Vehicle Routing and MIP

Size: px
Start display at page:

Download "Vehicle Routing and MIP"

Transcription

1 CORE, Université Catholique de Louvain 5th Porto Meeting on Mathematics for Industry, 11th April 2014

2 Contents: The Capacitated Vehicle Routing Problem Subproblems: Trees and the TSP CVRP Cutting Planes Column Generation Robust Branch-and-Price-and Cut An Inventory Routing Problem

3 The Capacitated Vehicle Routing Problem

4 Single Depot. Single Period K vehicles can make tours beginning and ending at the depot Client i has a demand q i and is served by exactly one vehicle Each vehicle has capacity Q. The objective is to find subtours for the K vehicles such that the amount delivered by each vehicle does not exceed Q, the demand of each client is satisfied and the total travel cost/distance is minimized.

5 Modelling Connectivity: Spanning Trees Graph G = (V, E) with edge costs c e for e E. Let y e = 1 if e is in the tree. min e E c ey e e E(S) y e S 1 S V e E y e = V 1 y R E + where E(S) = {e = (i, j) E : i, j S}. This linear program is tight. The subtour elimination constraints (SECs) describe the convex hull of the spanning trees, but there is an exponential number of constraints.

6 Separation of SECs Given a point ŷ R E +, when does it violate one of the SECs? We formulate this question as an IP. Let α i = 1 if i S. We have to check whether there exists α {0, 1} V such that e=(i,j) E ŷ e α i α j i V α i > 1. This is a quadratic 0-1 integer program of the form: max α T Qα pα. α {0,1} V It is well known that such IPs can be solved as max flow/min cut problems when Q 0.

7 An Extended Multicommodity" Formulation How else can one ensure connectivity? One way: Construct a graph in which there is a path (one can send a flow) from one node (r = 1) to all the others. f k ij is the flow (commodity k) in arc (i, j) on the path from r to k. j j f k ij j f k ij j f k ji = 0 i k, r f k ji = 1 i = k f k ij + f k ji y e e E f k ij 0 i, j, k This formulation is as strong as that with subtours, but it has O(V 3 ) variables.

8 The Traveling Salesman Problem: Formulation 1 Symmetric Version c ij = c ji = c e y e = 1 if edge e in the tour min e E c ey e e δ(v) y e = 2 i V e E(S) y e S 1 S V y [0, 1] E SECS can be replaced by cut" inequalities y e 2 S V. e δ(s)

9 The Traveling Salesman Problem: Formulation 2 Weak Extended Formulation (Directed): u i is position of node i in the tour starting with node 1 in position 0 (u 1 = 0). u j u i x ij (n 2)(1 x ij ) (i, j), j 1 x ij = 1 i j x ij = 1 j i y e = x ij + x ji e x Z A +, u Zn + Useful if one wants a compact valid formulation.

10 Formulations of CVRP xij k zi k = 1 if arc (i, j) in tour of vehicle k = 1if client i visited by vehicle k min cij k xk ij k ij xij k = zj k k, j, j 0, i xij k = zi k k, i, i 0, j x0j k = z0 k k j d i zi k Cz0 k k i zi k = 1 i k x k ij, zk i {0, 1}

11 Formulations of CVRP with 2 Indices ij δ( S,S) x ij min c ij x ij ij x ij = 1 j 0, i x ij = 1 i 0, j x 0j = K j i S d i S V C x ij {0, 1}

12 Valid Inequalities and Separation 1. Separation of ij δ( S,S) x i S ij d i Separation of ij δ( S,S) x ij 2. Generalized Large Multistar e δ(s) i S d i C C? y e 2 ( d(s)+ d j ( C j/ S is polynomial. e δ(s:{j}) y e ) )

13 Column Generation A natural idea is to have columns corresponding to feasible subtours for a vehicle. The problem is then just to select a set of K subtours such that each client is visited once. The trouble with this is that the column generation subproblem is a prize-collecting traveling salesman problem that is almost as hard as the original problem. So the typical approach is to look at a larger set of columns that includes all the feasible subtours, but for which the column generation problem is more tractable.

14 q-routes A q-route is a walk starting and ending at the depot visiting the clients 0,1, or more times but with total demand at most C. Note that each time a client i is visited, his demand d i is counted again. Suppose n = 4, C = 13 and d = (2, 4, 5, 7). A feasible subtour is for example with i d i = 9. A q-route, that is not a feasible subtour, is with i d i = is a q-route without a 2-cycle as i d i = 13 C. A minimum cost q-route without 2-cycles can be found by dynamic programming.

15 Naive DP for q-routes f(i, j, k) is the min cost of a walk starting at the depot and ending with visits to i, then j in which k units are delivered. Min Cost q-route is f(i, j, k) = min p:p j [f(p, i, k d j)+ c ij ] min [f(i, j, k) + c 0j]. i,j,k C

16 Column Generation with q-routes without 2-cycles Let qj e be the coefficient of edge e in q-route j with variable λ j. One has p j=1 qe j λ j x e = 0 e E p j=1 λ j = K e δ(i) x e = 2 i V x e 0 e E 0 j = 1,...,p λ j

17 The Master Problem e δ(i) x e = 2 i V e δ(0) x e = 2K e δ(s) x e 2k(S) S V x e 1 e E \δ(0) p j=1 qe j λ j x e = 0 e E p j=1 λ j = K x e 0 e E λ j 0 j = 1,...,p

18 The Master Problem p min l eqj e λ j j=1 e E p µ qj e λ j j=1 e δ(i) p ν qj e λ j j=1 e δ(0) p π qj e λ j j=1 e δ(s) p ω qj e λ j j=1 λ j = 2 i V = 2K 2k(S) S V 1 e E \δ(0) 0 j = 1,...,p Reduced cost of x e: l e µ i µ j e δ(s) π S ω e e E \δ(0) l e µ j ν e δ(s) π S e δ(0)

19 d = (2, 4, 5), C = 10 w 1 w 2 w 3 w 12 u cw = v = = 2 11 v = = v = 3 2 = 2 10 v = = 4 1, , , , 2, e =

20 min cost q-route: with reduced cost of -10 alternative q-route: with reduced cost of -7 w 1 w 2 w 3 w 12 w 23 u cw = v = = v = = v = = v = = , , , , 2, e = e =

21 Recent Developments Recently q-routes replaced by ng-routes Note that can add constraints α e x e α 0 and approach still works. Robust branch-and-cut-and-price. If cuts on the q-route variables - column generation becomes more difficult What about time-windows? Similar BCP approach. Column generation may be easier - less choice. Cut generation more difficult - cuts based on infeasibility.

