CALCULATION OF EXPECTED DISTANCE ON A UNIT CUBE.

Size: px
Start display at page:

Download "CALCULATION OF EXPECTED DISTANCE ON A UNIT CUBE."

Transcription

1 CALCULATION OF EXPECTED DISTANCE ON A UNIT CUBE. JOHAN PHILIP Abstract. We calculate the expected distance between two random points on different faces of a unit cube. The problem is solved before, but we present an alternative method.. Introduction The expected distance between two random points on different sides of a square and the present analouge in three dimensions was treated numerically by James D. Klein, [Borwein et. al. 24, page 33]. Our attention to the problem was caught by [Bailey et. al. 25]. See also [Borwein et. al. 26] from which we cite problem 8: Calculate the expected distance between two random points on different faces of the unit cube. Hint: This can be expressed in terms of integrals as () E 3 := x2 + y 2 + (z w) 2 dw dx dy dz + (y u)2 + (z w) 2 du dw dy dz. Our method to find E 3 is to calculate the distribution functions for the two expressions under the square roots and then calculate the expectations. With some coaching, Maple is able to do the evaluations. Any higher moments can be calculated, when the distributions are known. The Maple worksheet cubedist.mw is available at 2. Notation and formulation. We start by calculating the distribution function F (s) = Prob(X 2 + Y 2 s) where X and Y are evenly distributed in a unit square and the distribution function G(t) = Prob((Z W ) 2 t) for Z and W evenly distributed in a unit square. Then, F and G are convolved to form the distribution H of the whole expression under the first square root. Convolving G by itself gives the distribution function K for the random part under the second square root. Key words and phrases. Distance on unit cube.

2 2 JOHAN PHILIP F(s) G(t) a sqrt(s) sqrt(t) b Figure. The areas F (s) and G(t). 3. The distributions F and G The probability that X 2 + Y 2 s equals the area in Fig. a. that is the intersection between the disk with radius = s and the unit square. We get πs, < s ; 4 (2) F (s) = s( 4 π arccos s ) + s, < s 2; 2 < s. The probability that (Z W ) 2 t equals the area of the diagonal strip in Fig. b. (3) G(t) = { ( t) 2, < t ; < t. 4. The first square root The probability that X 2 + Y 2 + (Z W ) 2 u is the convolution H of F and G H(u) = G(u s) df (s). Because of the various cases in the definitions of F and G, there are seven different integrals to calculate to get H. Maple does some of them directly and the remaining with the aid of the substitution s = u v 2. We get

3 DISTANCE ON UNIT CUBE 3 3 πu3/2 8 πu2, < u ; ( 3 + 5u u3/2 )π + ( 5u) u u2 arctan u, < u 2 ; 2 (4) H(u) = u + ( 3 + 5u u3/2 + 8 u2 )π + 5 (u + ) u 2 2u 3/2 arcsin ( ) 6 u 2 (u2 + u 3) arctan u 2, 2 < u 3;, 3 < u. The expectation of the first square root is E = 3 u dh(u). Told to use the substitution u = v 2, Maple evaluates this integral to E = 8 π ln 2 + ln ( + 2) (5) ln ( + 3) The second square root The probability that (Y U) 2 + (Z W ) 2 u is the convolution K of G by itself K(u) = G(u t) dg(t). Maple gives the following distribution, u, πu 8 3 u3/2 + 2 u2, < u ; (6) K(u) = 2u 3 2 u2 + 4(2u + ) u 3 2u arcsin ( u 2), < u 2 ; u, 2 < u. The expectation of the second square root is E 2 = 2 u + dk(u). Maple evaluates this integral directly to E 2 = π ln 2 + ln ( + 2) (7) ln ( + 3)

4 4 JOHAN PHILIP v~ Figure 2. The combined density function. 6. The combined distribution. Let V be the distance between two random points on different faces of a unit cube. We get the combined distribution C(v) = Probability( V v) as (8) C(v) = 4 5 H(v2 ) + 5 K(v2 ). The density function dc is shown in Figure 2. dv Combining E and E 2, we get the expection E(V ) = E 3 in () (9) E(V ) = 4 5 E + 5 E 2 = π ln ln ( + 2) ln ( + 3) Comment. We tested our method on the corresponding four-dimensional problem. When trying to calculate the four-dimensional H and K, we encountered integrals that we cannot solve like

5 DISTANCE ON UNIT CUBE 5 /a arcsin x ax + x x dx, where < a 2. References [] D.H. Bailey and J.M. Borwein, Experimental Mathematics: Examples, Methods and Implications, Notices of the AMS, Vol. 53, Number 5, May 25 [2] D.H. Bailey, J.M. Borwein, V Kapoor, and E.W. Weisstein Ten Problems in Experimental Mathematics, dhbailey/dhbpapers/tenproblems.pdf, March 8, 26. [3] J.M. Borwein, D.H. Bailey, and R. Girgensohn Experimentation in Mathematics: Computational Paths to Discovery, A. K. Peters, Natick, MA, 24 Department of Mathematics, Royal Institute of Technology, S- 44 Stockholm Sweden address: johanph@kth.se

THE DISTRIBUTION AND THE EXPECTATION OF THE DISTANCE BETWEEN TWO RANDOM POINTS ON DIFFERENT FACES OF A UNIT CUBE IN THREE AND FOUR DIMENSIONS.

