Stat 153 Time Series. Problem Set 4

Size: px
Start display at page:

Download "Stat 153 Time Series. Problem Set 4"

Transcription

1 Stat Time Series Problem Set Problem I generated 000 observations from the MA() model with parameter 0.7 using the following R function and then fitted the ARMA(, ) model to the data. order = c(, 0, )), which gave the following output: > ma. <-arima.sim(n = 000, list(ma = 0.7)) > arima(x = ma., order = c(, 0, )) Call: arima(x = ma., order = c(, 0, )) Coefficients: ar ma ma intercept s.e sigma^ estimated as 0.98: log likelihood = -., aic = 8. Because the data have been simulated from an MA() model with parameter 0.7, I expected the estimated coefficients of ar and ma to be close to zero and the estimated coefficient of ma to be close to 0.7. However, the fitted model does not appear to be close to the model that generated the data because of parameter redundancy. The fitted model can be written as ( 0.78B)X t = ( 0.08B 0.B )W t ( 0.78B)X t = ( + 0.9B)( 0.7B)W t We see that we can almost cancel ( 0.78B) with ( 0.7B). If we could do this we would have a model that is almost AR() with parameter λ = 0.7. Thus, we conclude that although our model may not, at first glance, look close to the AR() model generating the data, in reality it is very close. Problem (a) There are many approaches here. If we look at contiguous subseries we can see that the mean for the subseries increases monotonically. We can also examine the and observe that it appears to decay roughly linearly, suggestive of a trend. In addition, you are welcome to use kpss.test(), PP.test(), adf.test(), etc. Make sure you know the null hypothesis of these tests and how to interpret the result. Again, these tests sometimes might have different outcomes (To be safe, I usually try at least two). If errors are discovered, please kindly report them to yalunsu@berkeley.edu

2 (b) > yt <- jj/lag(jj,-) > plot(yt); acf(yt); pacf(yt) Series yt Series yt yt Partial Time 0 Figure : Plot of y t, Sample, and P (c) Similar to (a), there are many approaches here. Instead of using built-in functions, we can estimate a separate auto-covariance function for disjoint, contiguous subseries and see if they are similar. The figure on the next page is a bit difficult to interpret, but it seems that different windows have markedly different sample s. Thus, we conclude the series is probably not stationary. Again, we will be open minded in grading this problem as long as you provide a valid explanation. my_acovf <- function(h, ts){ /length(ts) * sum((ts - mean(ts)) * (lag(ts, h) - mean(ts))) } my_acorf <- function(h, ts){ ts <- as.ts(ts) my_acovf(h,ts) / my_acovf(0, ts) } my_acorf_vec <- function(ts){ sapply(:(length(ts)-), my_acorf, ts = ts) } windowed_acf <- simplifyarray(tapply(jj, rep(:, each = 7), my_acorf_vec)) matplot(t(windowed_acf), type = "b")

3 t(windowed_acf) Figure : Problem > eurogdp <- read.csv(file=" > eurogdp <- as.numeric(head(t(unname(as.vector(eurogdp[,])))[-(:)], -)) Series eurogdp Series diff(eurogdp, ) Series diff(eurogdp, ) Series diff(eurogdp, ) Figure :

4 (a) Differencing at order seems the most appropriate because there is no real indication of a trend in the for this order of differencing. (b) > arima...0 <- arima(eurogdp, order= c(,,0)) > arima...0 Call: arima(x = eurogdp, order = c(,, 0)) Coefficients: ar ar s.e sigma^ estimated as 0: log likelihood = -80.9, aic = 97.7 (c) Since the best linear forecast is a linear operator, we then have Y t t+ = P(X t+ + Y t Y,, Y t ) = Y t + P(X t+ Y,, Y t ) () = Y t + X t t+ The last equality holds because X t+ is a function of X,, X t, which can, using the definition of X t be expressed as a function of Y,, Y t. (d) Y t t+ = Y t + X t t+ = Y t + λ X t + λ X t = Y t ( + λ ) + Y t (λ λ ) + λ Y t () Again, this calculation can be easily done in R. You are welcome to use predict(arima...0, ), but I used forecast package here. > forecast(arima...0,, 9) Point Forecast Lo 9 Hi Problem This is the same data we used for Problem Set. Certainly, you may find some very complex transformations/models with the lowest AIC or BIC. Nonetheless, simpler models are nice for various reasons. Also, AIC & BIC have their limitations. You will not lose any point if you have showed sufficient reasoning to support your final model provided that it is not too complicated. ARIMA models produced by auto.arima will not be accepted in this homework setting. There are many discussions on auto.arima arguing its performance, but it is a very good tool to play around with the data at the first glance.

5 (a) & (b) > df <-read.csv(file=" skip=) > df.ts <- ts(df$temp,start = 80) > acf(df.ts) > acf(diff(df.ts)) > pacf(diff(df.ts)) > fit <- Arima(df.ts,order = c(,,)) Series: df.ts ARIMA(,,) Coefficients: ar ma s.e sigma^ estimated as 0.00: log likelihood=9. AIC=-7. AICc=-7.9 BIC=-.8 > mean(diff(df.ts)) [] > sd(diff(df.ts)) [] 0. > tsdiag(fit) Series df.ts Series diff(df.ts) Series diff(df.ts) Partial Figure : of the undifferenced data and the first differences, and P of the first differences. We began by looking at the of the original data sequence, which seems to decay very slowly. In particular, the process is probably not an ARMA process. The and P of the first differences look much more plausible. If the first differences were an AR or an MA process, we