22 The Inventory Routing Problem: One Period

23 The Inventory Routing Problem

24 Model 1: Single Period Inventory Routing Problem x i Cz 0, x i W i z i, z 0 z i, i I i I y ij = z i, j I0, y ij = j I0 j I0 y ij z i, S I, i S {0} j I\S Capacitated Subtours x, R+, T z i {0, 1} i I, z 0 {0, 1,...,K}, y ij {0, 1} A

25 First Observations Where do the capacities come from? W i t = min{c, d i t + S i } What about the capacitated subtours? C i I0\S j S where S I and I0 = I {0}. y ij i S x i

26 3-index formulation Direct a flow of x k from the origin to each client k I: f ijk is the flow i (i, j) with destination k I f ijk f jik = 0 j k, k i I0 i I f ijk = x k k = j, k i I0 f ijk Cy ij (i, j) k I f ijk W k y ij i, j, k

27 Metric Inequalities Suppose µ ij 0 for all (i, j) A and S I, then (i,j) Aµ ij y ij i S is a valid inequality if µ ij min(c, (i,j) P x i i v(p) S W i ) for every subtour P beginning and ending at the depot, where v(p) I are the clients on subtour P.

28 A Particular Metric Inequality S 1, S 2 is a partition of S Cy ij + W j y ij + (C W i )y ij (I0\S,S 1 ) + (I0\S,S 2 ) (S 2,S 1 ) x i (S 2,S 2 ) min(c W i, W j )y ij i S

29 Example of a Particular Metric Inequality (I0\S,S 1 ) + Cy ij + (I0\S,S 2 ) W j y ij + (S 2,S 1 ) (S 2,S 2 ) min(c W i, W j )y ij i S I = 3, C = 300, W = (289, 123, 76), S = {1, 2, 3}, S 1 = {1}, S 2 = {2, 3} x i (C W i )y ij 300y y y 03 +( )y 21 +(300 76)y 31 + min(76, )y 23 + min(123, )y 32 x 1 + x 2 + x 3

30 Multi-Period Metric Inequalities with Stock Upper Bounds: An Example Add st 1 i + x t i = Dt i + si t and IRP model for periods 1,...,T. C t u=k (i,j) (I0\S,S) y ij u t xt i = i S i S u=k t u=k x i u i S(D i kt si k 1 ) With s i k 1 Ui, above is of the form: This gives the inequalities: σ + Cv b, 0 σ h, v Z. v b h C and σ +ρv ρ b C.

31 Table: VMIRP-SUB: computational results for the instances with n = 50 and T max = 6 BC C&L No LB Ini LB LS LB Cut BUB Nodes Time BLB BUB Time l l l l l l x l l l l h h h h h h h h h h

32 Table: Computational results for the instances 1n15T6 with n = 15 and T max = 6 BC C&L k Subtour LS Prop1 Gen Cover BLB BUB l l l l h h h h

33 Moral The MIP systems are amazing, but sometimes one can still help. Thank you for your attention

34 CVRP IRP R. Baldacci, N. Christofides, and A. Mingozzi. An exact algorithm for the vehicle routing problem based on the set partitioning formulation with additional cuts. Mathematical Programming, 115(2):351Ð385, R. Baldacci, A. Mingozzi, and R. Roberti. New route relaxation and pricing strategies for the vehicle routing problem. Operations Research, 59(5): , R. Fukasawa, H. Longo, J. Lysgaard, M. Poggi de Arag?ao, M. Reis, E. Uchoa, and R.F. Werneck. Robust branch-and-cut-and-price for the capacitated vehicle routing problem. Mathematical Programming, 106(3):491Ð511, Improved Branch-Cut-and-Price for Capacitated Vehicle Routing D. Pecin, A. Pessoa, M. Poggi and E. Uchoa, IPCO 2014 (to appear) C. Archetti, L. Bertazzi, G. Laporte, and M.G. Speranza. A branch-and-cut algorithm for a vendor-managed inventory-routing problem. Transportation Science, 41(3): , P. Avella, M. Boccia, and L.A. Wolsey. Single-item reformulations for a vendor managed inventory routing problem: computational experience with benchmark instances. CORE Discussion Paper L.C. Coelho and G. Laporte. The exact solution of several classes of inventory-routing problems. Computers and Operations Research, 40(2): , 2013.

Stronger Multi-Commodity Flow Formulations of the Capacitated Vehicle Routing Problem

Stronger Multi-Commodity Flow Formulations of the Capacitated Vehicle Routing Problem Stronger Multi-Commodity Flow Formulations of the Capacitated Vehicle Routing Problem Adam N. Letchford Juan-José Salazar-González June 2014 Abstract The Capacitated Vehicle Routing Problem is a much-studied

More information

Integer Program Reformulation for Robust. Branch-and-Cut-and-Price Algorithms

Integer Program Reformulation for Robust. Branch-and-Cut-and-Price Algorithms Integer Program Reformulation for Robust Branch-and-Cut-and-Price Algorithms Marcus Poggi de Aragão 1, Eduardo Uchoa 2 1 Departamento de Informática, PUC-Rio, poggi@inf.puc-rio.br 2 Dep. de Engenharia

More information

Models and Cuts for the Two-Echelon Vehicle Routing Problem

Models and Cuts for the Two-Echelon Vehicle Routing Problem Models and Cuts for the Two-Echelon Vehicle Routing Problem Guido Perboli Roberto Tadei Francesco Masoero Department of Control and Computer Engineering, Politecnico di Torino Corso Duca degli Abruzzi,

