Classical Numerical Methods to Solve Optimal Control Problems

Size: px
Start display at page:

Download "Classical Numerical Methods to Solve Optimal Control Problems"

Transcription

1 Lecture 26 Classical Numerical Methods to Solve Optimal Control Problems Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

2 Necessary Conditions of Optimality in Optimal Control State Equation Costate Equation X H = = λ H λ = = X (,, ) f t X U (,, ) g t X U Optimal Control Equation H U = 0 U = ψ, ( X λ ) Boundary Condition λ f ϕ = Xt ( ) X f = X:Fixed 0 0 2

3 Necessary Conditions of Optimality: Salient Features State and Costate equations are dynamic equations State equation develops forward whereas Costate equation develops backwards Optimal control equation is a stationary equation The formulation leads to Two-Point-Boundary-Value Problems (TPBVPs), which demand computationally-intensive iterative numerical procedures to obtain the optimal control solution 3

4 Classical Methods to Solve TPBVPs Gradient Method Shooting Method Quasi-Linearization Method 4

5 Gradient Method Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

6 Gradient Method Assumptions: State equation satisfied Costate equation satisfied Boundary conditions satisfied Strategy: Satisfy the optimal control equation 6

7 7 Gradient Method ( ) ( ) ( ) ( ) f f f T f f f t T t t T t t T t J X X H X dt X H U dt U H X dt φ δ δ λ δ λ δ δλ λ =

8 Gradient Method After satisfying the state & costate equations and boundary conditions, we have t f T H δj = ( δu) dt U Select δu() t = τ, τ > 0 t 0 H U This leads to δj = τ t f t 0 T H H U U dt 8

9 Gradient Method We select This lead to 1 δu () t = U () t U () t = τ U i i i H + U () t = U () t τ U i+ 1 i H i i Note: δj t f H H = τ dt U U t 0 T 0 Eventually, δ J H = 0 = 0 U 9

10 Gradient Method: Procedure Assume a control history (not a trivial task) Integrate the state equation forward Integrate the costate equation backward Update the control solution This can either be done at each step while integrating the costate equation backward or after the integration of the costate equation is complete Repeat the procedure until convergence t t 0 T f H H dt U U γ (a pre-selected constant) 10

11 Gradient Method: Selection of τ τ Select so that it leads to a certain percentage reduction of J Let the percentage be α t f T Then α This leads to H H τ dt = J t U U α J τ = 100 t f T H H dt U U t 0 11

12 A Real-Life Challenging Problem Objective: Air-to-air missiles are usually launched from an aircraft in the forward direction. However, the missile should turn around and intercept a target behind the aircraft. Aircraft Missile Target To execute this task, the missile should turn around by -180 o and lock onto its target (after that it can be guided by its own homing guidance logic). Note: Every other case can be considered as a subset of this extreme scenario! 12

13 A Real-Life Challenging Problem MATHEMATICAL PERSPECTIVE: Minimum time optimization problem Fixed initial conditions and free final time problem SYSTEM DYNAMICS: Equations of motion for a missile in vertical plane. The non-dimensional equations of motion (point mass) in a vertical plane are: M S M C T 2 ' = w D sin( γ) + wcos( α) 1 2 γ ' = [ SMC w L + Twsin( α) cos( γ)] M where prime denotes differentiation with respect to the non-dimensional time τ 13

14 A Real-Life Challenging Problem The non-dimensional parameters are defined as follows: 2 g T ρa S V ; Tw ; Sw ; M τ = = = = at mg 2mg a where M = flight Mach number γ = flight path angle T = thrust m = mass of the missile S = reference aerodynamic area V C D = speed of the missile C = lift coefficient L = drag coefficient g = the acceleration due to gravity a = the local speed of sound ρ = the atmospheric density t = flight time after launch NOTE: C, C are usually functions of α & M (tabulated data) L D 14

15 A Real-Life Challenging Problem COST FUNCTION: Mathematically the problem is possed as follows to find the control minimizing cost function: J = o Constraints γ (0) = 0, M (0) = initial Mach number t f 0 dt o γ ( t ) = 180, M( t ) = 0.8 f f 15

16 A Real-Life Challenging Problem Choosing γ as the independent variable the equations are reformulated as follows: 2 ( w D sin( γ) + wcos( α) ) dm SMC T M = dγ S M C cos( γ) + T sin( α) dt = dγ 2 w L w a M ( cos( γ) + Tw sin( α) ) 2 g SwM CL and the transformed cost function is t π π f dt a M J = dt = dγ = dγ dγ g S M C γ T α ( w L cos( ) + wsin( )) A difficult minimum-time problem has been converted to a relatively easier fixed final-time problem (with hard constraint: M ( γ f ) = 0.8)! 16

17 Task Solve the problem using gradient method. Assume M (0) = 0.5 and engagement height as 5 km. Next, generate the trajectories and tabulate the values of M for various q values. Use the following system parameters (typical for an air-to-air missile): m= 240 kg S = m2 T = 24,000 N C C D L = 0.5 = 3.12 f Use standard atmosphere chart for the atmospheric data. 17

18 Shooting Method Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

19 Necessary Conditions of Optimality (TPBVP): A Summary State Equation Costate Equation X H = = λ H λ = = X (,, ) f t X U (,,, λ ) g t X U Optimal Control Equation H U = 0 Boundary Condition λ f ϕ = Xt ( ) X f = X:Fixed

20 Shooting Method 20

21 Shooting Method 21

22 Shooting Method 22

23 Shooting Method 23

24 Shooting Method 24

25 Quasi-Linearization Method Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

26 Quasi-Linearization Method Problem: ( ) ( ), ( ) { 1,, T } T T Differential Equation: Z = F Z, t, Z X λ Boundary condition: C t, Z t = C Z = b Assumption: i i i i i i t t i n This vector differential equation has a unique solution over T t t t 0, f Trick: The nonlinear multi-point boundary value problem is transformed into a sequence of linear non-stationary boundary value problems, the solution of which is made to approximate the solution of the true problem. 26