6 would expect either the or the P to cut off after a finite lag. Since this doesn t seem to happen, we will propose an ARMA model; the simplest candidate is ARIMA(,, ), so let s start with that. Using Arima function, we estimated the AR coefficient to be 0. (with a standard error of 0.0) and the MA coefficient to be 0.7 (with a standard error of 0.0). The mean (of the differenced sequence, so it corresponds to the drift of the original sequence) was estimated at with a standard error of 0.. (c) & (d) > tsdiag(fit) > shapiro.test(fit$residuals) Shapiro-Wilk normality test data: fit$residuals W = 0.997, p-value = 0. > fit <- Arima(df.ts, order=c(,,)) > fit Series: df.ts ARIMA(,,) Coefficients: ar ma ma ma s.e sigma^ estimated as 0.00: log likelihood=. AIC=-7.0 AICc=-7.8 BIC=-9. > shapiro.test(fit$residuals) Shapiro-Wilk normality test data: fit$residuals W = 0.997, p-value = 0.77 Some diagnostic plots can be seen in Figure. The correlations of the residuals were not significant, although some of were fairly close. The Shapiro Wilk test returned a fairly reasonable p-value and the QQ-plot suggests the the residuals are approximately normal. Nevertheless, we could attempt to reduce the almost-significant correlations at lags and by introducing some more MA terms. In fact, doing so reduces the AIC of the fitted model. After trying MA degrees of through, we found that an ARIMA(,, ) model had the lowest AIC (-7.0). It s Shapiro- Wilk p-value was 0.77 and the other diagnostic plots produced by tsdiag seemed reasonable (not included), but its BIC was actually higher than that of the ARIMA(,, ) model. In fact, the

7 ARIMA(,, ) model had the lowest BIC of all the alternatives we tried. Since simpler models are nice for various reasons, we decided to stick with ARIMA(,, ) for the predictions (i.e. ARMA(, ) after we difference the sequence). Standardized Residuals Time of Residuals p values for Ljung Box statistic p value lag Figure : Diagnostic plots for the ARMA(, ) model on the differenced data. Normal Q Q Plot Sample Quantiles Theoretical Quantiles Figure : Q-Q plots for the ARMA(, ) model on the differenced data. 7

8 (e) In this part, we are performing a hold-back forecasting. Thus, I redo the fitting using the data up to 00. The predictions are shown in Figure 7. > fit.holdback <- Arima(window(df.ts, end=00),order = c(,,)) > pred.matrix <- matrix(nrow =, ncol=) > pred.matrix[,] <- temp.pred$lower > pred.matrix[,] <- temp.pred$upper > pred.matrix[,] <- 0:0 > plot(window(df.ts, end=00),type="o", xlim=c(80, 08), ylim=c(-0.,.0), + ylab="global Temperature") > points(window(df.ts, start=0), col="green", type="o") > points(temp.pred$mean, col= "red", type="o") > lines(pred.matrix[,c(,)], col= "blue", lty=) > lines(pred.matrix[,c(,)], col= "blue", lty=) Global Temperature Time Figure 7: Predictions from the ARIMA(,, ) model. Otherwise, you cannot really forecast the data from 0 to 0 since the temperature data is given up to 0. 8

STAT 153, FALL 2015 HOMEWORK 1 SOLUTIONS

STAT 153, FALL 2015 HOMEWORK 1 SOLUTIONS STAT 153, FALL 015 HOMEWORK 1 SOLUTIONS Problem 1 (a) A solution in R is provided in Figure 1. We conclude that if δ = 0 the process is a random walk without drift. When δ 0 there is a linear drift with

More information

STAT 436 / Lecture 16: Key

STAT 436 / Lecture 16: Key STAT 436 / 536 - Lecture 16: Key Modeling Non-Stationary Time Series Many time series models are non-stationary. Recall a time series is stationary if the mean and variance are constant in time and the

More information

STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) Outline. Return Rate. US Gross National Product

STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) Outline. Return Rate. US Gross National Product STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) Outline 1 Building ARIMA Models 2 SARIMA 3 Homework 4c Arthur Berg STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) 2/ 34 Return Rate Suppose x t is the value

More information

Unit root problem, solution of difference equations Simple deterministic model, question of unit root

Unit root problem, solution of difference equations Simple deterministic model, question of unit root Unit root problem, solution of difference equations Simple deterministic model, question of unit root (1 φ 1 L)X t = µ, Solution X t φ 1 X t 1 = µ X t = A + Bz t with unknown z and unknown A (clearly X

More information

STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9)

STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) Outline 1 Building ARIMA Models 2 SARIMA 3 Homework 4c Arthur Berg STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) 2/ 34 Outline 1 Building ARIMA Models

More information

Ch 8. MODEL DIAGNOSTICS. Time Series Analysis

Ch 8. MODEL DIAGNOSTICS. Time Series Analysis Model diagnostics is concerned with testing the goodness of fit of a model and, if the fit is poor, suggesting appropriate modifications. We shall present two complementary approaches: analysis of residuals

More information

STAT 520 FORECASTING AND TIME SERIES 2013 FALL Homework 05

STAT 520 FORECASTING AND TIME SERIES 2013 FALL Homework 05 STAT 520 FORECASTING AND TIME SERIES 2013 FALL Homework 05 1. ibm data: The random walk model of first differences is chosen to be the suggest model of ibm data. That is (1 B)Y t = e t where e t is a mean

