYNAMIC VIBRATION ABSORBER FOR MICRO MACHINE TOOLS ICSV4 Cairns Australia 9- Jul, 7 A STUDY OF THE DESIGN OF A CANTILEVER TYPE MULTI-D.O.F. DYNAMIC VIBRATION ABSORBER FOR MICRO MACHINE TOOLS Sung-Hun Jang, Sung-Min Ki, Shil-Geun Ki,Young-Hu Choi and Jong-Kwon

More information

Chapter 2: Introduction to Damping in Free and Forced Vibrations

Chapter 2: Introduction to Damping in Free and Forced Vibrations Chapter 2: Introduction to Daping in Free and Forced Vibrations This chapter ainly deals with the effect of daping in two conditions like free and forced excitation of echanical systes. Daping plays an

More information

Periodic Motion is everywhere

Periodic Motion is everywhere Lecture 19 Goals: Chapter 14 Interrelate the physics and atheatics of oscillations. Draw and interpret oscillatory graphs. Learn the concepts of phase and phase constant. Understand and use energy conservation

More information

Lecture #8-3 Oscillations, Simple Harmonic Motion

Lecture #8-3 Oscillations, Simple Harmonic Motion Lecture #8-3 Oscillations Siple Haronic Motion So far we have considered two basic types of otion: translation and rotation. But these are not the only two types of otion we can observe in every day life.

More information

NUMERICAL MODELLING OF THE TYRE/ROAD CONTACT

NUMERICAL MODELLING OF THE TYRE/ROAD CONTACT NUMERICAL MODELLING OF THE TYRE/ROAD CONTACT PACS REFERENCE: 43.5.LJ Krister Larsson Departent of Applied Acoustics Chalers University of Technology SE-412 96 Sweden Tel: +46 ()31 772 22 Fax: +46 ()31

More information

Chapter 11: Vibration Isolation of the Source [Part I]

Chapter 11: Vibration Isolation of the Source [Part I] Chapter : Vibration Isolation of the Source [Part I] Eaple 3.4 Consider the achine arrangeent illustrated in figure 3.. An electric otor is elastically ounted, by way of identical isolators, to a - thick

More information

Unit 14 Harmonic Motion. Your Comments

Unit 14 Harmonic Motion. Your Comments Today s Concepts: Periodic Motion Siple - Mass on spring Daped Forced Resonance Siple - Pendulu Unit 1, Slide 1 Your Coents Please go through the three equations for siple haronic otion and phase angle

More information

Chapter 1: Basics of Vibrations for Simple Mechanical Systems

Chapter 1: Basics of Vibrations for Simple Mechanical Systems Chapter 1: Basics of Vibrations for Siple Mechanical Systes Introduction: The fundaentals of Sound and Vibrations are part of the broader field of echanics, with strong connections to classical echanics,

More information

Adaptive Stabilization of a Class of Nonlinear Systems With Nonparametric Uncertainty

Adaptive Stabilization of a Class of Nonlinear Systems With Nonparametric Uncertainty IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 46, NO. 11, NOVEMBER 2001 1821 Adaptive Stabilization of a Class of Nonlinear Systes With Nonparaetric Uncertainty Aleander V. Roup and Dennis S. Bernstein

More information

Physics 207 Lecture 18. Physics 207, Lecture 18, Nov. 3 Goals: Chapter 14

Physics 207 Lecture 18. Physics 207, Lecture 18, Nov. 3 Goals: Chapter 14 Physics 07, Lecture 18, Nov. 3 Goals: Chapter 14 Interrelate the physics and atheatics of oscillations. Draw and interpret oscillatory graphs. Learn the concepts of phase and phase constant. Understand

More information

ACCUMULATION OF FLUID FLOW ENERGY BY VIBRATIONS EXCITATION IN SYSTEM WITH TWO DEGREE OF FREEDOM

ACCUMULATION OF FLUID FLOW ENERGY BY VIBRATIONS EXCITATION IN SYSTEM WITH TWO DEGREE OF FREEDOM ENGINEERING FOR RURAL DEVELOPMENT Jelgava, 9.-.5.8. ACCUMULATION OF FLUID FLOW ENERGY BY VIBRATION EXCITATION IN YTEM WITH TWO DEGREE OF FREEDOM Maris Eiduks, Janis Viba, Lauris tals Riga Technical University,