THE DISTRIBUTION AND THE EXPECTATION OF THE DISTANCE BETWEEN TWO RANDOM POINTS ON DIFFERENT FACES OF A UNIT CUBE IN THREE AND FOUR DIMENSIONS. THE DISTRIBUTION AND THE EXPECTATION OF THE DISTANCE BETWEEN TWO RANDOM POINTS ON DIFFERENT FACES OF A UNIT CUBE IN THREE AND FOUR DIMENSIONS. JOHAN PHILIP Abstract. We calculate the distribution and the

More information

THE DISTANCE BETWEEN TWO RANDOM POINTS IN A 4- AND 5-CUBE.

THE DISTANCE BETWEEN TWO RANDOM POINTS IN A 4- AND 5-CUBE. THE DISTANCE BETWEEN TWO RANDOM POINTS IN A 4- AND 5-CUBE. JOHAN PHILIP Abstract. We determine exact expressions for the probability distribution and the average of the distance between two random points

More information

Introduction to Differentials

Introduction to Differentials Introduction to Differentials David G Radcliffe 13 March 2007 1 Increments Let y be a function of x, say y = f(x). The symbol x denotes a change or increment in the value of x. Note that a change in the

More information

MATH 52 FINAL EXAM SOLUTIONS

MATH 52 FINAL EXAM SOLUTIONS MAH 5 FINAL EXAM OLUION. (a) ketch the region R of integration in the following double integral. x xe y5 dy dx R = {(x, y) x, x y }. (b) Express the region R as an x-simple region. R = {(x, y) y, x y }

More information

Integration by Parts

Integration by Parts Calculus 2 Lia Vas Integration by Parts Using integration by parts one transforms an integral of a product of two functions into a simpler integral. Divide the initial function into two parts called u

More information

Solutions to Math 41 Second Exam November 5, 2013

Solutions to Math 41 Second Exam November 5, 2013 Solutions to Math 4 Second Exam November 5, 03. 5 points) Differentiate, using the method of your choice. a) fx) = cos 03 x arctan x + 4π) 5 points) If u = x arctan x + 4π then fx) = fu) = cos 03 u and

More information

Math 223 Final. July 24, 2014

Math 223 Final. July 24, 2014 Math 223 Final July 24, 2014 Name Directions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Total 1. No books, notes, or evil looks. You may use a calculator to do routine arithmetic computations. You may not use your

More information

Homework Solutions: , plus Substitutions

Homework Solutions: , plus Substitutions Homework Solutions: 2.-2.2, plus Substitutions Section 2. I have not included any drawings/direction fields. We can see them using Maple or by hand, so we ll be focusing on getting the analytic solutions

More information

Work the following on notebook paper. No calculator. Find the derivative. Do not leave negative exponents or complex fractions in your answers.

Work the following on notebook paper. No calculator. Find the derivative. Do not leave negative exponents or complex fractions in your answers. ALULUS B WORKSHEET ON 8. & REVIEW Find the derivative. Do not leave negative eponents or comple fractions in your answers. sec. f 8 7. f e. y ln tan. y cos tan. f 7. f cos. y 7 8. y log 7 Evaluate the

More information

A metric space is a set S with a given distance (or metric) function d(x, y) which satisfies the conditions

A metric space is a set S with a given distance (or metric) function d(x, y) which satisfies the conditions 1 Distance Reading [SB], Ch. 29.4, p. 811-816 A metric space is a set S with a given distance (or metric) function d(x, y) which satisfies the conditions (a) Positive definiteness d(x, y) 0, d(x, y) =

More information

DRAFT - Math 101 Lecture Note - Dr. Said Algarni

DRAFT - Math 101 Lecture Note - Dr. Said Algarni 3 Differentiation Rules 3.1 The Derivative of Polynomial and Exponential Functions In this section we learn how to differentiate constant functions, power functions, polynomials, and exponential functions.

More information

THE INVERSE TRIGONOMETRIC FUNCTIONS

THE INVERSE TRIGONOMETRIC FUNCTIONS THE INVERSE TRIGONOMETRIC FUNCTIONS Question 1 (**+) Solve the following trigonometric equation ( x ) π + 3arccos + 1 = 0. 1 x = Question (***) It is given that arcsin x = arccos y. Show, by a clear method,

More information

ENGI Partial Differentiation Page y f x

ENGI Partial Differentiation Page y f x ENGI 344 4 Partial Differentiation Page 4-0 4. Partial Differentiation For functions of one variable, be found unambiguously by differentiation: y f x, the rate of change of the dependent variable can

More information

Integral approximations to π with nonnegative integrands

Integral approximations to π with nonnegative integrands Integral approximations to π with nonnegative integrands S.K. Lucas Department of Mathematics and Statistics James Madison University Harrisonburg VA 2287 Email: lucassk@jmu.edu May 27 One of the more

More information

ENGI Partial Differentiation Page y f x

ENGI Partial Differentiation Page y f x ENGI 3424 4 Partial Differentiation Page 4-01 4. Partial Differentiation For functions of one variable, be found unambiguously by differentiation: y f x, the rate of change of the dependent variable can

More information

7a3 2. (c) πa 3 (d) πa 3 (e) πa3

7a3 2. (c) πa 3 (d) πa 3 (e) πa3 1.(6pts) Find the integral x, y, z d S where H is the part of the upper hemisphere of H x 2 + y 2 + z 2 = a 2 above the plane z = a and the normal points up. ( 2 π ) Useful Facts: cos = 1 and ds = ±a sin

