arxiv: v2 [math.pr] 30 Sep 2009

Size: px
Start display at page:

Download "arxiv: v2 [math.pr] 30 Sep 2009"

Transcription

1 Upper and Lower Bounds in Exponential Tauberian Theorems Jochen Voss 3th September 9 arxiv:98.64v [math.pr] 3 Sep 9 Abstract In this text we study, for positive random variables, the relation between the behaviour of the Laplace transform near infinity and the distribution near zero. A result of De Bruijn shows that Ee λx exprλ α for λ and PX ε exps/ε β for ε are in some sense equivalent for /α = /β + and gives a relation between the constants r and s. We illustrate how this result can be used to obtain simple large deviation results. For use in more complex situations we also give a generalisation of De Bruijn s result to the case when the upper and lower limits are different from each other. Introduction Tauberian theorems see for example the monograph Korevaar, 4 describe the connection between the behaviour of a positive random variable near zero and the behaviour of its Laplace transform near infinity. From De Bruijn s Tauberian theorem theorem 4..9 in Bingham et al., 987 we can easily conclude the following result. Theorem Let X be a random variable on a probability space Ω,A,P, A A an event with PA > and α,, β > with α = β +. Then the limit exists if and only if exists and in this case we have αr /α = βs /β. r = lim λ α logee λx A s = lim ε ε β logpx ε,a Proof. In theorem 4..9 of Bingham et al. 987 choose their alpha to be /β, φx = x /β, ψx = x /α, and B = s. This gives the proof in the case A = Ω. The case of general sets A can be reduced to the first case by considering the distribution Q = P A/PA instead of P. With the help of this theorem we can use knowledge about the Laplace transform of a given random variable X to show that the probability PX ε for ε decays exponentially fast. Therefore in some situations Tauberian theorems of exponential type can be valuable tools for deriving large deviation principles. Typically, in this case one has α = /, β = and thus s = r /4. Section illustrates this idea by using theorem to derive a simple large deviation result for the conditional distribution of a Brownian motion, given that the L -norm of the path is small. In general, the limit does not necessarily exist. For large deviation results one usually considers upper and lower limits, and thus theorem cannot be used directly. In section 3 of this text we will therefore derive a version of theorem which considers upper and lower limits. A University of Leeds, Statistics Department, Leeds LS 9JT, United Kingdom. J.Voss@leeds.ac.uk

2 lengthy application where upper and lower limits are needed, and where theorem is therefore not enough, can be found in Voss 8. The special case of α = / and β = for the result presented in this text was originally derived as part of my PhD-thesis Voss, 4. Brownian Paths with Small L -Norm In this section we illustrate how theorem can be used to derive a simple large deviations principle LDP for Brownian motion. See Dembo and Zeitouni 998 for details about large deviations, and in particular section 5. there for large deviation results for Brownian motion. A review of the connections between Tauberian theorems and large deviations, and further references, can be found in Bingham 8. Let X be the space of all paths ω: [,t] R such that ω =, equipped with the topology of pointwise convergence. On X, define a family P ε ε> of measures by P ε A = W A Bs ds ε for all measurable A X, where W is the Wiener measure on X and B is the canonical process. Theorem On the space X the family P ε ε> satisfies the LDP with the good rate function for all ω X. Iω = sup { t+ω t + +ω t n +ω t /8 t /8 n N, < t < < t n < t} Proof. Define X = B s ds. In order to apply theorem we have to calculate the tails of the Laplace transform of X. Formula.9.7 from Borodin and Salminen 996 states where ϕx;t,z = E x exp γ γ exp πsinhtγ Bs ds ;B t dz = ϕx;t,zdz x +z γcoshtγ xzγ sinhtγ For starting point x, measurable sets A,...,A n R and fixed times < t < < t n = t, the Markov property of Brownian motion gives then E x exp γ = A Bs ds A B t An B tn A n ϕx;t,z ϕz ;t t,z. ϕz n ;t n t n,z n dz n dz. We are interested in the exponential tails of this expression for γ. Let ε >. Observe that there are constants < c < c and G > with c e γt/ πsinhγt c e γt/ for all γ > G. Furthermore we can use the relation xz x +z to get x +z coshγt sinhγt for all x,z R. Because of x +z coshγt xz sinhγt x +z coshγt+ sinhγt coshγt± sinhγt = eγt +e γt ± e γt e γt for γ.

3 we can then find a γ >, such that whenever γ > γ the estimate x +z holds for all x,z R. Using this estimate we conclude lim sup exp γ lim γ logγn/ c n ε x +z coshγt xz sinhγt x +z Bs ds A B t An B tn e A γt/ exp γ x +z A n e γt t/ exp γ z +z e γtn tn / exp γ z n +z n = lim γ log exp γt n / γx A /+z + A n +ε ε ε ε dz n dz +z n +z n / ε dz n dz. Note the special role of the final point z n. With the help of the Laplace principle see e.g. Dembo and Zeitouni, 998, section 4.3 we can calculate the limit on the right hand side to get lim sup for all ε > and thus exp γ Bs ds A B t An B tn essinf t/+x /+z z + +z n +z n. / ε A,...,z n A n lim sup exp γ A very similar calculation gives lim inf and together this shows Bs ds A B t An B tn essinf t/+x /+z + +zn +zn/. z A,...,z n A n exp γ Bs ds A B t An B tn essinf t/+x /+z + +zn +z z A,...,z n A n n/. lim exp γ Bs ds A B t An B tn 3 t/+x /+z z + +z n +z n /. A,...,z n A n = essinf For measurable sets A,...,A n R and fixed times < t < < t n = t, the Tauberian theorem applied to equation 3 gives limε logp ε B t,b t,...,b tn A A A n = limε logp B t A,B t A,...,B tn A n, ε lim ε ε logp Bs ds ε Bs ds ε Bs ds ε = t+ essinf z A A A n z + +z n +z n /8+t /8. 3 4

