Sequenced Units for Arizona s College and Career Ready Standards MA40 Algebra II

Size: px
Start display at page:

Download "Sequenced Units for Arizona s College and Career Ready Standards MA40 Algebra II"

Transcription

1 Sequenced Units for Arizona s College and Career Ready Standards MA40 Algebra II Year at a Glance Semester 1 Semester 2 Unit 1: Linear Functions (10 days) Unit 2: Quadratic Functions (10 days) Unit 3: Quadratic Equations and Complex Numbers (14 days) Unit 4: Polynomial Functions (20 days) Unit 5: Rational Exponents and Radical Functions (13 days) Unit 6: Exponential and Logarithmic Functions (17 days) Unit 7: Rational Functions (12 days) Unit 8: Sequences and Series (13 days) Unit 9: Trigonometric Ratios and Functions (19 days) Unit 10: Probability (16 days) Unit 11: Data Analysis and Statistics (16 days)

2 Algebra II extends the knowledge students have of algebraic and statistical concepts. They have investigated linear, exponential, and quadratic functions in previous years. Algebra II further develops important mathematical ideas introduced in Algebra I by extending techniques to solve equations and students knowledge of functions by studying inverses and new function families: polynomial, radical, trigonometric, and rational functions. Students will also spend a significant portion of the school year studying probability and statistics. There are some (+) standards that are included in this course because the standards naturally support the assessed Algebra II content. This document reflects our current thinking related to the intent of Arizona s College and Career Ready Standards for Mathematics and assumes 160 days for instruction, divided among 11 units. The number of days suggested for each unit assumes 45 minute class periods and is included to convey how instructional time should be balanced across the year. The units are sequenced in a way that we believe best develops and connects the mathematical content described in the standards; however, the order of the standards included in any unit does not imply a sequence of content within that unit. Some standards may be revisited several times during the course; others may be only partially addressed in different units, depending on the focus of the unit. Strikethroughs in the text of the standards are used in some cases in an attempt to convey that focus, and comments are included throughout the document to clarify and provide additional background for each unit. Throughout Algebra II, students should continue to develop proficiency with Arizona s College and Career Ready Standards eight Standards for Mathematical Practice: 1. Make sense of problems and persevere in solving them. 5. Use appropriate tools strategically. 2. Reason abstractly and quantitatively. 6. Attend to precision. 3. Construct viable arguments and critique the reasoning of others. 7. Look for and make use of structure. 4. Model with mathematics. 8. Look for and express regularity in repeated reasoning. These practices should become the natural way in which students come to understand and do mathematics. While, depending on the content to be understood or on the problem to be solved, any practice might be brought to bear, some practices may prove more useful than others. Opportunities for highlighting certain practices are indicated in different units in this document, but this highlighting should not be interpreted to mean that other practices should be neglected in those units. When using this document to help in planning your district's instructional program, you will also need to refer to the standards document, relevant progressions documents for the standards, and the appropriate assessment consortium framework. Mesa Public Schools 1 May 2015

3 Unit 1: Linear Functions Suggested number of days: 10 Unit 1 presents topics that were studied in Algebra 1. Transformations of linear, quadratic, and absolute value functions are explored. The parent functions are established and then transformed functions are compared to the parent. Students will review modeling with linear functions involving writing linear functions from given information and fitting a line to data. Results from performing a linear regression are compared to the model determined by hand. Students extend prior work with systems of equations to solving linear systems in three variables. Students may well be a bit rusty with the algebra skills. The review content should be familiar to students, with new content introduced at an appropriate level. It is assumed that students will be using graphing technology in this book. In this first unit, many fundamental calculator skills are integrated in the lessons. Creating equations A CED A. Create equations that describe numbers or relationships 2. Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. 3. Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non- viable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods. Reasoning with Equations and Inequalities A REI C. Solve systems of equations 6. Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables. Interpreting Functions F IF C. Analyze functions using different representations 9. Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum. Building Functions F BF A. Build a function that models a relationship between two quantities 1. Write a function that describes a relationship between two quantities. a. Determine an explicit expression, a recursive process, or steps for calculation from a context. B. Build new functions from existing functions 3. Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them. Linear, Quadratic, and Exponential Models F LE A. Construct and compare linear, quadratic, and exponential models and solve problems 2. Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input output pairs (include reading these from a table). A-REI.C.6 Include 3x3 systems. F-IF.B.9 Tasks may involve polynomial, exponential, logarithmic, and trigonometric functions. F-BF.A.1a Include problem-solving opportunities utilizing a real-world context. Function types extend to include polynomial, radical, logarithmic, simple rational, and trigonometric. Extend to include all exponential functions. F-BF.B.3 Function types extend to include polynomial, radical, logarithmic, simple rational, and trigonometric. Extend to include all exponential functions. F-LE.A.2 Extend to include solving multi-step problems by constructing linear and exponential functions. Mesa Public Schools 2 May 2015

4 Unit 1: Linear Functions Suggested number of days: 10 Interpreting Categorical and Quantitative Data S ID B. Summarize, represent, and interpret data on two categorical and quantitative variables 6. Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models. S-ID.B.6a Include problem-solving opportunities utilizing a real-world context. Extend to include all exponential functions. Arizona s College and Career Ready Standards for Mathematical Practice 1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively. 3. Construct viable arguments and critique the reasoning of others. 4. Model with mathematics. 5. Use appropriate tools strategically. 6. Attend to precision. 7. Look for and make use of structure. 8. Look for and express regularity in repeated reasoning. Mesa Public Schools 3 May 2015

5 Unit 2: Quadratic Functions Suggested number of days: 10 Students have studied quadratic functions in Algebra 1. Their background should include factoring quadratic expressions, graphing quadratic equations written in three forms, and solving quadratic equations using a variety of approaches. Students will extend their knowledge of quadratic functions in this unit. Transformations on quadratic functions are introduced as well as characteristics of quadratic functions. Understanding the connection between the characteristics of a quadratic and its equation can help students apply their knowledge when working with a real-life application. Arithmetic with Polynomials and Rational Expression A APR B. Understand the relationship between zeros and factors of polynomials 3. Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial. Creating equations A CED A. Create equations that describe numbers or relationships 2. Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. Interpreting Functions F IF B. Interpret functions that arise in applications in terms of the context 4. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. 6. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. C. Analyze functions using different representations 7. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. c. Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior. 9. Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum. A-APR.B.3 Include quadratic, cubic, and quartic polynomials and polynomials for which factors are not provided. For example, find the zeros of (x 2-1)( x 2 + 1). F-IF.B.4 Include problem-solving opportunities utilizing a real-world context. Function types extend to include polynomial, radical, logarithmic, simple rational, and trigonometric. Extend to include all exponential functions. The function types listed here are the same as those listed in the Algebra II column for standards F- IF.6, F-IF.7, and F-IF.9. F-IF.B.6 Include problem-solving opportunities utilizing a real-world context. Function types extend to include polynomial, radical, logarithmic, simple rational, and trigonometric. Extend to include all exponential functions. The function types listed here are the same as those listed in the Algebra II column for standards F-IF.6, F-IF.7, and F-IF.9. F-IF.C.7 Include problem-solving opportunities utilizing a real-world context. Function types extend to include polynomial, radical, logarithmic, simple rational, and trigonometric. Extend to include all exponential functions. The function types listed here are the same as those listed in the Algebra II column for standards F-IF.6, F-IF.7, and F-IF.9. F-IF.C.9 Include problem-solving opportunities utilizing a real-world context. Function types extend to include polynomial, radical, logarithmic, simple rational, and trigonometric. Extend to include all exponential functions. Mesa Public Schools 4 May 2015

6 Unit 2: Quadratic Functions Suggested number of days: 10 Building Functions F BF A. Build a function that models a relationship between two quantities 1. Write a function that describes a relationship between two quantities. a. Determine an explicit expression, a recursive process, or steps for calculation from a context. B. Build new functions from existing functions 3. Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them. Expressing Geometric Properties with Equations G GPE A. Translate between the geometric description and the equation for a conic section 2. Derive the equation of a parabola given a focus and directrix. Interpreting Categorical and Quantitative Data S ID B. Summarize, represent, and interpret data on two categorical and quantitative variables 6. Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models. F-BF.A.1a Include problem-solving opportunities utilizing a real-world context. Function types extend to include polynomial, radical, logarithmic, simple rational, and trigonometric. Extend to include all exponential functions. F-BF.B.3 Function types extend to include polynomial, radical, logarithmic, simple rational, and trigonometric. Extend to include all exponential functions. S-ID.B.6a Include problem-solving opportunities utilizing a real-world context. Extend to include all exponential functions. Arizona s College and Career Ready Standards for Mathematical Practice 1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively. 3. Construct viable arguments and critique the reasoning of others. 4. Model with mathematics. 5. Use appropriate tools strategically. 6. Attend to precision. 7. Look for and make use of structure. 8. Look for and express regularity in repeated reasoning. Mesa Public Schools 5 May 2015