More information

π in terms of φ via the Machin s Route

π in terms of φ via the Machin s Route in terms of φ via the Machin s Route Hei-Chi Chan Mathematical Science Program, University of Illinois at Springfield Springfield, IL 62703-507 email: chan.hei-chi@uis.edu Abstract In this paper, we prove

More information

Math 162: Calculus IIA

Math 162: Calculus IIA Math 62: Calculus IIA Final Exam ANSWERS December 9, 26 Part A. (5 points) Evaluate the integral x 4 x 2 dx Substitute x 2 cos θ: x 8 cos dx θ ( 2 sin θ) dθ 4 x 2 2 sin θ 8 cos θ dθ 8 cos 2 θ cos θ dθ

More information

Math 181, Exam 1, Study Guide 2 Problem 1 Solution. =[17ln 5 +3(5)] [17 ln 1 +3(1)] =17ln = 17ln5+12

Math 181, Exam 1, Study Guide 2 Problem 1 Solution. =[17ln 5 +3(5)] [17 ln 1 +3(1)] =17ln = 17ln5+12 Math 8, Exam, Study Guide Problem Solution. Compute the definite integral: 5 ( ) 7 x +3 dx Solution: UsingtheFundamentalTheoremofCalculusPartI,thevalueof the integral is: 5 ( ) 7 [ ] 5 x +3 dx = 7 ln x

More information

Math 113 Winter 2005 Key

Math 113 Winter 2005 Key Name Student Number Section Number Instructor Math Winter 005 Key Departmental Final Exam Instructions: The time limit is hours. Problem consists of short answer questions. Problems through are multiple

More information

ORDINARY DIFFERENTIAL EQUATIONS

ORDINARY DIFFERENTIAL EQUATIONS ORDINARY DIFFERENTIAL EQUATIONS Basic concepts: Find y(x) where x is the independent and y the dependent varible, based on an equation involving x, y(x), y 0 (x),...e.g.: y 00 (x) = 1+y(x) y0 (x) 1+x or,

More information

Math 132 Fall 2015 Exam 1

Math 132 Fall 2015 Exam 1 Math Fall 5 Exam Formulas ln( ), ln( e ), ln( x y ) ln( x ) + ln( y ), ln( x p ) p ln( x) sin π 6 cos π, sin π cos π 6, sin π cos π sin( ) sin( π ) cos π, sin π cos( ) tan π, sin π d x x + ln( x ) C, ln(

More information

a Write down the coordinates of the point on the curve where t = 2. b Find the value of t at the point on the curve with coordinates ( 5 4, 8).

a Write down the coordinates of the point on the curve where t = 2. b Find the value of t at the point on the curve with coordinates ( 5 4, 8). Worksheet A 1 A curve is given by the parametric equations x = t + 1, y = 4 t. a Write down the coordinates of the point on the curve where t =. b Find the value of t at the point on the curve with coordinates

More information

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours)

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours) SOLUTIONS TO THE 18.02 FINAL EXAM BJORN POONEN December 14, 2010, 9:00am-12:00 (3 hours) 1) For each of (a)-(e) below: If the statement is true, write TRUE. If the statement is false, write FALSE. (Please

More information

Multiple Choice. Compute the Jacobian, (u, v), of the coordinate transformation x = u2 v 4, y = uv. (a) 2u 2 + 4v 4 (b) xu yv (c) 3u 2 + 7v 6

Multiple Choice. Compute the Jacobian, (u, v), of the coordinate transformation x = u2 v 4, y = uv. (a) 2u 2 + 4v 4 (b) xu yv (c) 3u 2 + 7v 6 .(5pts) y = uv. ompute the Jacobian, Multiple hoice (x, y) (u, v), of the coordinate transformation x = u v 4, (a) u + 4v 4 (b) xu yv (c) u + 7v 6 (d) u (e) u v uv 4 Solution. u v 4v u = u + 4v 4..(5pts)

More information

TOTAL NAME DATE PERIOD AP CALCULUS AB UNIT 4 ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT /6 10/8 10/9 10/10 X X X X 10/11 10/12

TOTAL NAME DATE PERIOD AP CALCULUS AB UNIT 4 ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT /6 10/8 10/9 10/10 X X X X 10/11 10/12 NAME DATE PERIOD AP CALCULUS AB UNIT ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT 0 0 0/6 0/8 0/9 0/0 X X X X 0/ 0/ 0/5 0/6 QUIZ X X X 0/7 0/8 0/9 0/ 0/ 0/ 0/5 UNIT EXAM X X X TOTAL AP Calculus

More information

Introduction to Discrete Optimization

Introduction to Discrete Optimization Prof. Friedrich Eisenbrand Martin Niemeier Due Date: April 28, 2009 Discussions: April 2, 2009 Introduction to Discrete Optimization Spring 2009 s 8 Exercise What is the smallest number n such that an

More information

Integration by parts (product rule backwards)

Integration by parts (product rule backwards) Integration by parts (product rule backwards) The product rule states Integrating both sides gives f(x)g(x) = d dx f(x)g(x) = f(x)g (x) + f (x)g(x). f(x)g (x)dx + Letting f(x) = u, g(x) = v, and rearranging,

More information

VII. Techniques of Integration

VII. Techniques of Integration VII. Techniques of Integration Integration, unlike differentiation, is more of an art-form than a collection of algorithms. Many problems in applied mathematics involve the integration of functions given