More information

2 Q 10. Likewise, in case of multiple particles, the corresponding density in 2 must be averaged over all

2 Q 10. Likewise, in case of multiple particles, the corresponding density in 2 must be averaged over all Lecture 6 Introduction to kinetic theory of plasa waves Introduction to kinetic theory So far we have been odeling plasa dynaics using fluid equations. The assuption has been that the pressure can be either

More information

TOPIC E: OSCILLATIONS SPRING 2018

TOPIC E: OSCILLATIONS SPRING 2018 TOPIC E: OSCILLATIONS SPRING 018 1. Introduction 1.1 Overview 1. Degrees of freedo 1.3 Siple haronic otion. Undaped free oscillation.1 Generalised ass-spring syste: siple haronic otion. Natural frequency

More information

Physics 2107 Oscillations using Springs Experiment 2

Physics 2107 Oscillations using Springs Experiment 2 PY07 Oscillations using Springs Experient Physics 07 Oscillations using Springs Experient Prelab Read the following bacground/setup and ensure you are failiar with the concepts and theory required for

More information

Dynamic Response of SDOF System: A Comparative Study Between Newmark s Method and IS1893 Response Spectra

Dynamic Response of SDOF System: A Comparative Study Between Newmark s Method and IS1893 Response Spectra Dynaic Response of SDOF Syste: A Coparative Study Between Newark s Method and IS893 Response Spectra [] P. Manoj Reddy [2] Dr. A. Viala [] Post Graduate Student, [2] Associate Professor [][2] Chaitanya

More information

CHAPTER 19: Single-Loop IMC Control

CHAPTER 19: Single-Loop IMC Control When I coplete this chapter, I want to be able to do the following. Recognize that other feedback algoriths are possible Understand the IMC structure and how it provides the essential control features

More information

ON REGULARITY, TRANSITIVITY, AND ERGODIC PRINCIPLE FOR QUADRATIC STOCHASTIC VOLTERRA OPERATORS MANSOOR SABUROV

ON REGULARITY, TRANSITIVITY, AND ERGODIC PRINCIPLE FOR QUADRATIC STOCHASTIC VOLTERRA OPERATORS MANSOOR SABUROV ON REGULARITY TRANSITIVITY AND ERGODIC PRINCIPLE FOR QUADRATIC STOCHASTIC VOLTERRA OPERATORS MANSOOR SABUROV Departent of Coputational & Theoretical Sciences Faculty of Science International Islaic University

More information

EFFECTIVE MODAL MASS & MODAL PARTICIPATION FACTORS Revision I

EFFECTIVE MODAL MASS & MODAL PARTICIPATION FACTORS Revision I EFFECTIVE MODA MASS & MODA PARTICIPATION FACTORS Revision I B To Irvine Eail: to@vibrationdata.co Deceber, 5 Introduction The effective odal ass provides a ethod for judging the significance of a vibration

More information

Donald Fussell. October 28, Computer Science Department The University of Texas at Austin. Point Masses and Force Fields.

Donald Fussell. October 28, Computer Science Department The University of Texas at Austin. Point Masses and Force Fields. s Vector Moving s and Coputer Science Departent The University of Texas at Austin October 28, 2014 s Vector Moving s Siple classical dynaics - point asses oved by forces Point asses can odel particles

More information

Nonlinear Stabilization of a Spherical Particle Trapped in an Optical Tweezer

Nonlinear Stabilization of a Spherical Particle Trapped in an Optical Tweezer Nonlinear Stabilization of a Spherical Particle Trapped in an Optical Tweezer Aruna Ranaweera ranawera@engineering.ucsb.edu Bassa Baieh baieh@engineering.ucsb.edu Andrew R. Teel teel@ece.ucsb.edu Departent

More information

Torsion Experiment. Encoder #3 ( 3 ) Third encoder/disk for Model 205a only. Figure 1: ECP Torsion Experiment

Torsion Experiment. Encoder #3 ( 3 ) Third encoder/disk for Model 205a only. Figure 1: ECP Torsion Experiment Torsion Experient Introduction For the Torsion lab, there are two required experients to perfor and one extra credit assignent at the end. In experient 1, the syste paraeters need to be identified so that

