MULTINOMIAL PROBABILITY DISTRIBUTION

Size: px
Start display at page:

Download "MULTINOMIAL PROBABILITY DISTRIBUTION"

Transcription

1 MTH/STA 56 MULTINOMIAL PROBABILITY DISTRIBUTION The multinomial probability distribution is an extension of the binomial probability distribution when the identical trial in the experiment has more than two possible outcomes As a result, the multinomial experiment can be easily extended from the binomial experiment as follows The multinomial probability distribution is an extension of the binomial probability distribution when the identical trial in the experiment has more than two possible outcomes As a result, the multinomial experiment can be easily extended from the binomial experiment as follows De nition A multinomial experiment is one that possesses the following properties: The experiment consists of n repeated identical trials Each trial results in an outcomes that may be classi ed as one of k classes or cells 3 The probability that the outcome of a single trial will fall into a particular cell, say, cell j, is denoted by p j (j = ; ; ; k) and remains constant from trial to trial Note that p + p + + p k = 4 The repeated trials are independent 5 The random variable of interest are Y, Y,, Y k, where Y j (j = ; ; ; k) is the number of trials for which the outcome falls into cell j Note that Y + Y + + Y k = n Example The following are typical multinomial experiments: Toss a balanced die ten times and observe the number of dot j for j = ; ; ; 6 According to the theory of genetics, a certain cross of guinea pigs will result in red, black, and white o springs in the ratio 8 : 4 : 4 Among 6 o springs the random variables of interest are the number of reds, blacks, and whites 3 Suppose that the probabilities are 0:4, 0:, 0:3, and 0:, respectively, that a delegate to a certain convention arrived by air, bus, automobile, or train Among 0 delegates the random variables of interest are the number of delegates arrived by air, bus, automobile, or train, respectively Theorem (multinomial probability distribution) If a given trial can result in the k outcomes E, E,, E k with probabilities p, p,, p k, then the joint probability distribution of the random variables Y, Y,, Y k, representing the number of occurrences for E, E,, E k in n independent trials, is given by p (y ; y ; ; y k ) = n! y!y! y k! py p y p y k k where y + y + + y k = n and p + p + + p k =

2 Proof Since the trials are independent, any special order yielding y outcomes for E, y outcomes for E,, y k outcomes for E k will occur with probability p y p y p y k k The total number of orders yielding similar outcomes for the n trials is equal to the number of partitions of n items into k groups with y in the rst group, y in the second group,, y k in the kth group this can be done in n! y!y! y k! ways Since all partitions are mutually exclusive and occur with equal probability, we obtain the multinomial [probability distribution by multiplying the probability for a speci ed order by the total number of partitions Example Suppose that crossing two particular hybrid petunias leads to plants with one of four di erent types of owers, red-serrated edge, red-smooth edge, white-serrated edge, and white-smooth edge Also, assume that the separate plants are independent and p = 0:, p = 0:3, p 3 = 0:, and p 4 = 0:4 If 0 plants were produced from the cross, it follows from the multinomial probability distribution that 0! P fy = ; Y = 4; Y 3 = 3; Y 4 = g =!4!3!! (0:) (0:3) 4 (0:) 3 (0:4) = 0:003659: Example 3 Suppose that a pair of balanced dice is tossed 6 times, what is the probability of observing a total of 7 or twice, a matching pair once, and any other combinations three times? Solution Let us rst list the following possible outcomes for each toss: E : a total of 7 or occurs E : a matching pair occurs E 3 : neither a matching pair nor a total of 7 or occurs The corresponding probabilities for a given trial are p = 8 36 = 9 p = 6 36 = 6 p 3 = 36 = 8 : These values remain constant for all 6 trials Using the multinomial probability distribution with Y =, Y =, Y 3 = 3, the desired probability is given by p (; ; 3) = 6!!!3! = 0:7: Note Similar to the binomial case, the multinomial expansion is given by (a + a + + a k ) n = X X X n! n!n! n k! an a n a n k k : n +n ++n k =n

3 Since p + p + + p k =, we conclude that X X X p (y ; y ; ; y k ) = X X X n! y!y! y k! py y +y ++y k =n y +y ++y k =n p y = (p + p + + p k ) n = : p y k k Theorem If random variables Y, Y,, Y k have a multinomial probability distribution with parameters p, p,, p k, respectively, then, for j = ; ; ; k, E (Y j ) = np j and V ar (Y j ) = np j q j ; where q j = p j ; and s = ; ; ; k and t = ; ; ; k, where q t = p t Cov (Y s ; Y t ) = np s q t if s 6= t; Proof To nd the expected value and variance of Y j, let us rst obtain the marginal probability distribution for Y j Recall that Y j is the number of trials that are classi ed into cell j Combine all of the cells, excluding cell j, into a single large cell Now we have only two mutually exclusive cells ( cell j and not cell j ) with probabilities p j and p j, respectively Then every trial will fall into either cell j or not cell j Thus, Y j has a binomial probability distribution with parameters n and p j Consequently, where q j = p j E (Y j ) = np j and V ar (Y j ) = np j q j ; To nd the covariance of Y s and Y t, we need to de ne two sets of Bernoulli random variables, one for cell s and the other for cell, as follows: For cell s, we de ne, for each trial i (i = ; ; ; n), U i = if the outcome of trial i falls into cell s 0 otherwise For example, U 3 = indicates that the outcome of the third trial falls into cell s while U 5 = 0 implies that the outcome of the fth trial do not fall into cell s We must note that U i = or 0 depending upon whether the outcome of trial i falls into cell s, and Y s, being the number of times cell s is observe, can be interpreted as simply the sum of a series of zeros and ones in which a one occurs in the sum every time we observe an item from cell s, and a zero occurs every time we observe any other cells Thus, Y s = U i : Likewise, for cell t, we de ne, for each trial i (i = ; ; ; n), if the outcome of trial i falls into cell t W i = 0 otherwise 3