More information

Integer program reformulation for robust branch-and-cut-and-price

Integer program reformulation for robust branch-and-cut-and-price Integer program reformulation for robust branch-and-cut-and-price Marcus Poggi de Aragão Informática PUC-Rio Eduardo Uchoa Engenharia de Produção Universidade Federal Fluminense Outline of the talk Robust

More information

A generalized formulation for vehicle routing problems

A generalized formulation for vehicle routing problems Working paper A generalized formulation for vehicle routing problems Pedro Munari a, Twan Dollevoet b, Remy Spliet b a Production Engineering Department, Federal University of São Carlos, Brazil b Econometric

More information

A Node-Flow Model for 1D Stock Cutting: Robust Branch-Cut-and-Price

A Node-Flow Model for 1D Stock Cutting: Robust Branch-Cut-and-Price A Node-Flow Model for 1D Stock Cutting: Robust Branch-Cut-and-Price Gleb Belov University of Dresden Adam N. Letchford Lancaster University Eduardo Uchoa Universidade Federal Fluminense August 4, 2011

More information

2. A Generic Formulation and the Single-Commodity Flow Formulation for the CVRP

2. A Generic Formulation and the Single-Commodity Flow Formulation for the CVRP On Time-Dependent Models for Unit Demand Veicle Routing Problems Maria Teresa Godino, CIO-Dep. de Matemática, Instituto Politécnico de Beja, mtgodino@estig.ipbeja.pt Luis Gouveia, CIO-DEIO, Faculdade de

More information

Extended Formulations, Lagrangian Relaxation, & Column Generation: tackling large scale applications

Extended Formulations, Lagrangian Relaxation, & Column Generation: tackling large scale applications Extended Formulations, Lagrangian Relaxation, & Column Generation: tackling large scale applications François Vanderbeck University of Bordeaux INRIA Bordeaux-Sud-Ouest part : Defining Extended Formulations

More information

A maritime version of the Travelling Salesman Problem

A maritime version of the Travelling Salesman Problem A maritime version of the Travelling Salesman Problem Enrico Malaguti, Silvano Martello, Alberto Santini May 31, 2015 Plan 1 The Capacitated TSP with Pickup and Delivery 2 The TSPPD with Draught Limits

More information

Partial Path Column Generation for the Elementary Shortest Path Problem with Resource Constraints

Partial Path Column Generation for the Elementary Shortest Path Problem with Resource Constraints Partial Path Column Generation for the Elementary Shortest Path Problem with Resource Constraints Mads Kehlet Jepsen & Bjørn Petersen Department of Computer Science, University of Copenhagen Universitetsparken

More information

Improved BCP for Capacitated Vehicle Routing

Improved BCP for Capacitated Vehicle Routing Improved Branch-Cut-and-Price for Capacitated Vehicle Routing Diego Pecin Artur Pessoa Marcus Poggi Eduardo Uchoa PUC - Rio de Janeiro Universidade Federal Fluminense January, 0 Aussois-0 Pecin, Pessoa,

More information

Travelling Salesman Problem

Travelling Salesman Problem Travelling Salesman Problem Fabio Furini November 10th, 2014 Travelling Salesman Problem 1 Outline 1 Traveling Salesman Problem Separation Travelling Salesman Problem 2 (Asymmetric) Traveling Salesman

More information

Introduction to Mathematical Programming IE406. Lecture 21. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 21. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 21 Dr. Ted Ralphs IE406 Lecture 21 1 Reading for This Lecture Bertsimas Sections 10.2, 10.3, 11.1, 11.2 IE406 Lecture 21 2 Branch and Bound Branch

More information

Outline. Relaxation. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Lagrangian Relaxation. Lecture 12 Single Machine Models, Column Generation

Outline. Relaxation. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Lagrangian Relaxation. Lecture 12 Single Machine Models, Column Generation Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING 1. Lagrangian Relaxation Lecture 12 Single Machine Models, Column Generation 2. Dantzig-Wolfe Decomposition Dantzig-Wolfe Decomposition Delayed Column

More information

Introduction to Bin Packing Problems

Introduction to Bin Packing Problems Introduction to Bin Packing Problems Fabio Furini March 13, 2015 Outline Origins and applications Applications: Definition: Bin Packing Problem (BPP) Solution techniques for the BPP Heuristic Algorithms

More information

Decomposition and Reformulation in Integer Programming

Decomposition and Reformulation in Integer Programming and Reformulation in Integer Programming Laurence A. WOLSEY 7/1/2008 / Aussois and Reformulation in Integer Programming Outline 1 Resource 2 and Reformulation in Integer Programming Outline Resource 1

More information

On the exact solution of a large class of parallel machine scheduling problems

On the exact solution of a large class of parallel machine scheduling problems 1 / 23 On the exact solution of a large class of parallel machine scheduling problems Teobaldo Bulhões 2 Ruslan Sadykov 1 Eduardo Uchoa 2 Anand Subramanian 3 1 Inria Bordeaux and Univ. Bordeaux, France

More information

Lecture 8: Column Generation

Lecture 8: Column Generation Lecture 8: Column Generation (3 units) Outline Cutting stock problem Classical IP formulation Set covering formulation Column generation A dual perspective Vehicle routing problem 1 / 33 Cutting stock

More information

15.081J/6.251J Introduction to Mathematical Programming. Lecture 24: Discrete Optimization

15.081J/6.251J Introduction to Mathematical Programming. Lecture 24: Discrete Optimization 15.081J/6.251J Introduction to Mathematical Programming Lecture 24: Discrete Optimization 1 Outline Modeling with integer variables Slide 1 What is a good formulation? Theme: The Power of Formulations

More information

Chapter 3: Discrete Optimization Integer Programming

Chapter 3: Discrete Optimization Integer Programming Chapter 3: Discrete Optimization Integer Programming Edoardo Amaldi DEIB Politecnico di Milano edoardo.amaldi@polimi.it Sito web: http://home.deib.polimi.it/amaldi/ott-13-14.shtml A.A. 2013-14 Edoardo

