Taylor Polynomials restart;with(plots); with(student); with(numericalanalysis); with(student[numericalanalysis]);

Size: px
Start display at page:

Download "Taylor Polynomials restart;with(plots); with(student); with(numericalanalysis); with(student[numericalanalysis]);"

Transcription

1 Talor Polnomials Talor's Theorem is used etensivel in Numerical Analsis and is the basis for the development of several important techniques. We begin b restarting and loading the plots package for some etra plotting commands. restart;with(plots); animate, animate3d, animatecurve, arrow, changecoords, compleplot, compleplot3d, conformal, conformal3d, contourplot, contourplot3d, coordplot, coordplot3d, densitplot, displa, dualaisplot, fieldplot, fieldplot3d, gradplot, gradplot3d, implicitplot, implicitplot3d, inequal, interactive, interactiveparams, intersectplot, listcontplot, listcontplot3d, listdensitplot, listplot, listplot3d, loglogplot, logplot, matriplot, multiple, odeplot, pareto, plotcompare, pointplot, pointplot3d, polarplot, polgonplot, polgonplot3d, polhedra_supported, polhedraplot, rootlocus, semilogplot, setcolors, setoptions, setoptions3d, spacecurve, sparsematriplot, surfdata, tetplot, tetplot3d, tubeplot We net load the package called NumericalAnalsis in the Student package. It can be accessed in two was. The first wa is with(student); Calculus1, LinearAlgebra, MultivariateCalculus, NumericalAnalsis, Precalculus, SetColors, VectorCalculus with(numericalanalsis); AbsoluteError, AdamsBashforth, AdamsBashforthMoulton, AdamsMoulton, AdaptiveQuadrature, AddPoint, ApproimateEactUpperBound, ApproimateValue, BackSubstitution, BasisFunctions, Bisection, CubicSpline, DataPoints, Distance, DividedDifferenceTable, Draw, Euler, EulerTutor, EactValue, FalsePosition, FiedPointIteration, ForwardSubstitution, Function, InitialValueProblem, InitialValueProblemTutor, Interpolant, InterpolantRemainderTerm, IsConvergent, IsMatriShape, IterativeApproimate, IterativeFormula, IterativeFormulaTutor, LeadingPrincipalSubmatri, LinearSolve, LinearSstem, MatriConvergence, MatriDecomposition, MatriDecompositionTutor, ModifiedNewton, NevilleTable, Newton, NumberfSignificantDigits, PolnomialInterpolation, Quadrature, RatefConvergence, RelativeError, RemainderTerm, Roots, RungeKutta, Secant, SpectralRadius, Steffensen, Talor, TalorPolnomial, UpperBoundfRemainderTerm, VectorLimit Most of these new commands are appropriate to our class. Unless one is using several packages in Student simultaneousl, a more compact wa of opening our package is: with(student[numericalanalsis]); AbsoluteError, AdamsBashforth, AdamsBashforthMoulton, AdamsMoulton, AdaptiveQuadrature, AddPoint, ApproimateEactUpperBound, ApproimateValue, BackSubstitution, BasisFunctions, Bisection, CubicSpline, DataPoints, Distance, DividedDifferenceTable, Draw, Euler, EulerTutor, EactValue, FalsePosition, FiedPointIteration, ForwardSubstitution, Function, 1

2 InitialValueProblem, InitialValueProblemTutor, Interpolant, InterpolantRemainderTerm, IsConvergent, IsMatriShape, IterativeApproimate, IterativeFormula, IterativeFormulaTutor, LeadingPrincipalSubmatri, LinearSolve, LinearSstem, MatriConvergence, MatriDecomposition, MatriDecompositionTutor, ModifiedNewton, NevilleTable, Newton, NumberfSignificantDigits, PolnomialInterpolation, Quadrature, RatefConvergence, RelativeError, RemainderTerm, Roots, RungeKutta, Secant, SpectralRadius, Steffensen, Talor, TalorPolnomial, UpperBoundfRemainderTerm, VectorLimit To help understand Talor's Theorem, we look at several Talor polnomials P n ( ) for the function f ( ) = 1 about = 1. We begin b entering the function as an epression. restart;with(plots):with(student[numericalanalsis]): f:=1/; f := 1 We use the command TalorPolnomial to form the Talor polnomials for the function. The first argument is the function epression, the second is the, the third is the list of the orders we want. t:=talorpolnomial(f, = 1,order=[1,2,3,4,,6,3]); t := 2 K, 2 K C K 1 2, 2 K C K 1 2 K K 1 3, 2 K C K 1 2 K K 1 3 C K 1 4, 2 K C K 1 2 K K 1 3 C K 1 4 K K 1, 2 K C K 1 2 K K 1 3 C K 1 4 K K 1 C K 1 6, 2 K C K 1 2 K K 1 3 C K 1 4 K K 1 C K 1 6 K K 1 7 C K 1 8 K K 1 9 C K 1 1 K K 1 11 C K 1 12 K K 1 13 C K 1 14 K K 1 1 C K 1 16 K K 1 17 C K 1 18 K K 1 19 C K 1 2 K K 1 21 C K 1 22 K K 1 23 C K 1 24 K K 1 2 C K 1 26 K K 1 27 C K 1 28 K K 1 29 C K 1 3 Note that, besides a list, order= can be followed b a single number or a range such as t is now a Maple list of 7 polnomials. We use a for loop to epand the polnomials. for i from 1 to 6 do P[i]:=epand(t[i]) end do; P[3]:=epand(t[7]); P 1 := 2 K P 2 := 3 K 3 C 2 P 3 := 4 K 6 C 4 2 K 3 P 4 := K 1 C 1 2 K 3 C 4 P := 6 K 1 C 2 2 K 1 3 C 6 4 K P 6 := 7 K 21 K 3 3 C 21 4 K 7 C 6 C 3 2 P 3 := 31 K 46 K C K C K C