7 Unit 3: Quadratic Equations and Complex Numbers Suggested number of days: 14 The strategies for solving quadratic equations presented previously were introduced at the end of Algebra 1. The difference now is that solutions are not restricted to real numbers. The technique of completing the square so that the Quadratic Formula can be derived is introduced. Students will use five strategies for solving quadratic equations: graphing, square rooting, factoring, completing the square, and using the Quadratic Formula. As the number of strategies increases in the unit, students should be making informed choices as to which strategy to use given the equation. The last two lessons extend work with solving quadratic equations to solving nonlinear systems and solving quadratic inequalities. It is important throughout the unit to be clear with students about your expectation of the role of technology versus computational and analytical skills. Quantities N-Q A. Reason qualitatively and use units to solve problems. 2. Define appropriate quantities for the purpose of descriptive modeling. The Complex Number System N CN A. Perform arithmetic operations with complex numbers. 1. Know there is a complex number i such that i 2 = 1, and every complex number has the form a + bi with a and b real. 2. Use the relation i 2 = 1 and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers. C. Use complex numbers in polynomial identities and equations. 7. Solve quadratic equations with real coefficients that have complex solutions. Seeing Structure in Expressions A SSE A. Interpret the structure of expressions 2. Use the structure of an expression to identify ways to rewrite it. For example, see x 4 y 4 as (x 2 ) 2 (y 2 ) 2, thus recognizing it as a difference of squares that can be factored as (x 2 y 2 )(x 2 + y 2 ). Creating equations A CED A. Create equations that describe numbers or relationships 1. Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions. 3. Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non- viable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods. Reasoning with Equations and Inequalities A REI B. Solve equations and inequalities in one variable 4. Solve quadratic equations in one variable. b. Solve quadratic equations by inspection (e.g., for x 2 = 49), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as a ± bi for real numbers a and b. N-Q These standards are integrated throughout both and Algebra I and Algebra II course. Most notably in modeling tasks. For example, in a situation involving periodic phenomena, the student might autonomously decide that amplitude is a key variable in a situation, and then choose to work with peak amplitude. A-SSE.A.2 Focus on polynomial, rational, or exponential expressions. Examples: See x 4 y 4 as (x 2 ) 2 (y 2 ) 2, thus recognizing it as a difference of squares that can be factored as (x 2 y 2 )(x 2 + y 2 ). In the equation x 2 + 2x y 2 = 9, see an opportunity to rewrite the first three terms as (x+1) 2, thus recognizing the equation of a circle with radius 3 and center ( 1, 0). See (x 2 + 4)/(x 2 + 3) as ( (x 2 +3) + 1 )/(x 2 +3), thus recognizing an opportunity to write it as 1 + 1/(x 2 + 3). A-CED.A.1 Extend to exponential equations with rational or real exponents and rational functions. Include problem-solving opportunities utilizing a realworld context. A-REI.B.4b Include all solution cases. In the case of equations that have roots with nonzero imaginary parts, students write the solutions as a ± bi for real numbers a and b. Mesa Public Schools 6 May 2015

8 Unit 3: Quadratic Equations and Complex Numbers Suggested number of days: 14 C. Solve systems of equations 7. Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line y = 3x and the circle x 2 + y 2 = 3. D. Represent and solve equations and inequalities graphically 11. Explain why the x coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where f(x) and/or g(x) are linear, polynomial, rational, absolute value, exponential, and logarithmic functions. Interpreting Functions F IF C. Analyze functions using different representations 7. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. c. Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior. 8. Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. a. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context. Building Functions F BF A. Build a function that models a relationship between two quantities 1. Write a function that describes a relationship between two quantities. a. Determine an explicit expression, a recursive process, or steps for calculation from a context. Arizona s College and Career Ready Standards for Mathematical Practice 1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively. 3. Construct viable arguments and critique the reasoning of others. 4. Model with mathematics. 5. Use appropriate tools strategically. 6. Attend to precision. 7. Look for and make use of structure. 8. Look for and express regularity in repeated reasoning. A-REI.D.11 Include any of the function types mentioned in the standard. Extend to include all exponential functions. F-IF.C.7 Include problem-solving opportunities utilizing a real-world context. Function types extend to include polynomial, radical, logarithmic, simple rational, and trigonometric. Extend to include all exponential functions. The function types listed here are the same as those listed in the Algebra II column for standards F-IF.6, F-IF.7, and F-IF.9. F-BF.A.1a Include problem-solving opportunities utilizing a real-world context. Function types extend to include polynomial, radical, logarithmic, simple rational, and trigonometric. Extend to include all exponential functions. Mesa Public Schools 7 May 2015

9 Unit 4: Polynomial Functions Suggested number of days: 20 Linear and quadratic functions are two types of polynomials, so connections to earlier work are easily made and polynomial functions are defined and graphed. The notation and vocabulary can be overwhelming for students, though some of the vocabulary was used in Algebra 1. End behavior of even- and odd-degree polynomials is explored. Prior work with factoring is extended to third- and fourth-degree expressions. Synthetic division is used to efficiently check for possible rational roots when rewriting polynomials in factored form in order to solve polynomial equations. All of the work with operations on polynomials, factoring, and solving leads to the Fundamental Theorem of Algebra in this unit. This unit also deals with polynomial functions, in particular the graphs of these functions. Earlier work with transformations is applied to polynomials. The Complex Number System N CN C. Use complex numbers in polynomial identities and equations. 8. Extend polynomial identities to the complex numbers. For example, rewrite x as (x + 2i)(x 2i). 9. Know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials. Seeing Structure in Expressions A SSE A. Interpret the structure of expressions 2. Use the structure of an expression to identify ways to rewrite it. For example, see x 4 y 4 as (x 2 ) 2 (y 2 ) 2, thus recognizing it as a difference of squares that can be factored as (x 2 y 2 )(x 2 + y 2 ). Arithmetic with Polynomials and Rational Expression A APR A. Perform arithmetic operations on polynomials 1. Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials. B. Understand the relationship between zeros and factors of polynomials 2. Know and apply the Remainder Theorem: For a polynomial p(x) and a number a, the remainder on division by x a is p(a), so p(a) = 0 if and only if (x a) is a factor of p(x). 3. Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial. C. Use polynomial identities to solve problems 4. Prove polynomial identities and use them to describe numerical relationships. For example, the polynomial identity (x 2 + y 2 ) 2 = (x 2 y 2 ) 2 + (2xy) 2 can be used to generate Pythagorean triples. 5. Know and apply the Binomial Theorem for the expansion of (x + y) n in powers of x and y for a positive integer n, where x and y are any numbers, with coefficients determined for example by Pascal s Triangle. (The Binomial Theorem can be proved by mathematical induction or by a combinatorial argument.) D. Rewrite rational expressions 6. Rewrite simple rational expressions in different forms; write a(x)/b(x) in the form q(x) + r(x)/b(x), where a(x), b(x), q(x), and r(x) are polynomials with the degree of r(x) less than the degree of b(x), using inspection, long division, or, for the more complicated examples, a computer algebra system. A-SSE.A.2 Focus on polynomial, rational, or exponential expressions. Examples: See x 4 y 4 as (x 2 ) 2 (y 2 ) 2, thus recognizing it as a difference of squares that can be factored as (x 2 y 2 )(x 2 + y 2 ). In the equation x 2 + 2x y 2 = 9, see an opportunity to rewrite the first three terms as (x+1) 2, thus recognizing the equation of a circle with radius 3 and center ( 1, 0). See (x 2 + 4)/(x 2 + 3) as ( (x 2 +3) + 1 )/(x 2 +3), thus recognizing an opportunity to write it as 1 + 1/(x 2 + 3). A-APR.B.3 Include quadratic, cubic, and quartic polynomials and polynomials for which factors are not provided. For example, find the zeros of (x 2-1)( x 2 + 1). Mesa Public Schools 8 May 2015