More information

Chapter 3: Discrete Optimization Integer Programming

Chapter 3: Discrete Optimization Integer Programming Chapter 3: Discrete Optimization Integer Programming Edoardo Amaldi DEIB Politecnico di Milano edoardo.amaldi@polimi.it Website: http://home.deib.polimi.it/amaldi/opt-16-17.shtml Academic year 2016-17

More information

16.410/413 Principles of Autonomy and Decision Making

16.410/413 Principles of Autonomy and Decision Making 6.4/43 Principles of Autonomy and Decision Making Lecture 8: (Mixed-Integer) Linear Programming for Vehicle Routing and Motion Planning Emilio Frazzoli Aeronautics and Astronautics Massachusetts Institute

More information

An Exact Algorithm for the Traveling Salesman Problem with Deliveries and Collections

An Exact Algorithm for the Traveling Salesman Problem with Deliveries and Collections An Exact Algorithm for the Traveling Salesman Problem with Deliveries and Collections R. Baldacci DISMI, University of Modena and Reggio E., V.le Allegri 15, 42100 Reggio E., Italy E. Hadjiconstantinou

More information

Modeling with Integer Programming

Modeling with Integer Programming Modeling with Integer Programg Laura Galli December 18, 2014 We can use 0-1 (binary) variables for a variety of purposes, such as: Modeling yes/no decisions Enforcing disjunctions Enforcing logical conditions

More information

Exact algorithms for the Traveling Salesman Problem with Draft Limits

Exact algorithms for the Traveling Salesman Problem with Draft Limits Exact algorithms for the Traveling Salesman Problem with Draft Limits Maria Battarra Mathematics, University of Southampton Southampton, SO17 1BJ. UK m.battarra@soton.ac.uk Artur Alves Pessoa Universidade

More information

On the strength of approximate linear programming relaxations for the traveling salesman problem

On the strength of approximate linear programming relaxations for the traveling salesman problem On the strength of approximate linear programming relaxations for the traveling salesman problem Ricardo Fukasawa Department of Combinatorics and Optimization University of Waterloo Waterloo, ON, Canada

More information

Branch-and-cut (and-price) for the chance constrained vehicle routing problem

Branch-and-cut (and-price) for the chance constrained vehicle routing problem Branch-and-cut (and-price) for the chance constrained vehicle routing problem Ricardo Fukasawa Department of Combinatorics & Optimization University of Waterloo May 25th, 2016 ColGen 2016 joint work with

More information

Introduction to Integer Programming

Introduction to Integer Programming Lecture 3/3/2006 p. /27 Introduction to Integer Programming Leo Liberti LIX, École Polytechnique liberti@lix.polytechnique.fr Lecture 3/3/2006 p. 2/27 Contents IP formulations and examples Total unimodularity

More information

Robust branch-cut-and-price for the Capacitated Minimum Spanning Tree problem over a large extended formulation

Robust branch-cut-and-price for the Capacitated Minimum Spanning Tree problem over a large extended formulation Math. Program., Ser. A DOI 10.1007/s10107-006-0043-y FULL LENGTH PAPER Robust branch-cut-and-price for the Capacitated Minimum Spanning Tree problem over a large extended formulation Eduardo Uchoa Ricardo

More information

Introduction to Integer Linear Programming

Introduction to Integer Linear Programming Lecture 7/12/2006 p. 1/30 Introduction to Integer Linear Programming Leo Liberti, Ruslan Sadykov LIX, École Polytechnique liberti@lix.polytechnique.fr sadykov@lix.polytechnique.fr Lecture 7/12/2006 p.

More information

A priori performance measures for arc-based formulations of the Vehicle Routing Problem

A priori performance measures for arc-based formulations of the Vehicle Routing Problem A priori performance measures for arc-based formulations of the Vehicle Routing Problem Fernando Ordóñez, Ilgaz Sungur, and Maged Dessouky Industrial and Systems Engineering, University of Southern California

More information

New Integer Programming Formulations of the Generalized Travelling Salesman Problem

New Integer Programming Formulations of the Generalized Travelling Salesman Problem American Journal of Applied Sciences 4 (11): 932-937, 2007 ISSN 1546-9239 2007 Science Publications New Integer Programming Formulations of the Generalized Travelling Salesman Problem Petrica C. Pop Department

More information

Fixed-charge transportation problems on trees

Fixed-charge transportation problems on trees Fixed-charge transportation problems on trees Gustavo Angulo * Mathieu Van Vyve * gustavo.angulo@uclouvain.be mathieu.vanvyve@uclouvain.be November 23, 2015 Abstract We consider a class of fixed-charge

More information

Bounds on the Traveling Salesman Problem

Bounds on the Traveling Salesman Problem Bounds on the Traveling Salesman Problem Sean Zachary Roberson Texas A&M University MATH 613, Graph Theory A common routing problem is as follows: given a collection of stops (for example, towns, stations,

More information

Department of Economics and Management University of Brescia Italy. Formulations for an inventory routing problem

Department of Economics and Management University of Brescia Italy. Formulations for an inventory routing problem + Working Papers Department of Economics and Management University of Brescia Italy C. Archetti, N. Bianchessi, S. Irnich M.G. Speranza Formulations for an inventory routing problem WPDEM 2013/14 Via S.