More information

Math 112 Section 10 Lecture notes, 1/7/04

Math 112 Section 10 Lecture notes, 1/7/04 Math 11 Section 10 Lecture notes, 1/7/04 Section 7. Integration by parts To integrate the product of two functions, integration by parts is used when simpler methods such as substitution or simplifying

More information

Review for the Final Exam

Review for the Final Exam Math 171 Review for the Final Exam 1 Find the limits (4 points each) (a) lim 4x 2 3; x x (b) lim ( x 2 x x 1 )x ; (c) lim( 1 1 ); x 1 ln x x 1 sin (x 2) (d) lim x 2 x 2 4 Solutions (a) The limit lim 4x

More information

Integrated Calculus II Exam 2 Solutions 3/28/3

Integrated Calculus II Exam 2 Solutions 3/28/3 Integrated Calculus II Exam 2 Solutions /28/ Question 1 Solve the following differential equation, with the initial condition y() = 2: dy = (y 1)2 t 2. Plot the solution and discuss its behavior as a function

More information

Math 21B - Homework Set 8

Math 21B - Homework Set 8 Math B - Homework Set 8 Section 8.:. t cos t dt Let u t, du t dt and v sin t, dv cos t dt Let u t, du dt and v cos t, dv sin t dt t cos t dt u v v du t sin t t sin t dt [ t sin t u v ] v du [ ] t sin t

More information

VANDERBILT UNIVERSITY MAT 155B, FALL 12 SOLUTIONS TO THE PRACTICE FINAL.

VANDERBILT UNIVERSITY MAT 155B, FALL 12 SOLUTIONS TO THE PRACTICE FINAL. VANDERBILT UNIVERSITY MAT 55B, FALL SOLUTIONS TO THE PRACTICE FINAL. Important: These solutions should be used as a guide on how to solve the problems and they do not represent the format in which answers

More information

36. Double Integration over Non-Rectangular Regions of Type II

36. Double Integration over Non-Rectangular Regions of Type II 36. Double Integration over Non-Rectangular Regions of Type II When establishing the bounds of a double integral, visualize an arrow initially in the positive x direction or the positive y direction. A

More information

Integration by Substitutions

Integration by Substitutions NTEGRATON BY SUBSTTUTONS ntegration by Substitution the main idea One of the very powerful method for finding integrals analytically is the method of substitution There are many different substitutions

More information

x n cos 2x dx. dx = nx n 1 and v = 1 2 sin(2x). Andreas Fring (City University London) AS1051 Lecture Autumn / 36

x n cos 2x dx. dx = nx n 1 and v = 1 2 sin(2x). Andreas Fring (City University London) AS1051 Lecture Autumn / 36 We saw in Example 5.4. that we sometimes need to apply integration by parts several times in the course of a single calculation. Example 5.4.4: For n let S n = x n cos x dx. Find an expression for S n

More information

Calculus III. Math 233 Spring Final exam May 3rd. Suggested solutions

Calculus III. Math 233 Spring Final exam May 3rd. Suggested solutions alculus III Math 33 pring 7 Final exam May 3rd. uggested solutions This exam contains twenty problems numbered 1 through. All problems are multiple choice problems, and each counts 5% of your total score.

More information

MATHEMATICS 200 April 2010 Final Exam Solutions

MATHEMATICS 200 April 2010 Final Exam Solutions MATHEMATICS April Final Eam Solutions. (a) A surface z(, y) is defined by zy y + ln(yz). (i) Compute z, z y (ii) Evaluate z and z y in terms of, y, z. at (, y, z) (,, /). (b) A surface z f(, y) has derivatives

More information

Integration by Parts. MAT 126, Week 2, Thursday class. Xuntao Hu

Integration by Parts. MAT 126, Week 2, Thursday class. Xuntao Hu MAT 126, Week 2, Thursday class Xuntao Hu Recall that the substitution rule is a combination of the FTC and the chain rule. We can also combine the FTC and the product rule: d dx [f (x)g(x)] = f (x)g (x)

More information

Integrals. D. DeTurck. January 1, University of Pennsylvania. D. DeTurck Math A: Integrals 1 / 61

Integrals. D. DeTurck. January 1, University of Pennsylvania. D. DeTurck Math A: Integrals 1 / 61 Integrals D. DeTurck University of Pennsylvania January 1, 2018 D. DeTurck Math 104 002 2018A: Integrals 1 / 61 Integrals Start with dx this means a little bit of x or a little change in x If we add up

More information

Final Exam December 20, 2011

Final Exam December 20, 2011 Final Exam December 20, 2011 Math 420 - Ordinary Differential Equations No credit will be given for answers without mathematical or logical justification. Simplify answers as much as possible. Leave solutions

More information

Lecture 5: Integrals and Applications

Lecture 5: Integrals and Applications Lecture 5: Integrals and Applications Lejla Batina Institute for Computing and Information Sciences Digital Security Version: spring 2012 Lejla Batina Version: spring 2012 Wiskunde 1 1 / 21 Outline The

More information

MULTIVARIABLE INTEGRATION

MULTIVARIABLE INTEGRATION MULTIVARIABLE INTEGRATION (PLANE & CYLINDRICAL POLAR COORDINATES) PLANE POLAR COORDINATES Question 1 The finite region on the x-y plane satisfies 1 x + y 4, y 0. Find, in terms of π, the value of I. I