3 C K C K C K C K C K C K K C C K C K C K C K C 3 Since TalorPolnomial can onl take positive integers for order, we define P = 1. P[]:=1; P := 1 Now let's plot P (in blue) and f (in red) together. plot:=plot(f,=..4,=-..1,color=red): plot1:=plot(p[],=..4,=-..1,color=blue): displa(plot,plot1); 1 K Note that the function and the degree Talor polnomial have the same value at = 1. However, as ou var from = 1, the constant polnomial is hardl a good approimation to the function. Let's see what happens as we move up a degree to a first order Talor polnomial. plot1:=plot(p[1],=..4,=-..1,color=blue): displa(plot,plot1); This is the linear approimation to f at = 1. Here both the function and the degree one Talor 3

4 polnomial have the same value and the same derivative at = 1, so if we sta close enough to = 1, we can use the polnomial, which is alwas eas to evaluate, to approimate the function. Let's advance to a second order Talor polnomial. 1 K plot1:=plot(p[2],=..4,=-..1,color=blue): displa(plot,plot1); 4

5 1 K Now the graphs also have the same second derivative at = 1 (both are concave up), allowing us to move further from = 1 than before and still get good approimations. Using diff (for taking the derivative of an epression) and eval, let's check that the first and second derivatives for the Talor polnomial and function are reall both the same. For the first derivatives: eval(diff(f,),=1); K1 So the first derivatives are reall the same. Note the use of the $ operator to get the second derivative. For the second derivatives: eval(diff(f,$2),=1); 2 eval(diff(p[2],),=1); eval(diff(p[2],$2),=1); K1 same as the degree of the Talor polnomial, giving ever better approimations further and further from = 1. For the third degree: plot1:=plot(p[3],=..4,=-..1,color=blue): 2 The are also the same. It continues that the number of derivatives matching at the chosen value is the

6 displa(plot,plot1); 1 K Here the Talor polnomial looks to be an ecellent approimation from.6 to 1.6. For the fourth degree: plot1:=plot(p[4],=..4,=-..1,color=blue): displa(plot,plot1); 6

7 1 K This looks good from. to 1.7. For the fifth degree: plot1:=plot(p[],=..4,=-..1,color=blue): displa(plot,plot1); 7

8 1 K Now we get good approimations from.4 to 1.7. For degree si: plot1:=plot(p[6],=..4,=-..1,color=blue): displa(plot,plot1); 8

9 1 K This looks good from.4 to 1.8. Now let's jump to degree 3: plot1:=plot(p[3],=..4,=-..1,color=blue): displa(plot,plot1); 9

10 1 K This now looks good from.2 to 1.9. Let's check the amount of error in the Talor polnomial approimation for = actual:=evalf(subs(=18/1,f)); actual :=.6 appro3:=evalf(subs(=18/1,p[3])); appro3 := err:=abs(appro3-actual); err :=.19 We are off b about 1. Prett good. 2 1

11 11

Understanding Molecular Orbitals; Sigma Orbitals

Understanding Molecular Orbitals; Sigma Orbitals Universit of Connecticut DigitalCommons@UConn Chemistr Education Materials Department of Chemistr April 7 Understanding Molecular Orbitals; Sigma Orbitals Carl W. David Universit of Connecticut, Carl.David@uconn.edu

More information

Vectors in Space. Standard Graphing

Vectors in Space. Standard Graphing Vectors in Space O restart:with(plots);with(vectorcalculus): animate, animated, animatecurve, arrow, changecoords, complexplot, complexplotd, conformal, conformald, contourplot, contourplotd, coordplot,

More information

Composite Numerical Integration

Composite Numerical Integration restart; with(lots): Many of the standard numerical integration techniques are imlemented in Male in the Student [NumericalAnalysis] ackage. with(student[numericalanalysis]); AbsoluteError, AdamsBashforth,

More information

Runge-Kutta Method of Order 4

Runge-Kutta Method of Order 4 Runge-Kutta Method of Order 4 This method is easier to compute than the Taylor method of order 4, and has the same order of local truncation error, O(h 4 ). We examine the method on the IVP v vt y = y

More information

Math Differential Equations Material Covering Lab 2

Math Differential Equations Material Covering Lab 2 Math 366 - Differential Equations Material Covering Lab 2 Separable Equations A separable equation is a first-orer ODE that can be written in the form y'= g x $h y This is the general metho to solve such

More information

Exploring Calculus Using a Maple Approach

Exploring Calculus Using a Maple Approach Exploring Calculus Using a Maple Approach Last Update: October, 00 Zhao Chen Janet Liou-Mark Arnavaz Taraporevala Table of Contents Preface... Chapter : Introduction to MAPLE... Objectives... Lab Activities...9

More information

Introduction to Maple MAT 3535

Introduction to Maple MAT 3535 Introduction to Maple MAT 3535 Wm C Bauldry BauldryWC Spring Semester, 2006 Wm C Bauldry (BauldryWC) Introduction to Maple MAT 3535 Spring Semester, 2006 1 / 50 Maple plot of a Lotka Volterra system in

More information

MAPLE TM LAB MANUAL FOR MATH 237

MAPLE TM LAB MANUAL FOR MATH 237 MAPLE TM LAB MANUAL FOR MATH 237 Differential Equations and Computer Methods Written by CESAR O. AGUILAR QUEEN S UNIVERSITY KINGSTON, ONTARIO, CANADA Preface This manual introduces the basic Maple tools

More information

5. Zeros. We deduce that the graph crosses the x-axis at the points x = 0, 1, 2 and 4, and nowhere else. And that s exactly what we see in the graph.