More information

SEISMIC FRAGILITY ANALYSIS

SEISMIC FRAGILITY ANALYSIS 9 th ASCE Specialty Conference on Probabilistic Mechanics and Structural Reliability PMC24 SEISMIC FRAGILITY ANALYSIS C. Kafali, Student M. ASCE Cornell University, Ithaca, NY 483 ck22@cornell.edu M. Grigoriu,

More information

PHYSICS 110A : CLASSICAL MECHANICS MIDTERM EXAM #2

PHYSICS 110A : CLASSICAL MECHANICS MIDTERM EXAM #2 PHYSICS 110A : CLASSICAL MECHANICS MIDTERM EXAM #2 [1] Two blocks connected by a spring of spring constant k are free to slide frictionlessly along a horizontal surface, as shown in Fig. 1. The unstretched

More information

Modeling & Analysis of the International Space Station

Modeling & Analysis of the International Space Station Modeling & Analysis of the International Space Station 1 Physical Syste Solar Alpha Rotary Joints Physical Syste Rotor Stator Gear Train Solar Array Inboard Body Outboard Body +x Solar Array 3 Physical

More information

Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world

Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world Pearson Education Liited Edinburgh Gate Harlow Esse CM0 JE England and Associated Copanies throughout the world Visit us on the World Wide Web at: www.pearsoned.co.uk Pearson Education Liited 04 All rights

More information

Lecture 8 Symmetries, conserved quantities, and the labeling of states Angular Momentum

Lecture 8 Symmetries, conserved quantities, and the labeling of states Angular Momentum Lecture 8 Syetries, conserved quantities, and the labeling of states Angular Moentu Today s Progra: 1. Syetries and conserved quantities labeling of states. hrenfest Theore the greatest theore of all ties

More information

= T. Oscillations and Waves. Example of an Oscillating System IB 12 IB 12

= T. Oscillations and Waves. Example of an Oscillating System IB 12 IB 12 Oscillation: the vibration of an object Oscillations and Waves Eaple of an Oscillating Syste A ass oscillates on a horizontal spring without friction as shown below. At each position, analyze its displaceent,

More information

Dynamics of Bass Reflex Loudspeaker Systems (3)

Dynamics of Bass Reflex Loudspeaker Systems (3) MCAP5E Dynaics of Bass Refle Loudspeaker Systes (3) Deriving Equations of Motion of Bass Refle Speaker Systes 3. Deriving Equations of Motion Shigeru Suzuki Released in May 5th, 8 in Japanese Released

More information

Course support: Control Engineering (TBKRT05E)

Course support: Control Engineering (TBKRT05E) Course Support This course support package is offered to you by TBV Lugus, the study association for Industrial Engineering and Manageent. Although this package is coposed with great care, the association

More information

Principles of Optimal Control Spring 2008

Principles of Optimal Control Spring 2008 MIT OpenCourseWare http://ocw.it.edu 16.323 Principles of Optial Control Spring 2008 For inforation about citing these aterials or our Ters of Use, visit: http://ocw.it.edu/ters. 16.323 Lecture 10 Singular

More information

8.1 Force Laws Hooke s Law

8.1 Force Laws Hooke s Law 8.1 Force Laws There are forces that don't change appreciably fro one instant to another, which we refer to as constant in tie, and forces that don't change appreciably fro one point to another, which

More information

Simple Harmonic Motion

Simple Harmonic Motion Reading: Chapter 15 Siple Haronic Motion Siple Haronic Motion Frequency f Period T T 1. f Siple haronic otion x ( t) x cos( t ). Aplitude x Phase Angular frequency Since the otion returns to its initial

More information

Simple and Compound Harmonic Motion

Simple and Compound Harmonic Motion Siple Copound Haronic Motion Prelab: visit this site: http://en.wiipedia.org/wii/noral_odes Purpose To deterine the noral ode frequencies of two systes:. a single ass - two springs syste (Figure );. two

More information

PHYS 1443 Section 003 Lecture #22

PHYS 1443 Section 003 Lecture #22 PHYS 443 Section 003 Lecture # Monda, Nov. 4, 003. Siple Bloc-Spring Sste. Energ of the Siple Haronic Oscillator 3. Pendulu Siple Pendulu Phsical Pendulu orsion Pendulu 4. Siple Haronic Motion and Unifor