More information

Lecture 4: Integrals and applications

Lecture 4: Integrals and applications Lecture 4: Integrals and applications Lejla Batina Institute for Computing and Information Sciences Digital Security Version: autumn 2013 Lejla Batina Version: autumn 2013 Calculus en Kansrekenen 1 / 18

More information

The Volume of a Hypersphere

The Volume of a Hypersphere The hypersphere has the equation The Volume of a Hypersphere x 2 y 2 x 2 w 2 = 2 if centered at the origin (,,,) and has a radius of in four dimensional space. We approach the project of determining its

More information

Solutions to Math 41 Final Exam December 10, 2012

Solutions to Math 41 Final Exam December 10, 2012 Solutions to Math 4 Final Exam December,. ( points) Find each of the following limits, with justification. If there is an infinite limit, then explain whether it is or. x ln(t + ) dt (a) lim x x (5 points)

More information

Math 120 Answers for Homework 14

Math 120 Answers for Homework 14 Math 0 Answrs for Homwork. Substitutions u = du = d d = du a d = du = du = u du = u + C = u = arctany du = +y dy dy = + y du b arctany arctany dy = + y du = + y + y arctany du = u du = u + C = arctan y

More information

Problem Solving 1: The Mathematics of 8.02 Part I. Coordinate Systems

Problem Solving 1: The Mathematics of 8.02 Part I. Coordinate Systems Problem Solving 1: The Mathematics of 8.02 Part I. Coordinate Systems In 8.02 we regularly use three different coordinate systems: rectangular (Cartesian), cylindrical and spherical. In order to become

More information

MULTIVARIABLE INTEGRATION

MULTIVARIABLE INTEGRATION MULTIVARIABLE INTEGRATION (SPHERICAL POLAR COORDINATES) Question 1 a) Determine with the aid of a diagram an expression for the volume element in r, θ, ϕ. spherical polar coordinates, ( ) [You may not

More information

Final exam (practice) UCLA: Math 31B, Spring 2017

Final exam (practice) UCLA: Math 31B, Spring 2017 Instructor: Noah White Date: Final exam (practice) UCLA: Math 3B, Spring 207 This exam has 8 questions, for a total of 80 points. Please print your working and answers neatly. Write your solutions in the

More information

Math 147 Exam II Practice Problems

Math 147 Exam II Practice Problems Math 147 Exam II Practice Problems This review should not be used as your sole source for preparation for the exam. You should also re-work all examples given in lecture, all homework problems, all lab

More information

18.02 Multivariable Calculus Fall 2007

18.02 Multivariable Calculus Fall 2007 MIT OpenCourseWare http://ocw.mit.edu 18.02 Multivariable Calculus Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 3. Double Integrals 3A. Double

More information

Gradient, Divergence and Curl in Curvilinear Coordinates

Gradient, Divergence and Curl in Curvilinear Coordinates Gradient, Divergence and Curl in Curvilinear Coordinates Although cartesian orthogonal coordinates are very intuitive and easy to use, it is often found more convenient to work with other coordinate systems.

More information

MATH 104: INTRODUCTORY ANALYSIS SPRING 2008/09 PROBLEM SET 8 SOLUTIONS

MATH 104: INTRODUCTORY ANALYSIS SPRING 2008/09 PROBLEM SET 8 SOLUTIONS MATH 04: INTRODUCTORY ANALYSIS SPRING 008/09 PROBLEM SET 8 SOLUTIONS. Let f : R R be continuous periodic with period, i.e. f(x + ) = f(x) for all x R. Prove the following: (a) f is bounded above below

More information

Math 181, Exam 1, Study Guide Problem 1 Solution. xe x2 dx = e x2 xdx. = e u 1 2 du = 1. e u du. = 1 2 eu + C. = 1 2 ex2 + C

Math 181, Exam 1, Study Guide Problem 1 Solution. xe x2 dx = e x2 xdx. = e u 1 2 du = 1. e u du. = 1 2 eu + C. = 1 2 ex2 + C Math 8, Exam, Study Guide Problem Solution. Evaluate xe x dx. Solution: We evaluate the integral using the u-substitution method. Let u x. Then du xdx du xdx and we get: xe x dx e x xdx e u du e u du eu

More information

STEP II, ax y z = 3, 2ax y 3z = 7, 3ax y 5z = b, (i) In the case a = 0, show that the equations have a solution if and only if b = 11.

STEP II, ax y z = 3, 2ax y 3z = 7, 3ax y 5z = b, (i) In the case a = 0, show that the equations have a solution if and only if b = 11. STEP II, 2003 2 Section A: Pure Mathematics 1 Consider the equations ax y z = 3, 2ax y 3z = 7, 3ax y 5z = b, where a and b are given constants. (i) In the case a = 0, show that the equations have a solution

More information

y x arctan x arctan x x dx 2 ln by first expressing the integral as an iterated integral. f t dt dz dy 1 2 y x x t 2 f t dt F 2 Gm d 1 d 1 sr 2 d 2

y x arctan x arctan x x dx 2 ln by first expressing the integral as an iterated integral. f t dt dz dy 1 2 y x x t 2 f t dt F 2 Gm d 1 d 1 sr 2 d 2 CHALLENGE PROBLEMS CHALLENGE PROBLEMS: CHAPTER A Click here for answers. S Click here for solutions.. If denotes the greatest integer in, evaluate the integral where R, y 3, y 5.. Evaluate the integral

More information

C3 Revision Questions. (using questions from January 2006, January 2007, January 2008 and January 2009)

C3 Revision Questions. (using questions from January 2006, January 2007, January 2008 and January 2009) C3 Revision Questions (using questions from January 2006, January 2007, January 2008 and January 2009) 1 2 1. f(x) = 1 3 x 2 + 3, x 2. 2 ( x 2) (a) 2 x x 1 Show that f(x) =, x 2. 2 ( x 2) (4) (b) Show

More information

2 (x 2 + a 2 ) x 2. is easy. Do this first.