27 Quasi-Linearization Method ( ) ( = ) N (1) Guess an approximate solution Z t N 1 (it need not satisfy the B.C.) For updating this solution, proceed with the following steps: (2) Linearize the system dynamics about Δ Z N Z N () t F N N N+ 1 N =, where, Z ΔZ ΔZ t Z t Z t N Z To be found () At () Δ = Δ N N Z A t Z N+ 1 N N ( ), ( ) ( ), ( ) ( ) N N ( ), Δ ( ) = ( ), Z ( t ) + b () () () (3) Enforce the boundary with respect to the updated solution C t Z t = C t Z t +Δ Z t = b i i i i i i C t Z t C t i i i i i Z N + 1 () t Philosophy: Solve this linear system and update the solution! 27

28 Quasi-Linearization Method: Solution by STM Approach (1) From the linearized system dynamics, we can write ()( ) Z = Z + A t Z Z N+ 1 N N+ 1 N + 1 () (, ) () N N N = At Z + F Z t At Z Homogeneous Forcing function N + 1 Z () t () = Φ (, ) ( ) + () (2) The solution to the above equation is given by N+ 1 N+ 1 N+ 1 N+ 1 Z t t t0 Z t0 p t State transition matrix (STM) Particular solution N + 1 (3) The solution for STM Φ ( tt, 0 ) can be obtained from the fact that it satisfies the following differential equation and boundary conditions Φ = Φ t t t I N ( tt, ) At ( ) ( tt, ) N (, ) N + 1 Φ 0 0 = 28

29 Quasi-Linearization Method: Solution by STM Approach ( t) N + 1 (4) The particular solution p can be obtained by observing that it satisfies the the following differential equation and boundary condition () t N + 1 Substituting the complete solution i Z n the original equation N+ 1 N+ 1 N+ 1 N+ 1 N+ 1 N+ 1 ( tt, 0) Z ( t0) p ( t) At ( ) ( tt, 0) Z ( t0) p ( t) t Φ + = Φ + N N + F( Z, t) A() t Z N+ 1 N+ 1 N N p () t = A() t p () t + F( Z, t) A() t Z N + 1 (5) The boundary condition p t can be obtained by observing that ( 0 ) ( ) =Φ (, ) ( ) + ( ) Z t t t Z t p t p N+ 1 N+ 1 N+ 1 N N + 1 ( t ) 0 = 0 I 29

30 Quasi-Linearization Method: Solution by STM Approach N + 1 Z ( t0 ) N + 1 ( ), ( ) (6) The boundary condition can be obtained as follows C t Z t = b i i i N+ 1 N+ 1 N+ 1 ( ), (, ) ( ) ( ) C t Φ t t Z t + p t = b i i 0 0 i i N+ 1 N+ 1 N + 1 ( ), Φ (, ) ( ) = ( ), ( t ) C t t t Z t C t p i i 0 0 i i + b i Solve the above system to obtain Z N + 1 ( t ) 0 N ( 0 ) ( ) N+ 1 N+ 1 N+ 1 N+ 1 Z () t =Φ ( t t ) Z ( t ) + p () t N Once is determined, the solution is available from the Z t Z t STM solution:, STM 0 0 Particular solution 30

31 Quasi-Linearization Method: Convergence Property Under the assumption that the problem admits a unique solution for t t0, t f it can be shown that the sequence of vectors converge to the true solution. N + 1 { Z () t } Morover, the process can be shown to have "quadratic convergence" in general () () () () ( ) Z t Z t k Z t Z t k f N N+ 1 N N N 1 i.e., it can be shown that, where. Further more, for a large class of systems, it can be shown to have "monotone convergence" as well, i.e. there won't be any over-shooting in the convergence process. Reference : R. Kabala, "On Nonlinear Differential Equations, The Maximum Operation and Monotone Convergence", J. of Mathematics and Mechanics, Vol. 8, 1959, pp

32 A Demonstrative Example Problem: Minimize J = ( x u ) dt for the system x x u, x( 0) = + = 0 Solution: Hamiltonian: H = ( x + u ) + λ ( x + u) 2 2 1) State Equation: x = x + u 2) Optimal Control Equation: u+ λ = 0 u = λ = ( H x) = x+ λx ( ) λ ( ) ( x) 3) Costate Equation: λ / 2 4) Bounary Conditions: x 2 x x x 0 = 10, 1 = Φ/ = 0 Substituting the expression for u in the state equation, we can write ( ) () = λ, 0 = 10 λ = x+ 2 λx, λ 1 = 0 Task : Solve this problem using shooting and quasi-linearization methods. 32

33 References on Numerical Methods in Optimal Control Design D. E. Kirk, Optimal Control Theory: An Introduction, Prentice Hall, S. M. Roberts and J.S. Shipman, Two Point Boundary Value Problems: Shooting Methods, American Elsevier Publishing Company Inc., A. E. Bryson and Y-C Ho, Applied Optimal Control, Taylor and Francis, A. P. Sage and C. C. White III, Optimum Systems Control (2nd Ed.), Prentice Hall,

34 Survey of Classical Methods M. Athans (1966), The Status of Optimal Control Theory and Applications for Deterministic Systems, IEEE Trans. on Automatic Control, Vol. AC-11, July 1966, pp H. J. Pesch (1994), A Practical Guide to the Solution of Real-Life Optimal Control Problems, Control and Cybernetics, Vol.23, No.1/2, 1994, pp

35 35

Optimal Control Design

Optimal Control Design Optimal Control Design Prof. Radhakant Padhi Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Acknowledgement: Indian Institute of Science Founded in 1909 more than 100 years old

More information

Gain Scheduling and Dynamic Inversion

Gain Scheduling and Dynamic Inversion Lecture 31 Gain Scheduling and Dynamic Inversion Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Topics A Brief Overview of Gain Scheduling Philosophy

