MEP123: Master Equality Polyhedron with one, two or three rows

Size: px
Start display at page:

Download "MEP123: Master Equality Polyhedron with one, two or three rows"

Transcription

1 1/17 MEP123: Master Equality Polyhedron with one, two or three rows Oktay Günlük Mathematical Sciences Department IBM Research January, 29 joint work with Sanjeeb Dash and Ricardo Fukasawa

2 2/17 Master Equality polyhedron Let n, r Z and n r >. MEP { K 1 (n, r) = conv x Z 2n+1 + : n i= } ix i = r K 1 (n, r) was first defined by Uchoa, Fukasawa, Lysgaard, Pessoa, Poggi de Aragão and Andrade ( 6) in a slightly different form. Using simple cuts based on K 1 (n, r), they reduce the integrality gap for capacitated MST instances by more than 5% on average.

3 2/17 Master Equality polyhedron Let n, r Z and n r >. MEP { K 1 (n, r) = conv x Z 2n+1 + : n i= } ix i = r Gomory s MCGP { n 1 } P 1 (n, r) = conv x Z n + : x + ix i = r i=1 Observation: MCGP is a lower dimensional face of MEP.

4 3/17 Gomory s Master Cyclic Group Polyhedron P 1 (n, r) = conv {x Z n + : x + } ix i = r i I G where I G = [1, n 1] {1,..., n 1}. Theorem (Gomory) i I G π ix i 1 is a nontrivial facet defining inequality of P 1 (n, r) if and only if π is an extreme point of the following polytope: π i + π k π (i+k) mod i, k I n G, Q = π i + π k = π r i, k I G, r = (i + k) mod n, π k k I G, π r = 1.

5 4/17 A Polar description of MEP Theorem (DFG) i I π ix i 1 is a nontrivial facet of K 1 (n, r) if and only if π is an extreme point of the following polyhedron: T = π i + π j π i+j, i, j I, i + j I + π i + π j + π k π i+j+k, i I, j, k, i + j + k I + π i + π j = π r, i, j I, i + j = r π r = 1, π =, π =, where I = [, n] and I + = [, n].

6 5/17 Some observations T and Q are not polars as they exclude trivial inequalities x. (they also impose complementarity conditions π i + π j = π r for all i + j = r) Their extreme points give all nontrivial facets. Q gives the convex hull of nontrivial facet coefficients (for MCGP) T gives the convex hull plus some directions (for MEP). They can be used for efficient separation via linear programming. Not all facets of MEP can be obtained by lifting facets of MCGP.

7 5/17 Some observations T and Q are not polars as they exclude trivial inequalities x. (they also impose complementarity conditions π i + π j = π r for all i + j = r) Their extreme points give all nontrivial facets. Q gives the convex hull of nontrivial facet coefficients (for MCGP) T gives the convex hull plus some directions (for MEP). They can be used for efficient separation via linear programming. Not all facets of MEP can be obtained by lifting facets of MCGP.

8 5/17 Some observations T and Q are not polars as they exclude trivial inequalities x. (they also impose complementarity conditions π i + π j = π r for all i + j = r) Their extreme points give all nontrivial facets. Q gives the convex hull of nontrivial facet coefficients (for MCGP) T gives the convex hull plus some directions (for MEP). They can be used for efficient separation via linear programming. Not all facets of MEP can be obtained by lifting facets of MCGP.

9 6/17 Pairwise subadditivity Regular subadditivity π i + π j π i+j i, j, i + j I = [, n] Relaxed subadditivity π i + π j π i+j, i, j I, i + j I + = [, n] π i + π j + π k π i+j+k, i, j, k I, i + j + k I + Regular subadditivity relaxed subadditivity All nontrivial facets satisfy regular subadditivity. If π satisfies either condition, then πx π r is valid for K 1 (n, r). Subadditivity constraints introduce additional extreme points.

10 7/17 Regular subadditivity relaxed subadditivity: T subadditivity T Pairwise subadditivity T = { relaxed pairwise subadditivity complementarity + normalization T subadditivity = { regular pairwise subadditivity complementarity + normalization T subadditivity T = conv.hull{π 1,..., π }{{ k } } + some unit directions all non-trivial facets = conv.hull{π 1,..., π k,..., π }{{} t } + a smaller cone all non-trivial facets and more

11 7/17 Regular subadditivity relaxed subadditivity: T subadditivity T Pairwise subadditivity T = { relaxed pairwise subadditivity complementarity + normalization T subadditivity = { regular pairwise subadditivity complementarity + normalization T subadditivity T = conv.hull{π 1,..., π }{{ k } } + some unit directions all non-trivial facets = conv.hull{π 1,..., π k,..., π }{{} t } + a smaller cone all non-trivial facets and more

12 8/17 Multiple rows Let n Z +, r Z m +, r and r n1 MEP { K m (n, r) = conv x Z I + : } ix i = r i I where I = [, n] m. MCGP { P m (n, r) = conv x Z I+ + : } ix i = r (mod n) i I + where I G = [, n 1] m \ {}.

13 9/17 MCGP with multiple rows { P m (n, r) = conv x Z IG + : } ix i = r (mod n) i I G where I G = [, n 1] m \ {} Theorem (Gomory) πx 1 is a nontrivial facet defining inequality of P m (n, r) if and only if π is an extreme point of the following polytope: π i + π k π (i+k) mod i, k I G, n Q m π = i + π k = π r i, k I G, r = (i + k) mod n, π k k I G π r = 1.

14 1/17 MEP with multiple rows { K m (n, r) = conv x Z I + : } ix i = r i I where I = [, n] m and let I + = [, n] m \ {} Normalization As the dimension of K m (n, r) is I m, any inequality πx β can be normalized so that π i = for all i I N, where I N =.,.,...,. Theorem. After normalization all non-trivial facets can be written as πx 1...

15 1/17 MEP with multiple rows { K m (n, r) = conv x Z I + : } ix i = r i I where I = [, n] m and let I + = [, n] m \ {} Theorem Generalizing the non-trivial polar T 1 for K 1 (n, r) i S π i π S, S S T m = π i + π j = π r, i, j I, i + j = r π =, π r = 1, π i =, i I N requires large S (some S = O(n)) if all S S satisfy i S i I+. For MCGP, all S = 2; for MEP, all S 3.

