Lecture 10. What is energy? Professor Hicks Inorganic Chemistry (CHE151) Ability to do work. Work means moving something against a force

Size: px
Start display at page:

Download "Lecture 10. What is energy? Professor Hicks Inorganic Chemistry (CHE151) Ability to do work. Work means moving something against a force"

Transcription

1 Lecture 10 Professor Hicks Inorganic Chemistry (CHE151) Ability to do work What is energy? Work means moving something against a force Energy thought of as an imaginary liquid that gets moved from one container to another when processes occur 1

2 Types of energy Kinetic energy- energy of motion. KE = ½ mv 2 Potential energy- associated with position. different types PE gravity = mass x gravity x height PE (opposite charges) = increases with separation (like gravity) + - Heat SI unit Joule Units of energy 1 Joule = 1 kg m 2 s 2 Other common units 1) 1 calorie = 4.18 Joules 2) 1 dietary Calorie = 1 kilocalorie (energy to warm 1 kg H 2 O 1 C) dietary and scientific calorie are not the same dietary calorie written uppercase Calorie James Joule 2

3 First law of thermodynamics Energy cannot be created or destroyed Applied when energy changes forms Energy like a liquid kinetic energy potential energy heat Rudolf Clausius When things go downhill A 10 kg bowling ball at a height of 100 m has potential energy due to gravity Potential energy = mgh = 10 kg x 9.8 m/s2 x10 m = 9800 J As it falls it speeds up converting potential energy into kinetic energy Right before it hits ground all the potential energy has become kinetic energy = 9800 J Heat 9800 J After it hits the ground it is not moving so kinetic energy is zero- all the energy has become heat = 9800 J 3

4 energy changes forms (but does not get destroyed) 1) Potential energy = 9800 J 9800 J 9800 J on 9800 J as ball falls impact PE KE KE heat potential energy kinetic energy heat 2) Kinetic energy = 9800 J 3) Heat 9800 J First Law requires heat is like a reactant or product in every chemical equation Reactants + Heat Products Reactions that absorb heat are said to be endothermic Reactions that release heat are said to be exothermic reactants products + heat 4

5 Second Law Second law states that matter and energy tend to spread out spontaneously A famous statement for energy is Heat only flows from hotter to cooler Explains why processes that release heat tend to not reverse themselves Sadi Carnot Second Law: Energy Spreads Out When the ball hit the ground and the energy becomes heat the ball warms up a little. The second law of thermodynamics says the bowling ball is trapped on the earth because the energy it would need to go back to the top of building has left as heat Heat 9800 J Hotter Same Cooler temperature 5

6 Second law: Energy and matter spread out Fuels heat CO 2 (g) 2H 2 O (g) reaction products are trapped in the lowest energy state after heat is released, like the bowling ball Heat and matter spread out prevents products from turning back into reactants!!! System and Surroundings System region of interest Surroundings everything else energy system surroundings Energy can be either heat = q work = w 6

7 Internal Energy (U) (ALL the energy that is in there) Change in internal energy ( U) U = q + w q heat released (negative in sign) w work done by system - (negative in sign) system surroundings q heat absorbed + (positive in sign) work done on system + (positive in sign) Work Movement performed against a force (resistance) requires energy Amount of energy=work=force distance Examples of work Lifting an object against gravity Stretching a spring Gas forming and blowing up a balloon (PV work) P V = work Force Force V = Area Length Area Area 7

8 Enthalpy (H) Heat released under constant pressure = Enthalpy change ( H) Constant pressure PV work can be done - Conditions for reactions of life - Conditions of most chemical reaction unless they are run in rigid containers Only reflects part of the internal energy change since it is only the heat-not the work The alternative to constant pressure is constant volume like the aging of wine in a glass bottle Enthalpy is heat released under constant pressure change in internal energy E = q + w change in enthalpy H = q work heat C 6 H 12 O 6 (s) + 6O 2 (g) 6CO 2 (g) + 6H 2 O (g) system surroundings 8

9 A sample of nitrogen gas expands in volume from 1.6 L to 5.4 L at constant temperature. Calculate the work done in joules if the gas expands (a) against a vacuum (b) against a constant pressure of 0.80 atm A gas expands and does P-V work on the surroundings equal to 325 J. At the same time, it absorbs 127 J of heat from the surroundings. Calculate the change in the internal energy of the gas. 9

10 Calculate the work done when 255 g of tin dissolves in excess acid at 1.10 atm and 22 C: Assume ideal gas behavior. Sn (s) + 2H + (aq) Sn 2+ (aq) + H 2 (g) Thermochemical equations Chemical equation with H or E included 6 CO H 2 O C 6 H 12 O O 2 H = 2830 kj Endothermic = heat as a reactant = positive Exothermic = heat as a product = negative The heat is associated with the whole reaction Heat + moles of any substance conversion factors 2830 kj 6 moles CO kj 6 moles O 2 1 mole C 6 H 12 O kj etc. 10

11 First law and thermochemical equations If a process is reversed an equal amount of energy must flow in the opposite direction H and E for reverse process will just have the sign reversed H and E depend upon the amount of material reacted so doubling, tripling reaction doubles, triples the H and E Hess Law states that if a series of chemical reactions occurs the overall H or E will just be the sum of each step s H and E values 11

12 Standard Conditions To be able to compare reactions Standard Conditions are defined All substances at a concentration of 1.0 M & gases at a partial pressure of 1.0 atm Heat released under constant P and standard conditions is the Standard Enthalpy Change ( H o ) First law and thermochemical equations Example: Determine the H o for 2CO 2 (g) 2C (s) + 2O 2 (g) given that H o = 2 x 393 kj = 786 kj C (s) + O 2 (g) CO 2 (g) H o = kj 12

13 Hess law If a process happens in steps the H o is the sum of the H o for the steps A + B C H o = +100 kj C + D E H o = -150 kj A + B + C + D C + E H o = kj A + B + D E H o = 50 kj overall 13