More information

Lecture 11 Overview of Flight Dynamics I. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Lecture 11 Overview of Flight Dynamics I. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Lecture 11 Overview of Flight Dynamics I Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Point Mass Dynamics Dr. Radhakant Padhi Asst. Professor

More information

Minimum Time Ascent Phase Trajectory Optimization using Steepest Descent Method

Minimum Time Ascent Phase Trajectory Optimization using Steepest Descent Method IJCTA, 9(39), 2016, pp. 71-76 International Science Press Closed Loop Control of Soft Switched Forward Converter Using Intelligent Controller 71 Minimum Time Ascent Phase Trajectory Optimization using

More information

Dynamic Inversion Design II

Dynamic Inversion Design II Lecture 32 Dynamic Inversion Design II Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Topics Summary of Dynamic Inversion Design Advantages Issues

More information

Using Lyapunov Theory I

Using Lyapunov Theory I Lecture 33 Stability Analysis of Nonlinear Systems Using Lyapunov heory I Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Outline Motivation Definitions

More information

Linear Quadratic Regulator (LQR) Design I

Linear Quadratic Regulator (LQR) Design I Lecture 7 Linear Quadratic Regulator LQR) Design I Dr. Radhakant Padhi Asst. Proessor Dept. o Aerospace Engineering Indian Institute o Science - Bangalore LQR Design: Problem Objective o drive the state

More information

Constrained Optimal Control I

Constrained Optimal Control I Optimal Control, Guidance and Estimation Lecture 34 Constrained Optimal Control I Pro. Radhakant Padhi Dept. o Aerospace Engineering Indian Institute o Science - Bangalore opics Motivation Brie Summary

More information

Ascent Phase Trajectory Optimization for a Hypersonic Vehicle Using Nonlinear Programming

Ascent Phase Trajectory Optimization for a Hypersonic Vehicle Using Nonlinear Programming Ascent Phase Trajectory Optimization for a Hypersonic Vehicle Using Nonlinear Programming H.M. Prasanna,D.Ghose, M.S. Bhat, C. Bhattacharyya, and J. Umakant 3 Department of Aerospace Engineering Department

More information

Chapter 8 Performance analysis IV Accelerated level flight and climb (Lecture 27) Keywords: Topics 8.1 Introduction 8.2 Accelerated level flight

Chapter 8 Performance analysis IV Accelerated level flight and climb (Lecture 27) Keywords: Topics 8.1 Introduction 8.2 Accelerated level flight Chapter 8 Performance analysis I Accelerated level flight and climb (Lecture 7) Keywords: Accelerated level flight; accelerated climb; energy height. Topics 8.1 Introduction 8. Accelerated level flight

More information

Constrained Optimal Control. Constrained Optimal Control II

Constrained Optimal Control. Constrained Optimal Control II Optimal Control, Guidance and Estimation Lecture 35 Constrained Optimal Control II Prof. Radhakant Padhi Dept. of Aerospace Engineering Indian Institute of Science - Bangalore opics: Constrained Optimal

More information

Linear Quadratic Regulator (LQR) I

Linear Quadratic Regulator (LQR) I Optimal Control, Guidance and Estimation Lecture Linear Quadratic Regulator (LQR) I Pro. Radhakant Padhi Dept. o Aerospace Engineering Indian Institute o Science - Bangalore Generic Optimal Control Problem

More information

Linear Quadratic Regulator (LQR) Design II

Linear Quadratic Regulator (LQR) Design II Lecture 8 Linear Quadratic Regulator LQR) Design II Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Outline Stability and Robustness properties

More information

Optimal Control, Guidance and Estimation. Lecture 16. Overview of Flight Dynamics II. Prof. Radhakant Padhi. Prof. Radhakant Padhi

Optimal Control, Guidance and Estimation. Lecture 16. Overview of Flight Dynamics II. Prof. Radhakant Padhi. Prof. Radhakant Padhi Optimal Control, Guidance and Estimation Lecture 16 Overview of Flight Dynamics II Prof. Radhakant Padhi Dept. of erospace Engineering Indian Institute of Science - Bangalore Point Mass Dynamics Prof.

More information

Speed Profile Optimization for Optimal Path Tracking

Speed Profile Optimization for Optimal Path Tracking Speed Profile Optimization for Optimal Path Tracking Yiming Zhao and Panagiotis Tsiotras Abstract In this paper, we study the problem of minimumtime, and minimum-energy speed profile optimization along

More information

Lecture 15 Review of Matrix Theory III. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Lecture 15 Review of Matrix Theory III. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Lecture 15 Review of Matrix Theory III Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Matrix An m n matrix is a rectangular or square array of

More information

Goddard s Problem Steven Finch

Goddard s Problem Steven Finch Goddard s Problem Steven Finch June 12, 2015 Arocketliftsoff vertically at time =0. Let ( ) be the mass of the rocket (payload and fuel) and ( ) be the altitude. We wish to choose the thrust ( ) and a

More information

Lecture 6 Classical Control Overview IV. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Lecture 6 Classical Control Overview IV. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Lecture 6 Classical Control Overview IV Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Lead Lag Compensator Design Dr. Radhakant Padhi Asst.