More information

Partial Path Column Generation for the Vehicle Routing Problem

Partial Path Column Generation for the Vehicle Routing Problem Partial Path Column Generation for the Vehicle Routing Problem Report 12.2009 DTU Management Engineering Mads Kehlet Jepsen Bjørn Petersen November 2009 Partial Path Column Generation for the Vehicle Routing

More information

Cut-First Branch-and-Price-Second for the CARP Workshop on Large Scale Optimization 2012 Vevey, Switzerland

Cut-First Branch-and-Price-Second for the CARP Workshop on Large Scale Optimization 2012 Vevey, Switzerland Cut-First Branch-and-Price-Second for the CARP Workshop on Large Scale Optimization 2012 Vevey, Switzerland Claudia Bode and Stefan Irnich {claudia.bode,irnich}@uni-mainz.de Chair for Logistics Management

More information

Integer Programming ISE 418. Lecture 8. Dr. Ted Ralphs

Integer Programming ISE 418. Lecture 8. Dr. Ted Ralphs Integer Programming ISE 418 Lecture 8 Dr. Ted Ralphs ISE 418 Lecture 8 1 Reading for This Lecture Wolsey Chapter 2 Nemhauser and Wolsey Sections II.3.1, II.3.6, II.4.1, II.4.2, II.5.4 Duality for Mixed-Integer

More information

Node Edge Arc Routing Problems (NEARP)

Node Edge Arc Routing Problems (NEARP) Node Edge Arc Routing Problems (NEARP) Nicolas Briot Coconut-LIRMM janvier 0 Nicolas Briot (Coconut-LIRMM) Node Edge Arc Routing Problems (NEARP) janvier 0 / What is NEARP? Arc and node routing problem

More information

3.7 Cutting plane methods

3.7 Cutting plane methods 3.7 Cutting plane methods Generic ILP problem min{ c t x : x X = {x Z n + : Ax b} } with m n matrix A and n 1 vector b of rationals. According to Meyer s theorem: There exists an ideal formulation: conv(x

More information

A Branch-and-Cut Algorithm for an Assembly Routing Problem

A Branch-and-Cut Algorithm for an Assembly Routing Problem A Branch-and-Cut Algorithm for an Assembly Routing Problem Masoud Chitsaz, Jean-François Cordeau, Raf Jans HEC Montréal and GERAD, 3000 Chemin de la Côte-Sainte-Catherine, Montréal, H3T 2A7 Canada Abstract

More information

The Traveling Salesman Problem with Pickup and Delivery. A polyhedral approach. IBM Research - Australia. Irina Dumitrescu

The Traveling Salesman Problem with Pickup and Delivery. A polyhedral approach. IBM Research - Australia. Irina Dumitrescu Australia The Traveling Salesman Problem with Pickup and Delivery A polyhedral approach Irina Dumitrescu Jean-Francois Cordeau, Gilbert Laporte, Stefan Ropke The TSP with Pickup and Delivery (TSPPD) Given:

More information

Asymmetric Traveling Salesman Problem (ATSP): Models

Asymmetric Traveling Salesman Problem (ATSP): Models Asymmetric Traveling Salesman Problem (ATSP): Models Given a DIRECTED GRAPH G = (V,A) with V = {,, n} verte set A = {(i, j) : i V, j V} arc set (complete digraph) c ij = cost associated with arc (i, j)

More information

Notes on Dantzig-Wolfe decomposition and column generation

Notes on Dantzig-Wolfe decomposition and column generation Notes on Dantzig-Wolfe decomposition and column generation Mette Gamst November 11, 2010 1 Introduction This note introduces an exact solution method for mathematical programming problems. The method is

More information

Part III: Traveling salesman problems

Part III: Traveling salesman problems Transportation Logistics Part III: Traveling salesman problems c R.F. Hartl, S.N. Parragh 1/282 Motivation Motivation Why do we study the TSP? c R.F. Hartl, S.N. Parragh 2/282 Motivation Motivation Why

More information

Introduction to integer programming III:

Introduction to integer programming III: Introduction to integer programming III: Network Flow, Interval Scheduling, and Vehicle Routing Problems Martin Branda Charles University in Prague Faculty of Mathematics and Physics Department of Probability

More information

Computational Integer Programming. Lecture 2: Modeling and Formulation. Dr. Ted Ralphs

Computational Integer Programming. Lecture 2: Modeling and Formulation. Dr. Ted Ralphs Computational Integer Programming Lecture 2: Modeling and Formulation Dr. Ted Ralphs Computational MILP Lecture 2 1 Reading for This Lecture N&W Sections I.1.1-I.1.6 Wolsey Chapter 1 CCZ Chapter 2 Computational

More information

The Stochastic Vehicle Routing Problem

The Stochastic Vehicle Routing Problem The Stochastic Vehicle Routing Problem Research Paper Vrije Universiteit Amsterdam Faculty of Sciences Study programme Business Analytics De Boelelaan 08a 08 HV Amsterdam Dimitry Erkin, email:dimitry.erkin@gmail.com

More information

A Column Generation Based Heuristic for the Dial-A-Ride Problem

A Column Generation Based Heuristic for the Dial-A-Ride Problem A Column Generation Based Heuristic for the Dial-A-Ride Problem Nastaran Rahmani 1, Boris Detienne 2,3, Ruslan Sadykov 3,2, François Vanderbeck 2,3 1 Kedge Business School, 680 Cours de la Libération,

More information

Stronger Multi-Commodity Flow Formulations of the (Capacitated) Sequential Ordering Problem

Stronger Multi-Commodity Flow Formulations of the (Capacitated) Sequential Ordering Problem Stronger Multi-Commodity Flow Formulations of the (Capacitated) Sequential Ordering Problem Adam N. Letchford Juan-José Salazar-González May 2015 Abstract The sequential ordering problem (SOP) is the generalisation

More information

Models and Algorithms for Stochastic and Robust Vehicle Routing with Deadlines

Models and Algorithms for Stochastic and Robust Vehicle Routing with Deadlines Accepted in Transportation Science manuscript (Please, provide the mansucript number!) Authors are encouraged to submit new papers to INFORMS journals by means of a style file template, which includes

More information

Partial Path Column Generation for the Vehicle Routing Problem with Time Windows

Partial Path Column Generation for the Vehicle Routing Problem with Time Windows Partial Path Column Generation for the Vehicle Routing Problem with Time Windows Bjørn Petersen & Mads Kehlet Jepsen } DIKU Department of Computer Science, University of Copenhagen Universitetsparken 1,

More information

Week Cuts, Branch & Bound, and Lagrangean Relaxation

Week Cuts, Branch & Bound, and Lagrangean Relaxation Week 11 1 Integer Linear Programming This week we will discuss solution methods for solving integer linear programming problems. I will skip the part on complexity theory, Section 11.8, although this is