14 14

15 Standard Formation Reactions Form 1 mole of a substance from elements in most stable state most elements just element solids some elements exist as diatomic gases F 2, Cl 2, N 2, O 2, H 2 Br 2 and Hg liquid and I 2 is a solid Standard Enthalpy for this reaction is called the Standard Enthalpy of Formation ( H o f) 15

16 Standard Formation Reactions Example: a) Write standard formation reactions for CO 2 (g), H 2 O (l), C 8 H 18 (l), and CHCl 3 (l). H o f Use the Standard Formation Reaction Data Tables to determine H o for these reactions See tables full size appended to the end of the lecture packet 16

17 Elements in the standard state junction home station standard state is like a train junction where you transfer for your final destination destination -enthalpy formation for A - H o f (A) elements in standard state +enthalpy formation for B H o f (B) substance A substance B H o = -? H o f (A) + H o f (B) Hess Law H o = n p H o f - n r H o f reaction elements in standard state - H o f (CH 4 ) + - H o f (O 2 ) x 2 + H o f (CO 2 ) + + H o f (H 2 O) x 2 CH 4 (g) + 2O 2 (g) CO 2 (g) + 2H 2 O(g) H o =? 17

18 See tables full size appended to the end of the lecture packet Hess Law H o = n p H o f - n r H o f reaction elements in standard state - H o f (CH 4 ) - H o f (O 2 ) x 2 H o f (CO 2 ) H o f (H 2 O) x 2 CH 4 (g) + 2O 2 (g) CO 2 (g) + 2H 2 O(g) H o =? H o = 1 x (-393.5) + 2 x (-241.8) - (1 x x 0) = products - reactants n p H o f - n r H o f kj 18

19 Heat Capacity and Specific Heat Properties that describe how much temperature changes when heat is absorbed Heat capacity (C) - extensive property -units are Joule C Specific heat capacity (s) - intensive property -units are Joule g* C Specific heat capacity is sometimes referred to as just specific heat 19

20 Heat capacity (C) Imaginary container that holds copper add 100 J the imaginary liquid heat same mass of both water add 100 J T Temperature 100 J heat capacity copper T water has a larger HC than copper so its temperature changes less when same amount of heat is added heat capacity water 100 J Conversion factor Heat capacity (C) change temperature heat T x C = q (heat) ( C) x (Joule) = (Joule) ( C) old unit conversion factor new unit changes in quantities are given symbol always calculated final initial T = T final T initial = T f - T i answers the question if I have a certain change in temperature for an object how much heat must have flowed to cause it 20

21 Specific heat capacity (s) Conversion factor mass heat capacity mass x specific heat = heat capacity m x s = C (grams) x (Joule) = (Joule) (gram C) ( C) old unit conversion factor new unit specific heat capacity is heat capacity per gram multiplying a mass by the specific heat capacity answers the question if I have a certain mass of a substance what is its heat capacity? How much heat would be required to raise the temperature of 50.0 grams of water from 12.0 C to 22.0 C? (s (water) = 4.18 J/g* C) Given Information T i = 12.0 T f = 22.0 calculate T = = 10.0 C mass = 50.0 grams water s (water) = 4.18 J/g* C s x mass = HC (use this equation to calculate heat capacity of 50 g water) 4.18 J/g* C x grams = 209 J/ C (heat capacity) HC x T = q (use this equation to calculate amount of heat to raise temperature of 50 g water 10 C ) 209 J/ C x 10.0 C = 2.09 x10 3 J these two equations can be combined: q = mass x specific heat x change temperature 21

22 Calorimetry measuring heat flow calorimetry measure T calculate heat add room temperature water add hot metal sample at about 100 C First law - energy cannot be created or destroyed heat lost by metal was gained by the water (and the cup which we neglect here) q water = - q metal q water = mass water s (water) (T f -T i ) q metal = mass metal s (metal) (T f -T i )? q heat surroundings and system C coffee cup calorimeter no heat can escape perfectly insulated q metal = -q water q water = mass water s (water) (T f -T i ) q metal = mass metal s (metal) (T f -T i ) mass metal s (metal) (T f -T i ) = - mass water s (water) (T f -T i ) s (metal) = - mass water s (water) (T f -T i ) mass metal (T f -T i ) metal and water have same final temperature metal and water have different initial temperatures 22

23 A sample of a pure substance with a mass 125 g has a heat capacity of J/ C. What is the specific heat of this substance? 23

24 A sheet of gold weighing 5.0 g and at a temperature of 99.9 C is placed flat on a sheet of iron weighing 25 g and at a temperature of 16.5 C. What is the final temperature of the combined metals? Assume that no heat is lost to the surroundings. (Hint: The heat gained by the gold must be equal to the heat lost by the iron. The specific heats of the metals are given in Table 6.2.) 24

25 A 44.0-g sample of an unknown metal at C was placed in a constant-pressure calorimeter containing 155 g of water at 37.0 C. The final temperature of the system was found to be 48.4 C. Calculate the specific heat of the metal. (The heat capacity of the calorimeter is 12.4 J/ C.) 25

26

27

28

29

30

Energy Conversions. Energy. the ability to do work or produce heat. energy energy due to composition or position of an object

Energy Conversions. Energy. the ability to do work or produce heat. energy energy due to composition or position of an object Energy Energy the ability to do work or produce heat energy energy due to composition or position of an object energy the energy of motion Energy - SI unit for energy 1 J = 1 Kgm 2 / s 2 Energy Conversions

More information

The Nature of Energy. Chapter Six: Kinetic vs. Potential Energy. Energy and Work. Temperature vs. Heat