4 Using A n = R we can drop the assumption t n = t and arrive at the following result. For all measurable sets A,...,A n R and fixed times < t < < t n t we have limε logp B t,b t,...,b tn A A A n ε = essinf z A A A n I t,...,t n z where I t,...,t n : R n R + is defined by B s ds ε { t+z t + +zn, if t n < t, and 5 I t,...,t n z = 8 t+z t + +zn +zn for t n = t. Since the rate function I t,...,t n is continuous, we can replace essinf with inf when the sets A i are open and thus 5 gives an LDP on R n. From this we can get the LDP on the path space X with rate function I by applying the Dawson-Gärtner theorem about large deviations for projective limits see for example Dembo and Zeitouni, 998, theorem Note that the rate function I in the theorem will typically take its infimum for a noncontinuous path ω: Assume ω is continuous and non-zero. Let ε = ω /. Then we find infinitely many distinct times t with ω t > ε and thus Iω = +. Therefore it will not be possible to prove the same theorem with X replaced by C [,t],r. 3 Upper and Lower Limits In this section we derive an analogue of theorem which considers upper and lower limits. The proof does not rely on theorem and uses only elementary methods. Theorem 3 Let X be a random variable on a probability space Ω,A,P, A A an event with PA > and α,, β > with α = β +. a The upper limits r = limsup satisfy α r /α = β s /β. b The lower limits r = liminf λ α logee λx A and s = limsupε β logpx ε,a ε λ α logee λx A and s = liminf ε εβ logpx ε,a. satisfy αr /α βs /β e Hα αr /α where Hα = αlogα αlog α and both bounds are sharp. Note that, because X is positive, the expectation Ee λx exists for all λ and is a number between and. Thus the values r, r, s, and s will all be negative. Also it is easy to see that theorem 3 does not directly imply theorem : If the limit s from theorem exists, then we get βs /β = α r /α αr /α βs /β i.e. the limit r also exists and satisfies αr /α = βs /β. But if we assume that r exists, then theorem 3 only gives αr /α = β s /β βs /β e Hα αr /α and we cannot directly conclude that the limit s from theorem exists. Proof. As in the proof of theorem, it is enough to consider the case A = R. Throughout the proof we will use the relations β/α = β + and α/β = α without further comment. a The estimate β s /β α r /α follows from the exponential Markovinequality: Let ε >. From Ee λx e λε P e λx e λε = e λε P X ε 4

5 we get PX ε e λε Ee λx and thus ε β logpx ε ε β λε+logee λx for all λ. For λ = β β+ rβ+ ε β+ the bound becomes Taking upper limits we get ε β logpx ε β β + r β+ + β β + r β λ α logee λx. s = limsupε logpx ε ε β β + r β+ β + β + r β r = β + β+ r β+ and the claim follows by solving this inequality for β s /β. A more careful analysis is necessary to prove β s /β α r /α. We can express r via the lower tails of X: r = limsup = limsup λ α logee λx λ α log = limsupεlog ε Pe λx tdt β β PX ε /α ue u du. The definition of s gives that for every δ > there exists an E >, such that for every η < E we have PX η exp s+δ/η β. Using this estimate and the substitution v = εu we find r limsupεlog ε exp s δv β +v ε ε dv. The right-hand side can be evaluated by the Laplace principle again and so we find r essinf s δv β +v = s δ /β+ β β/β+ +β v for every < δ < s and thus r s /β+ β β/β+ +β = s α/ββα/β α. This completes the proof of the bound α r /α β s /β. b Replacing all upper limits with lower limits in the proof of β s /β α r /α gives the corresponding bound βs /β αr /α. Finally, we prove βs /β e Hα αr /α, or equivalently r s α : Using the estimate e λx [,ε] x + e λε ε, x for all x gives E e λx PX ε + e λε. Choosing ε = ελ such that /λ α = s α ε β, we get λ α loge e λx s α ε β log PX ε+e s ε β. For the second term in the sum, the limit lim ε ε β loge s ε β = s exists and thus we can conclude r s α liminf ε β log PX ε+e s ε β ε = s α max lim inf ε β logpx ε, limε β loge s ε β ε ε = s α max s, s = s α. 5

6 This is the required result. The lower bound on s is sharp, because in the case of theorem we have equality there. The fact that the upper bound on s is sharp is shown by the following example. Example. This example illustrates that the bound βs /β e Hα αr /α is sharp. Let s <, α and β as above, and ε n n N be a strictly decreasing sequence with ε = and lim n ε n =. Then we have e s ε β n e s ε β n = e s ε β lim n e s ε β n = = n= and we can define a random variable X with values in the set {ε n n N} by for all n N. This random variable has PX ε = PX = ε n = e s ε β n e s ε β n n=nε e s ε β n e s ε β n with nε = min{n N ε n ε} and consequently ε β logpx ε = s ε β ε β nε = e s ε β nε By definition of nε we have ε nε ε < ε nε. This allows us to calculate the exponential tail rates s = s and, because s is negative, s = s liminf n ε β n/ε β n. Choosing different sequences ε n leads to different values for s, r, and r. For our example let q < and define ε n = q n for all n N. Then the above calculation shows s = qs and s = s. Theorem 3 gives r = βqs α/β /α and r [ βs α/β /α, e Hα βs α/β /α ] = [ e Hα s α/β, s α/β]. In order to show that the upper bound on s is sharp, we have to show that we can have r arbitrarily close to s α/β. In the situation of the example we can get better bounds on r by an explicit calculation. The Laplace transform of X is given by Ee λx = n N e λqn e s q βn e s q βn. = n Ne λqn s q βn e s qβ q βn. Since exp s q β q βn as n, we have / < exp s q β q βn < for sufficiently large n. Define nλ by q nλ [ q s /λ α/β, s /λ α/β. With fx = exp λx q β s x β we have Ee λx > exp λq nλ s q βnλ = fqnλ for sufficiently large λ. Because the only local extremum of f is a local maximum, we can get a lower bound for f on the interval [ q s /λ α/β, s /λ α/β by just considering the boundary points. This leads to Ee λx > min fq s /λ α/β,f s /λ α/β = exp +maxq,q β λ α s α/β for sufficiently large λ. Taking lower limits we get r = liminf λ α logee λx +maxq,q β s α/β. By choosing small values of q, we can force r to be arbitrarily close to s α/β and thus the bound from the theorem is sharp. Acknowledgements. I want to thank the anonymous referees for pointing out that my original proof for the case α = / and β = could be changed to give the more general result presented here, and also for pointing me to the references Korevaar 4 and Bingham 8. 6