More information

Optimal Control based Time Optimal Low Thrust Orbit Raising

Optimal Control based Time Optimal Low Thrust Orbit Raising Optimal Control based Time Optimal Low Thrust Orbit Raising Deepak Gaur 1, M. S. Prasad 2 1 M. Tech. (Avionics), Amity Institute of Space Science and Technology, Amity University, Noida, U.P., India 2

More information

Lecture 5 Classical Control Overview III. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Lecture 5 Classical Control Overview III. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Lecture 5 Classical Control Overview III Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore A Fundamental Problem in Control Systems Poles of open

More information

Real-time trajectory generation technique for dynamic soaring UAVs

Real-time trajectory generation technique for dynamic soaring UAVs Real-time trajectory generation technique for dynamic soaring UAVs Naseem Akhtar James F Whidborne Alastair K Cooke Department of Aerospace Sciences, Cranfield University, Bedfordshire MK45 AL, UK. email:n.akhtar@cranfield.ac.uk

More information

Applications Linear Control Design Techniques in Aircraft Control I

Applications Linear Control Design Techniques in Aircraft Control I Lecture 29 Applications Linear Control Design Techniques in Aircraft Control I Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Topics Brief Review

More information

Basic Ascent Performance Analyses

Basic Ascent Performance Analyses Basic Ascent Performance Analyses Ascent Mission Requirements Ideal Burnout Solution Constant & Average Gravity Models Gravity Loss Concept Effect of Drag on Ascent Performance Drag Profile Approximation

More information

Agile Missile Controller Based on Adaptive Nonlinear Backstepping Control

Agile Missile Controller Based on Adaptive Nonlinear Backstepping Control Agile Missile Controller Based on Adaptive Nonlinear Backstepping Control Chang-Hun Lee, Tae-Hun Kim and Min-Jea Tahk 3 Korea Advanced Institute of Science and Technology(KAIST), Daejeon, 305-70, Korea

More information

CHAPTER 1. Introduction

CHAPTER 1. Introduction CHAPTER 1 Introduction Linear geometric control theory was initiated in the beginning of the 1970 s, see for example, [1, 7]. A good summary of the subject is the book by Wonham [17]. The term geometric

More information

Adaptive State Estimation Robert Stengel Optimal Control and Estimation MAE 546 Princeton University, 2018

Adaptive State Estimation Robert Stengel Optimal Control and Estimation MAE 546 Princeton University, 2018 Adaptive State Estimation Robert Stengel Optimal Control and Estimation MAE 546 Princeton University, 218! Nonlinearity of adaptation! Parameter-adaptive filtering! Test for whiteness of the residual!

More information

Target tracking and classification for missile using interacting multiple model (IMM)

Target tracking and classification for missile using interacting multiple model (IMM) Target tracking and classification for missile using interacting multiple model (IMM Kyungwoo Yoo and Joohwan Chun KAIST School of Electrical Engineering Yuseong-gu, Daejeon, Republic of Korea Email: babooovv@kaist.ac.kr

More information

Chapter 9. Nonlinear Design Models. Beard & McLain, Small Unmanned Aircraft, Princeton University Press, 2012, Chapter 9, Slide 1

Chapter 9. Nonlinear Design Models. Beard & McLain, Small Unmanned Aircraft, Princeton University Press, 2012, Chapter 9, Slide 1 Chapter 9 Nonlinear Design Models Beard & McLain, Small Unmanned Aircraft, Princeton University Press, 2012, Chapter 9, Slide 1 Architecture Destination, obstacles Waypoints Path Definition Airspeed, Altitude,

More information

A SOLUTION OF MISSILE-AIRCRAFT PURSUIT-EVASION DIFFERENTIAL GAMES IN MEDIUM RANGE

A SOLUTION OF MISSILE-AIRCRAFT PURSUIT-EVASION DIFFERENTIAL GAMES IN MEDIUM RANGE Proceedings of the 1th WSEAS International Confenrence on APPLIED MAHEMAICS, Dallas, exas, USA, November 1-3, 6 376 A SOLUION OF MISSILE-AIRCRAF PURSUI-EVASION DIFFERENIAL GAMES IN MEDIUM RANGE FUMIAKI

More information

Analysis of optimal strategies for soft landing on the Moon from lunar parking orbits

Analysis of optimal strategies for soft landing on the Moon from lunar parking orbits Analysis of optimal strategies for soft landing on the Moon from lunar parking orbits R V Ramanan and Madan Lal Aerospace Flight Dynamics Group, Vikram Sarabhai Space Centre, Thiruvananthapuram 695 022,

More information

Performance. 5. More Aerodynamic Considerations

Performance. 5. More Aerodynamic Considerations Performance 5. More Aerodynamic Considerations There is an alternative way of looking at aerodynamic flow problems that is useful for understanding certain phenomena. Rather than tracking a particle of

More information

Optimized Trajectory Shaping Guidance for an Air-to-Ground Missile Launched from a Gunship. Craig Phillips Ernie Ohlmeyer Shane Sorenson

Optimized Trajectory Shaping Guidance for an Air-to-Ground Missile Launched from a Gunship. Craig Phillips Ernie Ohlmeyer Shane Sorenson Optimized Trajectory Shaping Guidance for an Air-to-Ground Missile Launched from a Gunship Craig Phillips Ernie Ohlmeyer Shane Sorenson Overview Mission Scenario Notional Munition Concept Guidance Laws

More information

The Pursuit Guidance Law

The Pursuit Guidance Law Chapter 7 The Pursuit Guidance Law Module 6: Lecture 15 Pure Pursuit Guidance Law Keywords. Pure pursuit; Capture Region As discussed earlier, pursuit guidance law is one of the most logical guidance laws

More information

Minimum Energy Trajectories for Techsat 21 Earth Orbiting Clusters

Minimum Energy Trajectories for Techsat 21 Earth Orbiting Clusters Minimum Energy Trajectories for Techsat 1 Earth Orbiting Clusters Edmund M. C. Kong SSL Graduate Research Assistant Prof David W. Miller Director, MIT Space Systems Lab Space 1 Conference & Exposition

More information

PERFORMANCE ANALYSIS OF ISL S GUIDED SUPERSONIC PROJECTILE. Pierre Wey

PERFORMANCE ANALYSIS OF ISL S GUIDED SUPERSONIC PROJECTILE. Pierre Wey 3 RD INTERNATIONAL SYMPOSIUM ON BALLISTICS TARRAGONA, SPAIN 16- APRIL 7 PERFORMANCE ANALYSIS OF ISL S GUIDED SUPERSONIC PROJECTILE Pierre Wey French-German Research Institute of Saint-Louis (ISL) P.O.