4 For instance, W = indicates that the outcome of the second trial falls into cell t while W 4 = 0 implies that the outcome of the fourth trial do not fall into cell t Then W i = or 0 depending upon whether the outcome of trial i falls into cell t Note that Y t (the number of times cell t is observed) can be interpreted as simply the sum of a series of zeros and ones in which a one occurs in the sum every time we observe an item from cell t, and a zero occurs every time we observe any other cells Thus, Y t = W i : The subscripts s, t, and i could be very confused Bear in your mind that subscripts s and t refer to cell s and t, respectively, while subscript i refers to trial i The following table should be very helpful in clarifying this confusion: Cell Trial s t k U W U W i U i W i n U n W n Sum Y s = U i Y t = W i By de nition, it is easy to verify that E (U i ) = () (p s ) + (0) ( p s ) = p s E (W i ) = () (p t ) + (0) ( p t ) = p t : Since the trials are independent, it follows that, for any two distinct trials i and j, U i and W j must have zero covariance, that is, Cov (U i ; W j ) = 0 for i 6= j: For each trail i, because U i and W i cannot both appear to be one in the same trial, the product U i W j must always equal to zero so that E (U i W j ) = 0 Thus, Therefore, Cov (U i ; W i ) = E (U i W i ) E (U i ) E (W i ) = 0 p s p t = p s p t : 4

5 ! Cov (Y s ; Y t ) = Cov U i ; W j = Cov (U i ; W j ) = j= j= Cov (U i ; W i ) + X X Cov (U i ; W j ) = 0 + i6=j ( p s p t ) = np s p t : Example 4 (Refer to Example 3) Since p = 9 ; p = 6 ; p 3 = 8 ; it follows from Theorem that E (Y ) = np = (6) = E (Y ) = np = (6) = 6 E (Y 3 ) = np 3 = (6) = V ar (Y ) = np q = (6) = V ar (Y ) = np q = (6) = V ar (Y 3 ) = np 3 q 3 = (6) = Cov (Y ; Y ) = np p = (6) = Cov (Y ; Y 3 ) = np p 3 = (6) = Cov (Y ; Y 3 ) = np p 3 = (6) = : 5

JOINT PROBABILITY DISTRIBUTIONS

JOINT PROBABILITY DISTRIBUTIONS MTH/STA 56 JOINT PROBABILITY DISTRIBUTIONS The study of random variables in the previous chapters was restricted to the idea that a random variable associates a single real number with each possible outcome

More information

Chapter 5 Class Notes

Chapter 5 Class Notes Chapter 5 Class Notes Sections 5.1 and 5.2 It is quite common to measure several variables (some of which may be correlated) and to examine the corresponding joint probability distribution One example

More information

Lecture 01: Introduction

Lecture 01: Introduction Lecture 01: Introduction Dipankar Bandyopadhyay, Ph.D. BMTRY 711: Analysis of Categorical Data Spring 2011 Division of Biostatistics and Epidemiology Medical University of South Carolina Lecture 01: Introduction

More information

Statistics for Managers Using Microsoft Excel/SPSS Chapter 4 Basic Probability And Discrete Probability Distributions

Statistics for Managers Using Microsoft Excel/SPSS Chapter 4 Basic Probability And Discrete Probability Distributions Statistics for Managers Using Microsoft Excel/SPSS Chapter 4 Basic Probability And Discrete Probability Distributions 1999 Prentice-Hall, Inc. Chap. 4-1 Chapter Topics Basic Probability Concepts: Sample

More information

Statistics for Managers Using Microsoft Excel (3 rd Edition)

Statistics for Managers Using Microsoft Excel (3 rd Edition) Statistics for Managers Using Microsoft Excel (3 rd Edition) Chapter 4 Basic Probability and Discrete Probability Distributions 2002 Prentice-Hall, Inc. Chap 4-1 Chapter Topics Basic probability concepts

More information

Random variables (discrete)

Random variables (discrete) Random variables (discrete) Saad Mneimneh 1 Introducing random variables A random variable is a mapping from the sample space to the real line. We usually denote the random variable by X, and a value that

More information

Random Variable. Discrete Random Variable. Continuous Random Variable. Discrete Random Variable. Discrete Probability Distribution

Random Variable. Discrete Random Variable. Continuous Random Variable. Discrete Random Variable. Discrete Probability Distribution Random Variable Theoretical Probability Distribution Random Variable Discrete Probability Distributions A variable that assumes a numerical description for the outcome of a random eperiment (by chance).