The Nature of Energy. Chapter Six: Kinetic vs. Potential Energy. Energy and Work. Temperature vs. Heat The Nature of Energy Chapter Six: THERMOCHEMISTRY Thermodynamics is the study of energy and its transformations. Thermochemistry is the study of the relationship between chemical reactions and energy changes

More information

Thermochemistry. Energy (and Thermochemistry) World of Chemistry Chapter 10. Energy. Energy

Thermochemistry. Energy (and Thermochemistry) World of Chemistry Chapter 10. Energy. Energy Thermochemistry Thermodynamics is the science of the relationship between heat and other forms of energy. (and Thermochemistry) World of Chemistry Chapter 10 is defined as the ability to do work or produce

More information

Energy, Heat and Temperature. Introduction

Energy, Heat and Temperature. Introduction Energy, Heat and Temperature Introduction 3 basic types of energy: Potential (possibility of doing work because of composition or position) Kinetic (moving objects doing work) Radiant (energy transferred

More information

Types of Energy Calorimetry q = mc T Thermochemical Equations Hess s Law Spontaneity, Entropy, Gibb s Free energy

Types of Energy Calorimetry q = mc T Thermochemical Equations Hess s Law Spontaneity, Entropy, Gibb s Free energy Unit 7: Energy Outline Types of Energy Calorimetry q = mc T Thermochemical Equations Hess s Law Spontaneity, Entropy, Gibb s Free energy Energy Energy is the ability to do work or produce heat. The energy

More information

Chapter 6 Problems: 9, 19, 24, 25, 26, 27, 31-33, 37, 39, 43, 45, 47, 48, 53, 55, 57, 59, 65, 67, 73, 78-82, 85, 89, 93

Chapter 6 Problems: 9, 19, 24, 25, 26, 27, 31-33, 37, 39, 43, 45, 47, 48, 53, 55, 57, 59, 65, 67, 73, 78-82, 85, 89, 93 Chapter 6 Problems: 9, 19, 24, 25, 26, 27, 31-33, 37, 39, 43, 45, 47, 48, 53, 55, 57, 59, 65, 67, 73, 78-82, 85, 89, 93 Chapter 6 Thermochemistry The study of chemical reactions and the energy changes

More information

AP Chapter 6: Thermochemistry Name

AP Chapter 6: Thermochemistry Name AP Chapter 6: Thermochemistry Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. AP Chapter 6: Thermochemistry 2 Warm-Ups (Show your work for credit)

More information

Ch. 17 Thermochemistry

Ch. 17 Thermochemistry Ch. 17 Thermochemistry 17.1 The Flow of Energy Energy Transformations Thermochemistry: study of energy changes in chemical reactions and changes in state Chemical potential energy: energy stored in bonds

More information

Thermochemistry. Energy. 1st Law of Thermodynamics. Enthalpy / Calorimetry. Enthalpy of Formation

Thermochemistry. Energy. 1st Law of Thermodynamics. Enthalpy / Calorimetry. Enthalpy of Formation THERMOCHEMISTRY Thermochemistry Energy 1st Law of Thermodynamics Enthalpy / Calorimetry Hess' Law Enthalpy of Formation The Nature of Energy Kinetic Energy and Potential Energy Kinetic energy is the energy

More information

Energy Transformations

Energy Transformations Thermochemistry Energy Transformations Thermochemistry - concerned with heat changes that occur during chemical reactions Energy - capacity for doing work or supplying heat weightless, odorless, tasteless

More information

Reaction Energy. Thermochemistry

Reaction Energy. Thermochemistry Reaction Energy Thermochemistry Thermochemistry The study of the transfers of energy as heat that accompany chemical reactions & physical changes Thermochemistry -In studying heat changes, think of defining

More information

Chapter 5 Thermochemistry

Chapter 5 Thermochemistry Chapter 5 Thermochemistry Section 17.1 The Flow of Energy Heat and Work OBJECTIVES: Explain how energy, heat, and work are related. 2 Section 17.1 The Flow of Energy Heat and Work OBJECTIVES: Classify

More information

Thermochemistry. Energy and Chemical Change

Thermochemistry. Energy and Chemical Change Thermochemistry Energy and Chemical Change Energy Energy can change for and flow, but it is always conserved. The Nature of Energy Energy the ability to do work or produce heat Potential energy Kinetic

More information

THERMOCHEMISTRY & DEFINITIONS

THERMOCHEMISTRY & DEFINITIONS THERMOCHEMISTRY & DEFINITIONS Thermochemistry is the study of the study of relationships between chemistry and energy. All chemical changes and many physical changes involve exchange of energy with the

More information

Ch. 6 Enthalpy Changes

Ch. 6 Enthalpy Changes Ch. 6 Enthalpy Changes Energy: The capacity to do work. In Physics, there are 2 main types of energy Kinetic (energy of motion) = ½ mv 2 Potential (energy of position due to gravity)= mgh In Chemistry,

More information

CHEMISTRY. Chapter 5 Thermochemistry

CHEMISTRY. Chapter 5 Thermochemistry CHEMISTRY The Central Science 8 th Edition Chapter 5 Thermochemistry Dr. Kozet YAPSAKLI The Nature of Energy Kinetic and Potential Energy Potential energy can be converted into kinetic energy. E p = mgh

More information

The Nature of Energy Energy is the ability to do work or produce Heat, q or Q, is ; flows due to temperature differences (always to )

The Nature of Energy Energy is the ability to do work or produce Heat, q or Q, is ; flows due to temperature differences (always to ) CP Chapter 17 Thermochemistry 2014-2015 Thermochemistry Thermochemistry is the study of energy that occur during chemical and physical changes (changes of state) The Nature of Energy Energy is the ability

More information

Chapter 6: Thermochemistry

Chapter 6: Thermochemistry Chapter 6: Thermochemistry Section 6.1: Introduction to Thermochemistry Thermochemistry refers to the study of heat flow or heat energy in a chemical reaction. In a study of Thermochemistry the chemical