7 References N. H. Bingham. Tauberian theorems and large deviations. Stochastics, 8-3:43 49, 8. N. H. Bingham, C. M. Goldie, and J. L. Teugels. Regular Variation. Cambridge University Press, 987. Andrei N. Borodin and Paavo Salminen. Handbook of Brownian Motion Facts and Formulae. Probability and its Applications. Birkhäuser, Basel, 996. Amir Dembo and Ofer Zeitouni. Large Deviations Techniques and Applications, volume 38 of Applications of Mathematics. Springer, second edition, 998. Jacob Korevaar. Tauberian Theory: A Century of Developments, volume 39 of Grundlehren der mathematischen Wissenschaften. Springer, 4. Jochen Voss. Some Large Deviation Results for Diffusion Processes. PhD thesis, University of Kaiserslautern, Germany, 4. Jochen Voss. Large deviations for one dimensional diffusions with a strong drift. Electronic Journal of Probability, 353:479 56,

Brownian intersection local times

Brownian intersection local times Weierstrass Institute for Applied Analysis and Stochastics Brownian intersection local times Wolfgang König (TU Berlin and WIAS Berlin) [K.&M., Ann. Probab. 2002], [K.&M., Trans. Amer. Math. Soc. 2006]

More information

Econ Lecture 3. Outline. 1. Metric Spaces and Normed Spaces 2. Convergence of Sequences in Metric Spaces 3. Sequences in R and R n

Econ Lecture 3. Outline. 1. Metric Spaces and Normed Spaces 2. Convergence of Sequences in Metric Spaces 3. Sequences in R and R n Econ 204 2011 Lecture 3 Outline 1. Metric Spaces and Normed Spaces 2. Convergence of Sequences in Metric Spaces 3. Sequences in R and R n 1 Metric Spaces and Metrics Generalize distance and length notions

More information

Sample path large deviations of a Gaussian process with stationary increments and regularily varying variance

Sample path large deviations of a Gaussian process with stationary increments and regularily varying variance Sample path large deviations of a Gaussian process with stationary increments and regularily varying variance Tommi Sottinen Department of Mathematics P. O. Box 4 FIN-0004 University of Helsinki Finland

More information

The Subexponential Product Convolution of Two Weibull-type Distributions

The Subexponential Product Convolution of Two Weibull-type Distributions The Subexponential Product Convolution of Two Weibull-type Distributions Yan Liu School of Mathematics and Statistics Wuhan University Wuhan, Hubei 4372, P.R. China E-mail: yanliu@whu.edu.cn Qihe Tang

More information

THE CENTER OF MASS OF THE ISE AND THE WIENER INDEX OF TREES

THE CENTER OF MASS OF THE ISE AND THE WIENER INDEX OF TREES Elect. Comm. in Probab. 9 (24), 78 87 ELECTRONIC COMMUNICATIONS in PROBABILITY THE CENTER OF MASS OF THE ISE AND THE WIENER INDEX OF TREES SVANTE JANSON Departement of Mathematics, Uppsala University,

More information

GARCH processes continuous counterparts (Part 2)

GARCH processes continuous counterparts (Part 2) GARCH processes continuous counterparts (Part 2) Alexander Lindner Centre of Mathematical Sciences Technical University of Munich D 85747 Garching Germany lindner@ma.tum.de http://www-m1.ma.tum.de/m4/pers/lindner/

More information

On Kesten s counterexample to the Cramér-Wold device for regular variation

On Kesten s counterexample to the Cramér-Wold device for regular variation On Kesten s counterexample to the Cramér-Wold device for regular variation Henrik Hult School of ORIE Cornell University Ithaca NY 4853 USA hult@orie.cornell.edu Filip Lindskog Department of Mathematics

More information

Gärtner-Ellis Theorem and applications.

Gärtner-Ellis Theorem and applications. Gärtner-Ellis Theorem and applications. Elena Kosygina July 25, 208 In this lecture we turn to the non-i.i.d. case and discuss Gärtner-Ellis theorem. As an application, we study Curie-Weiss model with

More information

Stochastic Process (ENPC) Monday, 22nd of January 2018 (2h30)

Stochastic Process (ENPC) Monday, 22nd of January 2018 (2h30) Stochastic Process (NPC) Monday, 22nd of January 208 (2h30) Vocabulary (english/français) : distribution distribution, loi ; positive strictement positif ; 0,) 0,. We write N Z,+ and N N {0}. We use the

More information

Finite-time Ruin Probability of Renewal Model with Risky Investment and Subexponential Claims

Finite-time Ruin Probability of Renewal Model with Risky Investment and Subexponential Claims Proceedings of the World Congress on Engineering 29 Vol II WCE 29, July 1-3, 29, London, U.K. Finite-time Ruin Probability of Renewal Model with Risky Investment and Subexponential Claims Tao Jiang Abstract

More information

Large Deviations Techniques and Applications

Large Deviations Techniques and Applications Amir Dembo Ofer Zeitouni Large Deviations Techniques and Applications Second Edition With 29 Figures Springer Contents Preface to the Second Edition Preface to the First Edition vii ix 1 Introduction 1

More information

TAUBERIAN THEOREM FOR HARMONIC MEAN OF STIELTJES TRANSFORMS AND ITS APPLICATIONS TO LINEAR DIFFUSIONS

TAUBERIAN THEOREM FOR HARMONIC MEAN OF STIELTJES TRANSFORMS AND ITS APPLICATIONS TO LINEAR DIFFUSIONS Kasahara, Y. and Kotani, S. Osaka J. Math. 53 (26), 22 249 TAUBERIAN THEOREM FOR HARMONIC MEAN OF STIELTJES TRANSFORMS AND ITS APPLICATIONS TO LINEAR DIFFUSIONS YUJI KASAHARA and SHIN ICHI KOTANI (Received

More information

1 Sequences of events and their limits

1 Sequences of events and their limits O.H. Probability II (MATH 2647 M15 1 Sequences of events and their limits 1.1 Monotone sequences of events Sequences of events arise naturally when a probabilistic experiment is repeated many times. For

More information

A log-scale limit theorem for one-dimensional random walks in random environments

A log-scale limit theorem for one-dimensional random walks in random environments A log-scale limit theorem for one-dimensional random walks in random environments Alexander Roitershtein August 3, 2004; Revised April 1, 2005 Abstract We consider a transient one-dimensional random walk