More information

DETECTION OF NONLINEARITY IN VIBRATIONAL SYSTEMS USING THE SECOND TIME DERIVATIVE OF ABSOLUTE ACCELERATION

DETECTION OF NONLINEARITY IN VIBRATIONAL SYSTEMS USING THE SECOND TIME DERIVATIVE OF ABSOLUTE ACCELERATION DETECTION OF NONLINEARITY IN VIBRATIONAL SYSTEMS USING THE SECOND TIME DERIVATIVE OF ABSOLUTE ACCELERATION Masaki WAKUI 1 and Jun IYAMA and Tsuyoshi KOYAMA 3 ABSTRACT This paper shows a criteria to detect

More information

Wall Juggling of one Ball by Robot Manipulator with Visual Servo

Wall Juggling of one Ball by Robot Manipulator with Visual Servo Juggling of one Ball by obot Manipulator with Visual Servo Akira Nakashia Yosuke Kobayashi Yoshikazu Hayakawa Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho,

More information

CHAPTER 15: Vibratory Motion

CHAPTER 15: Vibratory Motion CHAPTER 15: Vibratory Motion courtesy of Richard White courtesy of Richard White 2.) 1.) Two glaring observations can be ade fro the graphic on the previous slide: 1.) The PROJECTION of a point on a circle

More information

Question number 1 to 8 carries 2 marks each, 9 to 16 carries 4 marks each and 17 to 18 carries 6 marks each.

Question number 1 to 8 carries 2 marks each, 9 to 16 carries 4 marks each and 17 to 18 carries 6 marks each. IIT-JEE5-PH-1 FIITJEE Solutions to IITJEE 5 Mains Paper Tie: hours Physics Note: Question nuber 1 to 8 carries arks each, 9 to 16 carries 4 arks each and 17 to 18 carries 6 arks each. Q1. whistling train

More information

ACTIVE VIBRATION CONTROL FOR STRUCTURE HAVING NON- LINEAR BEHAVIOR UNDER EARTHQUAKE EXCITATION

ACTIVE VIBRATION CONTROL FOR STRUCTURE HAVING NON- LINEAR BEHAVIOR UNDER EARTHQUAKE EXCITATION International onference on Earthquae Engineering and Disaster itigation, Jaarta, April 14-15, 8 ATIVE VIBRATION ONTROL FOR TRUTURE HAVING NON- LINEAR BEHAVIOR UNDER EARTHQUAE EXITATION Herlien D. etio

More information

SIMPLE HARMONIC MOTION: NEWTON S LAW

SIMPLE HARMONIC MOTION: NEWTON S LAW SIMPLE HARMONIC MOTION: NEWTON S LAW siple not siple PRIOR READING: Main 1.1, 2.1 Taylor 5.1, 5.2 http://www.yoops.org/twocw/it/nr/rdonlyres/physics/8-012fall-2005/7cce46ac-405d-4652-a724-64f831e70388/0/chp_physi_pndul.jpg

More information

Research on coupling theory and its experiments between torque turbulence and bearing load of multi-support-rotor systems

Research on coupling theory and its experiments between torque turbulence and bearing load of multi-support-rotor systems Available online www.jocpr.co Journal of Cheical and Pharaceutical Research, 04, 6(4):807-85 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Research on coupling theory and its experients between

More information

Simple Harmonic Motion of Spring

Simple Harmonic Motion of Spring Nae P Physics Date iple Haronic Motion and prings Hooean pring W x U ( x iple Haronic Motion of pring. What are the two criteria for siple haronic otion? - Only restoring forces cause siple haronic otion.

More information

Ufuk Demirci* and Feza Kerestecioglu**

Ufuk Demirci* and Feza Kerestecioglu** 1 INDIRECT ADAPTIVE CONTROL OF MISSILES Ufuk Deirci* and Feza Kerestecioglu** *Turkish Navy Guided Missile Test Station, Beykoz, Istanbul, TURKEY **Departent of Electrical and Electronics Engineering,

More information

CHECKLIST. r r. Newton s Second Law. natural frequency ω o (rad.s -1 ) (Eq ) a03/p1/waves/waves doc 9:19 AM 29/03/05 1

CHECKLIST. r r. Newton s Second Law. natural frequency ω o (rad.s -1 ) (Eq ) a03/p1/waves/waves doc 9:19 AM 29/03/05 1 PHYS12 Physics 1 FUNDAMENTALS Module 3 OSCILLATIONS & WAVES Text Physics by Hecht Chapter 1 OSCILLATIONS Sections: 1.5 1.6 Exaples: 1.6 1.7 1.8 1.9 CHECKLIST Haronic otion, periodic otion, siple haronic