16 11/17 Separation via nontrivial polars Definition A polaroid T of K m (n, r) is a polyhedral set such that: 1. All π T, satisfy the normalization conditions 2. If π T then πx 1 is valid for all x K m (n, r) 3. If πx 1 is facet-defining for K m (n, r), then π T.

17 11/17 Separation via nontrivial polars Definition A polaroid T of K m (n, r) is a polyhedral set such that: 1. All π T, satisfy the normalization conditions 2. If π T then πx 1 is valid for all x K m (n, r) 3. If πx 1 is facet-defining for K m (n, r), then π T. Nontrivial Polar Polaroid Nontrivial Polar where Nontrivial Polar = {π R I : πx 1 for all x K m (n, r)} Nontrivial Polar = conv.hull{π 1,..., π }{{ k } } + a } cone {{} all non-trivial facets unit directions Polaroid = conv.hull{π 1,..., π k,..., π }{{} t } + a smaller cone all non-trivial facets and more

18 11/17 Separation via nontrivial polars Definition A polaroid T of K m (n, r) is a polyhedral set such that: 1. All π T, satisfy the normalization conditions 2. If π T then πx 1 is valid for all x K m (n, r) 3. If πx 1 is facet-defining for K m (n, r), then π T. Let P denote the continuous relaxation of K m (n, r). Theorem Given a point x P, and a polaroid T of K m (n, r). Then 1. x K m (n, r) can be checked by solving an LP over T, and, 2. if x K m (n, r) then a violated facet-defining inequality can be obtained by solving a second LP over T.

19 12/17 K m (n, r) with m = 1, 2 T 1 is a polaroid for K 1 (n, r) π i + π j π i+j, i, j, i + j I T 1 = π i + π j = π r, i, j I, i + j = r π =, π r = 1, π = where I = [, n] T 2 is a polaroid for K 2 (n, r) π i + π j π i+j, i, j, i + j I T 2 = π i + π j = π r, i, j I, i + j = r π =, π r = 1, π [ ] = π [ ] = where I = [, n] 2

20 12/17 K m (n, r) with m = 1, 2 T 1 is a polaroid for K 1 (n, r) π i + π j π i+j, i, j, i + j I T 1 = π i + π j = π r, i, j I, i + j = r π =, π r = 1, π = where I = [, n] T 2 is a polaroid for K 2 (n, r) π i + π j π i+j, i, j, i + j I T 2 = π i + π j = π r, i, j I, i + j = r π =, π r = 1, π [ ] = π [ ] = where I = [, n] 2

21 13/17 K m (n, r) with m = 3 Ta 3 is NOT a polaroid for K 3 (n, r) π i + π j π i+j, i, j, i + j I Ta 3 π = i + π j = π r, i, j I, i + j = r π =, π r = 1, π [ ] = π [ ] = π [ ] = where I = [, n] 3 T 3 b is NOT a polaroid for K3 (n, r) π i + π j + π k π i+j+k, i, j, k, i + j + k I Tb 3 π = i + π j = π r, i, j I, i + j = r π =, π r = 1, π [ ] = π [ ] = π [ ] =

22 13/17 K m (n, r) with m = 3 Ta 3 is NOT a polaroid for K 3 (n, r) π i + π j π i+j, i, j, i + j I Ta 3 π = i + π j = π r, i, j I, i + j = r π =, π r = 1, π [ ] = π [ ] = π [ ] = where I = [, n] 3 T 3 b is NOT a polaroid for K3 (n, r) π i + π j + π k π i+j+k, i, j, k, i + j + k I Tb 3 π = i + π j = π r, i, j I, i + j = r π =, π r = 1, π [ ] = π [ ] = π [ ] =

23 14/17 K 3 (1, 2) Let a = b = c = and consider the point x and the inequality πx 1 where xa = x b = 1, x c = 2 and all other x i = πa = π b = π c = and all other π i = 1 (including π r) Example Note that, i I i x i = a + b + 2c = 2 and x K 3 (1, 2). Also, π satisfies all 2 and 3-term subadditivity conditions: πi + π j π i+j for all i, j, i + j I, πi + π j + π k π i+j+k for all i, j, k, i + j + k I, And yet, π x = 1!

24 15/17 In General Consider K m (n, r) and let I = [, n] m. k-term subadditivity We say that π R I satisfies k-term subadditivity if π i π S i S for all S I such that (i) S k and (ii) i I Validity via subadditivity It is possible to construct invalid cuts πx 1 for K m (n, r) where π satisfies the normalization conditions and k-subadditivity unless i S k max{2, 3 2 m 3 + 1} (for m 1, the lower bound is: 2, 2, 4, 7, 13, 25,...)

25 15/17 In General Consider K m (n, r) and let I = [, n] m. k-term subadditivity We say that π R I satisfies k-term subadditivity if π i π S i S for all S I such that (i) S k and (ii) i I Validity via subadditivity It is possible to construct invalid cuts πx 1 for K m (n, r) where π satisfies the normalization conditions and k-subadditivity unless i S k max{2, 3 2 m 3 + 1} (for m 1, the lower bound is: 2, 2, 4, 7, 13, 25,...)

26 16/17 K 3 (n, r) Theorem If π satisfies 4-term subadditivity, then πx 1 is valid for K 3 (n, r). T 3 is a polaroid for K 3 (n, r) π i + π j + π k + π l π i+j+k+l, i, j, k, l, i + j + k + l I T 3 π = i + π j = π r, i, j I, i + j = r π =, π r = 1, π [ ] = π [ ] = π [ ] = where I = [, n] 3

27 16/17 K 3 (n, r) Theorem If π satisfies 4-term subadditivity, then πx 1 is valid for K 3 (n, r). T 3 is a polaroid for K 3 (n, r) π i + π j + π k + π l π i+j+k+l, i, j, k, l, i + j + k + l I T 3 π = i + π j = π r, i, j I, i + j = r π =, π r = 1, π [ ] = π [ ] = π [ ] = where I = [, n] 3