More information

Analysis of the ruin probability using Laplace transforms and Karamata Tauberian theorems

Analysis of the ruin probability using Laplace transforms and Karamata Tauberian theorems Analysis of the ruin probability using Laplace transforms and Karamata Tauberian theorems Corina Constantinescu and Enrique Thomann Abstract The classical result of Cramer-Lundberg states that if the rate

More information

In 1826, Abel proved the following result for real power series. Let f(x) =

In 1826, Abel proved the following result for real power series. Let f(x) = Chapter 6 Tauberian theorems 6. Introduction In 826, Abel proved the following result for real power series. Let f(x) = n=0 a nx n be a power series with coefficients a n R that converges on the real interval

More information

A concentration theorem for the equilibrium measure of Markov chains with nonnegative coarse Ricci curvature

A concentration theorem for the equilibrium measure of Markov chains with nonnegative coarse Ricci curvature A concentration theorem for the equilibrium measure of Markov chains with nonnegative coarse Ricci curvature arxiv:103.897v1 math.pr] 13 Mar 01 Laurent Veysseire Abstract In this article, we prove a concentration

More information

Homework for MATH 4603 (Advanced Calculus I) Fall Homework 13: Due on Tuesday 15 December. Homework 12: Due on Tuesday 8 December

Homework for MATH 4603 (Advanced Calculus I) Fall Homework 13: Due on Tuesday 15 December. Homework 12: Due on Tuesday 8 December Homework for MATH 4603 (Advanced Calculus I) Fall 2015 Homework 13: Due on Tuesday 15 December 49. Let D R, f : D R and S D. Let a S (acc S). Assume that f is differentiable at a. Let g := f S. Show that

More information

REAL VARIABLES: PROBLEM SET 1. = x limsup E k

REAL VARIABLES: PROBLEM SET 1. = x limsup E k REAL VARIABLES: PROBLEM SET 1 BEN ELDER 1. Problem 1.1a First let s prove that limsup E k consists of those points which belong to infinitely many E k. From equation 1.1: limsup E k = E k For limsup E

More information

Brownian motion. Samy Tindel. Purdue University. Probability Theory 2 - MA 539

Brownian motion. Samy Tindel. Purdue University. Probability Theory 2 - MA 539 Brownian motion Samy Tindel Purdue University Probability Theory 2 - MA 539 Mostly taken from Brownian Motion and Stochastic Calculus by I. Karatzas and S. Shreve Samy T. Brownian motion Probability Theory

More information

Estimates for probabilities of independent events and infinite series

Estimates for probabilities of independent events and infinite series Estimates for probabilities of independent events and infinite series Jürgen Grahl and Shahar evo September 9, 06 arxiv:609.0894v [math.pr] 8 Sep 06 Abstract This paper deals with finite or infinite sequences

More information

On the submartingale / supermartingale property of diffusions in natural scale

On the submartingale / supermartingale property of diffusions in natural scale On the submartingale / supermartingale property of diffusions in natural scale Alexander Gushchin Mikhail Urusov Mihail Zervos November 13, 214 Abstract Kotani 5 has characterised the martingale property

More information

Random Bernstein-Markov factors

Random Bernstein-Markov factors Random Bernstein-Markov factors Igor Pritsker and Koushik Ramachandran October 20, 208 Abstract For a polynomial P n of degree n, Bernstein s inequality states that P n n P n for all L p norms on the unit

More information

2a Large deviation principle (LDP) b Contraction principle c Change of measure... 10

2a Large deviation principle (LDP) b Contraction principle c Change of measure... 10 Tel Aviv University, 2007 Large deviations 5 2 Basic notions 2a Large deviation principle LDP......... 5 2b Contraction principle................ 9 2c Change of measure................. 10 The formalism

More information

QED. Queen s Economics Department Working Paper No. 1244

QED. Queen s Economics Department Working Paper No. 1244 QED Queen s Economics Department Working Paper No. 1244 A necessary moment condition for the fractional functional central limit theorem Søren Johansen University of Copenhagen and CREATES Morten Ørregaard

More information

L p Spaces and Convexity

L p Spaces and Convexity L p Spaces and Convexity These notes largely follow the treatments in Royden, Real Analysis, and Rudin, Real & Complex Analysis. 1. Convex functions Let I R be an interval. For I open, we say a function

More information

Lecture Notes 3 Convergence (Chapter 5)

Lecture Notes 3 Convergence (Chapter 5) Lecture Notes 3 Convergence (Chapter 5) 1 Convergence of Random Variables Let X 1, X 2,... be a sequence of random variables and let X be another random variable. Let F n denote the cdf of X n and let

More information

JASSON VINDAS AND RICARDO ESTRADA

JASSON VINDAS AND RICARDO ESTRADA A QUICK DISTRIBUTIONAL WAY TO THE PRIME NUMBER THEOREM JASSON VINDAS AND RICARDO ESTRADA Abstract. We use distribution theory (generalized functions) to show the prime number theorem. No tauberian results

More information

Long Run Average Cost Problem. E x β j c(x j ; u j ). j=0. 1 x c(x j ; u j ). n n E

Long Run Average Cost Problem. E x β j c(x j ; u j ). j=0. 1 x c(x j ; u j ). n n E Chapter 6. Long Run Average Cost Problem Let {X n } be an MCP with state space S and control set U(x) forx S. To fix notation, let J β (x; {u n }) be the cost associated with the infinite horizon β-discount

More information

Random convolution of O-exponential distributions

Random convolution of O-exponential distributions Nonlinear Analysis: Modelling and Control, Vol. 20, No. 3, 447 454 ISSN 1392-5113 http://dx.doi.org/10.15388/na.2015.3.9 Random convolution of O-exponential distributions Svetlana Danilenko a, Jonas Šiaulys

More information

ON ADDITIVE TIME-CHANGES OF FELLER PROCESSES. 1. Introduction

ON ADDITIVE TIME-CHANGES OF FELLER PROCESSES. 1. Introduction ON ADDITIVE TIME-CHANGES OF FELLER PROCESSES ALEKSANDAR MIJATOVIĆ AND MARTIJN PISTORIUS Abstract. In this note we generalise the Phillips theorem [1] on the subordination of Feller processes by Lévy subordinators

More information

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3 Brownian Motion Contents 1 Definition 2 1.1 Brownian Motion................................. 2 1.2 Wiener measure.................................. 3 2 Construction 4 2.1 Gaussian process.................................