More information

477/577 In-class Exercise 5 : Fitting Wine Sales

477/577 In-class Exercise 5 : Fitting Wine Sales 477/577 In-class Exercise 5 : Fitting Wine Sales (due Fri 4/06/2017) Name: Use this file as a template for your report. Submit your code and comments together with (selected) output from R console. Your

More information

Forecasting using R. Rob J Hyndman. 2.4 Non-seasonal ARIMA models. Forecasting using R 1

Forecasting using R. Rob J Hyndman. 2.4 Non-seasonal ARIMA models. Forecasting using R 1 Forecasting using R Rob J Hyndman 2.4 Non-seasonal ARIMA models Forecasting using R 1 Outline 1 Autoregressive models 2 Moving average models 3 Non-seasonal ARIMA models 4 Partial autocorrelations 5 Estimation

More information

CHAPTER 8 MODEL DIAGNOSTICS. 8.1 Residual Analysis

CHAPTER 8 MODEL DIAGNOSTICS. 8.1 Residual Analysis CHAPTER 8 MODEL DIAGNOSTICS We have now discussed methods for specifying models and for efficiently estimating the parameters in those models. Model diagnostics, or model criticism, is concerned with testing

More information

Report for Fitting a Time Series Model

Report for Fitting a Time Series Model Report for Fitting a Time Series Model 1. Introduction In this report, I choose the stock price of Starbucks Corporation (SBUX) as my data to analyze. The time period for the data is from Jan 2009 to Dec

More information

Homework 5, Problem 1 Andrii Baryshpolets 6 April 2017

Homework 5, Problem 1 Andrii Baryshpolets 6 April 2017 Homework 5, Problem 1 Andrii Baryshpolets 6 April 2017 Total Private Residential Construction Spending library(quandl) Warning: package 'Quandl' was built under R version 3.3.3 Loading required package:

More information

Ch 6. Model Specification. Time Series Analysis

Ch 6. Model Specification. Time Series Analysis We start to build ARIMA(p,d,q) models. The subjects include: 1 how to determine p, d, q for a given series (Chapter 6); 2 how to estimate the parameters (φ s and θ s) of a specific ARIMA(p,d,q) model (Chapter

More information

Part 1. Multiple Choice (50 questions, 1 point each) Part 2. Problems/Short Answer (10 questions, 5 points each)

Part 1. Multiple Choice (50 questions, 1 point each) Part 2. Problems/Short Answer (10 questions, 5 points each) GROUND RULES: This exam contains two parts: Part 1. Multiple Choice (50 questions, 1 point each) Part 2. Problems/Short Answer (10 questions, 5 points each) The maximum number of points on this exam is

More information

Time Series I Time Domain Methods

Time Series I Time Domain Methods Astrostatistics Summer School Penn State University University Park, PA 16802 May 21, 2007 Overview Filtering and the Likelihood Function Time series is the study of data consisting of a sequence of DEPENDENT

More information

Forecasting using R. Rob J Hyndman. 2.5 Seasonal ARIMA models. Forecasting using R 1

Forecasting using R. Rob J Hyndman. 2.5 Seasonal ARIMA models. Forecasting using R 1 Forecasting using R Rob J Hyndman 2.5 Seasonal ARIMA models Forecasting using R 1 Outline 1 Backshift notation reviewed 2 Seasonal ARIMA models 3 ARIMA vs ETS 4 Lab session 12 Forecasting using R Backshift

More information

Lecture 6a: Unit Root and ARIMA Models

Lecture 6a: Unit Root and ARIMA Models Lecture 6a: Unit Root and ARIMA Models 1 2 Big Picture A time series is non-stationary if it contains a unit root unit root nonstationary The reverse is not true. For example, y t = cos(t) + u t has no

More information

Lecture 5: Estimation of time series

Lecture 5: Estimation of time series Lecture 5, page 1 Lecture 5: Estimation of time series Outline of lesson 5 (chapter 4) (Extended version of the book): a.) Model formulation Explorative analyses Model formulation b.) Model estimation

More information

Forecasting using R. Rob J Hyndman. 3.2 Dynamic regression. Forecasting using R 1

Forecasting using R. Rob J Hyndman. 3.2 Dynamic regression. Forecasting using R 1 Forecasting using R Rob J Hyndman 3.2 Dynamic regression Forecasting using R 1 Outline 1 Regression with ARIMA errors 2 Stochastic and deterministic trends 3 Periodic seasonality 4 Lab session 14 5 Dynamic

More information

Package TimeSeries.OBeu

Package TimeSeries.OBeu Type Package Package TimeSeries.OBeu Title Time Series Analysis 'OpenBudgets' Version 1.2.2 Date 2018-01-20 January 22, 2018 Estimate and return the needed parameters for visualisations designed for 'OpenBudgets'

More information

Homework 4. 1 Data analysis problems

Homework 4. 1 Data analysis problems Homework 4 1 Data analysis problems This week we will be analyzing a number of data sets. We are going to build ARIMA models using the steps outlined in class. It is also a good idea to read section 3.8

More information

Time Series Analysis of United States of America Crude Oil and Petroleum Products Importations from Saudi Arabia

Time Series Analysis of United States of America Crude Oil and Petroleum Products Importations from Saudi Arabia International Journal of Applied Science and Technology Vol. 5, No. 5; October 2015 Time Series Analysis of United States of America Crude Oil and Petroleum Products Importations from Saudi Arabia Olayan

More information

Chapter 8: Model Diagnostics

Chapter 8: Model Diagnostics Chapter 8: Model Diagnostics Model diagnostics involve checking how well the model fits. If the model fits poorly, we consider changing the specification of the model. A major tool of model diagnostics

More information

The log transformation produces a time series whose variance can be treated as constant over time.