28 Thank you... 17/17

The master equality polyhedron with multiple rows

The master equality polyhedron with multiple rows The master equality polyhedron with multiple rows Sanjeeb Dash IBM Research sanjeebd@us.ibm.com Ricardo Fukasawa University of Waterloo rfukasaw@math.uwaterloo.ca September 16, 2010 Oktay Günlük IBM Research

More information

The master equality polyhedron with multiple rows

The master equality polyhedron with multiple rows The master equality polyhedron with multiple rows Sanjeeb Dash Ricardo Fukasawa IBM Research February 17, 2009 Oktay Günlük Abstract The master equality polyhedron (MEP) is a canonical set that generalizes

More information

The Master Equality Polyhedron: Two-Slope Facets and Separation Algorithm

The Master Equality Polyhedron: Two-Slope Facets and Separation Algorithm The Master Equality Polyhedron: Two-Slope Facets and Separation Algorithm by Xiaojing Wang A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master

More information

Some Relationships between Disjunctive Cuts and Cuts based on S-free Convex Sets

Some Relationships between Disjunctive Cuts and Cuts based on S-free Convex Sets Some Relationships between Disjunctive Cuts and Cuts based on S-free Convex Sets Sanjeeb Dash a Santanu S. Dey b Oktay Günlük a a Business Analytics and Mathematical Sciences Department, IBM T. J. Watson

More information

SINGLE-ROW MIXED-INTEGER PROGRAMS: THEORY AND COMPUTATIONS

SINGLE-ROW MIXED-INTEGER PROGRAMS: THEORY AND COMPUTATIONS SINGLE-ROW MIXED-INTEGER PROGRAMS: THEORY AND COMPUTATIONS A Thesis Presented to The Academic Faculty by Ricardo Fukasawa In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy

More information

On mixed-integer sets with two integer variables

On mixed-integer sets with two integer variables On mixed-integer sets with two integer variables Sanjeeb Dash IBM Research sanjeebd@us.ibm.com Santanu S. Dey Georgia Inst. Tech. santanu.dey@isye.gatech.edu September 8, 2010 Oktay Günlük IBM Research

More information

Valid inequalities based on simple mixed-integer sets

Valid inequalities based on simple mixed-integer sets Valid inequalities based on simple mixed-integer sets Sanjeeb Dash and Oktay Günlük Mathematical Sciences Department, IBM T J Watson Research Center,Yorktown Heights, NY 10598 (sanjeebd@usibmcom, oktay@watsonibmcom)

More information

Computational Experiments with Cross and Crooked Cross Cuts

Computational Experiments with Cross and Crooked Cross Cuts Computational Experiments with Cross and Crooked Cross Cuts Sanjeeb Dash IBM Research sanjeebd@us.ibm.com Oktay Günlük IBM Research gunluk@us.ibm.com June 22, 2011 Juan Pablo Vielma University of Pittsburgh

More information

Computational Experiments with Cross and Crooked Cross Cuts

Computational Experiments with Cross and Crooked Cross Cuts Computational Experiments with Cross and Crooked Cross Cuts Sanjeeb Dash IBM Research sanjeebd@us.ibm.com Oktay Günlük IBM Research gunluk@us.ibm.com Juan Pablo Vielma Massachusetts Institute of Technology

More information

A Lower Bound on the Split Rank of Intersection Cuts

A Lower Bound on the Split Rank of Intersection Cuts A Lower Bound on the Split Rank of Intersection Cuts Santanu S. Dey H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology. 200 Outline Introduction: split rank,

More information

Polyhedral Approach to Integer Linear Programming. Tepper School of Business Carnegie Mellon University, Pittsburgh

Polyhedral Approach to Integer Linear Programming. Tepper School of Business Carnegie Mellon University, Pittsburgh Polyhedral Approach to Integer Linear Programming Gérard Cornuéjols Tepper School of Business Carnegie Mellon University, Pittsburgh 1 / 30 Brief history First Algorithms Polynomial Algorithms Solving

More information

Solving the MWT. Recall the ILP for the MWT. We can obtain a solution to the MWT problem by solving the following ILP:

Solving the MWT. Recall the ILP for the MWT. We can obtain a solution to the MWT problem by solving the following ILP: Solving the MWT Recall the ILP for the MWT. We can obtain a solution to the MWT problem by solving the following ILP: max subject to e i E ω i x i e i C E x i {0, 1} x i C E 1 for all critical mixed cycles

More information

Computational Experiments with Cross and Crooked Cross Cuts

Computational Experiments with Cross and Crooked Cross Cuts Submitted to INFORMS Journal on Computing manuscript (Please, provide the mansucript number!) Authors are encouraged to submit new papers to INFORMS journals by means of a style file template, which includes

More information

The Split Closure of a Strictly Convex Body

The Split Closure of a Strictly Convex Body The Split Closure of a Strictly Convex Body D. Dadush a, S. S. Dey a, J. P. Vielma b,c, a H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, 765 Ferst Drive

More information

LP Relaxations of Mixed Integer Programs

LP Relaxations of Mixed Integer Programs LP Relaxations of Mixed Integer Programs John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 12180 USA February 2015 Mitchell LP Relaxations 1 / 29 LP Relaxations LP relaxations We want

More information

Integer program reformulation for robust branch-and-cut-and-price

Integer program reformulation for robust branch-and-cut-and-price Integer program reformulation for robust branch-and-cut-and-price Marcus Poggi de Aragão Informática PUC-Rio Eduardo Uchoa Engenharia de Produção Universidade Federal Fluminense Outline of the talk Robust

More information

IBM Research Report. Lattice-Free Sets, Branching Disjunctions, and Mixed-Integer Programming

IBM Research Report. Lattice-Free Sets, Branching Disjunctions, and Mixed-Integer Programming RC25212 (W1109-107) September 21, 2011 Mathematics IBM Research Report Lattice-Free Sets, Branching Disjunctions, and Mixed-Integer Programming Sanjeeb Dash, Neil B. Dobbs, Oktay Günlük, Tomasz J. Nowicki,

More information

Cutting planes from extended LP formulations

Cutting planes from extended LP formulations Cutting planes from extended LP formulations Merve Bodur University of Wisconsin-Madison mbodur@wisc.edu Sanjeeb Dash IBM Research sanjeebd@us.ibm.com March 7, 2016 Oktay Günlük IBM Research gunluk@us.ibm.com