More information

Numerically safe lower bounds for the Capacitated Vehicle Routing Problem

Numerically safe lower bounds for the Capacitated Vehicle Routing Problem Submitted to INFORMS Journal on Computing manuscript (Please, provide the mansucript number!) Authors are encouraged to submit new papers to INFORMS journals by means of a style file template, which includes

More information

Totally unimodular matrices. Introduction to integer programming III: Network Flow, Interval Scheduling, and Vehicle Routing Problems

Totally unimodular matrices. Introduction to integer programming III: Network Flow, Interval Scheduling, and Vehicle Routing Problems Totally unimodular matrices Introduction to integer programming III: Network Flow, Interval Scheduling, and Vehicle Routing Problems Martin Branda Charles University in Prague Faculty of Mathematics and

More information

Branching Rules for Minimum Congestion Multi- Commodity Flow Problems

Branching Rules for Minimum Congestion Multi- Commodity Flow Problems Clemson University TigerPrints All Theses Theses 8-2012 Branching Rules for Minimum Congestion Multi- Commodity Flow Problems Cameron Megaw Clemson University, cmegaw@clemson.edu Follow this and additional

More information

Revisiting the Hamiltonian p-median problem: a new formulation on directed graphs and a branch-and-cut algorithm

Revisiting the Hamiltonian p-median problem: a new formulation on directed graphs and a branch-and-cut algorithm Revisiting the Hamiltonian p-median problem: a new formulation on directed graphs and a branch-and-cut algorithm Tolga Bektaş 1, Luís Gouveia 2, Daniel Santos 2 1 Centre for Operational Research, Management

More information

Branch-and-Price-and-Cut for the Split Delivery Vehicle Routing Problem with Time Windows

Branch-and-Price-and-Cut for the Split Delivery Vehicle Routing Problem with Time Windows Branch-and-Price-and-Cut for the Split Delivery Vehicle Routing Problem with Time Windows Guy Desaulniers École Polytechnique de Montréal and GERAD Column Generation 2008 Aussois, France Outline Introduction

More information

Reformulation and Decomposition of Integer Programs

Reformulation and Decomposition of Integer Programs Reformulation and Decomposition of Integer Programs François Vanderbeck 1 and Laurence A. Wolsey 2 (Reference: CORE DP 2009/16) (1) Université Bordeaux 1 & INRIA-Bordeaux (2) Université de Louvain, CORE.

More information

Formulations and Valid Inequalities for the Heterogeneous Vehicle Routing Problem

Formulations and Valid Inequalities for the Heterogeneous Vehicle Routing Problem Math. Program., Ser. A 106, 365 390 (2006) Digital Object Identifier (DOI) 10.1007/s10107-005-0611-6 Hande Yaman Formulations and Valid Inequalities for the Heterogeneous Vehicle Routing Problem Received:

More information

Exact and Heuristic Algorithms for the Symmetric and Asymmetric Vehicle Routing Problem with Backhauls

Exact and Heuristic Algorithms for the Symmetric and Asymmetric Vehicle Routing Problem with Backhauls Exact and Heuristic Algorithms for the Symmetric and Asymmetric Vehicle Routing Problem with Backhauls Paolo Toth, Daniele Vigo ECCO IX - Dublin 1996 Exact and Heuristic Algorithms for VRPB 1 Vehicle Routing

More information

Network Flows. 6. Lagrangian Relaxation. Programming. Fall 2010 Instructor: Dr. Masoud Yaghini

Network Flows. 6. Lagrangian Relaxation. Programming. Fall 2010 Instructor: Dr. Masoud Yaghini In the name of God Network Flows 6. Lagrangian Relaxation 6.3 Lagrangian Relaxation and Integer Programming Fall 2010 Instructor: Dr. Masoud Yaghini Integer Programming Outline Branch-and-Bound Technique

More information

Discrete (and Continuous) Optimization WI4 131

Discrete (and Continuous) Optimization WI4 131 Discrete (and Continuous) Optimization WI4 131 Kees Roos Technische Universiteit Delft Faculteit Electrotechniek, Wiskunde en Informatica Afdeling Informatie, Systemen en Algoritmiek e-mail: C.Roos@ewi.tudelft.nl

More information

Compact Formulations of the Steiner Traveling Salesman Problem and Related Problems

Compact Formulations of the Steiner Traveling Salesman Problem and Related Problems Compact Formulations of the Steiner Traveling Salesman Problem and Related Problems Adam N. Letchford Saeideh D. Nasiri Dirk Oliver Theis March 2012 Abstract The Steiner Traveling Salesman Problem (STSP)

More information

3.10 Lagrangian relaxation

3.10 Lagrangian relaxation 3.10 Lagrangian relaxation Consider a generic ILP problem min {c t x : Ax b, Dx d, x Z n } with integer coefficients. Suppose Dx d are the complicating constraints. Often the linear relaxation and the

More information

to work with) can be solved by solving their LP relaxations with the Simplex method I Cutting plane algorithms, e.g., Gomory s fractional cutting

to work with) can be solved by solving their LP relaxations with the Simplex method I Cutting plane algorithms, e.g., Gomory s fractional cutting Summary so far z =max{c T x : Ax apple b, x 2 Z n +} I Modeling with IP (and MIP, and BIP) problems I Formulation for a discrete set that is a feasible region of an IP I Alternative formulations for the

More information

Robust Branch-and-Cut-and-Price for the Capacitated Vehicle Routing Problem

Robust Branch-and-Cut-and-Price for the Capacitated Vehicle Routing Problem Robust Branch-and-Cut-and-Price for the Capacitated Vehicle Routing Problem Ricardo Fukasawa, Marcus Poggi de Aragão, Marcelo Reis, Eduardo Uchoa Relatórios de Pesquisa em Engenharia de Produção RPEP Vol.3

More information

The Traveling Salesman Problem: An Overview. David P. Williamson, Cornell University Ebay Research January 21, 2014