The log transformation produces a time series whose variance can be treated as constant over time. TAT 520 Homework 6 Fall 2017 Note: Problem 5 is mandatory for graduate students and extra credit for undergraduates. 1) The quarterly earnings per share for 1960-1980 are in the object in the TA package.

More information

Transformations for variance stabilization

Transformations for variance stabilization FORECASTING USING R Transformations for variance stabilization Rob Hyndman Author, forecast Variance stabilization If the data show increasing variation as the level of the series increases, then a transformation

More information

Univariate ARIMA Models

Univariate ARIMA Models Univariate ARIMA Models ARIMA Model Building Steps: Identification: Using graphs, statistics, ACFs and PACFs, transformations, etc. to achieve stationary and tentatively identify patterns and model components.

More information

AR(p) + I(d) + MA(q) = ARIMA(p, d, q)

AR(p) + I(d) + MA(q) = ARIMA(p, d, q) AR(p) + I(d) + MA(q) = ARIMA(p, d, q) Outline 1 4.1: Nonstationarity in the Mean 2 ARIMA Arthur Berg AR(p) + I(d)+ MA(q) = ARIMA(p, d, q) 2/ 19 Deterministic Trend Models Polynomial Trend Consider the

More information

ibm: daily closing IBM stock prices (dates not given) internet: number of users logged on to an Internet server each minute (dates/times not given)

ibm: daily closing IBM stock prices (dates not given) internet: number of users logged on to an Internet server each minute (dates/times not given) Remark: Problem 1 is the most important problem on this assignment (it will prepare you for your project). Problem 2 was taken largely from last year s final exam. Problem 3 consists of a bunch of rambling

More information

Case Study: Modelling Industrial Dryer Temperature Arun K. Tangirala 11/19/2016

Case Study: Modelling Industrial Dryer Temperature Arun K. Tangirala 11/19/2016 Case Study: Modelling Industrial Dryer Temperature Arun K. Tangirala 11/19/2016 Background This is a case study concerning time-series modelling of the temperature of an industrial dryer. Data set contains

More information

TIME SERIES ANALYSIS AND FORECASTING USING THE STATISTICAL MODEL ARIMA

TIME SERIES ANALYSIS AND FORECASTING USING THE STATISTICAL MODEL ARIMA CHAPTER 6 TIME SERIES ANALYSIS AND FORECASTING USING THE STATISTICAL MODEL ARIMA 6.1. Introduction A time series is a sequence of observations ordered in time. A basic assumption in the time series analysis

More information

FORECASTING USING R. Dynamic regression. Rob Hyndman Author, forecast

FORECASTING USING R. Dynamic regression. Rob Hyndman Author, forecast FORECASTING USING R Dynamic regression Rob Hyndman Author, forecast Dynamic regression Regression model with ARIMA errors y t = β 0 + β 1 x 1,t + + β r x r,t + e t y t modeled as function of r explanatory

More information

Stat 565. Spurious Regression. Charlotte Wickham. stat565.cwick.co.nz. Feb

Stat 565. Spurious Regression. Charlotte Wickham. stat565.cwick.co.nz. Feb Stat 565 Spurious Regression Feb 16 2016 Charlotte Wickham stat565.cwick.co.nz Last time: We can extend regression to deal with correlated errors. Today: Explore the concept of spurious correlation/regression

More information

Circle a single answer for each multiple choice question. Your choice should be made clearly.

Circle a single answer for each multiple choice question. Your choice should be made clearly. TEST #1 STA 4853 March 4, 215 Name: Please read the following directions. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO Directions This exam is closed book and closed notes. There are 31 questions. Circle

More information

COMPUTER SESSION 3: ESTIMATION AND FORECASTING.

COMPUTER SESSION 3: ESTIMATION AND FORECASTING. UPPSALA UNIVERSITY Department of Mathematics JR Analysis of Time Series 1MS014 Spring 2010 COMPUTER SESSION 3: ESTIMATION AND FORECASTING. 1 Introduction The purpose of this exercise is two-fold: (i) By

More information

Analysis of Violent Crime in Los Angeles County

Analysis of Violent Crime in Los Angeles County Analysis of Violent Crime in Los Angeles County Xiaohong Huang UID: 004693375 March 20, 2017 Abstract Violent crime can have a negative impact to the victims and the neighborhoods. It can affect people

More information

Solar irradiance forecasting for Chulalongkorn University location using time series models

Solar irradiance forecasting for Chulalongkorn University location using time series models Senior Project Proposal 2102490 Year 2016 Solar irradiance forecasting for Chulalongkorn University location using time series models Vichaya Layanun ID 5630550721 Advisor: Assist. Prof. Jitkomut Songsiri

More information

Final Examination 7/6/2011

Final Examination 7/6/2011 The Islamic University of Gaza Faculty of Commerce Department of Economics & Applied Statistics Time Series Analysis - Dr. Samir Safi Spring Semester 211 Final Examination 7/6/211 Name: ID: INSTRUCTIONS:

More information

CHAPTER 8 FORECASTING PRACTICE I

CHAPTER 8 FORECASTING PRACTICE I CHAPTER 8 FORECASTING PRACTICE I Sometimes we find time series with mixed AR and MA properties (ACF and PACF) We then can use mixed models: ARMA(p,q) These slides are based on: González-Rivera: Forecasting

More information

Lab: Box-Jenkins Methodology - US Wholesale Price Indicator

Lab: Box-Jenkins Methodology - US Wholesale Price Indicator Lab: Box-Jenkins Methodology - US Wholesale Price Indicator In this lab we explore the Box-Jenkins methodology by applying it to a time-series data set comprising quarterly observations of the US Wholesale

More information

FORECASTING SUGARCANE PRODUCTION IN INDIA WITH ARIMA MODEL

FORECASTING SUGARCANE PRODUCTION IN INDIA WITH ARIMA MODEL FORECASTING SUGARCANE PRODUCTION IN INDIA WITH ARIMA MODEL B. N. MANDAL Abstract: Yearly sugarcane production data for the period of - to - of India were analyzed by time-series methods. Autocorrelation

More information

The data was collected from the website and then converted to a time-series indexed from 1 to 86.