10 Unit 4: Polynomial Functions Suggested number of days: 20 Creating equations A CED A. Create equations that describe numbers or relationships 2. Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. Interpreting Functions F IF B. Interpret functions that arise in applications in terms of the context 4. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. C. Analyze functions using different representations 7. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. c. Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior. Building Functions F BF A. Build a function that models a relationship between two quantities 1. Write a function that describes a relationship between two quantities. a. Determine an explicit expression, a recursive process, or steps for calculation from a context. B. Build new functions from existing functions 3. Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them. F-IF.B.4 Include problem-solving opportunities utilizing a real-world context. Function types extend to include polynomial, radical, logarithmic, simple rational, and trigonometric. Extend to include all exponential functions. The function types listed here are the same as those listed in the Algebra II column for standards F-IF.6, F-IF.7, and F-IF.9. F-IF.C.7 Include problem-solving Opportunities utilizing a real-world context. Function types extend to include polynomial, radical, logarithmic, simple rational, and trigonometric. Extend to include all exponential functions. The function types listed here are the same as those listed in the Algebra II column for standards F-IF.6, F-IF.7, and F-IF.9. F-BF.A.1a Include problem-solving opportunities utilizing a real-world context. Function types extend to include polynomial, radical, logarithmic, simple rational, and trigonometric. Extend to include all exponential functions. F-BF.B.3 Function types extend to include polynomial, radical, logarithmic, simple rational, and trigonometric. Extend to include all exponential functions. Mesa Public Schools 9 May 2015

11 Unit 5: Rational Exponents and Radical Functions Suggested number of days: 13 This unit introduces radicals and nth roots and how these may be written as rational exponents. A connection is made to the properties of exponents studied in Algebra 1, noting that now exponents can be rational numbers and are no longer restricted to being nonzero integers. Radical expressions, also written in rational exponent form, are represented as functions and are graphed. This leads to a look at the difference between even- and odd-degree functions and what the domains are for each function type. Even and odd functions are defined. The graphs of radical functions are used to help students think about solutions of radical equations and inequalities. Certainly, one goal is for students to recognize that solving radical equations is an extension of solving other types of functions. The difference, however, is that sometimes extraneous solutions are introduced when solving radical equations, so it is necessary to check apparent solutions. Inverse functions are presented finding the inverse of linear, simple polynomial, and radical functions, and noting that the graphs of inverse functions are reflections in the line y = x. The Real Number System N RN A. Extend the properties of exponents to rational exponents. 1. Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define 5 1/3 to be the cube root of 5 because we want (5 1/3 ) 3 = 5 (1/3)3 to hold, so (5 1/3 ) 3 must equal Rewrite expressions involving radicals and rational exponents using the properties of exponents. Creating equations A CED A. Create equations that describe numbers or relationships 4. Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm s law V = IR to highlight resistance R. Reasoning with Equations and Inequalities A REI A. Understand solving equations as a process of reasoning and explain the reasoning 1. Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method. 2. Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise. Interpreting Functions F IF C. Analyze functions using different representations 7. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions. Building Functions F BF A. Build a function that models a relationship between two quantities 1. Write a function that describes a relationship between two quantities. b. Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model. A-REI.A.1 Extend to simple rational and radical equations. F-IF.C.7 Include problem-solving opportunities utilizing a real-world context. Function types extend to include polynomial, radical, logarithmic, simple rational, and trigonometric. Extend to include all exponential functions. The function types listed here are the same as those listed in the Algebra II column for standards F-IF.6, F-IF.7, and F-IF.9. Mesa Public Schools 10 May 2015

12 Unit 5: Rational Exponents and Radical Functions Suggested number of days: 13 B. Build new functions from existing functions 3. Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them. 4. Find inverse functions. a. Solve an equation of the form f(x) = c for a simple function f that has an inverse and write an expression for the inverse. For example, f(x) =2x3 or f(x) = (x+1)/(x 1) for x 1. F-BF.B.3 Function types extend to include polynomial, radical, logarithmic, simple rational, and trigonometric. Extend to include all exponential functions. Mesa Public Schools 11 May 2015

13 Unit 6: Exponential and Logarithmic Functions Suggested number of days: 17 This unit presents two new types of functions, exponential and logarithmic. Students should have some prior experience with exponential functions from Algebra 1, particularly with growth and decay models. The natural base e, an irrational number, is introduced and students write and graph exponential functions for base e and other bases. Compound interest and continuous compounding are two of the many applications explored. The logarithmic function, which is the inverse of the exponential function, is introduced, and the connection to properties of exponents is made. The unit also looks at solving exponential and logarithmic equations using different approaches: analytical, numerical, and graphical. The unit uses mathematical modeling - given a set of data, an exponential or logarithmic equation is fit to the data. Seeing Structure in Expressions A SSE A. Interpret the structure of expressions 2. Use the structure of an expression to identify ways to rewrite it. For example, see x 4 y 4 as (x 2 ) 2 (y 2 ) 2, thus recognizing it as a difference of squares that can be factored as (x 2 y 2 )(x 2 + y 2 ). B. Write expressions in equivalent forms to solve problems 3. Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. c. Use the properties of exponents to transform expressions for exponential functions. For example the expression 1.15 t can be rewritten as (1.15 1/12 ) 12t t to reveal the approximate equivalent monthly interest rate if the annual rate is 15%. Creating equations A CED A. Create equations that describe numbers or relationships 2. Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. Reasoning with Equations and Inequalities A REI A. Understand solving equations as a process of reasoning and explain the reasoning 1. Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method. Interpreting Functions F IF C. Analyze functions using different representations 7. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude. 8. Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. b. Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as y = (1.02) t, y = (0.97) t, y = (1.01) 12t, y = (1.2) t/10, and classify them as representing exponential growth or decay. A-SSE.A.2 Focus on polynomial, rational, or exponential expressions. Examples: See x 4 y 4 as (x 2 ) 2 (y 2 ) 2, thus recognizing it as a difference of squares that can be factored as (x 2 y 2 )(x 2 + y 2 ). In the equation x 2 + 2x y 2 = 9, see an opportunity to rewrite the first three terms as (x+1) 2, thus recognizing the equation of a circle with radius 3 and center ( 1, 0). See (x 2 + 4)/(x 2 + 3) as ( (x 2 +3) + 1 )/(x 2 +3), thus recognizing an opportunity to write it as 1 + 1/(x 2 + 3). A-SSE.B.3c Include problem-solving opportunities utilizing a real-world context. As described in the standard, there is an interplay between the mathematical structure of the expression and the structure of the situation such that choosing and producing an equivalent form of the expression reveals something about the situation. Extend to include expressions with real number exponents. A-REI.A.1 Extend to simple rational and radical equations. F-IF.C.7 Include problem-solving opportunities utilizing a real-world context. Function types extend to include polynomial, radical, logarithmic, simple rational, and trigonometric. Extend to include all exponential functions. The function types listed here are the same as those listed in the Algebra II column for standards F-IF.6, F-IF.7, and F-IF.9. Mesa Public Schools 11 May 2015

14 Unit 6: Exponential and Logarithmic Functions Suggested number of days: 17 Building Functions F BF A. Build a function that models a relationship between two quantities 1. Write a function that describes a relationship between two quantities. a. Determine an explicit expression, a recursive process, or steps for calculation from a context. B. Build new functions from existing functions 3. Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them. 4. Find inverse functions. a. Solve an equation of the form f(x) = c for a simple function f that has an inverse and write an expression for the inverse. For example, f(x) =2x3 or f(x) = (x+1)/(x 1) for x 1. Linear, Quadratic, and Exponential Models F LE A. Construct and compare linear, quadratic, and exponential models and solve problems 2. Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input output pairs (include reading these from a table). 4. For exponential models, express as a logarithm the solution to ab ct = d where a, c, and d are numbers and the base b is 2, 10, or e; evaluate the logarithm using technology. B. Interpret expressions for functions in terms of the situation they model 5. Interpret the parameters in a linear or exponential function in terms of a context. F-BF.A.1a Include problem-solving opportunities utilizing a real-world context. Function types extend to include polynomial, radical, logarithmic, simple rational, and trigonometric. Extend to include all exponential functions. F-BF.B.3 Function types extend to include polynomial, radical, logarithmic, simple rational, and trigonometric. Extend to include all exponential functions. F-LE.A.2 Extend to include solving multi-step problems by constructing linear and exponential functions. F-LE.B.5 Include problem-solving opportunities utilizing a real-world context. Extend to include all exponential functions. Arizona s College and Career Ready Standards for Mathematical Practice 1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively. 3. Construct viable arguments and critique the reasoning of others. 4. Model with mathematics. 5. Use appropriate tools strategically. 6. Attend to precision. 7. Look for and make use of structure. 8. Look for and express regularity in repeated reasoning. Mesa Public Schools 12 May 2015