More information

Thermochemistry AP Chemistry Lecture Outline

Thermochemistry AP Chemistry Lecture Outline Thermochemistry AP Chemistry Lecture Outline Name: thermodynamics: the study of energy and its transformations -- thermochemistry: the subdiscipline involving chemical reactions and energy changes Energy

More information

What is energy??? The ability to do work or produce heat. Potential Energy (PE) energy due to position or composition

What is energy??? The ability to do work or produce heat. Potential Energy (PE) energy due to position or composition Chapter 10: Energy What is energy??? The ability to do work or produce heat. Potential Energy (PE) energy due to position or composition Kinetic Energy (KE) energy due to motion Law of Conservation of

More information

Chapter 8. Thermochemistry 강의개요. 8.1 Principles of Heat Flow. 2) Magnitude of Heat Flow. 1) State Properties. Basic concepts : study of heat flow

Chapter 8. Thermochemistry 강의개요. 8.1 Principles of Heat Flow. 2) Magnitude of Heat Flow. 1) State Properties. Basic concepts : study of heat flow 강의개요 Basic concepts : study of heat flow Chapter 8 Thermochemistry Calorimetry : experimental measurement of the magnitude and direction of heat flow Thermochemical Equations Copyright 2005 연세대학교이학계열일반화학및실험

More information

CHAPTER 17 Thermochemistry

CHAPTER 17 Thermochemistry CHAPTER 17 Thermochemistry Thermochemistry The study of the heat changes that occur during chemical reactions and physical changes of state. Chemical Change: new substances created during chemical reaction

More information

Chemistry Chapter 16. Reaction Energy

Chemistry Chapter 16. Reaction Energy Chemistry Reaction Energy Section 16.1.I Thermochemistry Objectives Define temperature and state the units in which it is measured. Define heat and state its units. Perform specific-heat calculations.

More information

Chapter 6 Thermochemistry 許富銀

Chapter 6 Thermochemistry 許富銀 Chapter 6 Thermochemistry 許富銀 6.1 Chemical Hand Warmers Thermochemistry: the study of the relationships between chemistry and energy Hand warmers use the oxidation of iron as the exothermic reaction: Nature

More information

- Kinetic energy: energy of matter in motion. gravity

- Kinetic energy: energy of matter in motion. gravity 148 2500 L of chlorine gas at 25.0 C and 1.00 atm are used to make hydrochloric acid. How many grams of hydrochloric acid could be produced if all the chlorine reacts? 1 - Convert 2500 L chlorine gas to

More information

Energy and Chemical Change

Energy and Chemical Change Energy and Chemical Change Reviewing Vocabulary Match the definition in Column A with the term in Column B. h e d p c f a r m t j i s l u k n q g o Column A 1. The ability to do work or produce heat 2.

More information

Chapter 5 Thermochemistry

Chapter 5 Thermochemistry Chapter 5 Thermochemistry Energy -Very much a chemistry topic Every chemical change has an accompanying change of. Combustion of fossil fuels The discharging a battery Metabolism of foods If we are to

More information

Energy and Chemical Change

Energy and Chemical Change Energy and Chemical Change Section 15.1 Energy Section 15.2 Heat Section 15.3 Thermochemical Equations Section 15.4 Calculating Enthalpy Change Section 15.5 Reaction Spontaneity Click a hyperlink or folder

More information

I. The Nature of Energy A. Energy

I. The Nature of Energy A. Energy I. The Nature of Energy A. Energy is the ability to do work or produce heat. It exists in 2 forms: 1. Potential energy is energy due to the composition or position of an object. 2. Kinetic energy is energy

More information

Thermochemistry. Energy and Chemical Change

Thermochemistry. Energy and Chemical Change Thermochemistry Energy and Chemical Change Energy Energy can change for and flow, but it is always conserved. The Nature of Energy Energy the ability to do work or produce heat Potential energy Kinetic

More information

Thermochemistry. Section The flow of energy

Thermochemistry. Section The flow of energy Thermochemistry Section 17.1 - The flow of energy What is Energy? Energy is the capacity for doing work or supplying heat Energy does not have mass or volume, and it can only be detected because of its

More information

Ch 6. Energy and Chemical Change. Brady & Senese, 5th Ed.

Ch 6. Energy and Chemical Change. Brady & Senese, 5th Ed. Ch 6. Energy and Chemical Change Brady & Senese, 5th Ed. Energy Is The Ability To Do Work Energy is the ability to do work (move mass over a distance) or transfer heat Types: kinetic and potential kinetic:

More information

Chapter 5. Thermochemistry

Chapter 5. Thermochemistry Chapter 5 Thermochemistry Energy Thermodynamics Study of the relationship between heat, work, and other forms of energy Thermochemistry A branch of thermodynamics Focuses on the study of heat given off

More information

Calculate the mass of L of oxygen gas at 25.0 C and 1.18 atm pressure.

Calculate the mass of L of oxygen gas at 25.0 C and 1.18 atm pressure. 148 Calculate the mass of 22650 L of oxygen gas at 25.0 C and 1.18 atm pressure. 1 - Convert the volume of oxygen gas to moles using IDEAL GAS EQUATION 2 - Convert moles oxygen gas to mass using formula

More information

Thermochemistry: Energy Flow and Chemical Reactions

Thermochemistry: Energy Flow and Chemical Reactions Thermochemistry: Energy Flow and Chemical Reactions Outline thermodynamics internal energy definition, first law enthalpy definition, energy diagrams, calorimetry, theoretical calculation (heats of formation

More information

Lecture Presentation. Chapter 6. Thermochemistry. Sherril Soman Grand Valley State University Pearson Education, Inc.