The data was collected from the website  and then converted to a time-series indexed from 1 to 86. Introduction For our group project, we analyzed the S&P 500s futures from 30 November, 2015 till 28 March, 2016. The S&P 500 futures give a reasonable estimate of the changes in the market in the short

More information

COMPUTER SESSION: ARMA PROCESSES

COMPUTER SESSION: ARMA PROCESSES UPPSALA UNIVERSITY Department of Mathematics Jesper Rydén Stationary Stochastic Processes 1MS025 Autumn 2010 COMPUTER SESSION: ARMA PROCESSES 1 Introduction In this computer session, we work within the

More information

Circle the single best answer for each multiple choice question. Your choice should be made clearly.

Circle the single best answer for each multiple choice question. Your choice should be made clearly. TEST #1 STA 4853 March 6, 2017 Name: Please read the following directions. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO Directions This exam is closed book and closed notes. There are 32 multiple choice

More information

Scenario 5: Internet Usage Solution. θ j

Scenario 5: Internet Usage Solution. θ j Scenario : Internet Usage Solution Some more information would be interesting about the study in order to know if we can generalize possible findings. For example: Does each data point consist of the total

More information

Modelling using ARMA processes

Modelling using ARMA processes Modelling using ARMA processes Step 1. ARMA model identification; Step 2. ARMA parameter estimation Step 3. ARMA model selection ; Step 4. ARMA model checking; Step 5. forecasting from ARMA models. 33

More information

2. An Introduction to Moving Average Models and ARMA Models

2. An Introduction to Moving Average Models and ARMA Models . An Introduction to Moving Average Models and ARMA Models.1 White Noise. The MA(1) model.3 The MA(q) model..4 Estimation and forecasting of MA models..5 ARMA(p,q) models. The Moving Average (MA) models

More information

Decision 411: Class 9. HW#3 issues

Decision 411: Class 9. HW#3 issues Decision 411: Class 9 Presentation/discussion of HW#3 Introduction to ARIMA models Rules for fitting nonseasonal models Differencing and stationarity Reading the tea leaves : : ACF and PACF plots Unit

More information

INTRODUCTION TO TIME SERIES ANALYSIS. The Simple Moving Average Model

INTRODUCTION TO TIME SERIES ANALYSIS. The Simple Moving Average Model INTRODUCTION TO TIME SERIES ANALYSIS The Simple Moving Average Model The Simple Moving Average Model The simple moving average (MA) model: More formally: where t is mean zero white noise (WN). Three parameters:

More information

Modeling and forecasting global mean temperature time series

Modeling and forecasting global mean temperature time series Modeling and forecasting global mean temperature time series April 22, 2018 Abstract: An ARIMA time series model was developed to analyze the yearly records of the change in global annual mean surface

More information

Minitab Project Report - Assignment 6

Minitab Project Report - Assignment 6 .. Sunspot data Minitab Project Report - Assignment Time Series Plot of y Time Series Plot of X y X 7 9 7 9 The data have a wavy pattern. However, they do not show any seasonality. There seem to be an

More information

5 Autoregressive-Moving-Average Modeling

5 Autoregressive-Moving-Average Modeling 5 Autoregressive-Moving-Average Modeling 5. Purpose. Autoregressive-moving-average (ARMA models are mathematical models of the persistence, or autocorrelation, in a time series. ARMA models are widely

More information

Ch 7 : Regression in Time Series

Ch 7 : Regression in Time Series Spring 2017 UAkron Dept. of Stats [3470 : 477/577] Time Series Analysis Ch 7 : Regression in Time Series Contents 1 Regressing Stationary TS 2 1.1 OLS and GLS..................................................................

More information

On Autoregressive Order Selection Criteria

On Autoregressive Order Selection Criteria On Autoregressive Order Selection Criteria Venus Khim-Sen Liew Faculty of Economics and Management, Universiti Putra Malaysia, 43400 UPM, Serdang, Malaysia This version: 1 March 2004. Abstract This study

More information

FE570 Financial Markets and Trading. Stevens Institute of Technology

FE570 Financial Markets and Trading. Stevens Institute of Technology FE570 Financial Markets and Trading Lecture 5. Linear Time Series Analysis and Its Applications (Ref. Joel Hasbrouck - Empirical Market Microstructure ) Steve Yang Stevens Institute of Technology 9/25/2012

More information

The ARIMA Procedure: The ARIMA Procedure

The ARIMA Procedure: The ARIMA Procedure Page 1 of 120 Overview: ARIMA Procedure Getting Started: ARIMA Procedure The Three Stages of ARIMA Modeling Identification Stage Estimation and Diagnostic Checking Stage Forecasting Stage Using ARIMA Procedure