More information

Mixing Inequalities and Maximal Lattice-Free Triangles

Mixing Inequalities and Maximal Lattice-Free Triangles Mixing Inequalities and Maximal Lattice-Free Triangles Santanu S. Dey Laurence A. Wolsey Georgia Institute of Technology; Center for Operations Research and Econometrics, UCL, Belgium. 2 Outline Mixing

More information

Projected Chvátal-Gomory cuts for Mixed Integer Linear Programs. Pierre Bonami CMU, USA. Gerard Cornuéjols CMU, USA and LIF Marseille, France

Projected Chvátal-Gomory cuts for Mixed Integer Linear Programs. Pierre Bonami CMU, USA. Gerard Cornuéjols CMU, USA and LIF Marseille, France Projected Chvátal-Gomory cuts for Mixed Integer Linear Programs Pierre Bonami CMU, USA Gerard Cornuéjols CMU, USA and LIF Marseille, France Sanjeeb Dash IBM T.J. Watson, USA Matteo Fischetti University

More information

Lattice closures of polyhedra

Lattice closures of polyhedra Lattice closures of polyhedra Sanjeeb Dash IBM Research sanjeebd@us.ibm.com Oktay Günlük IBM Research gunluk@us.ibm.com April 10, 2017 Diego A. Morán R. Universidad Adolfo Ibañez diego.moran@uai.cl Abstract

More information

Linear Algebra Review: Linear Independence. IE418 Integer Programming. Linear Algebra Review: Subspaces. Linear Algebra Review: Affine Independence

Linear Algebra Review: Linear Independence. IE418 Integer Programming. Linear Algebra Review: Subspaces. Linear Algebra Review: Affine Independence Linear Algebra Review: Linear Independence IE418: Integer Programming Department of Industrial and Systems Engineering Lehigh University 21st March 2005 A finite collection of vectors x 1,..., x k R n

More information

Integer Programming ISE 418. Lecture 12. Dr. Ted Ralphs

Integer Programming ISE 418. Lecture 12. Dr. Ted Ralphs Integer Programming ISE 418 Lecture 12 Dr. Ted Ralphs ISE 418 Lecture 12 1 Reading for This Lecture Nemhauser and Wolsey Sections II.2.1 Wolsey Chapter 9 ISE 418 Lecture 12 2 Generating Stronger Valid

More information

Lattice closures of polyhedra

Lattice closures of polyhedra Lattice closures of polyhedra Sanjeeb Dash IBM Research sanjeebd@us.ibm.com Oktay Günlük IBM Research gunluk@us.ibm.com October 27, 2016 Diego A. Morán R. Universidad Adolfo Ibañez diego.moran@uai.cl Abstract

More information

Cutting Planes and Elementary Closures for Non-linear Integer Programming

Cutting Planes and Elementary Closures for Non-linear Integer Programming Cutting Planes and Elementary Closures for Non-linear Integer Programming Juan Pablo Vielma University of Pittsburgh joint work with D. Dadush and S. S. Dey S. Modaresi and M. Kılınç Georgia Institute

More information

The Strength of Multi-row Aggregation Cuts for Sign-pattern Integer Programs

The Strength of Multi-row Aggregation Cuts for Sign-pattern Integer Programs The Strength of Multi-row Aggregation Cuts for Sign-pattern Integer Programs Santanu S. Dey 1, Andres Iroume 1, and Guanyi Wang 1 1 School of Industrial and Systems Engineering, Georgia Institute of Technology

More information

The continuous knapsack set

The continuous knapsack set The continuous knapsack set Sanjeeb Dash IBM Research sanjeebd@us.ibm.com Oktay Günlük IBM Research gunluk@us.ibm.com January 31, 2014 Laurence Wolsey Core laurence.wolsey@uclouvain.be Abstract We study

More information

Cutting Plane Methods I

Cutting Plane Methods I 6.859/15.083 Integer Programming and Combinatorial Optimization Fall 2009 Cutting Planes Consider max{wx : Ax b, x integer}. Cutting Plane Methods I Establishing the optimality of a solution is equivalent

More information

The continuous knapsack set

The continuous knapsack set The continuous knapsack set Sanjeeb Dash IBM Research sanjeebd@us.ibm.com Oktay Günlük IBM Research gunluk@us.ibm.com December 18, 2014 Laurence Wolsey Core laurence.wolsey@uclouvain.be Abstract We study

More information

Corner Polyhedron and Intersection Cuts

Corner Polyhedron and Intersection Cuts Corner Polyhedron and Intersection Cuts Michele Conforti 1,5, Gérard Cornuéjols 2,4 Giacomo Zambelli 3,5 August 2010 Revised March 2011 Abstract Four decades ago, Gomory introduced the corner polyhedron

More information

Integer Programming ISE 418. Lecture 13. Dr. Ted Ralphs

Integer Programming ISE 418. Lecture 13. Dr. Ted Ralphs Integer Programming ISE 418 Lecture 13 Dr. Ted Ralphs ISE 418 Lecture 13 1 Reading for This Lecture Nemhauser and Wolsey Sections II.1.1-II.1.3, II.1.6 Wolsey Chapter 8 CCZ Chapters 5 and 6 Valid Inequalities

More information

Chapter 1. Preliminaries

Chapter 1. Preliminaries Introduction This dissertation is a reading of chapter 4 in part I of the book : Integer and Combinatorial Optimization by George L. Nemhauser & Laurence A. Wolsey. The chapter elaborates links between

More information

Cutting Planes in SCIP

Cutting Planes in SCIP Cutting Planes in SCIP Kati Wolter Zuse-Institute Berlin Department Optimization Berlin, 6th June 2007 Outline 1 Cutting Planes in SCIP 2 Cutting Planes for the 0-1 Knapsack Problem 2.1 Cover Cuts 2.2

More information

Optimization Exercise Set n. 4 :

Optimization Exercise Set n. 4 : Optimization Exercise Set n. 4 : Prepared by S. Coniglio and E. Amaldi translated by O. Jabali 2018/2019 1 4.1 Airport location In air transportation, usually there is not a direct connection between every

More information

BCOL RESEARCH REPORT 17.07

BCOL RESEARCH REPORT 17.07 BCOL RESEARCH REPORT 17.07 Industrial Engineering & Operations Research University of California, Berkeley, CA 9470 1777 ON CAPACITY MODELS FOR NETWORK DESIGN ALPER ATAMTÜRK AND OKTAY GÜNLÜK Abstract.