More information

Two-Point Boundary Value Problem and Optimal Feedback Control based on Differential Algebra

Two-Point Boundary Value Problem and Optimal Feedback Control based on Differential Algebra Two-Point Boundary Value Problem and Optimal Feedback Control based on Differential Algebra Politecnico di Milano Department of Aerospace Engineering Milan, Italy Taylor Methods and Computer Assisted Proofs

More information

Energy-Insensitive Guidance of Solid Motor Propelled Long Range Flight Vehicles Using MPSP and Dynamic Inversion

Energy-Insensitive Guidance of Solid Motor Propelled Long Range Flight Vehicles Using MPSP and Dynamic Inversion Proceedings of the 17th World Congress he International Federation of Automatic Control Energy-Insensitive Guidance of Solid Motor Propelled Long Range Flight Vehicles Using MPSP and Dynamic Inversion

More information

Linear Quadratic Regulator (LQR) II

Linear Quadratic Regulator (LQR) II Optimal Control, Guidance and Estimation Lecture 11 Linear Quadratic Regulator (LQR) II Pro. Radhakant Padhi Dept. o Aerospace Engineering Indian Institute o Science - Bangalore Outline Summary o LQR design

More information

EXTREMAL ANALYTICAL CONTROL AND GUIDANCE SOLUTIONS FOR POWERED DESCENT AND PRECISION LANDING. Dilmurat Azimov

EXTREMAL ANALYTICAL CONTROL AND GUIDANCE SOLUTIONS FOR POWERED DESCENT AND PRECISION LANDING. Dilmurat Azimov EXTREMAL ANALYTICAL CONTROL AND GUIDANCE SOLUTIONS FOR POWERED DESCENT AND PRECISION LANDING Dilmurat Azimov University of Hawaii at Manoa 254 Dole Street, Holmes 22A Phone: (88)-956-2863, E-mail: azimov@hawaii.edu

More information

Introduction to Flight Dynamics

Introduction to Flight Dynamics Chapter 1 Introduction to Flight Dynamics Flight dynamics deals principally with the response of aerospace vehicles to perturbations in their flight environments and to control inputs. In order to understand

More information

OPTIMIZING PERIAPSIS-RAISE MANEUVERS USING LOW-THRUST PROPULSION

OPTIMIZING PERIAPSIS-RAISE MANEUVERS USING LOW-THRUST PROPULSION AAS 8-298 OPTIMIZING PERIAPSIS-RAISE MANEUVERS USING LOW-THRUST PROPULSION Brenton J. Duffy and David F. Chichka This study considers the optimal control problem of maximizing the raise in the periapsis

More information

Multistage Rocket Performance Project Two

Multistage Rocket Performance Project Two 41 Multistage Rocket Performance Project Two Charles R. O Neill School of Mechanical and Aerospace Engineering Oklahoma State University Stillwater, OK 74078 Project Two in MAE 3293 Compressible Flow December

More information

I would re-name this chapter Unpowered flight The drag polar, the relationship between lift and drag.

I would re-name this chapter Unpowered flight The drag polar, the relationship between lift and drag. Chapter 3 - Aerodynamics I would re-name this chapter Unpowered flight The drag polar, the relationship between lift and drag. Aerodynamically: = and = So the lift and drag forces are functions of the

More information

Active Flutter Control using an Adjoint Method

Active Flutter Control using an Adjoint Method 44th AIAA Aerospace Sciences Meeting and Exhibit 9-12 January 26, Reno, Nevada AIAA 26-844 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 9 12 Jan, 26. Active Flutter Control using an

More information

Flight and Orbital Mechanics

Flight and Orbital Mechanics Flight and Orbital Mechanics Lecture slides Challenge the future 1 Flight and Orbital Mechanics Lecture hours 3, 4 Minimum time to climb Mark Voskuijl Semester 1-2012 Delft University of Technology Challenge

More information

Differential Game Missile Guidance with Impact Angle and Time Constraints

Differential Game Missile Guidance with Impact Angle and Time Constraints Differential Game Missile Guidance with Impact Angle and Time Constraints Seonhyeok Kang H. Jin Kim School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Korea, (e-mail: hkkang@snu.ac.kr)

More information

A Simple Design Approach In Yaw Plane For Two Loop Lateral Autopilots

A Simple Design Approach In Yaw Plane For Two Loop Lateral Autopilots A Simple Design Approach In Yaw Plane For Two Loop Lateral Autopilots Jyoti Prasad Singha Thakur 1, Amit Mukhopadhyay Asst. Prof., AEIE, Bankura Unnayani Institute of Engineering, Bankura, West Bengal,

More information

Minimization with Equality Constraints

Minimization with Equality Constraints Path Constraints and Numerical Optimization Robert Stengel Optimal Control and Estimation, MAE 546, Princeton University, 2015 State and Control Equality Constraints Pseudoinverse State and Control Inequality

More information

Optimal Control of Spacecraft Orbital Maneuvers by the Hamilton-Jacobi Theory

Optimal Control of Spacecraft Orbital Maneuvers by the Hamilton-Jacobi Theory AIAA Guidance, Navigation, and Control Conference and Exhibit 2-24 August 26, Keystone, Colorado AIAA 26-6234 Optimal Control of Spacecraft Orbital Maneuvers by the Hamilton-Jacobi Theory Chandeok Park,

More information

Flight Dynamics and Control. Lecture 3: Longitudinal stability Derivatives G. Dimitriadis University of Liege

Flight Dynamics and Control. Lecture 3: Longitudinal stability Derivatives G. Dimitriadis University of Liege Flight Dynamics and Control Lecture 3: Longitudinal stability Derivatives G. Dimitriadis University of Liege Previously on AERO0003-1 We developed linearized equations of motion Longitudinal direction

More information

Theoretical and experimental research of supersonic missile ballistics

Theoretical and experimental research of supersonic missile ballistics BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES, Vol. 63, No. 1, 015 DOI: 10.1515/bpasts-015-007 Theoretical and experimental research of supersonic missile ballistics B. ZYGMUNT 1, K. MOTYL