Lecture Presentation. Chapter 6. Thermochemistry. Sherril Soman Grand Valley State University Pearson Education, Inc. Lecture Presentation Chapter 6 Thermochemistry Sherril Soman Grand Valley State University Chemical Hand Warmers Most hand warmers work by using the heat released from the slow oxidation of iron 4 Fe(s)

More information

AP CHEMISTRY NOTES 4-1 THERMOCHEMISTRY: ENTHALPY AND ENTROPY

AP CHEMISTRY NOTES 4-1 THERMOCHEMISTRY: ENTHALPY AND ENTROPY AP CHEMISTRY NOTES 4-1 THERMOCHEMISTRY: ENTHALPY AND ENTROPY Reaction Rate how fast a chemical reaction occurs Collision Theory In order for a chemical reaction to occur, the following conditions must

More information

CP Chapter 17 Thermochemistry

CP Chapter 17 Thermochemistry CP Chapter 17 Thermochemistry Thermochemistry Thermochemistry is the study of energy that occur during chemical reactions and phase changes (changes of state) The Nature of Energy Energy is the ability

More information

Chapter 6: Thermochemistry

Chapter 6: Thermochemistry Chapter 6: Thermochemistry 1. Light the Furnace: The Nature of Energy and Its Transformations a. Thermochemistry is the study of the relationships between chemistry and energy i. This means that we will

More information

Chapter 6 Energy and Chemical Change. Brady and Senese 5th Edition

Chapter 6 Energy and Chemical Change. Brady and Senese 5th Edition Chapter 6 Energy and Chemical Change Brady and Senese 5th Edition Index 6.1 An object has energy if it is capable of doing work 6.2 Internal energy is the total energy of an object s molecules 6.3 Heat

More information

Chapter 6. Energy Thermodynamics

Chapter 6. Energy Thermodynamics Chapter 6 Energy Thermodynamics 1 Energy is... The ability to do work. Conserved. made of heat and work. a state function. independent of the path, or how you get from point A to B. Work is a force acting

More information

Name Date Class THE FLOW OF ENERGY HEAT AND WORK

Name Date Class THE FLOW OF ENERGY HEAT AND WORK 17.1 THE FLOW OF ENERGY HEAT AND WORK Section Review Objectives Explain the relationship between energy, heat, and work Distinguish between exothermic and endothermic processes Distinguish between heat

More information

Energy, Heat and Chemical Change

Energy, Heat and Chemical Change Energy, Heat and Chemical Change Chemistry 35 Fall 2000 Thermochemistry A part of Thermodynamics dealing with energy changes associated with physical and chemical reactions Why do we care? -will a reaction

More information

I. Chemical Reactions that Involve Heat

I. Chemical Reactions that Involve Heat Unit 12 Energy I. Chemical Reactions that Involve Heat Thermochemistry: study of changes in heat in chemical reactions. Endothermic: absorbs heat; temp. goes down Exothermic: releases heat; temp. goes

More information

Chapter 5 - Thermochemistry

Chapter 5 - Thermochemistry Chapter 5 - Thermochemistry Study of energy changes that accompany chemical rx s. I) Nature of Energy Energy / Capacity to do work Mechanical Work w = F x d Heat energy - energy used to cause the temperature

More information

Chapter 6 Thermochemistry

Chapter 6 Thermochemistry Chapter 6 Thermochemistry Thermochemistry Thermochemistry is a part of Thermodynamics dealing with energy changes associated with physical and chemical reactions Why do we care? - Will a reaction proceed

More information

Chapter 8. Thermochemistry

Chapter 8. Thermochemistry Chapter 8 Thermochemistry Copyright 2001 by Harcourt, Inc. All rights reserved. Requests for permission to make copies of any part of the work should be mailed to the following address: Permissions Department,

More information

Chapter 17 Thermochemistry

Chapter 17 Thermochemistry Chapter 17 Thermochemistry Section 17.1 The Flow of Energy Heat and Work OBJECTIVES: Explain how energy, heat, and work are related. 2 Section 17.1 The Flow of Energy Heat and Work OBJECTIVES: Classify

More information

Energy and Chemical Change

Energy and Chemical Change Energy and Chemical Change Section 16.1 Energy In your textbook, read about the nature of energy. In the space at the left, write true if the statement is true; if the statement is false, change the italicized

More information

First Law of Thermodynamics

First Law of Thermodynamics Energy Energy: ability to do work or produce heat. Types of energy 1) Potential energy - energy possessed by objects due to position or arrangement of particles. Forms of potential energy - electrical,

More information

Most hand warmers work by using the heat released from the slow oxidation of iron: The amount your hand temperature rises depends on several factors:

Most hand warmers work by using the heat released from the slow oxidation of iron: The amount your hand temperature rises depends on several factors: Lecture Presentation Chapter 6 Thermochemistry Chemical Hand Warmers Most hand warmers work by using the heat released from the slow oxidation of iron: Exothermic reaction 4 Fe(s) + 3 O 2 (g) 2 Fe 2 O

More information

Chapter 11. Thermochemistry. 1. Let s begin by previewing the chapter (Page 292). 2. We will partner read Pages

Chapter 11. Thermochemistry. 1. Let s begin by previewing the chapter (Page 292). 2. We will partner read Pages Chapter 11 Thermochemistry 1. Let s begin by previewing the chapter (Page 292). 2. We will partner read Pages 293-94 The Flow of energy - heat Thermochemistry concerned with the heat changes that occur

More information

Section 9: Thermodynamics and Energy

Section 9: Thermodynamics and Energy Section 9: Thermodynamics and Energy The following maps the videos in this section to the Texas Essential Knowledge and Skills for Science TAC 112.35(c). 9.01 Law of Conservation of Energy Chemistry (11)(A)

More information

Name Class Date. As you read Lesson 17.1, use the cause and effect chart below. Complete the chart with the terms system and surroundings.