More information

Structure of Valid Inequalities for Mixed Integer Conic Programs

Structure of Valid Inequalities for Mixed Integer Conic Programs Structure of Valid Inequalities for Mixed Integer Conic Programs Fatma Kılınç-Karzan Tepper School of Business Carnegie Mellon University 18 th Combinatorial Optimization Workshop Aussois, France January

More information

MAT-INF4110/MAT-INF9110 Mathematical optimization

MAT-INF4110/MAT-INF9110 Mathematical optimization MAT-INF4110/MAT-INF9110 Mathematical optimization Geir Dahl August 20, 2013 Convexity Part IV Chapter 4 Representation of convex sets different representations of convex sets, boundary polyhedra and polytopes:

More information

Lagrangian Relaxation in MIP

Lagrangian Relaxation in MIP Lagrangian Relaxation in MIP Bernard Gendron May 28, 2016 Master Class on Decomposition, CPAIOR2016, Banff, Canada CIRRELT and Département d informatique et de recherche opérationnelle, Université de Montréal,

More information

Strengthened Benders Cuts for Stochastic Integer Programs with Continuous Recourse

Strengthened Benders Cuts for Stochastic Integer Programs with Continuous Recourse Strengthened Benders Cuts for Stochastic Integer Programs with Continuous Recourse Merve Bodur 1, Sanjeeb Dash 2, Otay Günlü 2, and James Luedte 3 1 Department of Mechanical and Industrial Engineering,

More information

Intersection cuts for single row corner relaxations

Intersection cuts for single row corner relaxations Math. Prog. Comp. 28 :423 455 https://doi.org/.7/s2532-8-32-y FULL LENGTH PAPER Intersection cuts for single row corner relaxations Ricardo Fukasawa Laurent Poirrier Álinson S. Xavier Received: 4 May 26

More information

n-step mingling inequalities: new facets for the mixed-integer knapsack set

n-step mingling inequalities: new facets for the mixed-integer knapsack set Math. Program., Ser. A (2012) 132:79 98 DOI 10.1007/s10107-010-0382-6 FULL LENGTH PAPER n-step mingling inequalities: new facets for the mixed-integer knapsack set Alper Atamtürk Kiavash Kianfar Received:

More information

Robust branch-cut-and-price for the Capacitated Minimum Spanning Tree problem over a large extended formulation

Robust branch-cut-and-price for the Capacitated Minimum Spanning Tree problem over a large extended formulation Math. Program., Ser. A DOI 10.1007/s10107-006-0043-y FULL LENGTH PAPER Robust branch-cut-and-price for the Capacitated Minimum Spanning Tree problem over a large extended formulation Eduardo Uchoa Ricardo

More information

Lecture 9: Dantzig-Wolfe Decomposition

Lecture 9: Dantzig-Wolfe Decomposition Lecture 9: Dantzig-Wolfe Decomposition (3 units) Outline Dantzig-Wolfe decomposition Column generation algorithm Relation to Lagrangian dual Branch-and-price method Generated assignment problem and multi-commodity

More information

Vehicle Routing and MIP

Vehicle Routing and MIP CORE, Université Catholique de Louvain 5th Porto Meeting on Mathematics for Industry, 11th April 2014 Contents: The Capacitated Vehicle Routing Problem Subproblems: Trees and the TSP CVRP Cutting Planes

More information

A geometric perspective on lifting

A geometric perspective on lifting A geometric perspective on lifting Michele Conforti Università di Padova, conforti@math.unipd.it Gérard Cornuéjols Carnegie Mellon University and Université d Aix-Marseille, gc0v@andrew.cmu.edu Giacomo

More information

1 Maximal Lattice-free Convex Sets

1 Maximal Lattice-free Convex Sets 47-831: Advanced Integer Programming Lecturer: Amitabh Basu Lecture 3 Date: 03/23/2010 In this lecture, we explore the connections between lattices of R n and convex sets in R n. The structures will prove

More information

3. Linear Programming and Polyhedral Combinatorics

3. Linear Programming and Polyhedral Combinatorics Massachusetts Institute of Technology 18.453: Combinatorial Optimization Michel X. Goemans April 5, 2017 3. Linear Programming and Polyhedral Combinatorics Summary of what was seen in the introductory

More information

Cutting Plane Separators in SCIP

Cutting Plane Separators in SCIP Cutting Plane Separators in SCIP Kati Wolter Zuse Institute Berlin DFG Research Center MATHEON Mathematics for key technologies 1 / 36 General Cutting Plane Method MIP min{c T x : x X MIP }, X MIP := {x

More information

On the Exact Separation of Mixed Integer Knapsack Cuts

On the Exact Separation of Mixed Integer Knapsack Cuts On the Exact Separation of Mixed Integer Knapsack Cuts Ricardo Fukasawa 1 and Marcos Goycoolea 2 1 H. Milton Stewart School of Industrial and Systems Engineering Georgia Institute of Technology rfukasaw@isye.gatech.edu

More information

A Review of Linear Programming

A Review of Linear Programming A Review of Linear Programming Instructor: Farid Alizadeh IEOR 4600y Spring 2001 February 14, 2001 1 Overview In this note we review the basic properties of linear programming including the primal simplex

More information

THE EXISTENCE AND USEFULNESS OF EQUALITY CUTS IN THE MULTI-DEMAND MULTIDIMENSIONAL KNAPSACK PROBLEM LEVI DELISSA. B.S., Kansas State University, 2014

THE EXISTENCE AND USEFULNESS OF EQUALITY CUTS IN THE MULTI-DEMAND MULTIDIMENSIONAL KNAPSACK PROBLEM LEVI DELISSA. B.S., Kansas State University, 2014 THE EXISTENCE AND USEFULNESS OF EQUALITY CUTS IN THE MULTI-DEMAND MULTIDIMENSIONAL KNAPSACK PROBLEM by LEVI DELISSA B.S., Kansas State University, 2014 A THESIS submitted in partial fulfillment of the