15 Unit 7: Rational Functions Suggested number of days: 12 Unit 7 introduces rational functions, a new type of function for students to work with. The simplest of rational functions, inverse variation, is introduced. The inverse variation function is distinguished from the direct variation function, and it also provides the introduction to rational functions and their graphs. Students learn to identify the horizontal and vertical asymptotes by inspecting the equations. Simple transformations of rational functions are also performed. Connections are made to operations with fractions, and symbolic manipulation skills are necessary to perform the operations. Arithmetic with Polynomials and Rational Expression A APR D. Rewrite rational expressions 6. Rewrite simple rational expressions in different forms; write a(x)/b(x) in the form q(x) + r(x)/b(x), where a(x), b(x), q(x), and r(x) are polynomials with the degree of r(x) less than the degree of b(x), using inspection, long division, or, for the more complicated examples, a computer algebra system. 7. Rewrite simple rational expressions in different forms; write a(x)/b(x) in the form q(x) + r(x)/b(x), where a(x), b(x), q(x), and r(x) are polynomials with the degree of r(x) less than the degree of b(x), using inspection, long division, or, for the more complicated examples, a computer algebra system. Creating equations A CED A. Create equations that describe numbers or relationships 1. Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions. 2. Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. 3. Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non- viable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods. 4. Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm s law V = IR to highlight resistance R. Reasoning with Equations and Inequalities A REI A. Understand solving equations as a process of reasoning and explain the reasoning 1. Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method. 2. Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise. Building Functions F BF B. Build new functions from existing functions 3. Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them. A-CED.A.1 Extend to exponential equations with rational or real exponents and rational functions. Include problem-solving opportunities utilizing a real-world context. A-REI.A.1 Extend to simple rational and radical equations. F-BF.B.3 Function types extend to include polynomial, radical, logarithmic, simple rational, and trigonometric. Extend to include all exponential functions. Mesa Public Schools 13 May 2015

16 Unit 8: Sequences and Series Suggested number of days: 13 This unit builds on skills from Algebra 1, where arithmetic and geometric sequences were first introduced, by extending the work students have previously done. New in this unit is the skill of adding terms of a sequence. Partial sums and sums of infinite geometric series are explored numerically and graphically. This unit involves recursively defined functions by reviewing knowledge of arithmetic and geometric sequences with connections to linear and exponential functions. Seeing Structure in Expressions A SSE B. Write expressions in equivalent forms to solve problems4. 4. Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems. For example, calculate mortgage payments. Interpreting Functions F IF A. Understand the concept of a function and use function notation 3. Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by f(0) = f(1) = 1, f(n+1) = f(n) + f(n 1) for n 1. Building Functions F BF A. Build a function that models a relationship between two quantities 1. Write a function that describes a relationship between two quantities. a. Determine an explicit expression, a recursive process, or steps for calculation from a context. 2. Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms. Linear, Quadratic, and Exponential Models F LE A. Construct and compare linear, quadratic, and exponential models and solve problems 2. Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input output pairs (include reading these from a table). F-IF.A.3 This standard is Supporting work in Algebra II. This standard should support the Major work in F-BF.2 for coherence. F-BF.A.1a Include problem-solving opportunities utilizing a real-world context. Function types extend to include polynomial, radical, logarithmic, simple rational, and trigonometric. Extend to include all exponential functions. F-LE.A.2 Extend to include solving multi-step problems by constructing linear and exponential functions. Mesa Public Schools 14 May 2015

17 Unit 9: Trigonometric Ratios and Functions Suggested number of days: 19 Right triangle trigonometry that students learned in geometry is reviewed. Students are introduced to radian measure, and the six trigonometric functions are defined in terms of a unit circle and lessons focus on graphing the six trigonometric functions. The graphs of sine and cosine are developed by plotting functional values for benchmark angles, and the concept of periodic functions is introduced. The graphs of the remaining four trigonometric functions are deduced from knowing the relationship between these functions and sine and cosine. Knowledge of transformations is used to plot graphs beyond the parent functions. The unit introduces students to trigonometric identities and sum and difference formulas. Creating equations A CED A. Create equations that describe numbers or relationships 2. Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. Interpreting Functions F IF C. Analyze functions using different representations 7. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude. Building Functions F BF A. Build a function that models a relationship between two quantities 1. Write a function that describes a relationship between two quantities. a. Determine an explicit expression, a recursive process, or steps for calculation from a context. B. Build new functions from existing functions 3. Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them. Trigonometric Functions F TF A. Extend the domain of trigonometric functions using the unit circle 1. Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle. 2. Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle. B. Model periodic phenomena with trigonometric functions 5. Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline. C. Prove and apply trigonometric identities 8. Prove the Pythagorean identity sin 2 (θ) + cos 2 (θ) = 1 and use it to find sin(θ), cos(θ), or tan(θ) given sin(θ), cos(θ), or tan(θ) and the quadrant of the angle. F-IF.C.7 Include problem-solving opportunities utilizing a real-world context. Function types extend to include polynomial, radical, logarithmic, simple rational, and trigonometric. Extend to include all exponential functions. The function types listed here are the same as those listed in the Algebra II column for standards F-IF.6, F-IF.7, and F- IF.9. F-BF.A.1a Include problem-solving opportunities utilizing a real-world context. Function types extend to include polynomial, radical, logarithmic, simple rational, and trigonometric. Extend to include all exponential functions. F-BF.B.3 Function types extend to include polynomial, radical, logarithmic, simple rational, and trigonometric. Extend to include all exponential functions. Mesa Public Schools 15 May 2015

Sequenced Units for Arizona s College and Career Ready Standards MA27 Algebra I

Sequenced Units for Arizona s College and Career Ready Standards MA27 Algebra I Sequenced Units for Arizona s College and Career Ready Standards MA27 Algebra I Year at a Glance Semester 1 Semester 2 Unit 1: Solving Linear Equations (12 days) Unit 2: Solving Linear Inequalities (12

More information

Semester 1: Units 1 4 Semester 2 Units 5-9

Semester 1: Units 1 4 Semester 2 Units 5-9 Semester 1: Units 1 4 Semester 2 Units 5-9 Unit 1: Quadratic relations and equations This unit extends students previous work with quadratic relations and equations. In the context of quadratics, students

More information

Throughout Algebra II, students should continue to develop proficiency with the Common Core's eight Standards for Mathematical Practice:

Throughout Algebra II, students should continue to develop proficiency with the Common Core's eight Standards for Mathematical Practice: In Algebra I, students have already begun their study of algebraic concepts. They have used equations, tables, and graphs to describe relationships between quantities, with a particular focus on linear,

More information

School District of Marshfield Course Syllabus

School District of Marshfield Course Syllabus School District of Marshfield Course Syllabus Course Name: Algebra II Length of Course: 1 Year Credit: 1 Program Goal: The School District of Marshfield Mathematics Program will prepare students for college

More information

AMSCO Algebra 2. Number and Quantity. The Real Number System

AMSCO Algebra 2. Number and Quantity. The Real Number System AMSCO Algebra 2 Number and Quantity The Real Number System Extend the properties of exponents to rational exponents. N-RN.1 Explain how the definition of the meaning of rational exponents follows from

More information

Standards-Based Learning Power Standards. High School- Algebra

Standards-Based Learning Power Standards. High School- Algebra Standards-Based Learning Power Standards Mathematics Algebra 3,4 The high school standards specify the mathematics that all students should study in order to be college and career ready. High School Number

More information

Tennessee s State Mathematics Standards - Algebra II

Tennessee s State Mathematics Standards - Algebra II Domain Cluster Standard Scope and Clarifications The Real Number System (N-RN) Extend the properties of exponents to rational exponents 1. Explain how the definition of the meaning of rational exponents

More information

Houghton Mifflin Harcourt Algebra II 2015 correlated to the New York State Common Core Learning Standards for Mathematics Algebra II