More information

Oscillations: Review (Chapter 12)

Oscillations: Review (Chapter 12) Oscillations: Review (Chapter 1) Oscillations: otions that are periodic in tie (i.e. repetitive) o Swinging object (pendulu) o Vibrating object (spring, guitar string, etc.) o Part of ediu (i.e. string,

More information

III. Quantization of electromagnetic field

III. Quantization of electromagnetic field III. Quantization of electroagnetic field Using the fraework presented in the previous chapter, this chapter describes lightwave in ters of quantu echanics. First, how to write a physical quantity operator

More information

A new Lagrangian of the simple harmonic oscillator 1 revisited

A new Lagrangian of the simple harmonic oscillator 1 revisited A new Lagrangian of the siple haronic oscillator 1 revisited Faisal Ain Yassein Abdelohssin Sudan Institute for Natural Sciences, P.O.BOX 3045, Khartou, Sudan Abstract A better and syetric new Lagrangian

More information

CE573 Structural Dynamics [Fall 2008]

CE573 Structural Dynamics [Fall 2008] CE573 Structural Dynaics [Fall 2008] 1) A rigid vehicle weighing 2000 lb, oving horizontally at a velocity of 12 ft/sec, is stopped by a barrier consisting of wire ropes stretched between two rigid anchors

More information

Reading from Young & Freedman: For this topic, read the introduction to chapter 25 and sections 25.1 to 25.3 & 25.6.

Reading from Young & Freedman: For this topic, read the introduction to chapter 25 and sections 25.1 to 25.3 & 25.6. PHY10 Electricity Topic 6 (Lectures 9 & 10) Electric Current and Resistance n this topic, we will cover: 1) Current in a conductor ) Resistivity 3) Resistance 4) Oh s Law 5) The Drude Model of conduction

More information

16.30/31 September 24, 2010 Prof. J. P. How and Prof. E. Frazzoli Due: October 15, 2010 T.A. B. Luders /31 Lab #1

16.30/31 September 24, 2010 Prof. J. P. How and Prof. E. Frazzoli Due: October 15, 2010 T.A. B. Luders /31 Lab #1 16.30/31 Septeber 24, 2010 Prof. J. P. How and Prof. E. Frazzoli Due: October 15, 2010 T.A. B. Luders 16.30/31 Lab #1 1 Introduction The Quanser helicopter is a echanical device that eulates the flight

More information

Problem Set 14: Oscillations AP Physics C Supplementary Problems

Problem Set 14: Oscillations AP Physics C Supplementary Problems Proble Set 14: Oscillations AP Physics C Suppleentary Probles 1 An oscillator consists of a bloc of ass 050 g connected to a spring When set into oscillation with aplitude 35 c, it is observed to repeat

More information

821. Study on analysis method for deepwater TTR coupled vibration of parameter vibration and vortex-induced vibration

821. Study on analysis method for deepwater TTR coupled vibration of parameter vibration and vortex-induced vibration 81. Study on analysis ethod for deepwater TTR coupled vibration of paraeter vibration and vortex-induced vibration Wu Xue-Min 1, Huang Wei-Ping Shandong Key aboratory of Ocean Engineering, Ocean University

More information

Multi Degrees of Freedom Maglev System with Permanent Magnet Motion Control

Multi Degrees of Freedom Maglev System with Permanent Magnet Motion Control Multi Degrees of Freedo Maglev Syste with Peranent Magnet Motion Control Cui Tianshi A dissertation subitted to Kochi University of Technology in partial fulfillent of the requireents for the degree of

More information

Using a De-Convolution Window for Operating Modal Analysis

Using a De-Convolution Window for Operating Modal Analysis Using a De-Convolution Window for Operating Modal Analysis Brian Schwarz Vibrant Technology, Inc. Scotts Valley, CA Mark Richardson Vibrant Technology, Inc. Scotts Valley, CA Abstract Operating Modal Analysis

More information

PY /005 Practice Test 1, 2004 Feb. 10

PY /005 Practice Test 1, 2004 Feb. 10 PY 205-004/005 Practice Test 1, 2004 Feb. 10 Print nae Lab section I have neither given nor received unauthorized aid on this test. Sign ature: When you turn in the test (including forula page) you ust