More information

The Split Closure of a Strictly Convex Body

The Split Closure of a Strictly Convex Body The Split Closure of a Strictly Convex Body D. Dadush a, S. S. Dey a, J. P. Vielma b,c, a H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, 765 Ferst Drive

More information

On the knapsack closure of 0-1 Integer Linear Programs. Matteo Fischetti University of Padova, Italy

On the knapsack closure of 0-1 Integer Linear Programs. Matteo Fischetti University of Padova, Italy On the knapsack closure of 0-1 Integer Linear Programs Matteo Fischetti University of Padova, Italy matteo.fischetti@unipd.it Andrea Lodi University of Bologna, Italy alodi@deis.unibo.it Aussois, January

More information

Cuts for mixed 0-1 conic programs

Cuts for mixed 0-1 conic programs Cuts for mixed 0-1 conic programs G. Iyengar 1 M. T. Cezik 2 1 IEOR Department Columbia University, New York. 2 GERAD Université de Montréal, Montréal TU-Chemnitz Workshop on Integer Programming and Continuous

More information

On the knapsack closure of 0-1 Integer Linear Programs

On the knapsack closure of 0-1 Integer Linear Programs On the knapsack closure of 0-1 Integer Linear Programs Matteo Fischetti 1 Dipartimento di Ingegneria dell Informazione University of Padova Padova, Italy Andrea Lodi 2 Dipartimento di Elettronica, Informatica

More information

Lifting for conic mixed-integer programming

Lifting for conic mixed-integer programming Math. Program., Ser. A DOI 1.17/s117-9-282-9 FULL LENGTH PAPER Lifting for conic mixed-integer programming Alper Atamtürk Vishnu Narayanan Received: 13 March 28 / Accepted: 28 January 29 The Author(s)

More information

On the Relative Strength of Split, Triangle and Quadrilateral Cuts

On the Relative Strength of Split, Triangle and Quadrilateral Cuts On the Relative Strength of Split, Triangle and Quadrilateral Cuts Amitabh Basu Pierre Bonami Gérard Cornuéjols François Margot Abstract Integer programs defined by two equations with two free integer

More information

Optimization Exercise Set n.5 :

Optimization Exercise Set n.5 : Optimization Exercise Set n.5 : Prepared by S. Coniglio translated by O. Jabali 2016/2017 1 5.1 Airport location In air transportation, usually there is not a direct connection between every pair of airports.

More information

Optimization Methods in Management Science

Optimization Methods in Management Science Optimization Methods in Management Science MIT 15.05 Recitation 8 TAs: Giacomo Nannicini, Ebrahim Nasrabadi At the end of this recitation, students should be able to: 1. Derive Gomory cut from fractional

More information

Solving Box-Constrained Nonconvex Quadratic Programs

Solving Box-Constrained Nonconvex Quadratic Programs Noname manuscript No. (will be inserted by the editor) Solving Box-Constrained Nonconvex Quadratic Programs Pierre Bonami Oktay Günlük Jeff Linderoth June 13, 2016 Abstract We present effective computational

More information

Discrete Optimization 2010 Lecture 7 Introduction to Integer Programming

Discrete Optimization 2010 Lecture 7 Introduction to Integer Programming Discrete Optimization 2010 Lecture 7 Introduction to Integer Programming Marc Uetz University of Twente m.uetz@utwente.nl Lecture 8: sheet 1 / 32 Marc Uetz Discrete Optimization Outline 1 Intro: The Matching

More information

Separation Techniques for Constrained Nonlinear 0 1 Programming

Separation Techniques for Constrained Nonlinear 0 1 Programming Separation Techniques for Constrained Nonlinear 0 1 Programming Christoph Buchheim Computer Science Department, University of Cologne and DEIS, University of Bologna MIP 2008, Columbia University, New

More information

3.7 Strong valid inequalities for structured ILP problems

3.7 Strong valid inequalities for structured ILP problems 3.7 Strong valid inequalities for structured ILP problems By studying the problem structure, we can derive strong valid inequalities yielding better approximations of conv(x ) and hence tighter bounds.

More information

Semidefinite programming lifts and sparse sums-of-squares

Semidefinite programming lifts and sparse sums-of-squares 1/15 Semidefinite programming lifts and sparse sums-of-squares Hamza Fawzi (MIT, LIDS) Joint work with James Saunderson (UW) and Pablo Parrilo (MIT) Cornell ORIE, October 2015 Linear optimization 2/15

More information

Integer Program Reformulation for Robust. Branch-and-Cut-and-Price Algorithms

Integer Program Reformulation for Robust. Branch-and-Cut-and-Price Algorithms Integer Program Reformulation for Robust Branch-and-Cut-and-Price Algorithms Marcus Poggi de Aragão 1, Eduardo Uchoa 2 1 Departamento de Informática, PUC-Rio, poggi@inf.puc-rio.br 2 Dep. de Engenharia

More information

AM 121: Intro to Optimization! Models and Methods! Fall 2018!

AM 121: Intro to Optimization! Models and Methods! Fall 2018! AM 121: Intro to Optimization Models and Methods Fall 2018 Lecture 15: Cutting plane methods Yiling Chen SEAS Lesson Plan Cut generation and the separation problem Cutting plane methods Chvatal-Gomory

More information

Section Notes 9. IP: Cutting Planes. Applied Math 121. Week of April 12, 2010

Section Notes 9. IP: Cutting Planes. Applied Math 121. Week of April 12, 2010 Section Notes 9 IP: Cutting Planes Applied Math 121 Week of April 12, 2010 Goals for the week understand what a strong formulations is. be familiar with the cutting planes algorithm and the types of cuts

More information

Non-Recursive Cut Generation

Non-Recursive Cut Generation Non-Recursive Cut Generation Aleksandr M. Kazachkov Spring 2018 Tepper School of Business Carnegie Mellon University Pittsburgh, PA 15213 Thesis Committee: Egon Balas (Chair) Daniel Bienstock Gérard Cornuéjols

More information

3.7 Cutting plane methods

3.7 Cutting plane methods 3.7 Cutting plane methods Generic ILP problem min{ c t x : x X = {x Z n + : Ax b} } with m n matrix A and n 1 vector b of rationals. According to Meyer s theorem: There exists an ideal formulation: conv(x