Houghton Mifflin Harcourt Algebra II 2015 correlated to the New York State Common Core Learning Standards for Mathematics Algebra II Houghton Mifflin Harcourt Algebra II 2015 correlated to the New York State Common Core Learning Standards for Mathematics Algebra II Standards for Mathematical Practice SMP.1 Make sense of problems and

More information

Algebra II Pacing Guide Last Updated: August, Guiding Question & Key Topics

Algebra II Pacing Guide Last Updated: August, Guiding Question & Key Topics 1-14 Unit 1 Investigations & AS I investigate functions, am I analyzing the function thoroughly and clearly communicating my reasoning to others? Solving puzzles in Teams Using a Graphing Calculator to

More information

Standards Overview. Algebra II Standards by Unit Standard Number. Major Standard. Wording of Standard

Standards Overview. Algebra II Standards by Unit Standard Number. Major Standard. Wording of Standard s Overview 2017-2018 Algebra II s by Unit Wording of N-RN.A.1 Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values,

More information

Common Core State Standards for Mathematics - High School PARRC Model Content Frameworks Mathematics Algebra 2

Common Core State Standards for Mathematics - High School PARRC Model Content Frameworks Mathematics Algebra 2 A Correlation of CME Project Algebra 2 Common Core 2013 to the Common Core State Standards for , Common Core Correlated to the Number and Quantity The Real Number System N RN Extend the properties of exponents

More information

WHCSD Grade Content Area

WHCSD Grade Content Area Course Overview and Timing This section is to help you see the flow of the unit/topics across the entire school year. Quarter Unit Description Unit Length Early First Quarter Unit 1: Investigations and

More information

Algebra II/Math III Curriculum Map

Algebra II/Math III Curriculum Map 6 weeks Unit Unit Focus Common Core Math Standards 1 Simplify and perform operations with one variable involving rational, exponential and quadratic functions. 2 Graph and evaluate functions to solve problems.

More information

Pearson Mathematics Algebra 2 Common Core 2015

Pearson Mathematics Algebra 2 Common Core 2015 A Correlation of Pearson Mathematics Algebra 2 Common Core 2015 to the Common Core State Standards for Bid Category 13-050-10 A Correlation of Pearson Common Core Pearson Number and Quantity The Real Number

More information

Mathematics Standards for High School Algebra II

Mathematics Standards for High School Algebra II Mathematics Standards for High School Algebra II Algebra II is a course required for graduation and is aligned with the College and Career Ready Standards for Mathematics in High School. Throughout the

More information

Sequence of Algebra 2 Units Aligned with the California Standards

Sequence of Algebra 2 Units Aligned with the California Standards Sequence of Algebra 2 Units Aligned with the California Standards Year at a Glance Unit Big Ideas Algebra 2 Textbook Chapters Dates 1. Linear and Quadratic Functions Ch. 1 Linear Functions Ch. 2 Quadratic

More information

Standards to Topics. Louisiana Student Standards for Mathematics Algebra I

Standards to Topics. Louisiana Student Standards for Mathematics Algebra I Standards to Topics Louisiana Student Standards for Mathematics Algebra I A1.A-SSE.A.02 Use the structure of an expression to identify ways to rewrite it. For example, see x 4 y 4 as (x 2 ) 2 (y 2 ) 2,

More information

Algebra II Introduction 1

Algebra II Introduction 1 Introduction 1 Building on their work with linear, quadratic, and exponential functions, students extend their repertoire of functions to include logarithmic, polynomial, rational, and radical functions

More information

Math Curriculum Map: Integrated Algebra II Unit: 1 Quarter: Time Frame: Review of Algebra 13 days Essential Questions: Key Concepts: Key Vocabulary:

Math Curriculum Map: Integrated Algebra II Unit: 1 Quarter: Time Frame: Review of Algebra 13 days Essential Questions: Key Concepts: Key Vocabulary: Math Curriculum Map: Integrated Algebra II Unit: 1 Quarter: Time Frame: Review of Algebra 1 13 days Essential Questions: How does the order of operations help solve one- and two- step equations? How is

More information

Sequenced Units for the Common Core State Standards in Mathematics High School Algebra II

Sequenced Units for the Common Core State Standards in Mathematics High School Algebra II Algebra II extends the knowledge students have of algebraic and statistical concepts. They have investigated linear, exponential, and quadratic functions in previous years. Algebra II further develops

More information

Sequenced Units for the Common Core State Standards in Mathematics High School Algebra I

Sequenced Units for the Common Core State Standards in Mathematics High School Algebra I In the three years prior to Algebra I, students have already begun their study of algebraic concepts. They have investigated variables and expressions, solved equations, constructed and analyzed tables,

More information

Math Common Core State Standards and Long-Term Learning Targets High School Algebra II

Math Common Core State Standards and Long-Term Learning Targets High School Algebra II Math Common Core State Standards and Long-Term Learning Targets High School Algebra II Traditional Pathway; see Appendix A of the CCS Standards for information on high school course design: http://www.corestandards.org/assets/ccssi_mathematics_appendix_a.pdf

More information

Algebra 2-DRAFT Curriculum Map Based on the 2011 MA Mathematics Frameworks

Algebra 2-DRAFT Curriculum Map Based on the 2011 MA Mathematics Frameworks Unit 1: Functions, Operations on Functions and Transformations (with review of systems) Essential Questions: How do you most clearly represent the combination of two functions? What makes the graph of

More information

Cumberland County Schools

Cumberland County Schools Cumberland County Schools MATHEMATICS Algebra II The high school mathematics curriculum is designed to develop deep understanding of foundational math ideas. In order to allow time for such understanding,

More information

Algebra II. Algebra II Higher Mathematics Courses 77

Algebra II. Algebra II Higher Mathematics Courses 77 Algebra II Building on their work with linear, quadratic, and exponential functions, students extend their repertoire of functions to include logarithmic, polynomial, rational, and radical functions in

More information

Correlation to the Common Core State Standards for Mathematics Algebra 2. Houghton Mifflin Harcourt Algerbra

Correlation to the Common Core State Standards for Mathematics Algebra 2. Houghton Mifflin Harcourt Algerbra Correlation to the Common Core State Standards for Mathematics Algebra 2 Houghton Mifflin Harcourt Algerbra 2 2015 Houghton Mifflin Harcourt Algebra II 2015 correlated to the Common Core State Standards

More information

Algebra II Guide to Rigor in Mathematics 2.0

Algebra II Guide to Rigor in Mathematics 2.0 in Mathematics 2.0 In order to provide a quality mathematical education for students, instruction must be rigorous, focused, and coherent. This document provides explanations and a standards-based alignment

More information

Throughout Algebra I, students should continue to develop proficiency with the Common Core's eight Standards for Mathematical Practice:

Throughout Algebra I, students should continue to develop proficiency with the Common Core's eight Standards for Mathematical Practice: In the three years prior to Algebra I, students have already begun their study of algebraic concepts. They have investigated variables and expressions, solved equations, constructed and analyzed tables,

More information

Mathematics - High School Algebra II

Mathematics - High School Algebra II Mathematics - High School Algebra II All West Virginia teachers are responsible for classroom instruction that integrates content standards and mathematical habits of mind. Students in this course will

More information

Washington Island School Grade Level: Subject: Advanced Algebra Curriculum Map Date Approved: Teacher: Daniel Jaeger

Washington Island School Grade Level: Subject: Advanced Algebra Curriculum Map Date Approved: Teacher: Daniel Jaeger Washington Island School Grade Level: 10-12 Subject: Advanced Algebra Curriculum Map Date Approved: Teacher: Daniel Jaeger Course Description and Core Principles: Advanced Algebra is designed to build

More information

Algebra 2 (3 rd Quad Expectations) CCSS covered Key Vocabulary Vertical

Algebra 2 (3 rd Quad Expectations) CCSS covered Key Vocabulary Vertical Algebra 2 (3 rd Quad Expectations) CCSS covered Key Vocabulary Vertical Chapter (McGraw-Hill Algebra 2) Chapter 7 (Suggested Pacing 14 Days) Lesson 7-1: Graphing Exponential Functions Lesson 7-2: Solving

More information

Comparison of Virginia s College and Career Ready Mathematics Performance Expectations with the Common Core State Standards for Mathematics

Comparison of Virginia s College and Career Ready Mathematics Performance Expectations with the Common Core State Standards for Mathematics Comparison of Virginia s College and Career Ready Mathematics Performance Expectations with the Common Core State Standards for Mathematics February 17, 2010 1 Number and Quantity The Real Number System

More information

Mathematics High School Algebra

Mathematics High School Algebra Mathematics High School Algebra Expressions. An expression is a record of a computation with numbers, symbols that represent numbers, arithmetic operations, exponentiation, and, at more advanced levels,

More information

Trimester 2 Expectations. Chapter (McGraw-Hill. CCSS covered Key Vocabulary Vertical. Alignment

Trimester 2 Expectations. Chapter (McGraw-Hill. CCSS covered Key Vocabulary Vertical. Alignment Algebra 2 Trimester 2 Expectations Chapter (McGraw-Hill Algebra 2) Chapter 5 (Suggested Pacing 14 Days) Polynomials and Polynomial Functions Lesson 5-1: Operations with Polynomials Lesson 5-2: Dividing

More information

MATH III CCR MATH STANDARDS

MATH III CCR MATH STANDARDS INFERENCES AND CONCLUSIONS FROM DATA M.3HS.1 Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets

More information

Common Core State Standards for Mathematics High School

Common Core State Standards for Mathematics High School A Correlation of To the Common Core State Standards for Mathematics Table of Contents Number and Quantity... 1 Algebra... 1 Functions... 4 Statistics and Probability... 10 Standards for Mathematical Practice...