More information

Lecture 4 Normal Modes

Lecture 4 Normal Modes Lecture 4 Noral Modes Coupled driven oscillators Double pendulu The daped driven pendulu = g/l +k y+fcost y = y gy/l k y d dt + d dt + g + k l k k d dt + d dt + g + k l y = F 0 Re eit y =Re X Y eit CF

More information

Determining a Function for the Damping Coefficient of a laminated Stack

Determining a Function for the Damping Coefficient of a laminated Stack DOI: 10.435/UB.OVGU-017-093 TECHNISCHE MECHANIK, 37, -5, (017), 161 170 subitted: June 9, 017 Deterining a Function for the Daping Coefficient of a lainated Stack C. Zahalka, K. Ellerann The design of

More information

Reducing Vibration and Providing Robustness with Multi-Input Shapers

Reducing Vibration and Providing Robustness with Multi-Input Shapers 29 Aerican Control Conference Hyatt Regency Riverfront, St. Louis, MO, USA June -2, 29 WeA6.4 Reducing Vibration and Providing Robustness with Multi-Input Shapers Joshua Vaughan and Willia Singhose Abstract

More information

Kinetic Theory of Gases: Elementary Ideas

Kinetic Theory of Gases: Elementary Ideas Kinetic Theory of Gases: Eleentary Ideas 17th February 2010 1 Kinetic Theory: A Discussion Based on a Siplified iew of the Motion of Gases 1.1 Pressure: Consul Engel and Reid Ch. 33.1) for a discussion

More information

Design and Comparison of Different Controllers to Stabilize a Rotary Inverted Pendulum

Design and Comparison of Different Controllers to Stabilize a Rotary Inverted Pendulum ISSN (Online): 347-3878, Impact Factor (5): 3.79 Design and Comparison of Different Controllers to Stabilize a Rotary Inverted Pendulum Kambhampati Tejaswi, Alluri Amarendra, Ganta Ramesh 3 M.Tech, Department

More information

Analysis of ground vibration transmission in high precision equipment by Frequency Based Substructuring

Analysis of ground vibration transmission in high precision equipment by Frequency Based Substructuring Analysis of ground vibration transission in high precision equipent by Frequency Based Substructuring G. van Schothorst 1, M.A. Boogaard 2, G.W. van der Poel 1, D.J. Rixen 2 1 Philips Innovation Services,

More information

In this chapter we will start the discussion on wave phenomena. We will study the following topics:

In this chapter we will start the discussion on wave phenomena. We will study the following topics: Chapter 16 Waves I In this chapter we will start the discussion on wave phenoena. We will study the following topics: Types of waves Aplitude, phase, frequency, period, propagation speed of a wave Mechanical

More information

DRAFT. Memo. Contents. To whom it may concern SVN: Jan Mooiman +31 (0) nl

DRAFT. Memo. Contents. To whom it may concern SVN: Jan Mooiman +31 (0) nl Meo To To who it ay concern Date Reference Nuber of pages 219-1-16 SVN: 5744 22 Fro Direct line E-ail Jan Mooian +31 )88 335 8568 jan.ooian@deltares nl +31 6 4691 4571 Subject PID controller ass-spring-daper

More information

Kinetic Theory of Gases: Elementary Ideas

Kinetic Theory of Gases: Elementary Ideas Kinetic Theory of Gases: Eleentary Ideas 9th February 011 1 Kinetic Theory: A Discussion Based on a Siplified iew of the Motion of Gases 1.1 Pressure: Consul Engel and Reid Ch. 33.1) for a discussion of

More information

Elastic Force: A Force Balance: Elastic & Gravitational Force: Force Example: Determining Spring Constant. Some Other Forces

Elastic Force: A Force Balance: Elastic & Gravitational Force: Force Example: Determining Spring Constant. Some Other Forces Energy Balance, Units & Proble Solving: Mechanical Energy Balance ABET Course Outcoes: 1. solve and docuent the solution of probles involving eleents or configurations not previously encountered (e) (e.g.