More information

Optimal Control Theory

Optimal Control Theory Optimal Control Theory The theory Optimal control theory is a mature mathematical discipline which provides algorithms to solve various control problems The elaborate mathematical machinery behind optimal

More information

Numerical Optimization Algorithms

Numerical Optimization Algorithms Numerical Optimization Algorithms 1. Overview. Calculus of Variations 3. Linearized Supersonic Flow 4. Steepest Descent 5. Smoothed Steepest Descent Overview 1 Two Main Categories of Optimization Algorithms

More information

ME 6139: High Speed Aerodynamics

ME 6139: High Speed Aerodynamics Dr. A.B.M. Toufique Hasan Professor Department of Mechanical Engineering, BUET Lecture-01 04 November 2017 teacher.buet.ac.bd/toufiquehasan/ toufiquehasan@me.buet.ac.bd 1 Aerodynamics is the study of dynamics

More information

Pattern generation, topology, and non-holonomic systems

Pattern generation, topology, and non-holonomic systems Systems & Control Letters ( www.elsevier.com/locate/sysconle Pattern generation, topology, and non-holonomic systems Abdol-Reza Mansouri Division of Engineering and Applied Sciences, Harvard University,

More information

Flight and Orbital Mechanics

Flight and Orbital Mechanics Flight and Orbital Mechanics Lecture slides Challenge the future 1 Flight and orbital mechanics Flight Mechanics practice questions Dr. ir. Mark Voskuijl 20-11-2013 Delft University of Technology Challenge

More information

Gliding, Climbing, and Turning Flight Performance Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2018

Gliding, Climbing, and Turning Flight Performance Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2018 Gliding, Climbing, and Turning Flight Performance Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2018 Learning Objectives Conditions for gliding flight Parameters for maximizing climb angle and rate

More information

Trim 2D. Holly Lewis University of Colorado Center for Aerospace Structures April 29, 2004

Trim 2D. Holly Lewis University of Colorado Center for Aerospace Structures April 29, 2004 rim D Holly Lewis University of Colorado Center for Aerospace Structures April 9 004 Overview rimming an Aircraft in D Forces and Moments AERO-rimD Assumptions Capabilities Results Conclusions Future wor

More information

Study of Required Thrust Profile Determination of a Three Stages Small Launch Vehicle

Study of Required Thrust Profile Determination of a Three Stages Small Launch Vehicle Journal of Physics: Conference Series PAPER OPEN ACCESS Study of Required Thrust Profile Determination of a Three Stages Small Launch Vehicle To cite this article: A Fariz et al 218 J. Phys.: Conf. Ser.

More information

Gravity Turn Concept. Curvilinear Coordinate System Gravity Turn Manoeuvre concept Solutions for Constant Pitch Rate

Gravity Turn Concept. Curvilinear Coordinate System Gravity Turn Manoeuvre concept Solutions for Constant Pitch Rate Gravity Turn Concept Curvilinear Coordinate System Gravity Turn Manoeuvre concept Solutions for Constant Pitch Rate Inclined Motion Concept In reality, vertical motion is used only for a very small part

More information

Chapter 5 Lecture 19. Performance analysis I Steady level flight 3. Topics. Chapter-5

Chapter 5 Lecture 19. Performance analysis I Steady level flight 3. Topics. Chapter-5 Chapter 5 Lecture 19 Performance analysis I Steady level flight 3 Topics 5.8 Influence of level flight analysis on airplane design 5.9 Steady level flight performance with a given engine 5.10 Steady level

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordinary Differential Equations In this lecture, we will look at different options for coding simple differential equations. Start by considering bicycle riding as an example. Why does a bicycle move forward?

More information

Chapter 1 Lecture 2. Introduction 2. Topics. Chapter-1

Chapter 1 Lecture 2. Introduction 2. Topics. Chapter-1 Chapter 1 Lecture 2 Introduction 2 Topics 1.4 Equilibrium of airplane 1.5 Number of equations of motion for airplane in flight 1.5.1 Degrees of freedom 1.5.2 Degrees of freedom for a rigid airplane 1.6

More information

Integrated Estimator/Guidance Law Design for Improved Ballistic Missile Defense

Integrated Estimator/Guidance Law Design for Improved Ballistic Missile Defense Integrated Estimator/Guidance Law Design for Improved Ballistic Missile Defense Josef Shinar 2, Yaakov Oshman 3 and Vladimir Turetsky 4 Faculty of Aerospace Engineering Technion, Israel Institute of Technology,

More information

Numerical methods for the Navier- Stokes equations

Numerical methods for the Navier- Stokes equations Numerical methods for the Navier- Stokes equations Hans Petter Langtangen 1,2 1 Center for Biomedical Computing, Simula Research Laboratory 2 Department of Informatics, University of Oslo Dec 6, 2012 Note:

More information

Pontryagin s maximum principle

Pontryagin s maximum principle Pontryagin s maximum principle Emo Todorov Applied Mathematics and Computer Science & Engineering University of Washington Winter 2012 Emo Todorov (UW) AMATH/CSE 579, Winter 2012 Lecture 5 1 / 9 Pontryagin

More information

Gliding, Climbing, and Turning Flight Performance! Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2016

Gliding, Climbing, and Turning Flight Performance! Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2016 Gliding, Climbing, and Turning Flight Performance! Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2016 Learning Objectives Conditions for gliding flight Parameters for maximizing climb angle and rate

More information

A Compact, Closed Form Solution for the Optimum, Ideal Wind Turbines

A Compact, Closed Form Solution for the Optimum, Ideal Wind Turbines Department of Mechanical Engineering & Material Sciences A Compact, Closed Form Solution for the Optimum, Ideal Wind Turbines David A. Peters McDonnell Douglas Professor of Engineering dap@wustl.edu Ramin

More information

Shooting methods for numerical solutions of control problems constrained. by linear and nonlinear hyperbolic partial differential equations