Name Class Date. As you read Lesson 17.1, use the cause and effect chart below. Complete the chart with the terms system and surroundings. Name Class Date Thermochemistry 17.1 The Flow of Energy As you read Lesson 17.1, use the cause and effect chart below. Complete the chart with the terms system and surroundings. Process Cause Effect endothermic

More information

- The empirical gas laws (including the ideal gas equation) do not always apply.

- The empirical gas laws (including the ideal gas equation) do not always apply. 145 At 300 C, ammonium nitrate violently decomposes to produce nitrogen gas, oxygen gas, and water vapor. What is the total volume of gas that would be produced at 1.00 atm by the decomposition of 15.0

More information

Unit 7 Thermochemistry Chemistry 020, R. R. Martin

Unit 7 Thermochemistry Chemistry 020, R. R. Martin Unit 7 Thermochemistry Chemistry 020, R. R. Martin 1. Thermochemistry Heat is a form of energy - which may take many forms: - Kinetic energy due to motion, ½ mv 2 - Potential energy due to position - Electrical

More information

CHEM 1105 S10 March 11 & 14, 2014

CHEM 1105 S10 March 11 & 14, 2014 CHEM 1105 S10 March 11 & 14, 2014 Today s topics: Thermochemistry (Chapter 6) Basic definitions Calorimetry Enthalpy Thermochemical equations Calculating heats of reaction Hess s Law Energy and Heat Some

More information

This reaction is ENDOTHERMIC. Energy is being transferred from the room/flask/etc. (the SURROUNDINGS) to the reaction itself (the SYSTEM).

This reaction is ENDOTHERMIC. Energy is being transferred from the room/flask/etc. (the SURROUNDINGS) to the reaction itself (the SYSTEM). 151 This reaction is EXOTHERMIC. Energy is transferred from the reactants and products (the SYSTEM) to the water in the flask, the flask, etc. (the SURROUNDINGS) This reaction is ENDOTHERMIC. Energy is

More information

The following gas laws describes an ideal gas, where

The following gas laws describes an ideal gas, where Alief ISD Chemistry STAAR Review Reporting Category 4: Gases and Thermochemistry C.9.A Describe and calculate the relations between volume, pressure, number of moles, and temperature for an ideal gas as

More information

11B, 11E Temperature and heat are related but not identical.

11B, 11E Temperature and heat are related but not identical. Thermochemistry Key Terms thermochemistry heat thermochemical equation calorimeter specific heat molar enthalpy of formation temperature enthalpy change enthalpy of combustion joule enthalpy of reaction

More information

Chapter 8 Thermochemistry: Chemical Energy. Chemical Thermodynamics

Chapter 8 Thermochemistry: Chemical Energy. Chemical Thermodynamics Chapter 8 Thermochemistry: Chemical Energy Chapter 8 1 Chemical Thermodynamics Chemical Thermodynamics is the study of the energetics of a chemical reaction. Thermodynamics deals with the absorption or

More information

General Chemistry I. Dr. PHAN TẠI HUÂN Faculty of Food Science and Technology Nong Lam University. Module 4: Chemical Thermodynamics

General Chemistry I. Dr. PHAN TẠI HUÂN Faculty of Food Science and Technology Nong Lam University. Module 4: Chemical Thermodynamics General Chemistry I Dr. PHAN TẠI HUÂN Faculty of Food Science and Technology Nong Lam University Module 4: Chemical Thermodynamics Zeroth Law of Thermodynamics. First Law of Thermodynamics (state quantities:

More information

Chapter 5. Thermochemistry

Chapter 5. Thermochemistry Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 5 John D. Bookstaver St. Charles Community College St. Peters, MO 2006, Prentice Hall,

More information

Chapter 8 Thermochemistry

Chapter 8 Thermochemistry William L Masterton Cecile N. Hurley http://academic.cengage.com/chemistry/masterton Chapter 8 Thermochemistry Edward J. Neth University of Connecticut Outline 1. Principles of heat flow 2. Measurement

More information

Name: Class: Date: ID: A

Name: Class: Date: ID: A Name: Class: _ Date: _ ID: A Chpter 17 review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of these phase changes is an endothermic process? a.

More information

Chapter 6. Thermochemistry. Chapter 6. Chapter 6 Thermochemistry. Chapter 6 Thermochemistry Matter vs Energy 2/16/2016

Chapter 6. Thermochemistry. Chapter 6. Chapter 6 Thermochemistry. Chapter 6 Thermochemistry Matter vs Energy 2/16/2016 Chapter 6 Thermochemistry Chapter 6 Chapter 6 Thermochemistry 6.1 Chemical Hand Warmers 6.2 The Nature of Energy: Key Definitions 6.3 The First Law of Thermodynamics: There is no Free Lunch 6.4 6.5 Measuring

More information

Chapter 6: Thermochemistry

Chapter 6: Thermochemistry Chem 1045 General Chemistry by Ebbing and Gammon, 8th Edition George W.J. Kenney, Jr Last Update: 24-Oct-2008 Chapter 6: Thermochemistry These Notes are to SUPPLIMENT the Text, They do NOT Replace reading

More information

Lecture 3. Entropy. Professor Hicks General Chemistry (CHE132) Entropy (S) - imaginary substance - associated with disorder

Lecture 3. Entropy. Professor Hicks General Chemistry (CHE132) Entropy (S) - imaginary substance - associated with disorder Lecture 3 Professor Hicks General Chemistry (CHE132) Entropy Entropy (S) - imaginary substance - associated with disorder matter or energy spreads out entropy increases Standard Entropy Change ( S o )

More information

THERMODYNAMICS. Energy changes in reactions Text chapter 3, 4, 5, 6 & 7

THERMODYNAMICS. Energy changes in reactions Text chapter 3, 4, 5, 6 & 7 1 THERMODYNAMICS Energy changes in reactions Text chapter 3, 4, 5, 6 & 7 TERMINOLOGY: Thermodynamics: study of heat changes that occur during chemical reactions. Energy (J): Cannot be seen, touched, smelled,