More information

Model Based Control versus Classical Control for Parallel Robots

Model Based Control versus Classical Control for Parallel Robots odel Based Control versus Classical Control for Parallel Robots Květoslav Belda Institute of Inforation heory and Autoation, Acadey of Sciences of the Czech Republic, Pod vodárensou věží 4, 82 08 Praha

More information

Analysis of Impulsive Natural Phenomena through Finite Difference Methods A MATLAB Computational Project-Based Learning

Analysis of Impulsive Natural Phenomena through Finite Difference Methods A MATLAB Computational Project-Based Learning Analysis of Ipulsive Natural Phenoena through Finite Difference Methods A MATLAB Coputational Project-Based Learning Nicholas Kuia, Christopher Chariah, Mechatronics Engineering, Vaughn College of Aeronautics

More information

ME357 Problem Set The wheel is a thin homogeneous disk that rolls without slip. sin. The wall moves with a specified motion x t. sin..

ME357 Problem Set The wheel is a thin homogeneous disk that rolls without slip. sin. The wall moves with a specified motion x t. sin.. ME357 Proble Set 3 Derive the equation(s) of otion for the systes shown using Newton s Method. For ultiple degree of freedo systes put you answer in atri for. Unless otherwise speified the degrees of freedo

More information

Course Outline. Higher Order Poles: Example. Higher Order Poles. Amme 3500 : System Dynamics & Control. State Space Design. 1 G(s) = s(s + 2)(s +10)

Course Outline. Higher Order Poles: Example. Higher Order Poles. Amme 3500 : System Dynamics & Control. State Space Design. 1 G(s) = s(s + 2)(s +10) Amme 35 : System Dynamics Control State Space Design Course Outline Week Date Content Assignment Notes 1 1 Mar Introduction 2 8 Mar Frequency Domain Modelling 3 15 Mar Transient Performance and the s-plane

More information

Inverted Pendulum control with pole assignment, LQR and multiple layers sliding mode control

Inverted Pendulum control with pole assignment, LQR and multiple layers sliding mode control J. Basic. Appl. Sci. Res., 3(1s)363-368, 013 013, TetRoad Publication ISSN 090-4304 Journal of Basic and Applied Scientific Research www.tetroad.co Inverted Pendulu control with pole assignent, LQR and

More information

PH 221-2A Fall Waves - I. Lectures Chapter 16 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition)

PH 221-2A Fall Waves - I. Lectures Chapter 16 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) PH 1-A Fall 014 Waves - I Lectures 4-5 Chapter 16 (Halliday/Resnick/Walker, Fundaentals of Physics 9 th edition) 1 Chapter 16 Waves I In this chapter we will start the discussion on wave phenoena. We will

More information

A Pulley System Apparatus for a Laboratory Experience in Dynamics

A Pulley System Apparatus for a Laboratory Experience in Dynamics A Pulley Syste Apparatus for a Laboratory Experience in Dynaics Chris J. Kobus and Yin-Ping Chang Oakland University, Rochester, MI 48309-4478 Eail: cjkobus@oakland.edu Abstract This paper describes a

More information

On the role of quadrature rules and system dimensions in variational multirate integrators

On the role of quadrature rules and system dimensions in variational multirate integrators The 3 rd Joint International Conference on Multibody Syste Dynaics The 7 th Asian Conference on Multibody Dynaics June 30-July 3, 04, BEXCO, Busan, Korea On the role of quadrature rules and syste diensions

More information

BALLISTIC PENDULUM. EXPERIMENT: Measuring the Projectile Speed Consider a steel ball of mass

BALLISTIC PENDULUM. EXPERIMENT: Measuring the Projectile Speed Consider a steel ball of mass BALLISTIC PENDULUM INTRODUCTION: In this experient you will use the principles of conservation of oentu and energy to deterine the speed of a horizontally projected ball and use this speed to predict the

More information

Uncertainty Propagation and Nonlinear Filtering for Space Navigation using Differential Algebra

Uncertainty Propagation and Nonlinear Filtering for Space Navigation using Differential Algebra Uncertainty Propagation and Nonlinear Filtering for Space Navigation using Differential Algebra M. Valli, R. Arellin, P. Di Lizia and M. R. Lavagna Departent of Aerospace Engineering, Politecnico di Milano

More information

ma x = -bv x + F rod.

ma x = -bv x + F rod. Notes on Dynaical Systes Dynaics is the study of change. The priary ingredients of a dynaical syste are its state and its rule of change (also soeties called the dynaic). Dynaical systes can be continuous

More information

Design of Sliding Mode Stabilizer for Wind Turbine Generator using Dynamic Compensation Observer Technique