More information

Math III Curriculum Map

Math III Curriculum Map 6 weeks Unit Unit Focus Common Core Math Standards 1 Rational and Irrational Numbers N-RN.3. Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an

More information

California Common Core State Standards for Mathematics Standards Map Mathematics III

California Common Core State Standards for Mathematics Standards Map Mathematics III A Correlation of Pearson Integrated High School Mathematics Mathematics III Common Core, 2014 to the California Common Core State s for Mathematics s Map Mathematics III Copyright 2017 Pearson Education,

More information

Algebra 2 (4 th Quad Expectations) Chapter (McGraw-Hill Algebra 2) Chapter 10 (Suggested Pacing 13 Days)

Algebra 2 (4 th Quad Expectations) Chapter (McGraw-Hill Algebra 2) Chapter 10 (Suggested Pacing 13 Days) Algebra 2 (4 th Quad Expectations) Chapter (McGraw-Hill Algebra 2) Chapter 10 (Suggested Pacing 13 Days) Lesson 10-1: Sequences as Lesson 10-2: Arithmetic Sequences and Series Lesson 10-3: Geometric Sequences

More information

2003/2010 ACOS MATHEMATICS CONTENT CORRELATION ALGEBRA II WITH TRIGONOMETRY 2003 ACOS 2010 ACOS

2003/2010 ACOS MATHEMATICS CONTENT CORRELATION ALGEBRA II WITH TRIGONOMETRY 2003 ACOS 2010 ACOS 2003/2010 ACOS MATHEMATICS CONTENT CORRELATION ALGEBRA II WITH TRIGONOMETRY AIIT.1 AIIT.2 CURRENT ALABAMA CONTENT PLACEMENT Determine the relationships among the subsets of complex numbers. Simplify expressions

More information

Common Core State Standards: Algebra 1

Common Core State Standards: Algebra 1 Common Core State Standards: Number and Quantity Standards The Real Number System Extend the properties of exponents to rational exponents. N-RN.1 Explain how the definition of the meaning of rational

More information

Trimester 1 Expectations CCSS covered Key Vocabulary Vertical Alignment

Trimester 1 Expectations CCSS covered Key Vocabulary Vertical Alignment Algebra 2 Chapter (McGraw-Hill Algebra 2) Trimester 1 Expectations CCSS covered Key Vocabulary Vertical Alignment Chapter 0 (9 Days Suggested Pacing) Algebra 1 Content (Utilize as needed throughout Trimester

More information

RPS SECONDARY MATH CURRICULUM. Unit 4 - Polynomials

RPS SECONDARY MATH CURRICULUM. Unit 4 - Polynomials Unit 4 - Polynomials 4 weeks Overview: By introducing the basic concept of complex number, the form of complex numbers and basic operations with complex numbers, Unit 4 starts to lay the foundation for

More information

CCSS covered Key Vocabulary Vertical Alignment. Chapter (McGraw-Hill Algebra 2)

CCSS covered Key Vocabulary Vertical Alignment. Chapter (McGraw-Hill Algebra 2) Algebra 2 Chapter (McGraw-Hill Algebra 2) 1 st Quad Expectations CCSS covered Key Vocabulary Vertical Alignment Chapter 0 (9 Days Suggested Pacing) Algebra 1 Content (Prerequisites Review)(Not assessed

More information

Achieve Recommended Pathway: Algebra II

Achieve Recommended Pathway: Algebra II Units Standard Clusters Mathematical Practice Standards Perform arithmetic operations with complex numbers. Use complex numbers in polynomial identities and equations. Interpret the structure of expressions.

More information

Columbus City Schools High School CCSS Mathematics III - High School PARRC Model Content Frameworks Mathematics - Core Standards And Math Practices

Columbus City Schools High School CCSS Mathematics III - High School PARRC Model Content Frameworks Mathematics - Core Standards And Math Practices A Correlation of III Common Core To the CCSS III - - Core Standards And s A Correlation of - III Common Core, to the CCSS III - - Core Standards and s Introduction This document demonstrates how - III

More information

Traditional Pathway: Algebra II

Traditional Pathway: Algebra II Traditional Pathway: Algebra II Building on their work with linear, quadratic, and exponential functions, students extend their repertoire of functions to include polynomial, rational, and radical functions.

More information

Lee County Schools Curriculum Road Map Algebra 2

Lee County Schools Curriculum Road Map Algebra 2 Quarter 1 1 Equations, Inequalities, & Introduction to AL 16 A.CED.1 AL 17, 19, 28, 28a, 30 A.CED.2 A.CED.4 F.BF.1 F.BF.1b F.BF.4a AL 18 A.CED.3; AL 25, 23, 24, 30 F.IF.7a; F.IF.5, F.IF.6, F.BF.4a; ALCOS

More information

Beal City High School Algebra 2A Curriculum and Alignment

Beal City High School Algebra 2A Curriculum and Alignment Beal City High School Algebra 2A Curriculum and Alignment UNIT 1 Linear Functions (Chapters 1-3) 1. Combine like terms, solve equations, solve inequalities, evaluate expressions(1-2,3,4) 2. Solve an equation

More information

Algebra 2 Math-at-a-Glance

Algebra 2 Math-at-a-Glance Month Topic Standards September Linear Functions and A-CED 1 3; REI.D.11; F-IF4 6; F BF.B3 Systems September/ October Quadratic Functions and Equations AII.A SSE.A.1a b; AII.A SSE.A.2; AII.N CN.A.1 2;

More information

Pacing Guide for 7-12 Curriculum. Week Chapter & Lesson COS Objectives

Pacing Guide for 7-12 Curriculum. Week Chapter & Lesson COS Objectives Pacing Guide for 7-12 Curriculum Course Title: Algebra II with Trig. Length of Course: 1 st Semester Week Chapter & Lesson COS Objectives Week 1 Welcome and Diagnostic Test Lesson 1 Lesson 2 Lesson 3 (2

More information

California Common Core State Standards for Mathematics Standards Map Algebra I

California Common Core State Standards for Mathematics Standards Map Algebra I A Correlation of Pearson CME Project Algebra 1 Common Core 2013 to the California Common Core State s for Mathematics s Map Algebra I California Common Core State s for Mathematics s Map Algebra I Indicates

More information

RPS SECONDARY MATH CURRICULUM. Unit 5 - Polynomials

RPS SECONDARY MATH CURRICULUM. Unit 5 - Polynomials Unit 5 - Polynomials 4 weeks Overview: By introducing the basic concept of complex number, the form of complex numbers and basic operations with complex numbers, Unit 5 starts to lay the foundation for

More information

Algebra 2 and Mathematics 3 Critical Areas of Focus

Algebra 2 and Mathematics 3 Critical Areas of Focus Critical Areas of Focus Ohio s Learning Standards for Mathematics include descriptions of the Conceptual Categories. These descriptions have been used to develop critical areas for each of the courses

More information

The Real Number System The Complex Number System Extend the properties of exponents to rational exponents. o Know there is a complex number such that

The Real Number System The Complex Number System Extend the properties of exponents to rational exponents. o Know there is a complex number such that SUBJECT: MATH 2012 2013 SCOPE AND SEQUENCE ST 1 Semester The Real Number System The Complex Number System Seeing Structure in Expressions Interpret the structure of expressions o Interpret expressions

More information

Algebra 2 Mississippi College- and Career- Readiness Standards for Mathematics RCSD Unit 1 Data Relationships 1st Nine Weeks

Algebra 2 Mississippi College- and Career- Readiness Standards for Mathematics RCSD Unit 1 Data Relationships 1st Nine Weeks 1 st Nine Weeks Algebra 2 Mississippi College- and Career- Readiness Standards for Mathematics Unit 1 Data Relationships Level 4: I can interpret key features of graphs and tables in terms of the quantities.