More information

Known probability distributions

Known probability distributions Known probability distributions Engineers frequently wor with data that can be modeled as one of several nown probability distributions. Being able to model the data allows us to: model real systems design

More information

Distribusi Binomial, Poisson, dan Hipergeometrik

Distribusi Binomial, Poisson, dan Hipergeometrik Distribusi Binomial, Poisson, dan Hipergeometrik CHAPTER TOPICS The Probability of a Discrete Random Variable Covariance and Its Applications in Finance Binomial Distribution Poisson Distribution Hypergeometric

More information

UNIT NUMBER PROBABILITY 6 (Statistics for the binomial distribution) A.J.Hobson

UNIT NUMBER PROBABILITY 6 (Statistics for the binomial distribution) A.J.Hobson JUST THE MATHS UNIT NUMBER 19.6 PROBABILITY 6 (Statistics for the binomial distribution) by A.J.Hobson 19.6.1 Construction of histograms 19.6.2 Mean and standard deviation of a binomial distribution 19.6.3

More information

b. ( ) ( ) ( ) ( ) ( ) 5. Independence: Two events (A & B) are independent if one of the conditions listed below is satisfied; ( ) ( ) ( )

b. ( ) ( ) ( ) ( ) ( ) 5. Independence: Two events (A & B) are independent if one of the conditions listed below is satisfied; ( ) ( ) ( ) 1. Set a. b. 2. Definitions a. Random Experiment: An experiment that can result in different outcomes, even though it is performed under the same conditions and in the same manner. b. Sample Space: This

More information

Introductory Probability

Introductory Probability Introductory Probability Joint Probability with Independence; Binomial Distributions Nicholas Nguyen nicholas.nguyen@uky.edu Department of Mathematics UK Agenda Comparing Two Variables with Joint Random

More information

(y 1, y 2 ) = 12 y3 1e y 1 y 2 /2, y 1 > 0, y 2 > 0 0, otherwise.

(y 1, y 2 ) = 12 y3 1e y 1 y 2 /2, y 1 > 0, y 2 > 0 0, otherwise. 54 We are given the marginal pdfs of Y and Y You should note that Y gamma(4, Y exponential( E(Y = 4, V (Y = 4, E(Y =, and V (Y = 4 (a With U = Y Y, we have E(U = E(Y Y = E(Y E(Y = 4 = (b Because Y and

More information

STAT 302 Introduction to Probability Learning Outcomes. Textbook: A First Course in Probability by Sheldon Ross, 8 th ed.

STAT 302 Introduction to Probability Learning Outcomes. Textbook: A First Course in Probability by Sheldon Ross, 8 th ed. STAT 302 Introduction to Probability Learning Outcomes Textbook: A First Course in Probability by Sheldon Ross, 8 th ed. Chapter 1: Combinatorial Analysis Demonstrate the ability to solve combinatorial

More information

Probability Theory. Introduction to Probability Theory. Principles of Counting Examples. Principles of Counting. Probability spaces.

Probability Theory. Introduction to Probability Theory. Principles of Counting Examples. Principles of Counting. Probability spaces. Probability Theory To start out the course, we need to know something about statistics and probability Introduction to Probability Theory L645 Advanced NLP Autumn 2009 This is only an introduction; for

More information

Bivariate distributions

Bivariate distributions Bivariate distributions 3 th October 017 lecture based on Hogg Tanis Zimmerman: Probability and Statistical Inference (9th ed.) Bivariate Distributions of the Discrete Type The Correlation Coefficient

More information

Statistics for Economists Lectures 6 & 7. Asrat Temesgen Stockholm University

Statistics for Economists Lectures 6 & 7. Asrat Temesgen Stockholm University Statistics for Economists Lectures 6 & 7 Asrat Temesgen Stockholm University 1 Chapter 4- Bivariate Distributions 41 Distributions of two random variables Definition 41-1: Let X and Y be two random variables

More information

M378K In-Class Assignment #1

M378K In-Class Assignment #1 The following problems are a review of M6K. M7K In-Class Assignment # Problem.. Complete the definition of mutual exclusivity of events below: Events A, B Ω are said to be mutually exclusive if A B =.