More information

Research Article Exponential Inequalities for Positively Associated Random Variables and Applications

Research Article Exponential Inequalities for Positively Associated Random Variables and Applications Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 008, Article ID 38536, 11 pages doi:10.1155/008/38536 Research Article Exponential Inequalities for Positively Associated

More information

Convergence of Random Variables

Convergence of Random Variables 1 / 15 Convergence of Random Variables Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay March 19, 2014 2 / 15 Motivation Theorem (Weak

More information

Exponential martingales: uniform integrability results and applications to point processes

Exponential martingales: uniform integrability results and applications to point processes Exponential martingales: uniform integrability results and applications to point processes Alexander Sokol Department of Mathematical Sciences, University of Copenhagen 26 September, 2012 1 / 39 Agenda

More information

ON THE FIRST TIME THAT AN ITO PROCESS HITS A BARRIER

ON THE FIRST TIME THAT AN ITO PROCESS HITS A BARRIER ON THE FIRST TIME THAT AN ITO PROCESS HITS A BARRIER GERARDO HERNANDEZ-DEL-VALLE arxiv:1209.2411v1 [math.pr] 10 Sep 2012 Abstract. This work deals with first hitting time densities of Ito processes whose

More information

Introduction and Preliminaries

Introduction and Preliminaries Chapter 1 Introduction and Preliminaries This chapter serves two purposes. The first purpose is to prepare the readers for the more systematic development in later chapters of methods of real analysis

More information

arxiv: v2 [math.pr] 7 Mar 2014

arxiv: v2 [math.pr] 7 Mar 2014 A new proof of an Engelbert-Schmidt type zero-one law for time-homogeneous diffusions arxiv:1312.2149v2 [math.pr] 7 Mar 214 Zhenyu Cui Draft: March 1, 214 Abstract In this paper we give a new proof to

More information

Weak convergence and large deviation theory

Weak convergence and large deviation theory First Prev Next Go To Go Back Full Screen Close Quit 1 Weak convergence and large deviation theory Large deviation principle Convergence in distribution The Bryc-Varadhan theorem Tightness and Prohorov

More information

Laplace transforms of L 2 ball, Comparison Theorems and Integrated Brownian motions. Jan Hannig

Laplace transforms of L 2 ball, Comparison Theorems and Integrated Brownian motions. Jan Hannig Laplace transforms of L 2 ball, Comparison Theorems and Integrated Brownian motions. Jan Hannig Department of Statistics, Colorado State University Email: hannig@stat.colostate.edu Joint work with F. Gao,

More information

The Central Limit Theorem: More of the Story

The Central Limit Theorem: More of the Story The Central Limit Theorem: More of the Story Steven Janke November 2015 Steven Janke (Seminar) The Central Limit Theorem:More of the Story November 2015 1 / 33 Central Limit Theorem Theorem (Central Limit

More information

Beyond the color of the noise: what is memory in random phenomena?

Beyond the color of the noise: what is memory in random phenomena? Beyond the color of the noise: what is memory in random phenomena? Gennady Samorodnitsky Cornell University September 19, 2014 Randomness means lack of pattern or predictability in events according to

More information

δ xj β n = 1 n Theorem 1.1. The sequence {P n } satisfies a large deviation principle on M(X) with the rate function I(β) given by

δ xj β n = 1 n Theorem 1.1. The sequence {P n } satisfies a large deviation principle on M(X) with the rate function I(β) given by . Sanov s Theorem Here we consider a sequence of i.i.d. random variables with values in some complete separable metric space X with a common distribution α. Then the sample distribution β n = n maps X

More information

Fine scales of decay rates of operator semigroups

Fine scales of decay rates of operator semigroups Operator Semigroups meet everything else Herrnhut, 5 June 2013 A damped wave equation 2 u u + 2a(x) u t2 t = 0 (t > 0, x Ω) u(x, t) = 0 (t > 0, x Ω) u(, 0) = u 0 H0 1 (Ω), u t (, 0) = u 1 L 2 (Ω). Here,

More information

Large deviations and averaging for systems of slow fast stochastic reaction diffusion equations.

Large deviations and averaging for systems of slow fast stochastic reaction diffusion equations. Large deviations and averaging for systems of slow fast stochastic reaction diffusion equations. Wenqing Hu. 1 (Joint work with Michael Salins 2, Konstantinos Spiliopoulos 3.) 1. Department of Mathematics

More information

JUHA KINNUNEN. Harmonic Analysis

JUHA KINNUNEN. Harmonic Analysis JUHA KINNUNEN Harmonic Analysis Department of Mathematics and Systems Analysis, Aalto University 27 Contents Calderón-Zygmund decomposition. Dyadic subcubes of a cube.........................2 Dyadic cubes

More information

Large Deviations Principles for McKean-Vlasov SDEs, Skeletons, Supports and the law of iterated logarithm

Large Deviations Principles for McKean-Vlasov SDEs, Skeletons, Supports and the law of iterated logarithm Large Deviations Principles for McKean-Vlasov SDEs, Skeletons, Supports and the law of iterated logarithm Gonçalo dos Reis University of Edinburgh (UK) & CMA/FCT/UNL (PT) jointly with: W. Salkeld, U. of

More information

Stability of Stochastic Differential Equations

Stability of Stochastic Differential Equations Lyapunov stability theory for ODEs s Stability of Stochastic Differential Equations Part 1: Introduction Department of Mathematics and Statistics University of Strathclyde Glasgow, G1 1XH December 2010

More information

Annealed Brownian motion in a heavy tailed Poissonian potential

Annealed Brownian motion in a heavy tailed Poissonian potential Annealed Brownian motion in a heavy tailed Poissonian potential Ryoki Fukushima Research Institute of Mathematical Sciences Stochastic Analysis and Applications, Okayama University, September 26, 2012

More information

ON THE FRACTIONAL CAUCHY PROBLEM ASSOCIATED WITH A FELLER SEMIGROUP

ON THE FRACTIONAL CAUCHY PROBLEM ASSOCIATED WITH A FELLER SEMIGROUP Dedicated to Professor Gheorghe Bucur on the occasion of his 7th birthday ON THE FRACTIONAL CAUCHY PROBLEM ASSOCIATED WITH A FELLER SEMIGROUP EMIL POPESCU Starting from the usual Cauchy problem, we give