The Traveling Salesman Problem: An Overview. David P. Williamson, Cornell University Ebay Research January 21, 2014 The Traveling Salesman Problem: An Overview David P. Williamson, Cornell University Ebay Research January 21, 2014 (Cook 2012) A highly readable introduction Some terminology (imprecise) Problem Traditional

More information

Part III: Traveling salesman problems

Part III: Traveling salesman problems Transportation Logistics Part III: Traveling salesman problems c R.F. Hartl, S.N. Parragh 1/74 Motivation Motivation Why do we study the TSP? it easy to formulate it is a difficult problem many significant

More information

The Fixed Charge Transportation Problem: A Strong Formulation Based On Lagrangian Decomposition and Column Generation

The Fixed Charge Transportation Problem: A Strong Formulation Based On Lagrangian Decomposition and Column Generation The Fixed Charge Transportation Problem: A Strong Formulation Based On Lagrangian Decomposition and Column Generation Yixin Zhao, Torbjörn Larsson and Department of Mathematics, Linköping University, Sweden

More information

0-1 Reformulations of the Network Loading Problem

0-1 Reformulations of the Network Loading Problem 0-1 Reformulations of the Network Loading Problem Antonio Frangioni 1 frangio@di.unipi.it Bernard Gendron 2 bernard@crt.umontreal.ca 1 Dipartimento di Informatica Università di Pisa Via Buonarroti, 2 56127

More information

A Joint Routing and Speed Optimization Problem

A Joint Routing and Speed Optimization Problem A Joint Routing and Speed Optimization Problem Ricardo Fukasawa, Qie He, Fernando Santos, Yongjia Song March 5, 2017 Abstract Fuel cost contributes to a significant portion of operating cost in cargo transportation.

More information

An Exact Algorithm for the Steiner Tree Problem with Delays

An Exact Algorithm for the Steiner Tree Problem with Delays Electronic Notes in Discrete Mathematics 36 (2010) 223 230 www.elsevier.com/locate/endm An Exact Algorithm for the Steiner Tree Problem with Delays Valeria Leggieri 1 Dipartimento di Matematica, Università

More information

Lecture 9: Dantzig-Wolfe Decomposition

Lecture 9: Dantzig-Wolfe Decomposition Lecture 9: Dantzig-Wolfe Decomposition (3 units) Outline Dantzig-Wolfe decomposition Column generation algorithm Relation to Lagrangian dual Branch-and-price method Generated assignment problem and multi-commodity

More information

On the Polyhedral Structure of a Multi Item Production Planning Model with Setup Times

On the Polyhedral Structure of a Multi Item Production Planning Model with Setup Times CORE DISCUSSION PAPER 2000/52 On the Polyhedral Structure of a Multi Item Production Planning Model with Setup Times Andrew J. Miller 1, George L. Nemhauser 2, and Martin W.P. Savelsbergh 2 November 2000

More information

Combinatorial optimization problems

Combinatorial optimization problems Combinatorial optimization problems Heuristic Algorithms Giovanni Righini University of Milan Department of Computer Science (Crema) Optimization In general an optimization problem can be formulated as:

More information

A Time Bucket Formulation for the TSP with Time Windows

A Time Bucket Formulation for the TSP with Time Windows A Time Bucket Formulation for the TSP with Time Windows Sanjeeb Dash, Oktay Günlük IBM Research Andrea Lodi, Andrea Tramontani University of Bologna November 10, 2009 Abstract The Traveling Salesman Problem

More information

Classification of Dantzig-Wolfe Reformulations for MIP s

Classification of Dantzig-Wolfe Reformulations for MIP s Classification of Dantzig-Wolfe Reformulations for MIP s Raf Jans Rotterdam School of Management HEC Montreal Workshop on Column Generation Aussois, June 2008 Outline and Motivation Dantzig-Wolfe reformulation

More information

Branch-and-cut and Branch-and-Cut-and-Price Algorithms for Solving Vehicle Routing Problems

Branch-and-cut and Branch-and-Cut-and-Price Algorithms for Solving Vehicle Routing Problems Downloaded from orbit.dtu.dk on: Oct 31, 2018 Branch-and-cut and Branch-and-Cut-and-Price Algorithms for Solving Vehicle Routing Problems Jepsen, Mads Kehlet; Pisinger, David Publication date: 2011 Document

More information

On Arc-Routing Problems

On Arc-Routing Problems On Arc-Routing Problems Dissertation zur Erlangung des Grades eines Doktors der wirtschaftlichen Staatswissenschaften (Dr. rer. pol.) des Fachbereichs Recht- und Wirtschaftswissenschaften der Johannes

More information

The network maintenance problem

The network maintenance problem 22nd International Congress on Modelling and Simulation, Hobart, Tasmania, Australia, 3 to 8 December 2017 mssanz.org.au/modsim2017 The network maintenance problem Parisa Charkhgard a, Thomas Kalinowski

More information

Robust Inventory Routing under Demand Uncertainty

Robust Inventory Routing under Demand Uncertainty TRANSPORTATION SCIENCE Vol. 00, No. 0, Xxxxx 0000, pp. 000 000 issn0041-1655 eissn1526-5447 00 0000 0001 INFORMS doi 10.1287/xxxx.0000.0000 c 0000 INFORMS Robust Inventory Routing under Demand Uncertainty

More information

Scheduling and Optimization Course (MPRI)

Scheduling and Optimization Course (MPRI) MPRI Scheduling and optimization: lecture p. /6 Scheduling and Optimization Course (MPRI) Leo Liberti LIX, École Polytechnique, France MPRI Scheduling and optimization: lecture p. /6 Teachers Christoph

More information

Exact approaches for the Traveling Salesman Problem with Draft Limits

Exact approaches for the Traveling Salesman Problem with Draft Limits Exact approaches for the Traveling Salesman Problem with Draft Limits Maria Battarra School of Mathematics, University of Southampton Southampton, SO17 1BJ, UK Anand Subramanian Departamento de Engenharia

More information

A Mixed-Integer Linear Program for the Traveling Salesman Problem with Structured Time Windows