More information

Discrete Random Variables

Discrete Random Variables CPSC 53 Systems Modeling and Simulation Discrete Random Variables Dr. Anirban Mahanti Department of Computer Science University of Calgary mahanti@cpsc.ucalgary.ca Random Variables A random variable is

More information

A Few Special Distributions and Their Properties

A Few Special Distributions and Their Properties A Few Special Distributions and Their Properties Econ 690 Purdue University Justin L. Tobias (Purdue) Distributional Catalog 1 / 20 Special Distributions and Their Associated Properties 1 Uniform Distribution

More information

MATH 3510: PROBABILITY AND STATS June 15, 2011 MIDTERM EXAM

MATH 3510: PROBABILITY AND STATS June 15, 2011 MIDTERM EXAM MATH 3510: PROBABILITY AND STATS June 15, 2011 MIDTERM EXAM YOUR NAME: KEY: Answers in Blue Show all your work. Answers out of the blue and without any supporting work may receive no credit even if they

More information

MATH 556: PROBABILITY PRIMER

MATH 556: PROBABILITY PRIMER MATH 6: PROBABILITY PRIMER 1 DEFINITIONS, TERMINOLOGY, NOTATION 1.1 EVENTS AND THE SAMPLE SPACE Definition 1.1 An experiment is a one-off or repeatable process or procedure for which (a there is a well-defined

More information

Combinations. April 12, 2006

Combinations. April 12, 2006 Combinations April 12, 2006 Combinations, April 12, 2006 Binomial Coecients Denition. The number of distinct subsets with j elements that can be chosen from a set with n elements is denoted by ( n j).

More information

CS37300 Class Notes. Jennifer Neville, Sebastian Moreno, Bruno Ribeiro

CS37300 Class Notes. Jennifer Neville, Sebastian Moreno, Bruno Ribeiro CS37300 Class Notes Jennifer Neville, Sebastian Moreno, Bruno Ribeiro 2 Background on Probability and Statistics These are basic definitions, concepts, and equations that should have been covered in your

More information

Chapter 4a Probability Models

Chapter 4a Probability Models Chapter 4a Probability Models 4a.2 Probability models for a variable with a finite number of values 297 4a.1 Introduction Chapters 2 and 3 are concerned with data description (descriptive statistics) where

More information

02 Background Minimum background on probability. Random process

02 Background Minimum background on probability. Random process 0 Background 0.03 Minimum background on probability Random processes Probability Conditional probability Bayes theorem Random variables Sampling and estimation Variance, covariance and correlation Probability

More information

Basic Concepts of Probability

Basic Concepts of Probability Probability Probability theory is the branch of math that deals with random events Probability is used to describe how likely a particular outcome is in a random event the probability of obtaining heads

More information

Topic 2: Probability & Distributions. Road Map Probability & Distributions. ECO220Y5Y: Quantitative Methods in Economics. Dr.

Topic 2: Probability & Distributions. Road Map Probability & Distributions. ECO220Y5Y: Quantitative Methods in Economics. Dr. Topic 2: Probability & Distributions ECO220Y5Y: Quantitative Methods in Economics Dr. Nick Zammit University of Toronto Department of Economics Room KN3272 n.zammit utoronto.ca November 21, 2017 Dr. Nick

More information

Probabilistic Systems Analysis Spring 2018 Lecture 6. Random Variables: Probability Mass Function and Expectation

Probabilistic Systems Analysis Spring 2018 Lecture 6. Random Variables: Probability Mass Function and Expectation EE 178 Probabilistic Systems Analysis Spring 2018 Lecture 6 Random Variables: Probability Mass Function and Expectation Probability Mass Function When we introduce the basic probability model in Note 1,

More information

Topic 3 Random variables, expectation, and variance, II

Topic 3 Random variables, expectation, and variance, II CSE 103: Probability and statistics Fall 2010 Topic 3 Random variables, expectation, and variance, II 3.1 Linearity of expectation If you double each value of X, then you also double its average; that

More information

2.6 Tools for Counting sample points

2.6 Tools for Counting sample points 2.6 Tools for Counting sample points When the number of simple events in S is too large, manual enumeration of every sample point in S is tedious or even impossible. (Example) If S contains N equiprobable

More information

Review of probability

Review of probability Review of probability Computer Sciences 760 Spring 2014 http://pages.cs.wisc.edu/~dpage/cs760/ Goals for the lecture you should understand the following concepts definition of probability random variables

More information

Chapter 1 Statistical Reasoning Why statistics? Section 1.1 Basics of Probability Theory

Chapter 1 Statistical Reasoning Why statistics? Section 1.1 Basics of Probability Theory Chapter 1 Statistical Reasoning Why statistics? Uncertainty of nature (weather, earth movement, etc. ) Uncertainty in observation/sampling/measurement Variability of human operation/error imperfection

More information

What is Probability? Probability. Sample Spaces and Events. Simple Event

What is Probability? Probability. Sample Spaces and Events. Simple Event What is Probability? Probability Peter Lo Probability is the numerical measure of likelihood that the event will occur. Simple Event Joint Event Compound Event Lies between 0 & 1 Sum of events is 1 1.5

More information

Probability Theory for Machine Learning. Chris Cremer September 2015

Probability Theory for Machine Learning. Chris Cremer September 2015 Probability Theory for Machine Learning Chris Cremer September 2015 Outline Motivation Probability Definitions and Rules Probability Distributions MLE for Gaussian Parameter Estimation MLE and Least Squares

More information

Preliminary Statistics Lecture 2: Probability Theory (Outline) prelimsoas.webs.com

Preliminary Statistics Lecture 2: Probability Theory (Outline) prelimsoas.webs.com 1 School of Oriental and African Studies September 2015 Department of Economics Preliminary Statistics Lecture 2: Probability Theory (Outline) prelimsoas.webs.com Gujarati D. Basic Econometrics, Appendix

More information

5. Conditional Distributions

5. Conditional Distributions 1 of 12 7/16/2009 5:36 AM Virtual Laboratories > 3. Distributions > 1 2 3 4 5 6 7 8 5. Conditional Distributions Basic Theory As usual, we start with a random experiment with probability measure P on an

More information

IE 230 Probability & Statistics in Engineering I. Closed book and notes. 60 minutes.