More information

Stable Lévy motion with values in the Skorokhod space: construction and approximation

Stable Lévy motion with values in the Skorokhod space: construction and approximation Stable Lévy motion with values in the Skorokhod space: construction and approximation arxiv:1809.02103v1 [math.pr] 6 Sep 2018 Raluca M. Balan Becem Saidani September 5, 2018 Abstract In this article, we

More information

Laplace transform. Lecture notes. Ante Mimica. Department of Mathematics. Univeristy of Zagreb. Croatia

Laplace transform. Lecture notes. Ante Mimica. Department of Mathematics. Univeristy of Zagreb. Croatia Laplace transform Lecture notes Ante Mimica Department of Mathematics Univeristy of Zagreb Croatia These lecture notes follow the course given in period April 27 - May 1 215. at Technische Universität

More information

Large Deviations from the Hydrodynamic Limit for a System with Nearest Neighbor Interactions

Large Deviations from the Hydrodynamic Limit for a System with Nearest Neighbor Interactions Large Deviations from the Hydrodynamic Limit for a System with Nearest Neighbor Interactions Amarjit Budhiraja Department of Statistics & Operations Research University of North Carolina at Chapel Hill

More information

Synchronization, Chaos, and the Dynamics of Coupled Oscillators. Supplemental 1. Winter Zachary Adams Undergraduate in Mathematics and Biology

Synchronization, Chaos, and the Dynamics of Coupled Oscillators. Supplemental 1. Winter Zachary Adams Undergraduate in Mathematics and Biology Synchronization, Chaos, and the Dynamics of Coupled Oscillators Supplemental 1 Winter 2017 Zachary Adams Undergraduate in Mathematics and Biology Outline: The shift map is discussed, and a rigorous proof

More information

Iowa State University. Instructor: Alex Roitershtein Summer Homework #1. Solutions

Iowa State University. Instructor: Alex Roitershtein Summer Homework #1. Solutions Math 501 Iowa State University Introduction to Real Analysis Department of Mathematics Instructor: Alex Roitershtein Summer 015 EXERCISES FROM CHAPTER 1 Homework #1 Solutions The following version of the

More information

A NOTE ON ZERO SETS OF FRACTIONAL SOBOLEV FUNCTIONS WITH NEGATIVE POWER OF INTEGRABILITY. 1. Introduction

A NOTE ON ZERO SETS OF FRACTIONAL SOBOLEV FUNCTIONS WITH NEGATIVE POWER OF INTEGRABILITY. 1. Introduction A NOTE ON ZERO SETS OF FRACTIONAL SOBOLEV FUNCTIONS WITH NEGATIVE POWER OF INTEGRABILITY ARMIN SCHIKORRA Abstract. We extend a Poincaré-type inequality for functions with large zero-sets by Jiang and Lin

More information

On the martingales obtained by an extension due to Saisho, Tanemura and Yor of Pitman s theorem

On the martingales obtained by an extension due to Saisho, Tanemura and Yor of Pitman s theorem On the martingales obtained by an extension due to Saisho, Tanemura and Yor of Pitman s theorem Koichiro TAKAOKA Dept of Applied Physics, Tokyo Institute of Technology Abstract M Yor constructed a family

More information

Ernesto Mordecki 1. Lecture III. PASI - Guanajuato - June 2010

Ernesto Mordecki 1. Lecture III. PASI - Guanajuato - June 2010 Optimal stopping for Hunt and Lévy processes Ernesto Mordecki 1 Lecture III. PASI - Guanajuato - June 2010 1Joint work with Paavo Salminen (Åbo, Finland) 1 Plan of the talk 1. Motivation: from Finance

More information

Social Welfare Functions for Sustainable Development

Social Welfare Functions for Sustainable Development Social Welfare Functions for Sustainable Development Thai Ha-Huy, Cuong Le Van September 9, 2015 Abstract Keywords: criterion. anonymity; sustainable development, welfare function, Rawls JEL Classification:

More information

ON THE ZERO-ONE LAW AND THE LAW OF LARGE NUMBERS FOR RANDOM WALK IN MIXING RAN- DOM ENVIRONMENT

ON THE ZERO-ONE LAW AND THE LAW OF LARGE NUMBERS FOR RANDOM WALK IN MIXING RAN- DOM ENVIRONMENT Elect. Comm. in Probab. 10 (2005), 36 44 ELECTRONIC COMMUNICATIONS in PROBABILITY ON THE ZERO-ONE LAW AND THE LAW OF LARGE NUMBERS FOR RANDOM WALK IN MIXING RAN- DOM ENVIRONMENT FIRAS RASSOUL AGHA Department

More information

Probability and Measure

Probability and Measure Part II Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2018 84 Paper 4, Section II 26J Let (X, A) be a measurable space. Let T : X X be a measurable map, and µ a probability

More information

arxiv: v1 [math.pr] 20 May 2018

arxiv: v1 [math.pr] 20 May 2018 arxiv:180507700v1 mathr 20 May 2018 A DOOB-TYE MAXIMAL INEQUALITY AND ITS ALICATIONS TO VARIOUS STOCHASTIC ROCESSES Abstract We show how an improvement on Doob s inequality leads to new inequalities for

More information

MAT 135B Midterm 1 Solutions

MAT 135B Midterm 1 Solutions MAT 35B Midterm Solutions Last Name (PRINT): First Name (PRINT): Student ID #: Section: Instructions:. Do not open your test until you are told to begin. 2. Use a pen to print your name in the spaces above.

More information

Optimal stopping, Appell polynomials and Wiener-Hopf factorization

Optimal stopping, Appell polynomials and Wiener-Hopf factorization arxiv:1002.3746v1 [math.pr] 19 Feb 2010 Optimal stopping, Appell polynomials and Wiener-Hopf factorization Paavo Salminen Åbo Aademi, Mathematical Department, Fänrisgatan 3 B, FIN-20500 Åbo, Finland, email:

More information

Asymptotic behaviour near extinction of continuous state branching processes

Asymptotic behaviour near extinction of continuous state branching processes Asymptotic behaviour near extinction of continuous state branching processes G. Berzunza and J.C. Pardo August 2, 203 Abstract In this note, we study the asymptotic behaviour near extinction of sub- critical

More information

Brownian Motion. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan Brownian Motion

Brownian Motion. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan Brownian Motion Brownian Motion An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2010 Background We have already seen that the limiting behavior of a discrete random walk yields a derivation of

More information

Brownian Bridge and Self-Avoiding Random Walk.