5. Zeros. We deduce that the graph crosses the x-axis at the points x = 0, 1, 2 and 4, and nowhere else. And that s exactly what we see in the graph. . Zeros Eample 1. At the right we have drawn the graph of the polnomial = ( 1) ( 2) ( 4). Argue that the form of the algebraic formula allows ou to see right awa where the graph is above the -ais, where

More information

5.6. Differential equations

5.6. Differential equations 5.6. Differential equations The relationship between cause and effect in phsical phenomena can often be formulated using differential equations which describe how a phsical measure () and its derivative

More information

Polynomial approximation and Splines

Polynomial approximation and Splines Polnomial approimation and Splines 1. Weierstrass approimation theorem The basic question we ll look at toda is how to approimate a complicated function f() with a simpler function P () f() P () for eample,

More information

Higher. Polynomials and Quadratics. Polynomials and Quadratics 1

Higher. Polynomials and Quadratics. Polynomials and Quadratics 1 Higher Mathematics Contents 1 1 Quadratics EF 1 The Discriminant EF 3 3 Completing the Square EF 4 4 Sketching Parabolas EF 7 5 Determining the Equation of a Parabola RC 9 6 Solving Quadratic Inequalities

More information

Mathematics. Polynomials and Quadratics. hsn.uk.net. Higher. Contents. Polynomials and Quadratics 1. CfE Edition

Mathematics. Polynomials and Quadratics. hsn.uk.net. Higher. Contents. Polynomials and Quadratics 1. CfE Edition Higher Mathematics Contents 1 1 Quadratics EF 1 The Discriminant EF 3 3 Completing the Square EF 4 4 Sketching Parabolas EF 7 5 Determining the Equation of a Parabola RC 9 6 Solving Quadratic Inequalities

More information

4.7. Newton s Method. Procedure for Newton s Method HISTORICAL BIOGRAPHY

4.7. Newton s Method. Procedure for Newton s Method HISTORICAL BIOGRAPHY 4. Newton s Method 99 4. Newton s Method HISTORICAL BIOGRAPHY Niels Henrik Abel (18 189) One of the basic problems of mathematics is solving equations. Using the quadratic root formula, we know how to

More information

N x. You should know how to decompose a rational function into partial fractions.

N x. You should know how to decompose a rational function into partial fractions. Section 7. Partial Fractions 0. 0 7 0 0 0 0 Solution:, 0 Equation Equation Eq. Eq. 07. nswers will var. Section 7. Partial Fractions N You should know how to decompose a rational function into partial

More information

ES.182A Problem Section 11, Fall 2018 Solutions

ES.182A Problem Section 11, Fall 2018 Solutions Problem 25.1. (a) z = 2 2 + 2 (b) z = 2 2 ES.182A Problem Section 11, Fall 2018 Solutions Sketch the following quadratic surfaces. answer: The figure for part (a) (on the left) shows the z trace with =

More information

Time-Frequency Analysis: Fourier Transforms and Wavelets

Time-Frequency Analysis: Fourier Transforms and Wavelets Chapter 4 Time-Frequenc Analsis: Fourier Transforms and Wavelets 4. Basics of Fourier Series 4.. Introduction Joseph Fourier (768-83) who gave his name to Fourier series, was not the first to use Fourier

More information

Mathematics. Polynomials and Quadratics. hsn.uk.net. Higher. Contents. Polynomials and Quadratics 52 HSN22100

Mathematics. Polynomials and Quadratics. hsn.uk.net. Higher. Contents. Polynomials and Quadratics 52 HSN22100 Higher Mathematics UNIT OUTCOME 1 Polnomials and Quadratics Contents Polnomials and Quadratics 5 1 Quadratics 5 The Discriminant 54 Completing the Square 55 4 Sketching Parabolas 57 5 Determining the Equation

More information

In everyday speech, a continuous. Limits and Continuity. Critical Thinking Exercises

In everyday speech, a continuous. Limits and Continuity. Critical Thinking Exercises 062 Chapter Introduction to Calculus Critical Thinking Eercises Make Sense? In Eercises 74 77, determine whether each statement makes sense or does not make sense, and eplain our reasoning. 74. I evaluated

More information

Local Maximums and Local Minimums of Functions. f(x, y) has a local minimum at the point (x 0, y 0 ) if f(x 0, y 0 ) f(x, y) for

Local Maximums and Local Minimums of Functions. f(x, y) has a local minimum at the point (x 0, y 0 ) if f(x 0, y 0 ) f(x, y) for Local Extrema Previousl we have taken the partial derivative of a function f(x, ). But those partial derivatives were themselves functions and so we can take their partial derivatives. Local Maximums and

More information

Without a Vector Calculus Coordinate System

Without a Vector Calculus Coordinate System Classroom Tips and Techniques: Point-and-Click Access to the Differential Operators of Vector Calculus Robert J. Lopez Emeritus Professor of Mathematics and Maple Fellow Maplesoft Introduction The -operator