IE 230 Probability & Statistics in Engineering I. Closed book and notes. 60 minutes. Closed book and notes. 60 minutes. A summary table of some univariate continuous distributions is provided. Four Pages. In this version of the Key, I try to be more complete than necessary to receive full

More information

1 Basic continuous random variable problems

1 Basic continuous random variable problems Name M362K Final Here are problems concerning material from Chapters 5 and 6. To review the other chapters, look over previous practice sheets for the two exams, previous quizzes, previous homeworks and

More information

Binomial and Poisson Probability Distributions

Binomial and Poisson Probability Distributions Binomial and Poisson Probability Distributions Esra Akdeniz March 3, 2016 Bernoulli Random Variable Any random variable whose only possible values are 0 or 1 is called a Bernoulli random variable. What

More information

DEFINITION: IF AN OUTCOME OF A RANDOM EXPERIMENT IS CONVERTED TO A SINGLE (RANDOM) NUMBER (E.G. THE TOTAL

DEFINITION: IF AN OUTCOME OF A RANDOM EXPERIMENT IS CONVERTED TO A SINGLE (RANDOM) NUMBER (E.G. THE TOTAL CHAPTER 5: RANDOM VARIABLES, BINOMIAL AND POISSON DISTRIBUTIONS DEFINITION: IF AN OUTCOME OF A RANDOM EXPERIMENT IS CONVERTED TO A SINGLE (RANDOM) NUMBER (E.G. THE TOTAL NUMBER OF DOTS WHEN ROLLING TWO

More information

Name of the Student: Problems on Discrete & Continuous R.Vs

Name of the Student: Problems on Discrete & Continuous R.Vs Engineering Mathematics 08 SUBJECT NAME : Probability & Random Processes SUBJECT CODE : MA645 MATERIAL NAME : University Questions REGULATION : R03 UPDATED ON : November 07 (Upto N/D 07 Q.P) (Scan the

More information

Discrete Probability Distributions

Discrete Probability Distributions Discrete Probability Distributions EGR 260 R. Van Til Industrial & Systems Engineering Dept. Copyright 2013. Robert P. Van Til. All rights reserved. 1 What s It All About? The behavior of many random processes

More information

Statistics for Economists. Lectures 3 & 4

Statistics for Economists. Lectures 3 & 4 Statistics for Economists Lectures 3 & 4 Asrat Temesgen Stockholm University 1 CHAPTER 2- Discrete Distributions 2.1. Random variables of the Discrete Type Definition 2.1.1: Given a random experiment with

More information

Introduction to Statistical Data Analysis Lecture 4: Sampling

Introduction to Statistical Data Analysis Lecture 4: Sampling Introduction to Statistical Data Analysis Lecture 4: Sampling James V. Lambers Department of Mathematics The University of Southern Mississippi James V. Lambers Statistical Data Analysis 1 / 30 Introduction

More information

Recap of Basic Probability Theory

Recap of Basic Probability Theory 02407 Stochastic Processes Recap of Basic Probability Theory Uffe Høgsbro Thygesen Informatics and Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby Denmark Email: uht@imm.dtu.dk

More information

Chapter 3. Discrete Random Variables and Their Probability Distributions

Chapter 3. Discrete Random Variables and Their Probability Distributions Chapter 3. Discrete Random Variables and Their Probability Distributions 2.11 Definition of random variable 3.1 Definition of a discrete random variable 3.2 Probability distribution of a discrete random

More information

Bandits, Experts, and Games

Bandits, Experts, and Games Bandits, Experts, and Games CMSC 858G Fall 2016 University of Maryland Intro to Probability* Alex Slivkins Microsoft Research NYC * Many of the slides adopted from Ron Jin and Mohammad Hajiaghayi Outline

More information

Discrete Probability Distribution

Discrete Probability Distribution Shapes of binomial distributions Discrete Probability Distribution Week 11 For this activity you will use a web applet. Go to http://socr.stat.ucla.edu/htmls/socr_eperiments.html and choose Binomial coin

More information

Dept. of Linguistics, Indiana University Fall 2015

Dept. of Linguistics, Indiana University Fall 2015 L645 Dept. of Linguistics, Indiana University Fall 2015 1 / 34 To start out the course, we need to know something about statistics and This is only an introduction; for a fuller understanding, you would

More information

CHAPTER 4 PROBABILITY AND PROBABILITY DISTRIBUTIONS

CHAPTER 4 PROBABILITY AND PROBABILITY DISTRIBUTIONS CHAPTER 4 PROBABILITY AND PROBABILITY DISTRIBUTIONS 4.2 Events and Sample Space De nition 1. An experiment is the process by which an observation (or measurement) is obtained Examples 1. 1: Tossing a pair