2 (x 2 + a 2 ) x 2. is easy. Do this first. MAC 3 INTEGRATION BY PARTS General Remark: Unless specified otherwise, you will solve the following problems using integration by parts, combined, if necessary with simple substitutions We will not explicitly

More information

x + ye z2 + ze y2, y + xe z2 + ze x2, z and where T is the

x + ye z2 + ze y2, y + xe z2 + ze x2, z and where T is the 1.(8pts) Find F ds where F = x + ye z + ze y, y + xe z + ze x, z and where T is the T surface in the pictures. (The two pictures are two views of the same surface.) The boundary of T is the unit circle

More information

2) ( 8 points) The point 1/4 of the way from (1, 3, 1) and (7, 9, 9) is

2) ( 8 points) The point 1/4 of the way from (1, 3, 1) and (7, 9, 9) is MATH 6 FALL 6 FIRST EXAM SEPTEMBER 8, 6 SOLUTIONS ) ( points) The center and the radius of the sphere given by x + y + z = x + 3y are A) Center (, 3/, ) and radius 3/ B) Center (, 3/, ) and radius 3/ C)

More information

Math 142, Final Exam, Fall 2006, Solutions

Math 142, Final Exam, Fall 2006, Solutions Math 4, Final Exam, Fall 6, Solutions There are problems. Each problem is worth points. SHOW your wor. Mae your wor be coherent and clear. Write in complete sentences whenever this is possible. CIRCLE

More information

APPLICATIONS OF DERIVATIVES UNIT PROBLEM SETS

APPLICATIONS OF DERIVATIVES UNIT PROBLEM SETS APPLICATIONS OF DERIVATIVES UNIT PROBLEM SETS PROBLEM SET #1 Related Rates ***Calculators Allowed*** 1. An oil tanker spills oil that spreads in a circular pattern whose radius increases at the rate of

More information

MATH 104 FINAL EXAM SOLUTIONS. x dy dx + y = 2, x > 1, y(e) = 3. Answer: First, re-write in standard form: dy dx + 1

MATH 104 FINAL EXAM SOLUTIONS. x dy dx + y = 2, x > 1, y(e) = 3. Answer: First, re-write in standard form: dy dx + 1 MATH 4 FINAL EXAM SOLUTIONS CLAY SHONKWILER () Solve the initial value problem x dy dx + y =, x >, y(e) =. Answer: First, re-write in standard form: dy dx + x y = x. Then P (x) = x and Q(x) = x. Hence,

More information

Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: = 0 : homogeneous equation.

Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: = 0 : homogeneous equation. Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: y y x y2 = 0 : homogeneous equation. x2 v = y dy, y = vx, and x v + x dv dx = v + v2. dx =

More information

Note: Each problem is worth 14 points except numbers 5 and 6 which are 15 points. = 3 2

Note: Each problem is worth 14 points except numbers 5 and 6 which are 15 points. = 3 2 Math Prelim II Solutions Spring Note: Each problem is worth points except numbers 5 and 6 which are 5 points. x. Compute x da where is the region in the second quadrant between the + y circles x + y and

More information

1985 AP Calculus AB: Section I

1985 AP Calculus AB: Section I 985 AP Calculus AB: Section I 9 Minutes No Calculator Notes: () In this eamination, ln denotes the natural logarithm of (that is, logarithm to the base e). () Unless otherwise specified, the domain of

More information

x+ y = 50 Dividing both sides by 2 : ( ) dx By (7.2), x = 25m gives maximum area. Substituting this value into (*):

x+ y = 50 Dividing both sides by 2 : ( ) dx By (7.2), x = 25m gives maximum area. Substituting this value into (*): Solutions 7(b 1 Complete solutions to Exercise 7(b 1. Since the perimeter 100 we have x+ y 100 [ ] ( x+ y 50 ividing both sides by : y 50 x * The area A xy, substituting y 50 x gives: A x( 50 x A 50x x

More information

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK. Summer Examination 2009.

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK. Summer Examination 2009. OLLSCOIL NA héireann, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK Summer Examination 2009 First Engineering MA008 Calculus and Linear Algebra

More information

Mat104 Fall 2002, Improper Integrals From Old Exams

Mat104 Fall 2002, Improper Integrals From Old Exams Mat4 Fall 22, Improper Integrals From Old Eams For the following integrals, state whether they are convergent or divergent, and give your reasons. () (2) (3) (4) (5) converges. Break it up as 3 + 2 3 +

More information

1. Find and classify the extrema of h(x, y) = sin(x) sin(y) sin(x + y) on the square[0, π] [0, π]. (Keep in mind there is a boundary to check out).