More information

Chapter 2 Solutions of Equations of One Variable

Chapter 2 Solutions of Equations of One Variable Chapter 2 Solutions of Equations of One Variable 2.1 Bisection Method In this chapter we consider one of the most basic problems of numerical approximation, the root-finding problem. This process involves

More information

Review of Essential Skills and Knowledge

Review of Essential Skills and Knowledge Review of Essential Skills and Knowledge R Eponent Laws...50 R Epanding and Simplifing Polnomial Epressions...5 R 3 Factoring Polnomial Epressions...5 R Working with Rational Epressions...55 R 5 Slope

More information

Higher. Polynomials and Quadratics. Polynomials and Quadratics 1

Higher. Polynomials and Quadratics. Polynomials and Quadratics 1 Higher Mathematics Polnomials and Quadratics Contents Polnomials and Quadratics 1 1 Quadratics EF 1 The Discriminant EF Completing the Square EF Sketching Paraolas EF 7 5 Determining the Equation of a

More information

Time-Frequency Analysis: Fourier Transforms and Wavelets

Time-Frequency Analysis: Fourier Transforms and Wavelets Chapter 4 Time-Frequenc Analsis: Fourier Transforms and Wavelets 4. Basics of Fourier Series 4.. Introduction Joseph Fourier (768-83) who gave his name to Fourier series, was not the first to use Fourier

More information

Algebra II Notes Unit Six: Polynomials Syllabus Objectives: 6.2 The student will simplify polynomial expressions.

Algebra II Notes Unit Six: Polynomials Syllabus Objectives: 6.2 The student will simplify polynomial expressions. Algebra II Notes Unit Si: Polnomials Sllabus Objectives: 6. The student will simplif polnomial epressions. Review: Properties of Eponents (Allow students to come up with these on their own.) Let a and

More information

The stationary points will be the solutions of quadratic equation x

The stationary points will be the solutions of quadratic equation x Calculus 1 171 Review In Problems (1) (4) consider the function f ( ) ( ) e. 1. Find the critical (stationary) points; establish their character (relative minimum, relative maimum, or neither); find intervals

More information

3.1 Exponential Functions and Their Graphs

3.1 Exponential Functions and Their Graphs .1 Eponential Functions and Their Graphs Sllabus Objective: 9.1 The student will sketch the graph of a eponential, logistic, or logarithmic function. 9. The student will evaluate eponential or logarithmic

More information

MAT 127: Calculus C, Spring 2017 Solutions to Problem Set 2

MAT 127: Calculus C, Spring 2017 Solutions to Problem Set 2 MAT 7: Calculus C, Spring 07 Solutions to Problem Set Section 7., Problems -6 (webassign, pts) Match the differential equation with its direction field (labeled I-IV on p06 in the book). Give reasons for

More information

8.1 Exponents and Roots

8.1 Exponents and Roots Section 8. Eponents and Roots 75 8. Eponents and Roots Before defining the net famil of functions, the eponential functions, we will need to discuss eponent notation in detail. As we shall see, eponents

More information

Chapter 11. Correlation and Regression

Chapter 11. Correlation and Regression Chapter 11 Correlation and Regression Correlation A relationship between two variables. The data can be represented b ordered pairs (, ) is the independent (or eplanator) variable is the dependent (or

More information

Computational Methods CMSC/AMSC/MAPL 460. Ordinary differential equations

Computational Methods CMSC/AMSC/MAPL 460. Ordinary differential equations Computational Methods CMSC/AMSC/MAPL 460 Ordinar differential equations Ramani Duraiswami, Dept. of Computer Science Several slides adapted from Prof. ERIC SANDT, TAMU ODE: Previous class Standard form

More information

Unit 3 Notes Mathematical Methods

Unit 3 Notes Mathematical Methods Unit 3 Notes Mathematical Methods Foundational Knowledge Created b Triumph Tutoring Copright info Copright Triumph Tutoring 07 Triumph Tutoring Pt Ltd ABN 60 607 0 507 First published in 07 All rights

More information

Pure Further Mathematics 2. Revision Notes

Pure Further Mathematics 2. Revision Notes Pure Further Mathematics Revision Notes October 016 FP OCT 016 SDB Further Pure 1 Inequalities... 3 Algebraic solutions... 3 Graphical solutions... 4 Series Method of Differences... 5 3 Comple Numbers...

More information

1.2 Functions and Their Properties PreCalculus

1.2 Functions and Their Properties PreCalculus 1. Functions and Their Properties PreCalculus 1. FUNCTIONS AND THEIR PROPERTIES Learning Targets for 1. 1. Determine whether a set of numbers or a graph is a function. Find the domain of a function given

More information

Chapter 2 Linear Relations and Functions

Chapter 2 Linear Relations and Functions Chapter Linear Relations and Functions I. Relations and Functions A. Definitions 1. Relation. Domain the variable ( ) 3. Range the variable ( ). Function a) A relationship between ( ) and ( ). b) The output

More information

Section 3.1. ; X = (0, 1]. (i) f : R R R, f (x, y) = x y

Section 3.1. ; X = (0, 1]. (i) f : R R R, f (x, y) = x y Paul J. Bruillard MATH 0.970 Problem Set 6 An Introduction to Abstract Mathematics R. Bond and W. Keane Section 3.1: 3b,c,e,i, 4bd, 6, 9, 15, 16, 18c,e, 19a, 0, 1b Section 3.: 1f,i, e, 6, 1e,f,h, 13e,

More information

College Algebra Final, 7/2/10

College Algebra Final, 7/2/10 NAME College Algebra Final, 7//10 1. Factor the polnomial p() = 3 5 13 4 + 13 3 + 9 16 + 4 completel, then sketch a graph of it. Make sure to plot the - and -intercepts. (10 points) Solution: B the rational