More information

CCSS Math- Algebra. Domain: Algebra Seeing Structure in Expressions A-SSE. Pacing Guide. Standard: Interpret the structure of expressions.

CCSS Math- Algebra. Domain: Algebra Seeing Structure in Expressions A-SSE. Pacing Guide. Standard: Interpret the structure of expressions. 1 Domain: Algebra Seeing Structure in Expressions A-SSE Standard: Interpret the structure of expressions. H.S. A-SSE.1a. Interpret expressions that represent a quantity in terms of its context. Content:

More information

Sequence of Algebra 1 Units Aligned with the California Standards

Sequence of Algebra 1 Units Aligned with the California Standards Sequence of Algebra 1 Units Aligned with the California Standards Year at a Glance Unit Big Ideas Math Algebra 1 Textbook Chapters Dates 1. Equations and Inequalities Ch. 1 Solving Linear Equations MS

More information

Common Core State Standards. Clusters and Instructional Notes Perform arithmetic operations with complex numbers. 5.6

Common Core State Standards. Clusters and Instructional Notes Perform arithmetic operations with complex numbers. 5.6 Algebra II Unit 1: Polynomial, Rational, and Radical Relationships This unit develops the structural similarities between the system of polynomials and the system of integers. Students draw on analogies

More information

Sequenced Units for Arizona s College and Career Ready Standards MA35 Personal Finance Year at a Glance

Sequenced Units for Arizona s College and Career Ready Standards MA35 Personal Finance Year at a Glance Unit 1: Prepare a Budget (20 days) Unit 2: Employment Basics (15 days) Unit 3: Modeling a Business (20 days) Unit 4: Banking Services (15 days) Unit 5: Consumer Credit (15 days) Unit 6: Automobile Ownership

More information

Pearson Georgia High School Mathematics

Pearson Georgia High School Mathematics A Correlation of Pearson Georgia High School Mathematics to the Common Core Georgia Performance s Advanced Algebra FORMAT FOR CORRELATION TO THE COMMON CORE GEORGIA PERFORMANCE STANDARDS (CCGPS) Subject

More information

Algebra I. 60 Higher Mathematics Courses Algebra I

Algebra I. 60 Higher Mathematics Courses Algebra I The fundamental purpose of the course is to formalize and extend the mathematics that students learned in the middle grades. This course includes standards from the conceptual categories of Number and

More information

WA State Common Core Standards - Mathematics

WA State Common Core Standards - Mathematics Number & Quantity The Real Number System Extend the properties of exponents to rational exponents. 1. Explain how the definition of the meaning of rational exponents follows from extending the properties

More information

ALGEBRA II CURRICULUM MAP

ALGEBRA II CURRICULUM MAP 2017-2018 MATHEMATICS ALGEBRA II CURRICULUM MAP Department of Curriculum and Instruction RCCSD Common Core Major Emphasis Clusters The Real Number System Extend the properties of exponents to rational

More information

ALGEBRA I. 2. Rewrite expressions involving radicals and rational exponents using the properties of exponents. (N-RN2)

ALGEBRA I. 2. Rewrite expressions involving radicals and rational exponents using the properties of exponents. (N-RN2) ALGEBRA I The Algebra I course builds on foundational mathematical content learned by students in Grades K-8 by expanding mathematics understanding to provide students with a strong mathematics education.

More information

ALGEBRA I CCR MATH STANDARDS

ALGEBRA I CCR MATH STANDARDS RELATIONSHIPS BETWEEN QUANTITIES AND REASONING WITH EQUATIONS M.A1HS.1 M.A1HS.2 M.A1HS.3 M.A1HS.4 M.A1HS.5 M.A1HS.6 M.A1HS.7 M.A1HS.8 M.A1HS.9 M.A1HS.10 Reason quantitatively and use units to solve problems.

More information

Mathematics Standards for High School Algebra I

Mathematics Standards for High School Algebra I Mathematics Standards for High School Algebra I Algebra I is a course required for graduation and course is aligned with the College and Career Ready Standards for Mathematics in High School. Throughout

More information

Algebra I. 60 Higher Mathematics Courses Algebra I

Algebra I. 60 Higher Mathematics Courses Algebra I The fundamental purpose of the course is to formalize and extend the mathematics that students learned in the middle grades. This course includes standards from the conceptual categories of Number and

More information

Algebra 3-4 Honors PUHSD Curriculum. PARCC MODEL CONTENT FRAMEWORK FOR ALGEBRA 3-4 Honors

Algebra 3-4 Honors PUHSD Curriculum. PARCC MODEL CONTENT FRAMEWORK FOR ALGEBRA 3-4 Honors PARCC MODEL CONTENT FRAMEWORK FOR ALGEBRA 3-4 Honors Building on their work in Algebra I with linear and quadratic functions, students in Algebra II expand their repertoire by working with rational and

More information

PARCC MODEL CONTENT FRAMEWORK FOR MATHEMATICS. Algebra I Overview FOR ALGEBRA I

PARCC MODEL CONTENT FRAMEWORK FOR MATHEMATICS. Algebra I Overview FOR ALGEBRA I PARCC MODEL CONTENT FRAMEWORK FOR MATHEMATICS FOR ALGEBRA I Algebra I Overview Numerals in parentheses designate individual content standards that are eligible for assessment in whole or in part. Underlined

More information

Algebra I, Common Core Correlation Document

Algebra I, Common Core Correlation Document Resource Title: Publisher: 1 st Year Algebra (MTHH031060 and MTHH032060) University of Nebraska High School Algebra I, Common Core Correlation Document Indicates a modeling standard linking mathematics

More information

Algebra II Curriculum Crosswalk

Algebra II Curriculum Crosswalk Algebra II Curriculum Crosswalk The following document is to be used to compare the 2003 North Carolina Mathematics Course of Study for Algebra II and the State s for Mathematics for Algebra II. As noted

More information

Georgia Standards of Excellence Curriculum Map. Mathematics. GSE Algebra II/Advanced Algebra

Georgia Standards of Excellence Curriculum Map. Mathematics. GSE Algebra II/Advanced Algebra Georgia Standards of Excellence Curriculum Map Mathematics GSE Algebra II/Advanced Algebra These materials are for nonprofit educational purposes only. Any other use may constitute copyright infringement.

More information

VOYAGER INSIDE ALGEBRA CORRELATED TO THE NEW JERSEY STUDENT LEARNING OBJECTIVES AND CCSS.

VOYAGER INSIDE ALGEBRA CORRELATED TO THE NEW JERSEY STUDENT LEARNING OBJECTIVES AND CCSS. We NJ Can STUDENT Early Learning LEARNING Curriculum OBJECTIVES PreK Grades 8 12 VOYAGER INSIDE ALGEBRA CORRELATED TO THE NEW JERSEY STUDENT LEARNING OBJECTIVES AND CCSS www.voyagersopris.com/insidealgebra

More information

Mathematics Standards for High School Financial Algebra A and Financial Algebra B

Mathematics Standards for High School Financial Algebra A and Financial Algebra B Mathematics Standards for High School Financial Algebra A and Financial Algebra B Financial Algebra A and B are two semester courses that may be taken in either order or one taken without the other; both

More information

CCGPS Curriculum Map. Mathematics. CCGPS Advanced Algebra

CCGPS Curriculum Map. Mathematics. CCGPS Advanced Algebra CCGPS Curriculum Map Mathematics CCGPS Advanced Algebra These materials are for nonprofit educational purposes only. Any other use may constitute copyright infringement. Common Core Georgia Performance

More information

Ref:GIS Math G 11 C.D

Ref:GIS Math G 11 C.D Ref:GIS Math G 11 C.D.2017-2018 2011-2012 SUBJECT : Math TITLE OF COURSE : Algebra 2 GRADE LEVEL : 11 DURATION : ONE YEAR NUMBER OF CREDITS : 1.25 Goals: Algebra: Seeing Structure in Expressions A-SSE

More information

A Story of Functions Curriculum Overview

A Story of Functions Curriculum Overview Rationale for Module Sequence in Algebra I Module 1: By the end of eighth grade, students have learned to solve linear equations in one variable and have applied graphical and algebraic methods to analyze

More information

The School District of Palm Beach County Algebra 1 Honors Unit A: Data Analysis

The School District of Palm Beach County Algebra 1 Honors Unit A: Data Analysis Unit A: Data Analysis MAFS.912.S ID.1.1 MAFS.912.S ID.1.2 MAFS.912.S ID.1.3 MAFS.912.S ID.2.5 Calculator: Yes Mathematics Florida Represent data with plots on the real number line (dot plots, histograms,

More information

ALGEBRA 1 - SJPS Curriculum

ALGEBRA 1 - SJPS Curriculum ALGEBRA 1 - SJPS Curriculum Year at a Glance (2013-2014) Name of Unit Learning Goals Knowledge & Skills UNIT 1: Relationships Between Quantities and Reasoning with Equations (35 days?) UNIT 2: Linear and

More information

A.CED.1.4. Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.