Design of Sliding Mode Stabilizer for Wind Turbine Generator using Dynamic Compensation Observer Technique Proceedings of the 6th WSES International Conference on Power Systes, Lisbon, Portugal, Septeber -4, 6 84 Design of Sliding Mode Stabilizer for Wind urbine Generator using Dynaic Copensation Observer echnique

More information

Monitoring and system identification of suspension bridges: An alternative approach

Monitoring and system identification of suspension bridges: An alternative approach Monitoring and syste identification of suspension bridges: An alternative approach Erdal Şafak Boğaziçi University, Kandilli Observatory and Earthquake Reseach Institute, Istanbul, Turkey Abstract This

More information

III.H Zeroth Order Hydrodynamics

III.H Zeroth Order Hydrodynamics III.H Zeroth Order Hydrodynaics As a first approxiation, we shall assue that in local equilibriu, the density f 1 at each point in space can be represented as in eq.iii.56, i.e. f 0 1 p, q, t = n q, t

More information

Data-Driven Imaging in Anisotropic Media

Data-Driven Imaging in Anisotropic Media 18 th World Conference on Non destructive Testing, 16- April 1, Durban, South Africa Data-Driven Iaging in Anisotropic Media Arno VOLKER 1 and Alan HUNTER 1 TNO Stieltjesweg 1, 6 AD, Delft, The Netherlands

More information

Design of 25 KA Current Injection Transformer Core with Finite Element Method

Design of 25 KA Current Injection Transformer Core with Finite Element Method 1 Design of 5 KA Current Injection Transforer Core ith Finite Eleent Method HOSSEIN HEYDARI, MOHSEN ARIANNEJAD, FARAMARZ FAGHIHI Iran University of Science and Technology, Tehran, Iran Abstract.Since Current

More information

Loudspeaker Rocking Modes (Part 1: Modeling)

Loudspeaker Rocking Modes (Part 1: Modeling) Loudspeaer Rocing Modes (Part 1: Modeling) Willia Cardenas, Wolfgang Klippel; Klippel GbH, Dresden 139, Gerany he rocing of the loudspeaer diaphrag is a severe proble in headphones, icro-speaers and other

More information

ME Machine Design I. FINAL EXAM. OPEN BOOK AND CLOSED NOTES. Friday, May 8th, 2009

ME Machine Design I. FINAL EXAM. OPEN BOOK AND CLOSED NOTES. Friday, May 8th, 2009 ME 5 - Machine Design I Spring Seester 009 Nae Lab. Div. FINAL EXAM. OPEN BOOK AND LOSED NOTES. Friday, May 8th, 009 Please use the blank paper for your solutions. Write on one side of the paper only.

More information

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 30: Dynamics of Turbopump Systems: The Shuttle Engine

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 30: Dynamics of Turbopump Systems: The Shuttle Engine 6.5, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 30: Dynaics of Turbopup Systes: The Shuttle Engine Dynaics of the Space Shuttle Main Engine Oxidizer Pressurization Subsystes Selected Sub-Model

More information

EN40: Dynamics and Vibrations. Final Examination Monday May : 2pm-5pm

EN40: Dynamics and Vibrations. Final Examination Monday May : 2pm-5pm EN40: Dynaics and Vibrations Final Exaination Monday May 13 013: p-5p School of Engineering Brown University NAME: General Instructions No collaboration of any kind is peritted on this exaination. You

More information

EE5900 Spring Lecture 4 IC interconnect modeling methods Zhuo Feng

EE5900 Spring Lecture 4 IC interconnect modeling methods Zhuo Feng EE59 Spring Parallel LSI AD Algoriths Lecture I interconnect odeling ethods Zhuo Feng. Z. Feng MTU EE59 So far we ve considered only tie doain analyses We ll soon see that it is soeties preferable to odel

More information

PHYS 1443 Section 003 Lecture #21 Wednesday, Nov. 19, 2003 Dr. Mystery Lecturer

PHYS 1443 Section 003 Lecture #21 Wednesday, Nov. 19, 2003 Dr. Mystery Lecturer PHYS 443 Section 003 Lecture # Wednesday, Nov. 9, 003 Dr. Mystery Lecturer. Fluid Dyanics : Flow rate and Continuity Equation. Bernoulli s Equation 3. Siple Haronic Motion 4. Siple Bloc-Spring Syste 5.

More information