More information

8 Differential Calculus 1 Introduction

8 Differential Calculus 1 Introduction 8 Differential Calculus Introduction The ideas that are the basis for calculus have been with us for a ver long time. Between 5 BC and 5 BC, Greek mathematicians were working on problems that would find

More information

74 Maths Quest 10 for Victoria

74 Maths Quest 10 for Victoria Linear graphs Maria is working in the kitchen making some high energ biscuits using peanuts and chocolate chips. She wants to make less than g of biscuits but wants the biscuits to contain at least 8 g

More information

Lesson 10: Polynomials

Lesson 10: Polynomials Lesson 10: Polynomials restart; When Newton is slow We saw that when the equation has a solution p with, Newton's method converges very quickly (for an appropriate starting point), because. When, on the

More information

LESSON #42 - INVERSES OF FUNCTIONS AND FUNCTION NOTATION PART 2 COMMON CORE ALGEBRA II

LESSON #42 - INVERSES OF FUNCTIONS AND FUNCTION NOTATION PART 2 COMMON CORE ALGEBRA II LESSON #4 - INVERSES OF FUNCTIONS AND FUNCTION NOTATION PART COMMON CORE ALGEBRA II You will recall from unit 1 that in order to find the inverse of a function, ou must switch and and solve for. Also,

More information

Chapter 8 Notes SN AA U2C8

Chapter 8 Notes SN AA U2C8 Chapter 8 Notes SN AA U2C8 Name Period Section 8-: Eploring Eponential Models Section 8-2: Properties of Eponential Functions In Chapter 7, we used properties of eponents to determine roots and some of

More information

Methods for Advanced Mathematics (C3) Coursework Numerical Methods

Methods for Advanced Mathematics (C3) Coursework Numerical Methods Woodhouse College 0 Page Introduction... 3 Terminolog... 3 Activit... 4 Wh use numerical methods?... Change of sign... Activit... 6 Interval Bisection... 7 Decimal Search... 8 Coursework Requirements on

More information

Chapter 8 More About the Trigonometric Functions

Chapter 8 More About the Trigonometric Functions Relationships Among Trigonometric Functions Section 8. 8 Chapter 8 More About the Trigonometric Functions Section 8. Relationships Among Trigonometric Functions. The amplitude of the graph of cos is while

More information

5.6 RATIOnAl FUnCTIOnS. Using Arrow notation. learning ObjeCTIveS

5.6 RATIOnAl FUnCTIOnS. Using Arrow notation. learning ObjeCTIveS CHAPTER PolNomiAl ANd rational functions learning ObjeCTIveS In this section, ou will: Use arrow notation. Solve applied problems involving rational functions. Find the domains of rational functions. Identif

More information

Mathematics Extension 2

Mathematics Extension 2 Student Number ABBOTSLEIGH AUGUST 007 YEAR ASSESSMENT 4 HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION Mathematics Etension General Instructions Reading time 5 minutes. Working time 3 hours. Write using blue

More information

University of Toronto Mississauga

University of Toronto Mississauga Surname: First Name: Student Number: Tutorial: Universit of Toronto Mississauga Mathematical and Computational Sciences MATY5Y Term Test Duration - 0 minutes No Aids Permitted This eam contains pages (including

More information

Chapter 1 Functions and Models

Chapter 1 Functions and Models Chapter 1 Functions and Models 1.2 Mathematical Models: A catalog of Essential Functions A mathematical model is a mathematical description of a real world situations such as the size of a population,

More information

MATH Symmetric matrices, conics and quadrics December 3, 2001

MATH Symmetric matrices, conics and quadrics December 3, 2001 MATH 70- Smmetric matrices, conics and quadrics December 3, 00 Conic sections: > restart: > with(linalg):with(plots):#for computations and pictures with(student):#to do algebra computations like completing

More information

Mathematics. Mathematics 2. hsn.uk.net. Higher HSN22000

Mathematics. Mathematics 2. hsn.uk.net. Higher HSN22000 hsn.uk.net Higher Mathematics UNIT Mathematics HSN000 This document was produced speciall for the HSN.uk.net website, and we require that an copies or derivative works attribute the work to Higher Still

More information

Math RE - Calculus I Functions Page 1 of 10. Topics of Functions used in Calculus

Math RE - Calculus I Functions Page 1 of 10. Topics of Functions used in Calculus Math 0-03-RE - Calculus I Functions Page of 0 Definition of a function f() : Topics of Functions used in Calculus A function = f() is a relation between variables and such that for ever value onl one value.

More information

D u f f x h f y k. Applying this theorem a second time, we have. f xx h f yx k h f xy h f yy k k. f xx h 2 2 f xy hk f yy k 2

D u f f x h f y k. Applying this theorem a second time, we have. f xx h f yx k h f xy h f yy k k. f xx h 2 2 f xy hk f yy k 2 93 CHAPTER 4 PARTIAL DERIVATIVES We close this section b giving a proof of the first part of the Second Derivatives Test. Part (b) has a similar proof. PROOF OF THEOREM 3, PART (A) We compute the second-order

More information

MATH 152 COLLEGE ALGEBRA AND TRIGONOMETRY UNIT 1 HOMEWORK ASSIGNMENTS

MATH 152 COLLEGE ALGEBRA AND TRIGONOMETRY UNIT 1 HOMEWORK ASSIGNMENTS 0//0 MATH COLLEGE ALGEBRA AND TRIGONOMETRY UNIT HOMEWORK ASSIGNMENTS General Instructions Be sure to write out all our work, because method is as important as getting the correct answer. The answers to