A.CED.1.4. Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. Algebra 2 Curriculum Map (including Honors) 2014-2015 First Nine Weeks 42 days Mathematics Florida Standards Student Performance Objectives by Benchmark Number and Quantity Quantities Reason quantitatively

More information

Algebra I Number and Quantity The Real Number System (N-RN)

Algebra I Number and Quantity The Real Number System (N-RN) Number and Quantity The Real Number System (N-RN) Use properties of rational and irrational numbers N-RN.3 Explain why the sum or product of two rational numbers is rational; that the sum of a rational

More information

Algebra 2 College Prep Curriculum Maps

Algebra 2 College Prep Curriculum Maps Algebra 2 College Prep Curriculum Maps Unit 1: Polynomial, Rational, and Radical Relationships Unit 2: Modeling With Functions Unit 3: Inferences and Conclusions from Data Unit 4: Trigonometric Functions

More information

N-Q2. Define appropriate quantities for the purpose of descriptive modeling.

N-Q2. Define appropriate quantities for the purpose of descriptive modeling. Unit 1 Expressions Use properties of rational and irrational numbers. N-RN3. Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number

More information

ALGEBRA 2/MATH 3 COURSE 1

ALGEBRA 2/MATH 3 COURSE 1 ALGEBRA 2/MATH 3 COURSE 1 TABLE OF CONTENTS NUMBER AND QUANTITY 6 THE REAL NUMBER SYSTEM (N.RN) 6 EXTEND THE PROPERTIES OF EXPONENTS TO RATIONAL EXPONENTS. (N.RN.1-2) 6 Expectations for Learning 6 Content

More information

Fairfield Public Schools

Fairfield Public Schools Mathematics Fairfield Public Schools ALGEBRA 32 Algebra 32 BOE Approved 04/08/2014 1 ALGEBRA 32 Critical Areas of Focus Building on their work with linear, quadratic, and exponential functions from Algebra,

More information

Algebra 2 Early 1 st Quarter

Algebra 2 Early 1 st Quarter Algebra 2 Early 1 st Quarter CCSS Domain Cluster A.9-12 CED.4 A.9-12. REI.3 Creating Equations Reasoning with Equations Inequalities Create equations that describe numbers or relationships. Solve equations

More information

PARCC MODEL CONTENT FRAMEWORKS MATHEMATICS ALGEBRA I. Version 3.0 November 2012

PARCC MODEL CONTENT FRAMEWORKS MATHEMATICS ALGEBRA I. Version 3.0 November 2012 PARCC MODEL CONTENT FRAMEWORKS MATHEMATICS ALGEBRA I Version 3.0 November 2012 PARCC MODEL CONTENT FRAMEWORK FOR MATHEMATICS FOR ALGEBRA I Algebra I Overview Numerals in parentheses designate individual

More information

Standard Description Agile Mind Lesson / Activity Page / Link to Resource

Standard Description Agile Mind Lesson / Activity Page / Link to Resource Publisher: Agile Mind, Inc Date: 19-May-14 Course and/or Algebra I Grade Level: TN Core Standard Standard Description Agile Mind Lesson / Activity Page / Link to Resource Create equations that describe

More information

Polynomial, Rational, and Radical Relationships

Polynomial, Rational, and Radical Relationships Algebra II Unit 1 Polynomial, Rational, and Radical Relationships Last edit: 22 April 2015 UNDERSTANDING & OVERVIEW In this unit, students draw on their foundation of the analogies between polynomial arithmetic

More information

Mathematics Pacing. Instruction 9/9 10/18/13 Assessment 10/21 10/25/13 Remediation 10/28 11/1/13. # STUDENT LEARNING OBJECTIVES CCSS Resources 1

Mathematics Pacing. Instruction 9/9 10/18/13 Assessment 10/21 10/25/13 Remediation 10/28 11/1/13. # STUDENT LEARNING OBJECTIVES CCSS Resources 1 1 Instruction 9/9 10/18/13 Assessment 10/21 10/25/13 Remediation 10/28 11/1/13 NAME: Polynomials # STUDENT LEARNING OBJECTIVES CCSS Resources 1 Use Properties of operations to add, subtract, and multiply

More information

Quadratics and Other Polynomials

Quadratics and Other Polynomials Algebra 2, Quarter 2, Unit 2.1 Quadratics and Other Polynomials Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned Know and apply the Fundamental Theorem of Algebra

More information

CURRICULUM GUIDE. Honors Algebra II / Trigonometry

CURRICULUM GUIDE. Honors Algebra II / Trigonometry CURRICULUM GUIDE Honors Algebra II / Trigonometry The Honors course is fast-paced, incorporating the topics of Algebra II/ Trigonometry plus some topics of the pre-calculus course. More emphasis is placed

More information

Sequence of Algebra AB SDC Units Aligned with the California Standards

Sequence of Algebra AB SDC Units Aligned with the California Standards Sequence of Algebra AB SDC Units Aligned with the California Standards Year at a Glance Unit Big Ideas Math Algebra 1 Textbook Chapters Dates 1. Equations and Inequalities Ch. 1 Solving Linear Equations

More information

Randolph County Curriculum Frameworks Algebra II with Trigonometry

Randolph County Curriculum Frameworks Algebra II with Trigonometry Randolph County Curriculum Frameworks 2016 2017 Algebra II with Trigonometry First 9 weeks Chapter 2, Chapter 3, Chapter 12, 4.1 4.3 Standards I Can Statements Resources Recom mendati on / 21.) Create

More information

Algebra 2 for Pre-Calculus (#9300)

Algebra 2 for Pre-Calculus (#9300) AASD MATHEMATICS CURRICULUM Algebra 2 for Pre-Calculus (#9300) Description This course is a rigorous extension of earlier mathematics courses in preparation for Pre-Calculus. Students will build upon prior

More information

PARCC MODEL CONTENT FRAMEWORKS MATHEMATICS GEOMETRY. Version 3.0 November 2012

PARCC MODEL CONTENT FRAMEWORKS MATHEMATICS GEOMETRY. Version 3.0 November 2012 PARCC MODEL CONTENT FRAMEWORKS MATHEMATICS GEOMETRY Version 3.0 November 2012 PARCC MODEL CONTENT FRAMEWORK FOR MATHEMATICS FOR GEOMETRY Geometry Overview Numerals in parentheses designate individual content

More information

Algebra 2 Standards. Essential Standards:

Algebra 2 Standards. Essential Standards: Benchmark 1: Essential Standards: 1. Alg2.M.F.LE.A.02 (linear): I can create linear functions if provided either a graph, relationship description or input-output tables. - 15 Days 2. Alg2.M.A.APR.B.02a

More information

Algebra II High School Math Solution West Virginia Correlation

Algebra II High School Math Solution West Virginia Correlation M.A2HS.1 M.A2HS.2 M.A2HS.3 M.A2HS.4 M.A2HS.5 M.A2HS.6 Know there is a complex number i such that i 2 = 1, and every complex number has the form a + bi with a and b real. Use the relation i 2 = 1 and the

More information

Precalculus. Precalculus Higher Mathematics Courses 85

Precalculus. Precalculus Higher Mathematics Courses 85 Precalculus Precalculus combines the trigonometric, geometric, and algebraic techniques needed to prepare students for the study of calculus, and strengthens students conceptual understanding of problems

More information