Brownian Bridge and Self-Avoiding Random Walk. Brownian Bridge and Self-Avoiding Random Walk. arxiv:math/02050v [math.pr] 9 May 2002 Yevgeniy Kovchegov Email: yevgeniy@math.stanford.edu Fax: -650-725-4066 November 2, 208 Abstract We derive the Brownian

More information

Introducing the Normal Distribution

Introducing the Normal Distribution Department of Mathematics Ma 3/13 KC Border Introduction to Probability and Statistics Winter 219 Lecture 1: Introducing the Normal Distribution Relevant textbook passages: Pitman [5]: Sections 1.2, 2.2,

More information

Hypoelliptic multiscale Langevin diffusions and Slow fast stochastic reaction diffusion equations.

Hypoelliptic multiscale Langevin diffusions and Slow fast stochastic reaction diffusion equations. Hypoelliptic multiscale Langevin diffusions and Slow fast stochastic reaction diffusion equations. Wenqing Hu. 1 (Joint works with Michael Salins 2 and Konstantinos Spiliopoulos 3.) 1. Department of Mathematics

More information

Introducing the Normal Distribution

Introducing the Normal Distribution Department of Mathematics Ma 3/103 KC Border Introduction to Probability and Statistics Winter 2017 Lecture 10: Introducing the Normal Distribution Relevant textbook passages: Pitman [5]: Sections 1.2,

More information

1 Brownian Local Time

1 Brownian Local Time 1 Brownian Local Time We first begin by defining the space and variables for Brownian local time. Let W t be a standard 1-D Wiener process. We know that for the set, {t : W t = } P (µ{t : W t = } = ) =

More information

17. Convergence of Random Variables

17. Convergence of Random Variables 7. Convergence of Random Variables In elementary mathematics courses (such as Calculus) one speaks of the convergence of functions: f n : R R, then lim f n = f if lim f n (x) = f(x) for all x in R. This

More information

On Laplace Finite Marchi Fasulo Transform Of Generalized Functions. A.M.Mahajan

On Laplace Finite Marchi Fasulo Transform Of Generalized Functions. A.M.Mahajan On Laplace Finite Marchi Fasulo Transform Of Generalized Functions A.M.Mahajan Department of Mathematics, Walchand College of Arts and Science, Solapur-43 006 email:-ammahajan9@gmail.com Abstract : In

More information

Erik J. Baurdoux Some excursion calculations for reflected Lévy processes

Erik J. Baurdoux Some excursion calculations for reflected Lévy processes Erik J. Baurdoux Some excursion calculations for reflected Lévy processes Article (Accepted version) (Refereed) Original citation: Baurdoux, Erik J. (29) Some excursion calculations for reflected Lévy

More information

Lecture 21 Representations of Martingales

Lecture 21 Representations of Martingales Lecture 21: Representations of Martingales 1 of 11 Course: Theory of Probability II Term: Spring 215 Instructor: Gordan Zitkovic Lecture 21 Representations of Martingales Right-continuous inverses Let

More information

Some functional (Hölderian) limit theorems and their applications (II)

Some functional (Hölderian) limit theorems and their applications (II) Some functional (Hölderian) limit theorems and their applications (II) Alfredas Račkauskas Vilnius University Outils Statistiques et Probabilistes pour la Finance Université de Rouen June 1 5, Rouen (Rouen

More information

arxiv:math/ v1 [math.fa] 31 Mar 1994

arxiv:math/ v1 [math.fa] 31 Mar 1994 arxiv:math/9403211v1 [math.fa] 31 Mar 1994 New proofs of Rosenthal s l 1 theorem and the Josefson Nissenzweig theorem Ehrhard Behrends Abstract. We give elementary proofs of the theorems mentioned in the

More information

Brøndsted-Rockafellar property of subdifferentials of prox-bounded functions. Marc Lassonde Université des Antilles et de la Guyane

Brøndsted-Rockafellar property of subdifferentials of prox-bounded functions. Marc Lassonde Université des Antilles et de la Guyane Conference ADGO 2013 October 16, 2013 Brøndsted-Rockafellar property of subdifferentials of prox-bounded functions Marc Lassonde Université des Antilles et de la Guyane Playa Blanca, Tongoy, Chile SUBDIFFERENTIAL

More information

The Convergence Rate for the Normal Approximation of Extreme Sums

The Convergence Rate for the Normal Approximation of Extreme Sums The Convergence Rate for the Normal Approximation of Extreme Sums Yongcheng Qi University of Minnesota Duluth WCNA 2008, Orlando, July 2-9, 2008 This talk is based on a joint work with Professor Shihong

More information

APPROXIMATION OF ENTIRE FUNCTIONS OF SLOW GROWTH ON COMPACT SETS. G. S. Srivastava and Susheel Kumar

APPROXIMATION OF ENTIRE FUNCTIONS OF SLOW GROWTH ON COMPACT SETS. G. S. Srivastava and Susheel Kumar ARCHIVUM MATHEMATICUM BRNO) Tomus 45 2009), 137 146 APPROXIMATION OF ENTIRE FUNCTIONS OF SLOW GROWTH ON COMPACT SETS G. S. Srivastava and Susheel Kumar Abstract. In the present paper, we study the polynomial

More information

On the relevance of long-tailed durations for the statistical multiplexing of large aggregations.