More information

Discrete Random Variables

Discrete Random Variables Discrete Random Variables An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan Introduction The markets can be thought of as a complex interaction of a large number of random processes,

More information

Discrete Random Variables

Discrete Random Variables Discrete Random Variables An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2014 Introduction The markets can be thought of as a complex interaction of a large number of random

More information

Chapter 5. Chapter 5 sections

Chapter 5. Chapter 5 sections 1 / 43 sections Discrete univariate distributions: 5.2 Bernoulli and Binomial distributions Just skim 5.3 Hypergeometric distributions 5.4 Poisson distributions Just skim 5.5 Negative Binomial distributions

More information

Chapter 2: Discrete Distributions. 2.1 Random Variables of the Discrete Type

Chapter 2: Discrete Distributions. 2.1 Random Variables of the Discrete Type Chapter 2: Discrete Distributions 2.1 Random Variables of the Discrete Type 2.2 Mathematical Expectation 2.3 Special Mathematical Expectations 2.4 Binomial Distribution 2.5 Negative Binomial Distribution

More information

2 Inference for Multinomial Distribution

2 Inference for Multinomial Distribution Markov Chain Monte Carlo Methods Part III: Statistical Concepts By K.B.Athreya, Mohan Delampady and T.Krishnan 1 Introduction In parts I and II of this series it was shown how Markov chain Monte Carlo

More information

Recap of Basic Probability Theory

Recap of Basic Probability Theory 02407 Stochastic Processes? Recap of Basic Probability Theory Uffe Høgsbro Thygesen Informatics and Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby Denmark Email: uht@imm.dtu.dk

More information

Attempt QUESTIONS 1 and 2, and THREE other questions. penalised if you attempt additional questions.

Attempt QUESTIONS 1 and 2, and THREE other questions. penalised if you attempt additional questions. UNIVERSITY OF EAST ANGLIA School of Mathematics Main Series UG Examination 2017 18 SETS, NUMBERS AND PROBABILITY MTHA4001Y Time allowed: 2 Hours Attempt QUESTIONS 1 and 2, and THREE other questions. penalised

More information

Stationary independent increments. 1. Random changes of the form X t+h X t fixed h > 0 are called increments of the process.

Stationary independent increments. 1. Random changes of the form X t+h X t fixed h > 0 are called increments of the process. Stationary independent increments 1. Random changes of the form X t+h X t fixed h > 0 are called increments of the process. 2. If each set of increments, corresponding to non-overlapping collection of

More information

FINAL EXAM: Monday 8-10am

FINAL EXAM: Monday 8-10am ECE 30: Probabilistic Methods in Electrical and Computer Engineering Fall 016 Instructor: Prof. A. R. Reibman FINAL EXAM: Monday 8-10am Fall 016, TTh 3-4:15pm (December 1, 016) This is a closed book exam.

More information

Dynamic Programming Lecture #4

Dynamic Programming Lecture #4 Dynamic Programming Lecture #4 Outline: Probability Review Probability space Conditional probability Total probability Bayes rule Independent events Conditional independence Mutual independence Probability

More information

1: PROBABILITY REVIEW

1: PROBABILITY REVIEW 1: PROBABILITY REVIEW Marek Rutkowski School of Mathematics and Statistics University of Sydney Semester 2, 2016 M. Rutkowski (USydney) Slides 1: Probability Review 1 / 56 Outline We will review the following

More information

Conditional Probability (cont'd)

Conditional Probability (cont'd) Conditional Probability (cont'd) April 26, 2006 Conditional Probability (cont'd) Midterm Problems In a ten-question true-false exam, nd the probability that a student get a grade of 70 percent or better

More information

Chapter 2: Probability Part 1

Chapter 2: Probability Part 1 Engineering Probability & Statistics (AGE 1150) Chapter 2: Probability Part 1 Dr. O. Phillips Agboola Sample Space (S) Experiment: is some procedure (or process) that we do and it results in an outcome.

More information

Lecture 2: Review of Probability

Lecture 2: Review of Probability Lecture 2: Review of Probability Zheng Tian Contents 1 Random Variables and Probability Distributions 2 1.1 Defining probabilities and random variables..................... 2 1.2 Probability distributions................................