More information

Thermochemistry: the study of energy (in the from of heat) changes that accompany physical & chemical changes

Thermochemistry: the study of energy (in the from of heat) changes that accompany physical & chemical changes Thermochemistry Thermochemistry: the study of energy (in the from of heat) changes that accompany physical & chemical changes heat flows from high to low (hot cool) endothermic reactions: absorb energy

More information

Chapter Objectives. Chapter 9 Energy and Chemistry. Chapter Objectives. Energy Use and the World Economy. Energy Use and the World Economy

Chapter Objectives. Chapter 9 Energy and Chemistry. Chapter Objectives. Energy Use and the World Economy. Energy Use and the World Economy Chapter Objectives Larry Brown Tom Holme www.cengage.com/chemistry/brown Chapter 9 Energy and Chemistry Explain the economic importance of conversions between different forms of energy and the inevitability

More information

Thermodynamics Test Clio Invitational January 26, 2013

Thermodynamics Test Clio Invitational January 26, 2013 Thermodynamics Test Clio Invitational January 26, 2013 School Name: Team Number: Variables specified: s = specific heat C = heat capacity H f = heat of fusion H v = heat of vaporization Given information:

More information

Chapter 5. Thermochemistry

Chapter 5. Thermochemistry Chapter 5 Thermochemistry Dr. A. Al-Saadi 1 Preview Introduction to thermochemistry: Potential energy and kinetic energy. Chemical energy. Internal energy, work and heat. Exothermic vs. endothermic reactions.

More information

_ + Units of Energy. Energy in Thermochemistry. Thermochemistry. Energy flow between system and surroundings. 100º C heat 50º C

_ + Units of Energy. Energy in Thermochemistry. Thermochemistry. Energy flow between system and surroundings. 100º C heat 50º C Units of Energy Like we saw with pressure, many different units are used throughout the world for energy. SI unit for energy 1kg m 1J = 2 s 2 Joule (J) calorie (cal) erg (erg) electron volts (ev) British

More information

THERMOCHEMISTRY CHAPTER 11

THERMOCHEMISTRY CHAPTER 11 THERMOCHEMISTRY CHAPTER 11 ENERGY AND HEAT nthermochemistry: The study of the energy changes that accompany chemical reactions and changes in the physical states of matter. ENERGY AND HEAT nwork: Energy

More information

First Law of Thermodynamics: energy cannot be created or destroyed.

First Law of Thermodynamics: energy cannot be created or destroyed. 1 CHEMICAL THERMODYNAMICS ANSWERS energy = anything that has the capacity to do work work = force acting over a distance Energy (E) = Work = Force x Distance First Law of Thermodynamics: energy cannot

More information

THERMOCHEMISTRY -1. Dr. Sapna Gupta

THERMOCHEMISTRY -1. Dr. Sapna Gupta THERMOCHEMISTRY -1 Dr. Sapna Gupta THERMODYNAMICS Thermodynamics: Relationship between heat and other forms of energy Thermochemistry: Study of heat absorbed or evolved by chemical reactions. Energy: Capacity

More information

Energy Heat Work Heat Capacity Enthalpy

Energy Heat Work Heat Capacity Enthalpy Energy Heat Work Heat Capacity Enthalpy 1 Prof. Zvi C. Koren 20.07.2010 Thermodynamics vs. Kinetics Thermodynamics Thermo = Thermo + Dynamics E (Note: Absolute E can never be determined by humans!) Can

More information

Chapter 5: Thermochemistry. Problems: , , 5.100, 5.106, 5.108, , 5.121, 5.126

Chapter 5: Thermochemistry. Problems: , , 5.100, 5.106, 5.108, , 5.121, 5.126 Chapter 5: Thermochemistry Problems: 5.1-5.95, 5.97-98, 5.100, 5.106, 5.108, 5.118-5.119, 5.121, 5.126 Energy: Basic Concepts and Definitions energy: capacity to do work or to produce heat thermodynamics:

More information

Energy and Chemical Change

Energy and Chemical Change Energy and Chemical Change Section 15.1 Energy In your textbook, read about the nature of energy. In the space at the left, write true if the statement is true; if the statement is false, change the italicized

More information

Chapter 6 CONSERVATION OF ENERGY AND MATTER

Chapter 6 CONSERVATION OF ENERGY AND MATTER Chapter 6 CONSERVATION OF ENERGY AND MATTER Identifying Chemical Change (6.1) Chemical reactions: Process in which the physical and chemical properties of the original substance change as new substances

More information

Chapter 5: Thermochemistry. Molecular Kinetic Energy -Translational energy E k, translational = 1/2mv 2 -Rotational energy 5.

Chapter 5: Thermochemistry. Molecular Kinetic Energy -Translational energy E k, translational = 1/2mv 2 -Rotational energy 5. Chapter 5: Thermochemistry 1. Thermodynamics 2. Energy 3. Specific Heat 4. Enthalpy 5. Enthalpies of Reactions 6. Hess s Law 7. State Functions 8. Standard Enthalpies of Formation 9. Determining Enthalpies

More information

Chemistry 101 Chapter 10 Energy

Chemistry 101 Chapter 10 Energy Chemistry 101 Chapter 10 Energy Energy: the ability to do work or produce heat. Kinetic energy (KE): is the energy of motion. Any object that is moving has kinetic energy. Several forms of kinetic energy

More information

Energy Ability to produce change or do work. First Law of Thermodynamics. Heat (q) Quantity of thermal energy

Energy Ability to produce change or do work. First Law of Thermodynamics. Heat (q) Quantity of thermal energy THERMOCHEMISTRY Thermodynamics Study of energy and its interconversions Energy is TRANSFORMED in a chemical reaction (POTENTIAL to KINETIC) HEAT (energy transfer) is also usually produced or absorbed -SYSTEM:

More information

Mr Chiasson Advanced Chemistry 12 / Chemistry 12 1 Unit B: Thermochemical Changes

Mr Chiasson Advanced Chemistry 12 / Chemistry 12 1 Unit B: Thermochemical Changes Mr Chiasson Advanced Chemistry 12 / Chemistry 12 1 Unit B: Thermochemical Changes Students will be expected to: Compare the molar enthalpies of several combustion reactions involving organic compounds.