More information

Stat 565. (S)Arima & Forecasting. Charlotte Wickham. stat565.cwick.co.nz. Feb

Stat 565. (S)Arima & Forecasting. Charlotte Wickham. stat565.cwick.co.nz. Feb Stat 565 (S)Arima & Forecasting Feb 2 2016 Charlotte Wickham stat565.cwick.co.nz Today A note from HW #3 Pick up with ARIMA processes Introduction to forecasting HW #3 The sample autocorrelation coefficients

More information

1 Quantitative Techniques in Practice

1 Quantitative Techniques in Practice 1 Quantitative Techniques in Practice 1.1 Lecture 2: Stationarity, spurious regression, etc. 1.1.1 Overview In the rst part we shall look at some issues in time series economics. In the second part we

More information

Subject-specific observed profiles of log(fev1) vs age First 50 subjects in Six Cities Study

Subject-specific observed profiles of log(fev1) vs age First 50 subjects in Six Cities Study Subject-specific observed profiles of log(fev1) vs age First 50 subjects in Six Cities Study 1.4 0.0-6 7 8 9 10 11 12 13 14 15 16 17 18 19 age Model 1: A simple broken stick model with knot at 14 fit with

More information

Package atsa. July 8, 2015

Package atsa. July 8, 2015 Type Package Title Alternative Time Series Analysis Version 3.1.2 Date 2015-06-19 Author Maintainer Package atsa July 8, 2015 Contains some tools for testing, analyzing time series data

More information

Dynamic Time Series Regression: A Panacea for Spurious Correlations

Dynamic Time Series Regression: A Panacea for Spurious Correlations International Journal of Scientific and Research Publications, Volume 6, Issue 10, October 2016 337 Dynamic Time Series Regression: A Panacea for Spurious Correlations Emmanuel Alphonsus Akpan *, Imoh

More information

Analyzing And Predicting The Average Monthly Price of Gold. Like many other precious gemstones and metals, the high volume of sales and

Analyzing And Predicting The Average Monthly Price of Gold. Like many other precious gemstones and metals, the high volume of sales and Analyzing And Predicting The Average Monthly Price of Gold Lucas Van Cleef Professor Madonia Economic Forecasting 7/16/16 Like many other precious gemstones and metals, the high volume of sales and consumption

More information

Autoregressive Integrated Moving Average Model to Predict Graduate Unemployment in Indonesia

Autoregressive Integrated Moving Average Model to Predict Graduate Unemployment in Indonesia DOI 10.1515/ptse-2017-0005 PTSE 12 (1): 43-50 Autoregressive Integrated Moving Average Model to Predict Graduate Unemployment in Indonesia Umi MAHMUDAH u_mudah@yahoo.com (State Islamic University of Pekalongan,

More information

arxiv: v1 [stat.co] 11 Dec 2012

arxiv: v1 [stat.co] 11 Dec 2012 Simulating the Continuation of a Time Series in R December 12, 2012 arxiv:1212.2393v1 [stat.co] 11 Dec 2012 Halis Sak 1 Department of Industrial and Systems Engineering, Yeditepe University, Kayışdağı,

More information

Regression: Main Ideas Setting: Quantitative outcome with a quantitative explanatory variable. Example, cont.

Regression: Main Ideas Setting: Quantitative outcome with a quantitative explanatory variable. Example, cont. TCELL 9/4/205 36-309/749 Experimental Design for Behavioral and Social Sciences Simple Regression Example Male black wheatear birds carry stones to the nest as a form of sexual display. Soler et al. wanted

More information

Box-Jenkins ARIMA Advanced Time Series

Box-Jenkins ARIMA Advanced Time Series Box-Jenkins ARIMA Advanced Time Series www.realoptionsvaluation.com ROV Technical Papers Series: Volume 25 Theory In This Issue 1. Learn about Risk Simulator s ARIMA and Auto ARIMA modules. 2. Find out

More information

Classic Time Series Analysis

Classic Time Series Analysis Classic Time Series Analysis Concepts and Definitions Let Y be a random number with PDF f Y t ~f,t Define t =E[Y t ] m(t) is known as the trend Define the autocovariance t, s =COV [Y t,y s ] =E[ Y t t

More information

over Time line for the means). Specifically, & covariances) just a fixed variance instead. PROC MIXED: to 1000 is default) list models with TYPE=VC */

over Time line for the means). Specifically, & covariances) just a fixed variance instead. PROC MIXED: to 1000 is default) list models with TYPE=VC */ CLP 944 Example 4 page 1 Within-Personn Fluctuation in Symptom Severity over Time These data come from a study of weekly fluctuation in psoriasis severity. There was no intervention and no real reason

More information

Read Section 1.1, Examples of time series, on pages 1-8. These example introduce the book; you are not tested on them.

Read Section 1.1, Examples of time series, on pages 1-8. These example introduce the book; you are not tested on them. TS Module 1 Time series overview (The attached PDF file has better formatting.)! Model building! Time series plots Read Section 1.1, Examples of time series, on pages 1-8. These example introduce the book;

More information

Solar irradiance forecasting for Chulalongkorn University location using time series models

Solar irradiance forecasting for Chulalongkorn University location using time series models Senior Project Proposal 2102499 Year 2016 Solar irradiance forecasting for Chulalongkorn University location using time series models Vichaya Layanun ID 5630550721 Advisor: Assist. Prof. Jitkomut Songsiri

More information

Estimation and application of best ARIMA model for forecasting the uranium price.