Shooting methods for numerical solutions of control problems constrained. by linear and nonlinear hyperbolic partial differential equations Shooting methods for numerical solutions of control problems constrained by linear and nonlinear hyperbolic partial differential equations by Sung-Dae Yang A dissertation submitted to the graduate faculty

More information

New Parametric Affine Modeling and Control for Skid-to-Turn Missiles

New Parametric Affine Modeling and Control for Skid-to-Turn Missiles IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 9, NO. 2, MARCH 2001 335 New Parametric Affine Modeling and Control for Skid-to-Turn Missiles DongKyoung Chwa and Jin Young Choi, Member, IEEE Abstract

More information

Chapter 5 Performance analysis I Steady level flight (Lectures 17 to 20) Keywords: Steady level flight equations of motion, minimum power required,

Chapter 5 Performance analysis I Steady level flight (Lectures 17 to 20) Keywords: Steady level flight equations of motion, minimum power required, Chapter 5 Performance analysis I Steady level flight (Lectures 17 to 20) Keywords: Steady level flight equations of motion, minimum power required, minimum thrust required, minimum speed, maximum speed;

More information

Trajectory Optimization for Ascent and Glide Phases Using Gauss Pseudospectral Method

Trajectory Optimization for Ascent and Glide Phases Using Gauss Pseudospectral Method Trajectory Optimization for Ascent and Glide Phases Using Gauss Pseudospectral Method Abdel Mageed Mahmoud, Chen Wanchun, Zhou Hao, and Liang Yang Abstract The trajectory optimization method for ascent

More information

Entry Aerodynamics MARYLAND U N I V E R S I T Y O F. Entry Aerodynamics. ENAE Launch and Entry Vehicle Design

Entry Aerodynamics MARYLAND U N I V E R S I T Y O F. Entry Aerodynamics. ENAE Launch and Entry Vehicle Design Atmospheric Regimes on Entry Basic fluid parameters Definition of Mean Free Path Rarified gas Newtonian flow Continuum Newtonian flow (hypersonics) 2014 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu

More information

A Gauss Lobatto quadrature method for solving optimal control problems

A Gauss Lobatto quadrature method for solving optimal control problems ANZIAM J. 47 (EMAC2005) pp.c101 C115, 2006 C101 A Gauss Lobatto quadrature method for solving optimal control problems P. Williams (Received 29 August 2005; revised 13 July 2006) Abstract This paper proposes

More information

Lecture 4 Classical Control Overview II. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Lecture 4 Classical Control Overview II. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Lecture 4 Classical Control Overview II Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Stability Analysis through Transfer Function Dr. Radhakant

More information

Verified High-Order Optimal Control in Space Flight Dynamics

Verified High-Order Optimal Control in Space Flight Dynamics Verified High-Order Optimal Control in Space Flight Dynamics R. Armellin, P. Di Lizia, F. Bernelli-Zazzera K. Makino and M. Berz Fourth International Workshop on Taylor Methods Boca Raton, December 16

More information

Pitch Control of Flight System using Dynamic Inversion and PID Controller

Pitch Control of Flight System using Dynamic Inversion and PID Controller Pitch Control of Flight System using Dynamic Inversion and PID Controller Jisha Shaji Dept. of Electrical &Electronics Engineering Mar Baselios College of Engineering & Technology Thiruvananthapuram, India

More information

Chapter 8 Dynamic stability analysis II Longitudinal motion (Lectures 28 to 32)

Chapter 8 Dynamic stability analysis II Longitudinal motion (Lectures 28 to 32) Chapter 8 Dynamic stability analysis II Longitudinal motion (Lectures 28 to 32) Keywords : Stability quartic or characteristic equation for longitudinal motion and its solution ; roots of characteristic

More information

Computer Method for. Assembly Lines. Lindsay McClintock OPERMGT May 6, 2003

Computer Method for. Assembly Lines. Lindsay McClintock OPERMGT May 6, 2003 COMSOAL Computer Method for Sequencing Operations for Assembly Lines Lindsay McClintock OPERMGT 345 004 May 6, 2003 Today s Topics Assembly Line Balancing By Hand Overview Example Exercise By Computer

More information

18. Linearization: the phugoid equation as example

18. Linearization: the phugoid equation as example 79 18. Linearization: the phugoid equation as example Linearization is one of the most important and widely used mathematical terms in applications to Science and Engineering. In the context of Differential

More information

6th USA/Europe ATM 2005 R&D Seminar Statistical performance evaluation between linear and nonlinear designs for aircraft relative guidance

6th USA/Europe ATM 2005 R&D Seminar Statistical performance evaluation between linear and nonlinear designs for aircraft relative guidance direction des services de la Navigation aérienne direction de la Technique et de Presented by Thierry MIQUE 6th USA/Europe ATM 005 R&D Seminar Statistical performance evaluation between linear and nonlinear

More information

Modeling the 3-DOF Dynamics of an Electrodynamic Maglev Suspension System with a Passive Sled

Modeling the 3-DOF Dynamics of an Electrodynamic Maglev Suspension System with a Passive Sled Modeling the 3-DOF Dynamics of an Electrodynamic Maglev Suspension System with a Passive Sled Jeroen de Boeij 3, Héctor Gutiérrez *1, Rahul Agarwal 2 and Maarten Steinbuch 3 1 Department of Mechanical

More information

Math 411 Preliminaries

Math 411 Preliminaries Math 411 Preliminaries Provide a list of preliminary vocabulary and concepts Preliminary Basic Netwon s method, Taylor series expansion (for single and multiple variables), Eigenvalue, Eigenvector, Vector

More information

Feedback Control of Aerodynamic Flows

Feedback Control of Aerodynamic Flows 44th AIAA Aerospace Sciences Meeting and Exhibit 9-12 January 26, Reno, Nevada AIAA 26-843 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 9 12 Jan, 26. Feedback Control of Aerodynamic

More information

QUANTITATIVE L P STABILITY ANALYSIS OF A CLASS OF LINEAR TIME-VARYING FEEDBACK SYSTEMS

QUANTITATIVE L P STABILITY ANALYSIS OF A CLASS OF LINEAR TIME-VARYING FEEDBACK SYSTEMS Int. J. Appl. Math. Comput. Sci., 2003, Vol. 13, No. 2, 179 184 QUANTITATIVE L P STABILITY ANALYSIS OF A CLASS OF LINEAR TIME-VARYING FEEDBACK SYSTEMS PINI GURFIL Department of Mechanical and Aerospace

More information

Speed Profile Optimization for Optimal Path Tracking

Speed Profile Optimization for Optimal Path Tracking MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Speed Profile Optimization for Optimal Path Tracking Zhao, Y.; Tsiotras, P. TR013-051 June 013 Abstract In this paper, we study the problem

More information

MATH 614 Dynamical Systems and Chaos Lecture 2: Periodic points. Hyperbolicity.