More information

Chemistry: The Central Science. Chapter 5: Thermochemistry

Chemistry: The Central Science. Chapter 5: Thermochemistry Chemistry: The Central Science Chapter 5: Thermochemistry Study of energy and its transformations is called thermodynamics Portion of thermodynamics that involves the relationships between chemical and

More information

CHAPTER 17: THERMOCHEMISTRY. Mrs. Brayfield

CHAPTER 17: THERMOCHEMISTRY. Mrs. Brayfield CHAPTER 17: THERMOCHEMISTRY Mrs. Brayfield REVIEW What is the law of conservation of energy? It states that energy cannot be created or destroyed So the energy of any process is the same THERMOCHEMISTRY

More information

Lecture Presentation. Chapter 5. Thermochemistry. John D. Bookstaver St. Charles Community College Cottleville, MO

Lecture Presentation. Chapter 5. Thermochemistry. John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation Chapter 5 Thermochemistry John D. Bookstaver St. Charles Community College Cottleville, MO Thermochemistry Thermodynamics is the study of energy and its transformations. Thermochemistry

More information

Chapter 5 Thermochemistry

Chapter 5 Thermochemistry Chapter 5 Thermochemistry Learning Outcomes: Interconvert energy units Distinguish between the system and the surroundings in thermodynamics Calculate internal energy from heat and work and state sign

More information

I. Energy A. Terms and Definitions B. Energy Transfer as Heat C. Energy Transfer as Work D. Internal Energy

I. Energy A. Terms and Definitions B. Energy Transfer as Heat C. Energy Transfer as Work D. Internal Energy Chapter 7 1 Thermochemistry is HOT! I. Energy A. Terms and Definitions B. Energy Transfer as Heat C. Energy Transfer as Work D. Internal Energy II. Chemistry and Energy A. Enthalpy and Enthalpies of Reaction

More information

Measuring and Expressing Enthalpy Changes. Copyright Pearson Prentice Hall. Measuring and Expressing Enthalpy Changes. Calorimetry

Measuring and Expressing Enthalpy Changes. Copyright Pearson Prentice Hall. Measuring and Expressing Enthalpy Changes. Calorimetry Measuring and Expressing Enthalpy Changes A burning match releases heat to its surroundings in all directions. How much heat does this exothermic reaction release? You will learn to measure heat flow in

More information

Energy Ability to produce change or do work. First Law of Thermodynamics. Heat (q) Quantity of thermal energy

Energy Ability to produce change or do work. First Law of Thermodynamics. Heat (q) Quantity of thermal energy THERMOCHEMISTRY Thermodynamics Study of energy and its interconversions Energy is TRANSFORMED in a chemical reaction (POTENTIAL to KINETIC) HEAT (energy transfer) is also usually produced or absorbed -SYSTEM:

More information

Introduction to Thermochemistry. Thermochemistry Unit. Definition. Terminology. Terminology. Terminology 07/04/2016. Chemistry 30

Introduction to Thermochemistry. Thermochemistry Unit. Definition. Terminology. Terminology. Terminology 07/04/2016. Chemistry 30 Thermochemistry Unit Introduction to Thermochemistry Chemistry 30 Definition Thermochemistry is the branch of chemistry concerned with the heat produced and used in chemical reactions. Most of thermochemistry

More information

Lecture Outline. 5.1 The Nature of Energy. Kinetic Energy and Potential Energy. 1 mv

Lecture Outline. 5.1 The Nature of Energy. Kinetic Energy and Potential Energy. 1 mv Chapter 5. Thermochemistry Common Student Misconceptions Students confuse power and energy. Students confuse heat with temperature. Students fail to note that the first law of thermodynamics is the law

More information

Exam 4, Enthalpy and Gases

Exam 4, Enthalpy and Gases CHEM 1100 Dr. Stone November 8, 2017 Name_ G Exam 4, Enthalpy and Gases Equations and constants you may need: ΔE system = q + w PV = nrt R = 0.0821 (L*atm)/(mole*K) w = -PΔV K.E. = 1 2 m *µ 2 rms µ rms=

More information

Thermochemistry (chapter 5)

Thermochemistry (chapter 5) Thermochemistry (chapter 5) Basic Definitions: Thermochemistry = the study of the energy changes that accompany physical and chemical changes of matter. Energy is defined as the ability to do work or the

More information

Chapter 15 Energy and Chemical Change

Chapter 15 Energy and Chemical Change Chapter 15 Energy and Chemical Change Chemical reactions usually absorb or release energy. Section 1: Energy Section 2: Heat Section 3: Thermochemical Equations Section 4: Calculating Enthalpy Change Section

More information

Chapter 5. Thermochemistry

Chapter 5. Thermochemistry Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 5 John D. Bookstaver St. Charles Community College Cottleville, MO 2009, Prentice-Hall,

More information

Thermochemistry-Part 1

Thermochemistry-Part 1 Brad Collins Thermochemistry-Part 1 Chapter 7 Thermochemistry Thermodynamics: The study of energy Thermochemistry: The study of energy in chemical reactions Energy: The capacity to do work Work = force

More information

Name Date Class THERMOCHEMISTRY

Name Date Class THERMOCHEMISTRY Name Date Class 17 THERMOCHEMISTRY SECTION 17.1 THE FLOW OF ENERGY HEAT AND WORK (pages 505 510) This section explains the relationship between energy and heat, and distinguishes between heat capacity

More information