More information

Advanced topics from statistics

Advanced topics from statistics Advanced topics from statistics Anders Ringgaard Kristensen Advanced Herd Management Slide 1 Outline Covariance and correlation Random vectors and multivariate distributions The multinomial distribution

More information

Relationship between probability set function and random variable - 2 -

Relationship between probability set function and random variable - 2 - 2.0 Random Variables A rat is selected at random from a cage and its sex is determined. The set of possible outcomes is female and male. Thus outcome space is S = {female, male} = {F, M}. If we let X be

More information

EDRP lecture 7. Poisson process. Pawe J. Szab owski

EDRP lecture 7. Poisson process. Pawe J. Szab owski EDRP lecture 7. Poisson process. Pawe J. Szab owski 2007 Counting process Random process fn t ; t 0g is called a counting process, if N t is equal total number of events that have happened up to moment

More information

1 Uniform Distribution. 2 Gamma Distribution. 3 Inverse Gamma Distribution. 4 Multivariate Normal Distribution. 5 Multivariate Student-t Distribution

1 Uniform Distribution. 2 Gamma Distribution. 3 Inverse Gamma Distribution. 4 Multivariate Normal Distribution. 5 Multivariate Student-t Distribution A Few Special Distributions Their Properties Econ 675 Iowa State University November 1 006 Justin L Tobias (ISU Distributional Catalog November 1 006 1 / 0 Special Distributions Their Associated Properties

More information

Section 8.1. Vector Notation

Section 8.1. Vector Notation Section 8.1 Vector Notation Definition 8.1 Random Vector A random vector is a column vector X = [ X 1 ]. X n Each Xi is a random variable. Definition 8.2 Vector Sample Value A sample value of a random

More information

Class 26: review for final exam 18.05, Spring 2014

Class 26: review for final exam 18.05, Spring 2014 Probability Class 26: review for final eam 8.05, Spring 204 Counting Sets Inclusion-eclusion principle Rule of product (multiplication rule) Permutation and combinations Basics Outcome, sample space, event

More information

Lecture 16. Lectures 1-15 Review

Lecture 16. Lectures 1-15 Review 18.440: Lecture 16 Lectures 1-15 Review Scott Sheffield MIT 1 Outline Counting tricks and basic principles of probability Discrete random variables 2 Outline Counting tricks and basic principles of probability

More information

Recitation 2: Probability

Recitation 2: Probability Recitation 2: Probability Colin White, Kenny Marino January 23, 2018 Outline Facts about sets Definitions and facts about probability Random Variables and Joint Distributions Characteristics of distributions

More information

Discrete Distributions

Discrete Distributions A simplest example of random experiment is a coin-tossing, formally called Bernoulli trial. It happens to be the case that many useful distributions are built upon this simplest form of experiment, whose

More information

success and failure independent from one trial to the next?

success and failure independent from one trial to the next? , section 8.4 The Binomial Distribution Notes by Tim Pilachowski Definition of Bernoulli trials which make up a binomial experiment: The number of trials in an experiment is fixed. There are exactly two

More information

1 INFO Sep 05

1 INFO Sep 05 Events A 1,...A n are said to be mutually independent if for all subsets S {1,..., n}, p( i S A i ) = p(a i ). (For example, flip a coin N times, then the events {A i = i th flip is heads} are mutually

More information

Computing Probability

Computing Probability Computing Probability James H. Steiger October 22, 2003 1 Goals for this Module In this module, we will 1. Develop a general rule for computing probability, and a special case rule applicable when elementary

More information

Ling 289 Contingency Table Statistics

Ling 289 Contingency Table Statistics Ling 289 Contingency Table Statistics Roger Levy and Christopher Manning This is a summary of the material that we ve covered on contingency tables. Contingency tables: introduction Odds ratios Counting,

More information

The purpose of this section is to derive the asymptotic distribution of the Pearson chi-square statistic. k (n j np j ) 2. np j.

The purpose of this section is to derive the asymptotic distribution of the Pearson chi-square statistic. k (n j np j ) 2. np j. Chapter 9 Pearson s chi-square test 9. Null hypothesis asymptotics Let X, X 2, be independent from a multinomial(, p) distribution, where p is a k-vector with nonnegative entries that sum to one. That

More information

REPEATED TRIALS. p(e 1 ) p(e 2 )... p(e k )

REPEATED TRIALS. p(e 1 ) p(e 2 )... p(e k ) REPEATED TRIALS We first note a basic fact about probability and counting. Suppose E 1 and E 2 are independent events. For example, you could think of E 1 as the event of tossing two dice and getting a

More information

Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a brief explanation.

Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a brief explanation. CS 189 Spring 2015 Introduction to Machine Learning Midterm You have 80 minutes for the exam. The exam is closed book, closed notes except your one-page crib sheet. No calculators or electronic items.

More information

Statistical Methods in Particle Physics

Statistical Methods in Particle Physics Statistical Methods in Particle Physics Lecture 3 October 29, 2012 Silvia Masciocchi, GSI Darmstadt s.masciocchi@gsi.de Winter Semester 2012 / 13 Outline Reminder: Probability density function Cumulative

More information

14 - PROBABILITY Page 1 ( Answers at the end of all questions )

14 - PROBABILITY Page 1 ( Answers at the end of all questions ) - PROBABILITY Page ( ) Three houses are available in a locality. Three persons apply for the houses. Each applies for one house without consulting others. The probability that all the three apply for the

More information

Conditional Probability

Conditional Probability Conditional Probability Idea have performed a chance experiment but don t know the outcome (ω), but have some partial information (event A) about ω. Question: given this partial information what s the

More information

Stochastic Models of Manufacturing Systems

Stochastic Models of Manufacturing Systems Stochastic Models of Manufacturing Systems Ivo Adan Organization 2/47 7 lectures (lecture of May 12 is canceled) Studyguide available (with notes, slides, assignments, references), see http://www.win.tue.nl/