On the relevance of long-tailed durations for the statistical multiplexing of large aggregations. On the relevance of long-tailed durations for the statistical multiplexing of large aggregations. N. G. Duffield AT&T Laboratories Room 2C-323, 600 Mountain Avenue, Murray Hill, NJ 07974, USA duffield@research.att.com

More information

arxiv: v1 [math.pr] 24 Sep 2018

arxiv: v1 [math.pr] 24 Sep 2018 A short note on Anticipative portfolio optimization B. D Auria a,b,1,, J.-A. Salmerón a,1 a Dpto. Estadística, Universidad Carlos III de Madrid. Avda. de la Universidad 3, 8911, Leganés (Madrid Spain b

More information

Eventual Positivity of Operator Semigroups

Eventual Positivity of Operator Semigroups Eventual Positivity of Operator Semigroups Jochen Glück Ulm University Positivity IX, 17 May 21 May 2017 Joint work with Daniel Daners (University of Sydney) and James B. Kennedy (University of Lisbon)

More information

Sojourn times in the M/G/1 FB queue with. light-tailed service times

Sojourn times in the M/G/1 FB queue with. light-tailed service times Sojourn times in the M/G/ FB queue with arxiv:math/032444v3 [math.pr] 9 Jun 2004 light-tailed service times M. Mandjes M. Nuyens November 2, 208 Keywords: decay rate, sojourn time, Foreground-Background

More information

6.1 Moment Generating and Characteristic Functions

6.1 Moment Generating and Characteristic Functions Chapter 6 Limit Theorems The power statistics can mostly be seen when there is a large collection of data points and we are interested in understanding the macro state of the system, e.g., the average,

More information

Weak quenched limiting distributions of a one-dimensional random walk in a random environment

Weak quenched limiting distributions of a one-dimensional random walk in a random environment Weak quenched limiting distributions of a one-dimensional random walk in a random environment Jonathon Peterson Cornell University Department of Mathematics Joint work with Gennady Samorodnitsky September

More information

New asymptotic expansion for the Γ (z) function.

New asymptotic expansion for the Γ (z) function. New asymptotic expansion for the Γ z function. Gergő Nemes Institute of Mathematics, Eötvös Loránd University 7 Budapest, Hungary September 4, 007 Published in Stan s Library, Volume II, 3 Dec 007. Link:

More information

Large deviation theory and applications

Large deviation theory and applications Large deviation theory and applications Peter Mörters November 0, 2008 Abstract Large deviation theory deals with the decay of the probability of increasingly unlikely events. It is one of the key techniques

More information

On Distributions Associated with the Generalized Lévy s Stochastic Area Formula

On Distributions Associated with the Generalized Lévy s Stochastic Area Formula On Distributions Associated with the Generalized Lévy s Stochastic Area Formula Raouf Ghomrasni Abstract A closed-form ression is obtained for the conditional probability distribution of t R s ds given

More information

Fundamental Solutions of Stokes and Oseen Problem in Two Spatial Dimensions

Fundamental Solutions of Stokes and Oseen Problem in Two Spatial Dimensions J. math. fluid mech. c 6 Birkhäuser Verlag, Basel DOI.7/s-5-9-z Journal of Mathematical Fluid Mechanics Fundamental Solutions of Stokes and Oseen Problem in Two Spatial Dimensions Ronald B. Guenther and

More information

Some Properties of NSFDEs

Some Properties of NSFDEs Chenggui Yuan (Swansea University) Some Properties of NSFDEs 1 / 41 Some Properties of NSFDEs Chenggui Yuan Swansea University Chenggui Yuan (Swansea University) Some Properties of NSFDEs 2 / 41 Outline

More information

A slow transient diusion in a drifted stable potential

A slow transient diusion in a drifted stable potential A slow transient diusion in a drifted stable potential Arvind Singh Université Paris VI Abstract We consider a diusion process X in a random potential V of the form V x = S x δx, where δ is a positive

More information

Multiple Random Variables

Multiple Random Variables Multiple Random Variables Joint Probability Density Let X and Y be two random variables. Their joint distribution function is F ( XY x, y) P X x Y y. F XY ( ) 1, < x

More information

Memoirs on Differential Equations and Mathematical Physics

Memoirs on Differential Equations and Mathematical Physics Memoirs on Differential Equations and Mathematical Physics Volume 51, 010, 93 108 Said Kouachi and Belgacem Rebiai INVARIANT REGIONS AND THE GLOBAL EXISTENCE FOR REACTION-DIFFUSION SYSTEMS WITH A TRIDIAGONAL

More information

HOPF S DECOMPOSITION AND RECURRENT SEMIGROUPS. Josef Teichmann

HOPF S DECOMPOSITION AND RECURRENT SEMIGROUPS. Josef Teichmann HOPF S DECOMPOSITION AND RECURRENT SEMIGROUPS Josef Teichmann Abstract. Some results of ergodic theory are generalized in the setting of Banach lattices, namely Hopf s maximal ergodic inequality and the

More information

(A n + B n + 1) A n + B n

(A n + B n + 1) A n + B n 344 Problem Hints and Solutions Solution for Problem 2.10. To calculate E(M n+1 F n ), first note that M n+1 is equal to (A n +1)/(A n +B n +1) with probability M n = A n /(A n +B n ) and M n+1 equals

More information

ON LARGE DEVIATIONS OF MARKOV PROCESSES WITH DISCONTINUOUS STATISTICS 1

ON LARGE DEVIATIONS OF MARKOV PROCESSES WITH DISCONTINUOUS STATISTICS 1 The Annals of Applied Probability 1998, Vol. 8, No. 1, 45 66 ON LARGE DEVIATIONS OF MARKOV PROCESSES WITH DISCONTINUOUS STATISTICS 1 By Murat Alanyali 2 and Bruce Hajek Bell Laboratories and University

More information

Regular Variation and Extreme Events for Stochastic Processes

Regular Variation and Extreme Events for Stochastic Processes 1 Regular Variation and Extreme Events for Stochastic Processes FILIP LINDSKOG Royal Institute of Technology, Stockholm 2005 based on joint work with Henrik Hult www.math.kth.se/ lindskog 2 Extremes for

More information

Stochastic Stokes drift of a flexible dumbbell

Stochastic Stokes drift of a flexible dumbbell Stochastic Stokes drift of a flexible dumbbell Kalvis M. Jansons arxiv:math/0607797v4 [math.pr] 22 Mar 2007 Department of Mathematics, University College London, Gower Street, London WC1E 6BT, UK January

More information

Coupling Binomial with normal

Coupling Binomial with normal Appendix A Coupling Binomial with normal A.1 Cutpoints At the heart of the construction in Chapter 7 lies the quantile coupling of a random variable distributed Bin(m, 1 / 2 ) with a random variable Y

More information