More information

On the matrix-cut rank of polyhedra

On the matrix-cut rank of polyhedra On the matrix-cut rank of polyhedra William Cook and Sanjeeb Dash Computational and Applied Mathematics Rice University August 5, 00 Abstract Lovász and Schrijver (99) described a semi-definite operator

More information

Subadditive Approaches to Mixed Integer Programming

Subadditive Approaches to Mixed Integer Programming Subadditive Approaches to Mixed Integer Programming by Babak Moazzez A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of

More information

3. Linear Programming and Polyhedral Combinatorics

3. Linear Programming and Polyhedral Combinatorics Massachusetts Institute of Technology 18.433: Combinatorial Optimization Michel X. Goemans February 28th, 2013 3. Linear Programming and Polyhedral Combinatorics Summary of what was seen in the introductory

More information

Matteo Fischetti, DEI, University of Padova. COFIN Matheon workshop, Villa Vigoni (Como), May 2006

Matteo Fischetti, DEI, University of Padova. COFIN Matheon workshop, Villa Vigoni (Como), May 2006 Matteo Fischetti, DEI, University of Padova COFIN Matheon workshop, Villa Vigoni (Como), May 2006 1 MIP solvers for hard optimization problems Mixed-integer linear programming (MIP) plays a central role

More information

March 2002, December Introduction. We investigate the facial structure of the convex hull of the mixed integer knapsack set

March 2002, December Introduction. We investigate the facial structure of the convex hull of the mixed integer knapsack set ON THE FACETS OF THE MIXED INTEGER KNAPSACK POLYHEDRON ALPER ATAMTÜRK Abstract. We study the mixed integer knapsack polyhedron, that is, the convex hull of the mixed integer set defined by an arbitrary

More information

Convex hull of two quadratic or a conic quadratic and a quadratic inequality

Convex hull of two quadratic or a conic quadratic and a quadratic inequality Noname manuscript No. (will be inserted by the editor) Convex hull of two quadratic or a conic quadratic and a quadratic inequality Sina Modaresi Juan Pablo Vielma the date of receipt and acceptance should

More information

SEQUENTIAL AND SIMULTANEOUS LIFTING IN THE NODE PACKING POLYHEDRON JEFFREY WILLIAM PAVELKA. B.S., Kansas State University, 2011

SEQUENTIAL AND SIMULTANEOUS LIFTING IN THE NODE PACKING POLYHEDRON JEFFREY WILLIAM PAVELKA. B.S., Kansas State University, 2011 SEQUENTIAL AND SIMULTANEOUS LIFTING IN THE NODE PACKING POLYHEDRON by JEFFREY WILLIAM PAVELKA B.S., Kansas State University, 2011 A THESIS Submitted in partial fulfillment of the requirements for the degree

More information

COUNTING NUMERICAL SEMIGROUPS BY GENUS AND SOME CASES OF A QUESTION OF WILF

COUNTING NUMERICAL SEMIGROUPS BY GENUS AND SOME CASES OF A QUESTION OF WILF COUNTING NUMERICAL SEMIGROUPS BY GENUS AND SOME CASES OF A QUESTION OF WILF NATHAN KAPLAN Abstract. The genus of a numerical semigroup is the size of its complement. In this paper we will prove some results

More information

Reformulation of capacitated facility location problems: How redundant information can help. Karen Aardal. Utrecht University. P.O.

Reformulation of capacitated facility location problems: How redundant information can help. Karen Aardal. Utrecht University. P.O. Reformulation of capacitated facility location problems: How redundant information can help Karen Aardal Department of Computer Science Utrecht University P.O. Box 80089 3508 TB Utrecht, The Netherlands

More information

On the Polyhedral Structure of a Multi Item Production Planning Model with Setup Times

On the Polyhedral Structure of a Multi Item Production Planning Model with Setup Times CORE DISCUSSION PAPER 2000/52 On the Polyhedral Structure of a Multi Item Production Planning Model with Setup Times Andrew J. Miller 1, George L. Nemhauser 2, and Martin W.P. Savelsbergh 2 November 2000

More information

Appendix PRELIMINARIES 1. THEOREMS OF ALTERNATIVES FOR SYSTEMS OF LINEAR CONSTRAINTS

Appendix PRELIMINARIES 1. THEOREMS OF ALTERNATIVES FOR SYSTEMS OF LINEAR CONSTRAINTS Appendix PRELIMINARIES 1. THEOREMS OF ALTERNATIVES FOR SYSTEMS OF LINEAR CONSTRAINTS Here we consider systems of linear constraints, consisting of equations or inequalities or both. A feasible solution

More information

MIP reformulations of some chance-constrained mathematical programs

MIP reformulations of some chance-constrained mathematical programs MIP reformulations of some chance-constrained mathematical programs Ricardo Fukasawa Department of Combinatorics & Optimization University of Waterloo December 4th, 2012 FIELDS Industrial Optimization

More information

Minimal inequalities for an infinite relaxation of integer programs

Minimal inequalities for an infinite relaxation of integer programs Minimal inequalities for an infinite relaxation of integer programs Amitabh Basu Carnegie Mellon University, abasu1@andrew.cmu.edu Michele Conforti Università di Padova, conforti@math.unipd.it Gérard Cornuéjols

More information

Cutting planes from two rows of a simplex tableau

Cutting planes from two rows of a simplex tableau Cutting planes from two rows of a simplex tableau K. Andersen Q. Louveaux R. Weismantel L. Wolsey May, 6 Abstract Introduction In this paper a basic geometric object is investigated that allows us to derive

More information

Key words. Integer nonlinear programming, Cutting planes, Maximal lattice-free convex sets

Key words. Integer nonlinear programming, Cutting planes, Maximal lattice-free convex sets ON MAXIMAL S-FREE CONVEX SETS DIEGO A. MORÁN R. AND SANTANU S. DEY Abstract. Let S Z n satisfy the property that conv(s) Z n = S. Then a convex set K is called an S-free convex set if int(k) S =. A maximal

More information

Asteroide Santana, Santanu S. Dey. December 4, School of Industrial and Systems Engineering, Georgia Institute of Technology