More information

Section 8.5 Parametric Equations

Section 8.5 Parametric Equations 504 Chapter 8 Section 8.5 Parametric Equations Man shapes, even ones as simple as circles, cannot be represented as an equation where is a function of. Consider, for eample, the path a moon follows as

More information

Introduction to Vector Spaces Linear Algebra, Spring 2011

Introduction to Vector Spaces Linear Algebra, Spring 2011 Introduction to Vector Spaces Linear Algebra, Spring 2011 You probabl have heard the word vector before, perhaps in the contet of Calculus III or phsics. You probabl think of a vector like this: 5 3 or

More information

Chapter R REVIEW OF BASIC CONCEPTS. Section R.1: Sets

Chapter R REVIEW OF BASIC CONCEPTS. Section R.1: Sets Chapter R REVIEW OF BASIC CONCEPTS Section R.: Sets. The elements of the set {,,,, 0} are all the natural numbers from to 0 inclusive. There are 9 elements in the set, {,,,,, 7,, 9, 0}.. Each element of

More information

+ = + + = x = + = + = 36x

+ = + + = x = + = + = 36x Ch 5 Alg L Homework Worksheets Computation Worksheet #1: You should be able to do these without a calculator! A) Addition (Subtraction = add the opposite of) B) Multiplication (Division = multipl b the

More information

MATH 2300 review problems for Exam 3 ANSWERS

MATH 2300 review problems for Exam 3 ANSWERS MATH 300 review problems for Eam 3 ANSWERS. Check whether the following series converge or diverge. In each case, justif our answer b either computing the sum or b b showing which convergence test ou are

More information

UNIVERSIDAD CARLOS III DE MADRID MATHEMATICS II EXERCISES (SOLUTIONS )

UNIVERSIDAD CARLOS III DE MADRID MATHEMATICS II EXERCISES (SOLUTIONS ) UNIVERSIDAD CARLOS III DE MADRID MATHEMATICS II EXERCISES (SOLUTIONS ) CHAPTER : Limits and continuit of functions in R n. -. Sketch the following subsets of R. Sketch their boundar and the interior. Stud

More information

Polynomial and Rational Functions

Polynomial and Rational Functions Name Date Chapter Polnomial and Rational Functions Section.1 Quadratic Functions Objective: In this lesson ou learned how to sketch and analze graphs of quadratic functions. Important Vocabular Define

More information

The American School of Marrakesh. Algebra 2 Algebra 2 Summer Preparation Packet

The American School of Marrakesh. Algebra 2 Algebra 2 Summer Preparation Packet The American School of Marrakesh Algebra Algebra Summer Preparation Packet Summer 016 Algebra Summer Preparation Packet This summer packet contains eciting math problems designed to ensure our readiness

More information

f 0 ab a b: base f

f 0 ab a b: base f Precalculus Notes: Unit Eponential and Logarithmic Functions Sllabus Objective: 9. The student will sketch the graph of a eponential, logistic, or logarithmic function. 9. The student will evaluate eponential

More information

Properties of Limits

Properties of Limits 33460_003qd //04 :3 PM Page 59 SECTION 3 Evaluating Limits Analticall 59 Section 3 Evaluating Limits Analticall Evaluate a it using properties of its Develop and use a strateg for finding its Evaluate

More information

Math 123 Summary of Important Algebra & Trigonometry Concepts Chapter 1 & Appendix D, Stewart, Calculus Early Transcendentals

Math 123 Summary of Important Algebra & Trigonometry Concepts Chapter 1 & Appendix D, Stewart, Calculus Early Transcendentals Math Summar of Important Algebra & Trigonometr Concepts Chapter & Appendi D, Stewart, Calculus Earl Transcendentals Function a rule that assigns to each element in a set D eactl one element, called f (

More information

Algebra 2 Assessment Calculator allowed for all questions

Algebra 2 Assessment Calculator allowed for all questions Algebra Assessment Calculator allowed for all questions Foundation Higher All questions Time for the test: 60 minutes Name: Grade Title of clip Marks Score Percentage Clip 7 G to E Line graphs (qu. ) Clip

More information

Chapter 5: Systems of Equations

Chapter 5: Systems of Equations Chapter : Sstems of Equations Section.: Sstems in Two Variables... 0 Section. Eercises... 9 Section.: Sstems in Three Variables... Section. Eercises... Section.: Linear Inequalities... Section.: Eercises.

More information

MAT 127: Calculus C, Fall 2010 Solutions to Midterm I

MAT 127: Calculus C, Fall 2010 Solutions to Midterm I MAT 7: Calculus C, Fall 00 Solutions to Midterm I Problem (0pts) Consider the four differential equations for = (): (a) = ( + ) (b) = ( + ) (c) = e + (d) = e. Each of the four diagrams below shows a solution

More information

MATH Line integrals III Fall The fundamental theorem of line integrals. In general C

MATH Line integrals III Fall The fundamental theorem of line integrals. In general C MATH 255 Line integrals III Fall 216 In general 1. The fundamental theorem of line integrals v T ds depends on the curve between the starting point and the ending point. onsider two was to get from (1,

More information

CISE-301: Numerical Methods Topic 1:

CISE-301: Numerical Methods Topic 1: CISE-3: Numerical Methods Topic : Introduction to Numerical Methods and Taylor Series Lectures -4: KFUPM Term 9 Section 8 CISE3_Topic KFUPM - T9 - Section 8 Lecture Introduction to Numerical Methods What