1. Find and classify the extrema of h(x, y) = sin(x) sin(y) sin(x + y) on the square[0, π] [0, π]. (Keep in mind there is a boundary to check out). . Find and classify the extrema of hx, y sinx siny sinx + y on the square[, π] [, π]. Keep in mind there is a boundary to check out. Solution: h x cos x sin y sinx + y + sin x sin y cosx + y h y sin x

More information

INSTRUCTIONS. UNIVERSITY OF MANITOBA Term Test 2C COURSE: MATH 1500 DATE & TIME: November 1, 2018, 5:40PM 6:40PM CRN: various

INSTRUCTIONS. UNIVERSITY OF MANITOBA Term Test 2C COURSE: MATH 1500 DATE & TIME: November 1, 2018, 5:40PM 6:40PM CRN: various INSTRUCTIONS I. No texts, notes, or other aids are permitted. There are no calculators, cellphones or electronic translators permitted. II. This exam has a title page, 5 pages of questions and two blank

More information

Math 122 Test 3. April 15, 2014

Math 122 Test 3. April 15, 2014 SI: Math 1 Test 3 April 15, 014 EF: 1 3 4 5 6 7 8 Total Name Directions: 1. No books, notes or 6 year olds with ear infections. You may use a calculator to do routine arithmetic computations. You may not

More information

G G. G. x = u cos v, y = f(u), z = u sin v. H. x = u + v, y = v, z = u v. 1 + g 2 x + g 2 y du dv

G G. G. x = u cos v, y = f(u), z = u sin v. H. x = u + v, y = v, z = u v. 1 + g 2 x + g 2 y du dv 1. Matching. Fill in the appropriate letter. 1. ds for a surface z = g(x, y) A. r u r v du dv 2. ds for a surface r(u, v) B. r u r v du dv 3. ds for any surface C. G x G z, G y G z, 1 4. Unit normal N

More information

INSTRUCTIONS. UNIVERSITY OF MANITOBA Term Test 2B COURSE: MATH 1500 DATE & TIME: November 1, 2018, 5:40PM 6:40PM CRN: various

INSTRUCTIONS. UNIVERSITY OF MANITOBA Term Test 2B COURSE: MATH 1500 DATE & TIME: November 1, 2018, 5:40PM 6:40PM CRN: various INSTRUCTIONS I. No texts, notes, or other aids are permitted. There are no calculators, cellphones or electronic translators permitted. II. This exam has a title page, 5 pages of questions and two blank

More information

Math 102 Spring 2008: Solutions: HW #3 Instructor: Fei Xu

Math 102 Spring 2008: Solutions: HW #3 Instructor: Fei Xu Math Spring 8: Solutions: HW #3 Instructor: Fei Xu. section 7., #8 Evaluate + 3 d. + We ll solve using partial fractions. If we assume 3 A + B + C, clearing denominators gives us A A + B B + C +. Then

More information

Substitutions in Multiple Integrals

Substitutions in Multiple Integrals Substitutions in Multiple Integrals P. Sam Johnson April 10, 2017 P. Sam Johnson (NIT Karnataka) Substitutions in Multiple Integrals April 10, 2017 1 / 23 Overview In the lecture, we discuss how to evaluate

More information

90 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions. Name Class. (a) (b) ln x (c) (a) (b) (c) 1 x. y e (a) 0 (b) y.

90 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions. Name Class. (a) (b) ln x (c) (a) (b) (c) 1 x. y e (a) 0 (b) y. 90 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions Test Form A Chapter 5 Name Class Date Section. Find the derivative: f ln. 6. Differentiate: y. ln y y y y. Find dy d if ey y. y

More information

Physics 2210 Fall smartphysics Exam 3 Review smartphysics units /04/2015

Physics 2210 Fall smartphysics Exam 3 Review smartphysics units /04/2015 Physics 22 Fall 25 smartphysics Exam 3 Review smartphysics units -3 /4/25 Review Problem The figure shown extends from x = to x = and is bounded on the left by the y-axis, on the bottom by the x-axis,

More information

DEPARTMENT OF MATHEMATICS

DEPARTMENT OF MATHEMATICS DEPARTMENT OF MATHEMATICS A2 level Mathematics Core 3 course workbook 2015-2016 Name: Welcome to Core 3 (C3) Mathematics. We hope that you will use this workbook to give you an organised set of notes for

More information

H2 MATHS SET D PAPER 1

H2 MATHS SET D PAPER 1 H Maths Set D Paper H MATHS Exam papers with worked solutions SET D PAPER Compiled by THE MATHS CAFE P a g e b The curve y ax c x 3 points, and, H Maths Set D Paper has a stationary point at x 3. It also

More information

Techniques of Integration

Techniques of Integration 5 Chapter 6 Techniques of Integration In this chapter, we expand our repertoire for antiderivatives beyond the elementary functions discussed so far. A review of the table of elementary antiderivatives

More information

Essex County College Division of Mathematics MTH-122 Assessments. Honor Code

Essex County College Division of Mathematics MTH-122 Assessments. Honor Code Essex County College Division of Mathematics MTH-22 Assessments Last Name: First Name: Phone or email: Honor Code The Honor Code is a statement on academic integrity, it articulates reasonable expectations

More information

Review: Exam Material to be covered: 6.1, 6.2, 6.3, 6.5 plus review of u, du substitution.