Asteroide Santana, Santanu S. Dey. December 4, School of Industrial and Systems Engineering, Georgia Institute of Technology for Some for Asteroide Santana, Santanu S. Dey School of Industrial Systems Engineering, Georgia Institute of Technology December 4, 2016 1 / 38 1 1.1 Conic integer programs for Conic integer programs

More information

Sequential pairing of mixed integer inequalities

Sequential pairing of mixed integer inequalities Sequential pairing of mixed integer inequalities Yongpei Guan, Shabbir Ahmed, George L. Nemhauser School of Industrial & Systems Engineering, Georgia Institute of Technology, 765 Ferst Drive, Atlanta,

More information

arxiv:math/ v1 [math.oc] 3 Oct 2001

arxiv:math/ v1 [math.oc] 3 Oct 2001 AN ALGEBRAIC PERSPECTIVE OF GROUP RELAXATIONS arxiv:math/0110034v1 [math.oc] 3 Oct 2001 REKHA R. THOMAS Contents 1. Introduction 1 2. Group Relaxations 3 3. Associated Sets 10 4. Arithmetic Degree 16 5.

More information

Combinatorial Types of Tropical Eigenvector

Combinatorial Types of Tropical Eigenvector Combinatorial Types of Tropical Eigenvector arxiv:1105.55504 Ngoc Mai Tran Department of Statistics, UC Berkeley Joint work with Bernd Sturmfels 2 / 13 Tropical eigenvalues and eigenvectors Max-plus: (R,,

More information

MINI-TUTORIAL ON SEMI-ALGEBRAIC PROOF SYSTEMS. Albert Atserias Universitat Politècnica de Catalunya Barcelona

MINI-TUTORIAL ON SEMI-ALGEBRAIC PROOF SYSTEMS. Albert Atserias Universitat Politècnica de Catalunya Barcelona MINI-TUTORIAL ON SEMI-ALGEBRAIC PROOF SYSTEMS Albert Atserias Universitat Politècnica de Catalunya Barcelona Part I CONVEX POLYTOPES Convex polytopes as linear inequalities Polytope: P = {x R n : Ax b}

More information

3.8 Strong valid inequalities

3.8 Strong valid inequalities 3.8 Strong valid inequalities By studying the problem structure, we can derive strong valid inequalities which lead to better approximations of the ideal formulation conv(x ) and hence to tighter bounds.

More information

Split Rank of Triangle and Quadrilateral Inequalities

Split Rank of Triangle and Quadrilateral Inequalities Split Rank of Triangle and Quadrilateral Inequalities Santanu Dey 1 Quentin Louveaux 2 June 4, 2009 Abstract A simple relaxation of two rows of a simplex tableau is a mixed integer set consisting of two

More information

University of Paderborn Faculty of Business and Economics Department of Information Systems Decision Support & Operations Research Lab.

University of Paderborn Faculty of Business and Economics Department of Information Systems Decision Support & Operations Research Lab. University of Paderborn Faculty of Business and Economics Department of Information Systems Decision Support & Operations Research Lab Working Papers WP0704 Separation of Mixing Inequalities in a Mixed

More information

Lifted Inequalities for 0 1 Mixed-Integer Bilinear Covering Sets

Lifted Inequalities for 0 1 Mixed-Integer Bilinear Covering Sets 1 2 3 Lifted Inequalities for 0 1 Mixed-Integer Bilinear Covering Sets Kwanghun Chung 1, Jean-Philippe P. Richard 2, Mohit Tawarmalani 3 March 1, 2011 4 5 6 7 8 9 Abstract In this paper, we study 0 1 mixed-integer

More information

MATHEMATICAL ENGINEERING TECHNICAL REPORTS. The Symmetric Quadratic Semi-Assignment Polytope

MATHEMATICAL ENGINEERING TECHNICAL REPORTS. The Symmetric Quadratic Semi-Assignment Polytope MATHEMATICAL ENGINEERING TECHNICAL REPORTS The Symmetric Quadratic Semi-Assignment Polytope Hiroo SAITO (Communicated by Kazuo MUROTA) METR 2005 21 August 2005 DEPARTMENT OF MATHEMATICAL INFORMATICS GRADUATE

More information

An Integer Cutting-Plane Procedure for the Dantzig-Wolfe Decomposition: Theory

An Integer Cutting-Plane Procedure for the Dantzig-Wolfe Decomposition: Theory An Integer Cutting-Plane Procedure for the Dantzig-Wolfe Decomposition: Theory by Troels Martin Range Discussion Papers on Business and Economics No. 10/2006 FURTHER INFORMATION Department of Business

More information

Introduction to Mathematical Programming IE406. Lecture 21. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 21. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 21 Dr. Ted Ralphs IE406 Lecture 21 1 Reading for This Lecture Bertsimas Sections 10.2, 10.3, 11.1, 11.2 IE406 Lecture 21 2 Branch and Bound Branch

More information

Lift-and-Project Inequalities

Lift-and-Project Inequalities Lift-and-Project Inequalities Q. Louveaux Abstract The lift-and-project technique is a systematic way to generate valid inequalities for a mixed binary program. The technique is interesting both on the

More information

Split closure and intersection cuts

Split closure and intersection cuts Math. Program., Ser. A 102: 457 493 (2005) Digital Object Identifier (DOI) 10.1007/s10107-004-0558-z Kent Andersen Gérard Cornuéjols Yanjun Li Split closure and intersection cuts Received: February 4,

More information

Integer Programming, Part 1

Integer Programming, Part 1 Integer Programming, Part 1 Rudi Pendavingh Technische Universiteit Eindhoven May 18, 2016 Rudi Pendavingh (TU/e) Integer Programming, Part 1 May 18, 2016 1 / 37 Linear Inequalities and Polyhedra Farkas

More information

A Polyhedral Study of the Semi-Continuous Knapsack Problem

A Polyhedral Study of the Semi-Continuous Knapsack Problem A Polyhedral Study of the Semi-Continuous Knapsack Problem Ismael Regis de Farias JR. Department of Industrial Engineering, Texas Tech University, ismael.de-farias@ttu.edu Ming Zhao SAS, ming.zhao@sas.com

More information