Estimation and application of best ARIMA model for forecasting the uranium price. Estimation and application of best ARIMA model for forecasting the uranium price. Medeu Amangeldi May 13, 2018 Capstone Project Superviser: Dongming Wei Second reader: Zhenisbek Assylbekov Abstract This

More information

Volatility. Gerald P. Dwyer. February Clemson University

Volatility. Gerald P. Dwyer. February Clemson University Volatility Gerald P. Dwyer Clemson University February 2016 Outline 1 Volatility Characteristics of Time Series Heteroskedasticity Simpler Estimation Strategies Exponentially Weighted Moving Average Use

More information

36-309/749 Experimental Design for Behavioral and Social Sciences. Sep. 22, 2015 Lecture 4: Linear Regression

36-309/749 Experimental Design for Behavioral and Social Sciences. Sep. 22, 2015 Lecture 4: Linear Regression 36-309/749 Experimental Design for Behavioral and Social Sciences Sep. 22, 2015 Lecture 4: Linear Regression TCELL Simple Regression Example Male black wheatear birds carry stones to the nest as a form

More information

ITSM-R Reference Manual

ITSM-R Reference Manual ITSM-R Reference Manual George Weigt February 11, 2018 1 Contents 1 Introduction 3 1.1 Time series analysis in a nutshell............................... 3 1.2 White Noise Variance.....................................

More information

Hypothesis testing, part 2. With some material from Howard Seltman, Blase Ur, Bilge Mutlu, Vibha Sazawal

Hypothesis testing, part 2. With some material from Howard Seltman, Blase Ur, Bilge Mutlu, Vibha Sazawal Hypothesis testing, part 2 With some material from Howard Seltman, Blase Ur, Bilge Mutlu, Vibha Sazawal 1 CATEGORICAL IV, NUMERIC DV 2 Independent samples, one IV # Conditions Normal/Parametric Non-parametric

More information

Basics: Definitions and Notation. Stationarity. A More Formal Definition

Basics: Definitions and Notation. Stationarity. A More Formal Definition Basics: Definitions and Notation A Univariate is a sequence of measurements of the same variable collected over (usually regular intervals of) time. Usual assumption in many time series techniques is that

More information

Comment about AR spectral estimation Usually an estimate is produced by computing the AR theoretical spectrum at (ˆφ, ˆσ 2 ). With our Monte Carlo

Comment about AR spectral estimation Usually an estimate is produced by computing the AR theoretical spectrum at (ˆφ, ˆσ 2 ). With our Monte Carlo Comment aout AR spectral estimation Usually an estimate is produced y computing the AR theoretical spectrum at (ˆφ, ˆσ 2 ). With our Monte Carlo simulation approach, for every draw (φ,σ 2 ), we can compute

More information

Intervention Analysis and Transfer Function Models

Intervention Analysis and Transfer Function Models Chapter 7 Intervention Analysis and Transfer Function Models The idea in intervention analysis and transfer function models is to generalize the univariate methods studies previously to allow the time

More information

Solution to Series 6

Solution to Series 6 Dr. M. Dettling Applied Series Analysis SS 2014 Solution to Series 6 1. a) > r.bel.lm summary(r.bel.lm) Call: lm(formula = NURSING ~., data = d.beluga) Residuals: Min 1Q

More information

Advanced Econometrics

Advanced Econometrics Advanced Econometrics Marco Sunder Nov 04 2010 Marco Sunder Advanced Econometrics 1/ 25 Contents 1 2 3 Marco Sunder Advanced Econometrics 2/ 25 Music Marco Sunder Advanced Econometrics 3/ 25 Music Marco

More information

Forecasting with ARIMA models This version: 14 January 2018

Forecasting with ARIMA models This version: 14 January 2018 Forecasting with ARIMA models This version: 14 January 2018 Notes for Intermediate Econometrics / Time Series Analysis and Forecasting Anthony Tay Elsewhere we showed that the optimal forecast for a mean

More information

Chapter 3, Part V: More on Model Identification; Examples

Chapter 3, Part V: More on Model Identification; Examples Chapter 3, Part V: More on Model Identification; Examples Automatic Model Identification Through AIC As mentioned earlier, there is a clear need for automatic, objective methods of identifying the best

More information

Topic 4 Unit Roots. Gerald P. Dwyer. February Clemson University

Topic 4 Unit Roots. Gerald P. Dwyer. February Clemson University Topic 4 Unit Roots Gerald P. Dwyer Clemson University February 2016 Outline 1 Unit Roots Introduction Trend and Difference Stationary Autocorrelations of Series That Have Deterministic or Stochastic Trends

More information

MIXED MODELS FOR REPEATED (LONGITUDINAL) DATA PART 2 DAVID C. HOWELL 4/1/2010

MIXED MODELS FOR REPEATED (LONGITUDINAL) DATA PART 2 DAVID C. HOWELL 4/1/2010 MIXED MODELS FOR REPEATED (LONGITUDINAL) DATA PART 2 DAVID C. HOWELL 4/1/2010 Part 1 of this document can be found at http://www.uvm.edu/~dhowell/methods/supplements/mixed Models for Repeated Measures1.pdf

More information

Forecasting Bangladesh's Inflation through Econometric Models

Forecasting Bangladesh's Inflation through Econometric Models American Journal of Economics and Business Administration Original Research Paper Forecasting Bangladesh's Inflation through Econometric Models 1,2 Nazmul Islam 1 Department of Humanities, Bangladesh University

More information

Name Solutions Linear Algebra; Test 3. Throughout the test simplify all answers except where stated otherwise.