More information

7.7. Inverse Trigonometric Functions. Defining the Inverses

7.7. Inverse Trigonometric Functions. Defining the Inverses 7.7 Inverse Trigonometric Functions 57 7.7 Inverse Trigonometric Functions Inverse trigonometric functions arise when we want to calculate angles from side measurements in triangles. The also provide useful

More information

MHF 4U Unit 1 Polynomial Functions Outline

MHF 4U Unit 1 Polynomial Functions Outline MHF 4U Unit 1 Polnomial Functions Outline Da Lesson Title Specific Epectations 1 Average Rate of Change and Secants D1., 1.6, both D1.1A s - Instantaneous Rate of Change and Tangents D1.6, 1.4, 1.7, 1.5,

More information

Quadratic Inequalities in One Variable

Quadratic Inequalities in One Variable Quadratic Inequalities in One Variable Quadratic inequalities in one variable can be written in one of the following forms: a b c + + 0 a b c + + 0 a b c + + 0 a b c + + 0 Where a, b, and c are real and

More information

QUADRATIC GRAPHS ALGEBRA 2. Dr Adrian Jannetta MIMA CMath FRAS INU0114/514 (MATHS 1) Quadratic Graphs 1/ 16 Adrian Jannetta

QUADRATIC GRAPHS ALGEBRA 2. Dr Adrian Jannetta MIMA CMath FRAS INU0114/514 (MATHS 1) Quadratic Graphs 1/ 16 Adrian Jannetta QUADRATIC GRAPHS ALGEBRA 2 INU0114/514 (MATHS 1) Dr Adrian Jannetta MIMA CMath FRAS Quadratic Graphs 1/ 16 Adrian Jannetta Objectives Be able to sketch the graph of a quadratic function Recognise the shape

More information

16.5. Maclaurin and Taylor Series. Introduction. Prerequisites. Learning Outcomes

16.5. Maclaurin and Taylor Series. Introduction. Prerequisites. Learning Outcomes Maclaurin and Talor Series 6.5 Introduction In this Section we eamine how functions ma be epressed in terms of power series. This is an etremel useful wa of epressing a function since (as we shall see)

More information

f(x) = 2x 2 + 2x - 4

f(x) = 2x 2 + 2x - 4 4-1 Graphing Quadratic Functions What You ll Learn Scan the tet under the Now heading. List two things ou will learn about in the lesson. 1. Active Vocabular 2. New Vocabular Label each bo with the terms

More information

Unit 3 NOTES Honors Common Core Math 2 1. Day 1: Properties of Exponents

Unit 3 NOTES Honors Common Core Math 2 1. Day 1: Properties of Exponents Unit NOTES Honors Common Core Math Da : Properties of Eponents Warm-Up: Before we begin toda s lesson, how much do ou remember about eponents? Use epanded form to write the rules for the eponents. OBJECTIVE

More information

5.5 Linearization and Differentials

5.5 Linearization and Differentials Section 5.5 Linearization and Differentials 37 5.5 Linearization and Differentials What ou will learn about... Linear Approimation Differentials Estimating Change with Differentials Absolute, Relative,

More information

The Force Table Introduction: Theory:

The Force Table Introduction: Theory: 1 The Force Table Introduction: "The Force Table" is a simple tool for demonstrating Newton s First Law and the vector nature of forces. This tool is based on the principle of equilibrium. An object is

More information

Section 1.2: A Catalog of Functions

Section 1.2: A Catalog of Functions Section 1.: A Catalog of Functions As we discussed in the last section, in the sciences, we often tr to find an equation which models some given phenomenon in the real world - for eample, temperature as

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. B) 94 C) ) A) 1 2

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. B) 94 C) ) A) 1 2 Chapter Calculus MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the average rate of change of the function over the given interval. ) = 73-5

More information

171, Calculus 1. Summer 1, CRN 50248, Section 001. Time: MTWR, 6:30 p.m. 8:30 p.m. Room: BR-43. CRN 50248, Section 002

171, Calculus 1. Summer 1, CRN 50248, Section 001. Time: MTWR, 6:30 p.m. 8:30 p.m. Room: BR-43. CRN 50248, Section 002 171, Calculus 1 Summer 1, 018 CRN 5048, Section 001 Time: MTWR, 6:0 p.m. 8:0 p.m. Room: BR-4 CRN 5048, Section 00 Time: MTWR, 11:0 a.m. 1:0 p.m. Room: BR-4 CONTENTS Syllabus Reviews for tests 1 Review

More information

Linear Equations and Arithmetic Sequences

Linear Equations and Arithmetic Sequences CONDENSED LESSON.1 Linear Equations and Arithmetic Sequences In this lesson, ou Write eplicit formulas for arithmetic sequences Write linear equations in intercept form You learned about recursive formulas

More information

Calculus 1 - Lab ) f(x) = 1 x. 3.8) f(x) = arcsin( x+1., prove the equality cosh 2 x sinh 2 x = 1. Calculus 1 - Lab ) lim. 2.