MATH 614 Dynamical Systems and Chaos Lecture 2: Periodic points. Hyperbolicity. MATH 614 Dynamical Systems and Chaos Lecture 2: Periodic points. Hyperbolicity. Orbit Let f : X X be a map defining a discrete dynamical system. We use notation f n for the n-th iteration of f defined

More information

Nonlinear State Estimation! Particle, Sigma-Points Filters!

Nonlinear State Estimation! Particle, Sigma-Points Filters! Nonlinear State Estimation! Particle, Sigma-Points Filters! Robert Stengel! Optimal Control and Estimation, MAE 546! Princeton University, 2017!! Particle filter!! Sigma-Points Unscented Kalman ) filter!!

More information

Stochastic Optimization with Inequality Constraints Using Simultaneous Perturbations and Penalty Functions

Stochastic Optimization with Inequality Constraints Using Simultaneous Perturbations and Penalty Functions International Journal of Control Vol. 00, No. 00, January 2007, 1 10 Stochastic Optimization with Inequality Constraints Using Simultaneous Perturbations and Penalty Functions I-JENG WANG and JAMES C.

More information

Rocket Performance MARYLAND U N I V E R S I T Y O F. Ballistic Entry ENAE Launch and Entry Vehicle Design

Rocket Performance MARYLAND U N I V E R S I T Y O F. Ballistic Entry ENAE Launch and Entry Vehicle Design Rocket Performance Parallel staging Modular staging Standard atmospheres Orbital decay due to drag Straight-line (no gravity) entry based on atmospheric density 1 2014 David L. Akin - All rights reserved

More information

Application of a Non-Linear Frequency Domain Solver to the Euler and Navier-Stokes Equations

Application of a Non-Linear Frequency Domain Solver to the Euler and Navier-Stokes Equations Application of a Non-Linear Frequency Domain Solver to the Euler and Navier-Stokes Equations Matthew McMullen and Antony Jameson and Juan J. Alonso Dept. of Aeronautics & Astronautics Stanford University

More information

Quadcopter Dynamics 1

Quadcopter Dynamics 1 Quadcopter Dynamics 1 Bréguet Richet Gyroplane No. 1 1907 Brothers Louis Bréguet and Jacques Bréguet Guidance of Professor Charles Richet The first flight demonstration of Gyroplane No. 1 with no control

More information

An Evaluation of UAV Path Following Algorithms

An Evaluation of UAV Path Following Algorithms 213 European Control Conference (ECC) July 17-19, 213, Zürich, Switzerland. An Evaluation of UAV Following Algorithms P.B. Sujit, Srikanth Saripalli, J.B. Sousa Abstract following is the simplest desired

More information

Hybrid Systems - Lecture n. 3 Lyapunov stability

Hybrid Systems - Lecture n. 3 Lyapunov stability OUTLINE Focus: stability of equilibrium point Hybrid Systems - Lecture n. 3 Lyapunov stability Maria Prandini DEI - Politecnico di Milano E-mail: prandini@elet.polimi.it continuous systems decribed by

More information

34.3. Resisted Motion. Introduction. Prerequisites. Learning Outcomes

34.3. Resisted Motion. Introduction. Prerequisites. Learning Outcomes Resisted Motion 34.3 Introduction This Section returns to the simple models of projectiles considered in Section 34.1. It explores the magnitude of air resistance effects and the effects of including simple

More information

Investigating the Performance of Adaptive Methods in application to Autopilot of General aviation Aircraft

Investigating the Performance of Adaptive Methods in application to Autopilot of General aviation Aircraft I J C T A, 8(5), 2015, pp 2423-2431 International Science Press Investigating the Performance of Adaptive Methods in application to Autopilot of General aviation Aircraft V Rajesari 1 and L Padma Suresh

More information

Sensor Fusion Based Missile Guidance

Sensor Fusion Based Missile Guidance Sensor Fusion Based Missile Guidance Pubudu N Pathirana School of Engineering and Technology, Deakin University, Geelong, Victoria 217, Australia pubudu@deakin.edu.au Andrey V Savkin School of Electrical

More information

Solving Optimal Continuous Thrust Rendezvous Problems with Generating Functions

Solving Optimal Continuous Thrust Rendezvous Problems with Generating Functions JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS Vol. 29, No. 2, March April 2006 Solving Optimal Continuous Thrust Rendezvous Problems with Generating Functions Chandeok Park, Vincent Guibout, and Daniel J.

More information

Introduction to Hamiltonian Monte Carlo Method

Introduction to Hamiltonian Monte Carlo Method Introduction to Hamiltonian Monte Carlo Method Mingwei Tang Department of Statistics University of Washington mingwt@uw.edu November 14, 2017 1 Hamiltonian System Notation: q R d : position vector, p R

More information

Linear-Quadratic Optimal Control: Full-State Feedback

Linear-Quadratic Optimal Control: Full-State Feedback Chapter 4 Linear-Quadratic Optimal Control: Full-State Feedback 1 Linear quadratic optimization is a basic method for designing controllers for linear (and often nonlinear) dynamical systems and is actually

More information