Name Solutions Linear Algebra; Test 3. Throughout the test simplify all answers except where stated otherwise. Name Solutions Linear Algebra; Test 3 Throughout the test simplify all answers except where stated otherwise. 1) Find the following: (10 points) ( ) Or note that so the rows are linearly independent, so

More information

FORECASTING OF COTTON PRODUCTION IN INDIA USING ARIMA MODEL

FORECASTING OF COTTON PRODUCTION IN INDIA USING ARIMA MODEL FORECASTING OF COTTON PRODUCTION IN INDIA USING ARIMA MODEL S.Poyyamozhi 1, Dr. A. Kachi Mohideen 2. 1 Assistant Professor and Head, Department of Statistics, Government Arts College (Autonomous), Kumbakonam

More information

Chapter 3: Regression Methods for Trends

Chapter 3: Regression Methods for Trends Chapter 3: Regression Methods for Trends Time series exhibiting trends over time have a mean function that is some simple function (not necessarily constant) of time. The example random walk graph from

More information

Multiple Linear Regression (solutions to exercises)

Multiple Linear Regression (solutions to exercises) Chapter 6 1 Chapter 6 Multiple Linear Regression (solutions to exercises) Chapter 6 CONTENTS 2 Contents 6 Multiple Linear Regression (solutions to exercises) 1 6.1 Nitrate concentration..........................

More information

Chapter 12: An introduction to Time Series Analysis. Chapter 12: An introduction to Time Series Analysis

Chapter 12: An introduction to Time Series Analysis. Chapter 12: An introduction to Time Series Analysis Chapter 12: An introduction to Time Series Analysis Introduction In this chapter, we will discuss forecasting with single-series (univariate) Box-Jenkins models. The common name of the models is Auto-Regressive

More information

Spectral Analysis. Al Nosedal University of Toronto. Winter Al Nosedal University of Toronto Spectral Analysis Winter / 71

Spectral Analysis. Al Nosedal University of Toronto. Winter Al Nosedal University of Toronto Spectral Analysis Winter / 71 Spectral Analysis Al Nosedal University of Toronto Winter 2016 Al Nosedal University of Toronto Spectral Analysis Winter 2016 1 / 71 essentially, all models are wrong, but some are useful George E. P.

More information

STAT Financial Time Series

STAT Financial Time Series STAT 6104 - Financial Time Series Chapter 4 - Estimation in the time Domain Chun Yip Yau (CUHK) STAT 6104:Financial Time Series 1 / 46 Agenda 1 Introduction 2 Moment Estimates 3 Autoregressive Models (AR

More information

A stochastic modeling for paddy production in Tamilnadu

A stochastic modeling for paddy production in Tamilnadu 2017; 2(5): 14-21 ISSN: 2456-1452 Maths 2017; 2(5): 14-21 2017 Stats & Maths www.mathsjournal.com Received: 04-07-2017 Accepted: 05-08-2017 M Saranyadevi Assistant Professor (GUEST), Department of Statistics,

More information

Homework 2. For the homework, be sure to give full explanations where required and to turn in any relevant plots.

Homework 2. For the homework, be sure to give full explanations where required and to turn in any relevant plots. Homework 2 1 Data analysis problems For the homework, be sure to give full explanations where required and to turn in any relevant plots. 1. The file berkeley.dat contains average yearly temperatures for

More information

Lecture Notes of Bus (Spring 2017) Analysis of Financial Time Series Ruey S. Tsay

Lecture Notes of Bus (Spring 2017) Analysis of Financial Time Series Ruey S. Tsay Lecture Notes of Bus 41202 (Spring 2017) Analysis of Financial Time Series Ruey S. Tsay Simple AR models: (Regression with lagged variables.) Motivating example: The growth rate of U.S. quarterly real

More information

Part 1. Multiple Choice (40 questions, 1 point each) Part 2. Problems/Short Answer (10 questions, 6 points each)

Part 1. Multiple Choice (40 questions, 1 point each) Part 2. Problems/Short Answer (10 questions, 6 points each) GROUND RULES: This exam contains two parts: Part 1. Multiple Choice (40 questions, 1 point each) Part 2. Problems/Short Answer (10 questions, 6 points each) The maximum number of points on this exam is

More information

MODELING INFLATION RATES IN NIGERIA: BOX-JENKINS APPROACH. I. U. Moffat and A. E. David Department of Mathematics & Statistics, University of Uyo, Uyo

MODELING INFLATION RATES IN NIGERIA: BOX-JENKINS APPROACH. I. U. Moffat and A. E. David Department of Mathematics & Statistics, University of Uyo, Uyo Vol.4, No.2, pp.2-27, April 216 MODELING INFLATION RATES IN NIGERIA: BOX-JENKINS APPROACH I. U. Moffat and A. E. David Department of Mathematics & Statistics, University of Uyo, Uyo ABSTRACT: This study

More information

Chapter 2: Unit Roots

Chapter 2: Unit Roots Chapter 2: Unit Roots 1 Contents: Lehrstuhl für Department Empirische of Wirtschaftsforschung Empirical Research and undeconometrics II. Unit Roots... 3 II.1 Integration Level... 3 II.2 Nonstationarity

More information

Firstly, the dataset is cleaned and the years and months are separated to provide better distinction (sample below).

Firstly, the dataset is cleaned and the years and months are separated to provide better distinction (sample below). Project: Forecasting Sales Step 1: Plan Your Analysis Answer the following questions to help you plan out your analysis: 1. Does the dataset meet the criteria of a time series dataset? Make sure to explore

More information

0.1 ARIMA: ARIMA Models for Time Series Data

0.1 ARIMA: ARIMA Models for Time Series Data 0.1 ARIMA: ARIMA Models for Time Series Data Use auto-regressive, integrated, moving-average (ARIMA) models for time series data. A time series is a set of observations ordered according to the time they

More information