A Mixed-Integer Linear Program for the Traveling Salesman Problem with Structured Time Windows A Mixed-Integer Linear Program for the Traveling Salesman Problem with Structured Time Windows Philipp Hungerländer Christian Truden 5th January 2017 Abstract In this extended abstract we introduce the

More information

Branch and Price for the Vehicle Routing Problem with Discrete Split Deliveries and Time Windows

Branch and Price for the Vehicle Routing Problem with Discrete Split Deliveries and Time Windows Branch and Price for the Vehicle Routing Problem with Discrete Split Deliveries and Time Windows Matteo Salani Ilaria Vacca December 24, 2009 Report TRANSP-OR 091224 Transport and Mobility Laboratory Ecole

More information

Cable Trench Problem

Cable Trench Problem Cable Trench Problem Matthew V Galati Ted K Ralphs Joseph C Hartman magh@lehigh.edu Department of Industrial and Systems Engineering Lehigh University, Bethlehem, PA Cable Trench Problem p.1 Cable Trench

More information

Introduction into Vehicle Routing Problems and other basic mixed-integer problems

Introduction into Vehicle Routing Problems and other basic mixed-integer problems Introduction into Vehicle Routing Problems and other basic mixed-integer problems Martin Branda Charles University in Prague Faculty of Mathematics and Physics Department of Probability and Mathematical

More information

Equivalence of an Approximate Linear Programming Bound with the Held-Karp Bound for the Traveling Salesman Problem

Equivalence of an Approximate Linear Programming Bound with the Held-Karp Bound for the Traveling Salesman Problem Equivalence of an Approximate Linear Programming Bound with the Held-Karp Bound for the Traveling Salesman Problem Alejandro Toriello H. Milton Stewart School of Industrial and Systems Engineering Georgia

More information

MEP123: Master Equality Polyhedron with one, two or three rows

MEP123: Master Equality Polyhedron with one, two or three rows 1/17 MEP123: Master Equality Polyhedron with one, two or three rows Oktay Günlük Mathematical Sciences Department IBM Research January, 29 joint work with Sanjeeb Dash and Ricardo Fukasawa 2/17 Master

More information

The Exact Solution of Several Classes of Inventory-Routing Problems

The Exact Solution of Several Classes of Inventory-Routing Problems The Exact Solution of Several Classes of Inventory-Routing Problems Leandro C. Coelho Gilbert Laporte May 2012 CIRRELT-2012-22 Bureaux de Montréal : Bureaux de Québec : Université de Montréal Université

More information

A branch-cut-and-price algorithm for the energy minimization vehicle routing problem

A branch-cut-and-price algorithm for the energy minimization vehicle routing problem A branch-cut-and-price algorithm for the energy minimization vehicle routing problem Ricardo Fukasawa, Qie He, Yongjia Song August 25, 2014 Abstract We study a variant of the capacitated vehicle routing

More information

MVE165/MMG630, Applied Optimization Lecture 6 Integer linear programming: models and applications; complexity. Ann-Brith Strömberg

MVE165/MMG630, Applied Optimization Lecture 6 Integer linear programming: models and applications; complexity. Ann-Brith Strömberg MVE165/MMG630, Integer linear programming: models and applications; complexity Ann-Brith Strömberg 2011 04 01 Modelling with integer variables (Ch. 13.1) Variables Linear programming (LP) uses continuous

More information

Decomposition-based Methods for Large-scale Discrete Optimization p.1

Decomposition-based Methods for Large-scale Discrete Optimization p.1 Decomposition-based Methods for Large-scale Discrete Optimization Matthew V Galati Ted K Ralphs Department of Industrial and Systems Engineering Lehigh University, Bethlehem, PA, USA Départment de Mathématiques

More information

Models and valid inequalities to asymmetric skill-based routing problems

Models and valid inequalities to asymmetric skill-based routing problems EURO J Transp Logist (2013) 2:29 55 DOI 10.1007/s13676-012-0012-y RESEARCH PAPER Models and valid inequalities to asymmetric skill-based routing problems Paola Cappanera Luis Gouveia Maria Grazia Scutellà

More information

Section Notes 8. Integer Programming II. Applied Math 121. Week of April 5, expand your knowledge of big M s and logical constraints.

Section Notes 8. Integer Programming II. Applied Math 121. Week of April 5, expand your knowledge of big M s and logical constraints. Section Notes 8 Integer Programming II Applied Math 121 Week of April 5, 2010 Goals for the week understand IP relaxations be able to determine the relative strength of formulations understand the branch

More information

Pricing Routines for Vehicle Routing with Time Windows on Road Networks

Pricing Routines for Vehicle Routing with Time Windows on Road Networks Pricing Routines for Vehicle Routing with Time Windows on Road Networks Adam N. Letchford Saeideh D. Nasiri Amar Oukil Published in Computers & Operations Research, July 2014 Abstract Several very effective

More information

Maximum Flow Problem (Ford and Fulkerson, 1956)

Maximum Flow Problem (Ford and Fulkerson, 1956) Maximum Flow Problem (Ford and Fulkerson, 196) In this problem we find the maximum flow possible in a directed connected network with arc capacities. There is unlimited quantity available in the given

More information

VEHICLE ROUTING ON REAL ROAD NETWORKS

VEHICLE ROUTING ON REAL ROAD NETWORKS VEHICLE ROUTING ON REAL ROAD NETWORKS by Saeideh Dehghan Nasiri SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY STOR-I DOCTORAL TRAINING CENTER LANCASTER UNIVERSITY LANCASTER, UK, SEPTEMBER 2014 c Copyright

More information

A Recourse Approach for the Capacitated Vehicle Routing Problem with Evidential Demands

A Recourse Approach for the Capacitated Vehicle Routing Problem with Evidential Demands A Recourse Approach for the Capacitated Vehicle Routing Problem with Evidential Demands Nathalie Helal 1, Frédéric Pichon 1, Daniel Porumbel 2, David Mercier 1 and Éric Lefèvre1 1 Université d Artois,

More information