Calculus 1 - Lab ) f(x) = 1 x. 3.8) f(x) = arcsin( x+1., prove the equality cosh 2 x sinh 2 x = 1. Calculus 1 - Lab ) lim. 2. ) Solve the following inequalities.) ++.) 4 >.) Calculus - Lab { + > + 5 + < +. ) Graph the functions f() =, g() = + +, h() = cos( ), r() = +. ) Find the domain of the following functions.) f() = +.) f()

More information

1.2 Functions and Their Properties PreCalculus

1.2 Functions and Their Properties PreCalculus 1. Functions and Their Properties PreCalculus 1. FUNCTIONS AND THEIR PROPERTIES Learning Targets for 1. 1. Determine whether a set of numbers or a graph is a function. Find the domain of a function given

More information

H.Algebra 2 Summer Review Packet

H.Algebra 2 Summer Review Packet H.Algebra Summer Review Packet 1 Correlation of Algebra Summer Packet with Algebra 1 Objectives A. Simplifing Polnomial Epressions Objectives: The student will be able to: Use the commutative, associative,

More information

Chapter One. Chapter One

Chapter One. Chapter One Chapter One Chapter One CHAPTER ONE Hughes Hallett et al c 005, John Wile & Sons ConcepTests and Answers and Comments for Section.. Which of the following functions has its domain identical with its range?

More information

Additional Topics in Differential Equations

Additional Topics in Differential Equations 6 Additional Topics in Differential Equations 6. Eact First-Order Equations 6. Second-Order Homogeneous Linear Equations 6.3 Second-Order Nonhomogeneous Linear Equations 6.4 Series Solutions of Differential

More information

4 The Cartesian Coordinate System- Pictures of Equations

4 The Cartesian Coordinate System- Pictures of Equations The Cartesian Coordinate Sstem- Pictures of Equations Concepts: The Cartesian Coordinate Sstem Graphs of Equations in Two Variables -intercepts and -intercepts Distance in Two Dimensions and the Pthagorean

More information

Ch 5 Alg 2 L2 Note Sheet Key Do Activity 1 on your Ch 5 Activity Sheet.

Ch 5 Alg 2 L2 Note Sheet Key Do Activity 1 on your Ch 5 Activity Sheet. Ch Alg L Note Sheet Ke Do Activit 1 on our Ch Activit Sheet. Chapter : Quadratic Equations and Functions.1 Modeling Data With Quadratic Functions You had three forms for linear equations, ou will have

More information

f 0 ab a b: base f

f 0 ab a b: base f Precalculus Notes: Unit Eponential and Logarithmic Functions Sllaus Ojective: 9. The student will sketch the graph of a eponential, logistic, or logarithmic function. 9. The student will evaluate eponential

More information

Mathematics. Mathematics 2. hsn.uk.net. Higher HSN22000

Mathematics. Mathematics 2. hsn.uk.net. Higher HSN22000 Higher Mathematics UNIT Mathematics HSN000 This document was produced speciall for the HSN.uk.net website, and we require that an copies or derivative works attribute the work to Higher Still Notes. For

More information

x y plane is the plane in which the stresses act, yy xy xy Figure 3.5.1: non-zero stress components acting in the x y plane

x y plane is the plane in which the stresses act, yy xy xy Figure 3.5.1: non-zero stress components acting in the x y plane 3.5 Plane Stress This section is concerned with a special two-dimensional state of stress called plane stress. It is important for two reasons: () it arises in real components (particularl in thin components

More information

Chapter 4 Analytic Trigonometry

Chapter 4 Analytic Trigonometry Analtic Trigonometr Chapter Analtic Trigonometr Inverse Trigonometric Functions The trigonometric functions act as an operator on the variable (angle, resulting in an output value Suppose this process

More information

A. Real numbers greater than 2 B. Real numbers less than or equal to 2. C. Real numbers between 1 and 3 D. Real numbers greater than or equal to 2

A. Real numbers greater than 2 B. Real numbers less than or equal to 2. C. Real numbers between 1 and 3 D. Real numbers greater than or equal to 2 39 CHAPTER 9 DAY 0 DAY 0 Opportunities To Learn You are what ou are when nobod Is looking. - Ann Landers 6. Match the graph with its description. A. Real numbers greater than B. Real numbers less than

More information

CHAPTER 1 Functions, Graphs, and Limits

CHAPTER 1 Functions, Graphs, and Limits CHAPTER Functions, Graphs, and Limits Section. The Cartesian Plane and the Distance Formula... Section. Graphs of Equations...8 Section. Lines in the Plane and Slope... Mid-Chapter Quiz Solutions... Section.

More information

A11.1 Areas under curves

A11.1 Areas under curves Applications 11.1 Areas under curves A11.1 Areas under curves Before ou start You should be able to: calculate the value of given the value of in algebraic equations of curves calculate the area of a trapezium.

More information

Representation of Functions by Power Series. Geometric Power Series

Representation of Functions by Power Series. Geometric Power Series 60_0909.qd //0 :09 PM Page 669 SECTION 9.9 Representation of Functions b Power Series 669 The Granger Collection Section 9.9 JOSEPH FOURIER (768 80) Some of the earl work in representing functions b power

More information

a. plotting points in Cartesian coordinates (Grade 9 and 10), b. using a graphing calculator such as the TI-83 Graphing Calculator,

a. plotting points in Cartesian coordinates (Grade 9 and 10), b. using a graphing calculator such as the TI-83 Graphing Calculator, GRADE PRE-CALCULUS UNIT C: QUADRATIC FUNCTIONS CLASS NOTES FRAME. After linear functions, = m + b, and their graph the Quadratic Functions are the net most important equation or function. The Quadratic

More information

Limits and Their Properties

Limits and Their Properties Chapter 1 Limits and Their Properties Course Number Section 1.1 A Preview of Calculus Objective: In this lesson you learned how calculus compares with precalculus. I. What is Calculus? (Pages 42 44) Calculus

More information