More information

Chapter 1. Sets and probability. 1.3 Probability space

Chapter 1. Sets and probability. 1.3 Probability space Random processes - Chapter 1. Sets and probability 1 Random processes Chapter 1. Sets and probability 1.3 Probability space 1.3 Probability space Random processes - Chapter 1. Sets and probability 2 Probability

More information

1 Presessional Probability

1 Presessional Probability 1 Presessional Probability Probability theory is essential for the development of mathematical models in finance, because of the randomness nature of price fluctuations in the markets. This presessional

More information

Statistics 224 Solution key to EXAM 2 FALL 2007 Friday 11/2/07 Professor Michael Iltis (Lecture 2)

Statistics 224 Solution key to EXAM 2 FALL 2007 Friday 11/2/07 Professor Michael Iltis (Lecture 2) NOTE : For the purpose of review, I have added some additional parts not found on the original exam. These parts are indicated with a ** beside them Statistics 224 Solution key to EXAM 2 FALL 2007 Friday

More information

PROBABILITY AND INFORMATION THEORY. Dr. Gjergji Kasneci Introduction to Information Retrieval WS

PROBABILITY AND INFORMATION THEORY. Dr. Gjergji Kasneci Introduction to Information Retrieval WS PROBABILITY AND INFORMATION THEORY Dr. Gjergji Kasneci Introduction to Information Retrieval WS 2012-13 1 Outline Intro Basics of probability and information theory Probability space Rules of probability

More information

Notes on Mathematics Groups

Notes on Mathematics Groups EPGY Singapore Quantum Mechanics: 2007 Notes on Mathematics Groups A group, G, is defined is a set of elements G and a binary operation on G; one of the elements of G has particularly special properties

More information

ASM Study Manual for Exam P, First Edition By Dr. Krzysztof M. Ostaszewski, FSA, CFA, MAAA Errata

ASM Study Manual for Exam P, First Edition By Dr. Krzysztof M. Ostaszewski, FSA, CFA, MAAA Errata ASM Study Manual for Exam P, First Edition By Dr. Krzysztof M. Ostaszewski, FSA, CFA, MAAA (krzysio@krzysio.net) Errata Effective July 5, 3, only the latest edition of this manual will have its errata

More information

1 of 14 7/15/2009 9:25 PM Virtual Laboratories > 2. Probability Spaces > 1 2 3 4 5 6 7 5. Independence As usual, suppose that we have a random experiment with sample space S and probability measure P.

More information

Chapter 2 Class Notes

Chapter 2 Class Notes Chapter 2 Class Notes Probability can be thought of in many ways, for example as a relative frequency of a long series of trials (e.g. flips of a coin or die) Another approach is to let an expert (such

More information

Signal Processing - Lecture 7

Signal Processing - Lecture 7 1 Introduction Signal Processing - Lecture 7 Fitting a function to a set of data gathered in time sequence can be viewed as signal processing or learning, and is an important topic in information theory.

More information

3. The Multivariate Hypergeometric Distribution

3. The Multivariate Hypergeometric Distribution 1 of 6 7/16/2009 6:47 AM Virtual Laboratories > 12. Finite Sampling Models > 1 2 3 4 5 6 7 8 9 3. The Multivariate Hypergeometric Distribution Basic Theory As in the basic sampling model, we start with

More information

P 1.5 X 4.5 / X 2 and (iii) The smallest value of n for

P 1.5 X 4.5 / X 2 and (iii) The smallest value of n for DHANALAKSHMI COLLEGE OF ENEINEERING, CHENNAI DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING MA645 PROBABILITY AND RANDOM PROCESS UNIT I : RANDOM VARIABLES PART B (6 MARKS). A random variable X

More information

Homework 4 Solution, due July 23

Homework 4 Solution, due July 23 Homework 4 Solution, due July 23 Random Variables Problem 1. Let X be the random number on a die: from 1 to. (i) What is the distribution of X? (ii) Calculate EX. (iii) Calculate EX 2. (iv) Calculate Var

More information

TOPIC 12 PROBABILITY SCHEMATIC DIAGRAM

TOPIC 12 PROBABILITY SCHEMATIC DIAGRAM TOPIC 12 PROBABILITY SCHEMATIC DIAGRAM Topic Concepts Degree of Importance References NCERT Book Vol. II Probability (i) Conditional Probability *** Article 1.2 and 1.2.1 Solved Examples 1 to 6 Q. Nos

More information

Basic Concepts of Probability

Basic Concepts of Probability Probability Probability theory is the branch of math that deals with unpredictable or random events Probability is used to describe how likely a particular outcome is in a random event the probability

More information

2.3 Analysis of Categorical Data

2.3 Analysis of Categorical Data 90 CHAPTER 2. ESTIMATION AND HYPOTHESIS TESTING 2.3 Analysis of Categorical Data 2.3.1 The Multinomial Probability Distribution A mulinomial random variable is a generalization of the binomial rv. It results

More information