Review: Exam Material to be covered: 6.1, 6.2, 6.3, 6.5 plus review of u, du substitution. Review: Exam. Goals for this portion of the course: Be able to compute the area between curves, the volume of solids of revolution, and understand the mean value of a function. We had three basic volumes:

More information

Coffee Hour Problems and Solutions

Coffee Hour Problems and Solutions Coffee Hour Problems and Solutions Edited by Matthew McMullen Fall 01 Week 1. Proposed by Matthew McMullen. Find all pairs of positive integers x and y such that 0x + 17y = 017. Solution. By inspection,

More information

16.5 Surface Integrals of Vector Fields

16.5 Surface Integrals of Vector Fields 16.5 Surface Integrals of Vector Fields Lukas Geyer Montana State University M73, Fall 011 Lukas Geyer (MSU) 16.5 Surface Integrals of Vector Fields M73, Fall 011 1 / 19 Parametrized Surfaces Definition

More information

Log1 Contest Round 3 Theta Individual. 4 points each

Log1 Contest Round 3 Theta Individual. 4 points each 0 04 Log Contest Round Theta Individual Name: 4 points each 0 degrees Celsius is equivalent to degrees Fahrenheit, and 0 degrees Celsius is equivalent to degrees Fahrenheit. The number of degrees Fahrenheit

More information

HOMEWORK SOLUTIONS MATH 1910 Sections 8.2, 8.3, 8.5 Fall 2016

HOMEWORK SOLUTIONS MATH 1910 Sections 8.2, 8.3, 8.5 Fall 2016 HOMEWORK SOLUTIONS MATH 191 Sections 8., 8., 8.5 Fall 16 Problem 8..19 Evaluate using methods similar to those that apply to integral tan m xsec n x. cot x SOLUTION. Using the reduction formula for cot

More information

MATH1013 Calculus I. Derivatives II (Chap. 3) 1

MATH1013 Calculus I. Derivatives II (Chap. 3) 1 MATH1013 Calculus I Derivatives II (Chap. 3) 1 Edmund Y. M. Chiang Department of Mathematics Hong Kong University of Science & Technology October 16, 2013 2013 1 Based on Briggs, Cochran and Gillett: Calculus

More information

Math 265 (Butler) Practice Midterm III B (Solutions)

Math 265 (Butler) Practice Midterm III B (Solutions) Math 265 (Butler) Practice Midterm III B (Solutions). Set up (but do not evaluate) an integral for the surface area of the surface f(x, y) x 2 y y over the region x, y 4. We have that the surface are is

More information

Name: Date: 12/06/2018. M20550 Calculus III Tutorial Worksheet 11

Name: Date: 12/06/2018. M20550 Calculus III Tutorial Worksheet 11 1. ompute the surface integral M255 alculus III Tutorial Worksheet 11 x + y + z) d, where is a surface given by ru, v) u + v, u v, 1 + 2u + v and u 2, v 1. olution: First, we know x + y + z) d [ ] u +

More information

WeBWorK, Problems 2 and 3

WeBWorK, Problems 2 and 3 WeBWorK, Problems 2 and 3 7 dx 2. Evaluate x ln(6x) This can be done using integration by parts or substitution. (Most can not). However, it is much more easily done using substitution. This can be written

More information

Sixth Term Examination Papers 9470 MATHEMATICS 2 MONDAY 12 JUNE 2017

Sixth Term Examination Papers 9470 MATHEMATICS 2 MONDAY 12 JUNE 2017 Sixth Term Examination Papers 9470 MATHEMATICS 2 MONDAY 12 JUNE 2017 INSTRUCTIONS TO CANDIDATES AND INFORMATION FOR CANDIDATES six six Calculators are not permitted. Please wait to be told you may begin

More information

A rational approximation of the arctangent function and a new approach in computing pi

A rational approximation of the arctangent function and a new approach in computing pi arxiv:63.33v math.gm] 4 Mar 6 A rational approimation of the arctangent function and a new approach in computing pi S. M. Abrarov and B. M. Quine March 4, 6 Abstract We have shown recently that integration

More information

Problem set 2 The central limit theorem.

Problem set 2 The central limit theorem. Problem set 2 The central limit theorem. Math 22a September 6, 204 Due Sept. 23 The purpose of this problem set is to walk through the proof of the central limit theorem of probability theory. Roughly

More information

Math 1b Midterm I Solutions Tuesday, March 14, 2006

Math 1b Midterm I Solutions Tuesday, March 14, 2006 Math b Midterm I Solutions Tuesday, March, 6 March 5, 6. (6 points) Which of the following gives the area bounded on the left by the y-axis, on the right by the curve y = 3 arcsin x and above by y = 3π/?

More information

MATH 18.01, FALL PROBLEM SET # 6 SOLUTIONS

MATH 18.01, FALL PROBLEM SET # 6 SOLUTIONS MATH 181, FALL 17 - PROBLEM SET # 6 SOLUTIONS Part II (5 points) 1 (Thurs, Oct 6; Second Fundamental Theorem; + + + + + = 16 points) Let sinc(x) denote the sinc function { 1 if x =, sinc(x) = sin x if

More information

Chapter 7: Techniques of Integration

Chapter 7: Techniques of Integration Chapter 7: Techniques of Integration MATH 206-01: Calculus II Department of Mathematics University of Louisville last corrected September 14, 2013 1 / 43 Chapter 7: Techniques of Integration 7.1. Integration

More information

Lecture 10: Multiple Integrals

Lecture 10: Multiple Integrals Lecture 10: Multiple Integrals 1. Key points Multiple integrals as Iterated Integrals Change of variables: Jacobian Maple int(f(x,y),[xa..b,yc..d]) VectorCalculus[Jacobian] LinearAlgebra[Determinant] 2.

More information