Relativistic scaling of astronomical quantities and the system of astronomical units _

Size: px
Start display at page:

Download "Relativistic scaling of astronomical quantities and the system of astronomical units _"

Transcription

1 Relativistic scaling of astronomical quantities and the system of astronomical units _ Sergei A.Klioner Lohrmann Observatory, Dresden Technical University 1 Lohrmann Observatory, 4 May 2007

2 2 Content Relativistic time scales and reasons for them: TCB, TCG, proper times, TT, TDB, T eph Scaled-BCRS Scaled-GCRS Astronomical units in Newtonian and relativistic frameworks Do we need astronomical units? TCB/TCG-, TT- and TDB-compatible planetary masses

3 3 Relativistic Time Scales: TCB and TCG t = TCB Barycentric Coordinate Time = coordinate time of the BCRS T = TCG Geocentric Coordinate Time = coordinate time of the GCRS These are part of 4-dimensional coordinate systems so that the TCB-TCG transformations are 4-dimensional: ( r E i = x i x E i (t)) T = t 1 c 2 + B ij (t)r i E r j E + C( t, x) ( A(t) + v i i E r E )+ 1 ( B(t) + B i i (t)r c 4 E )+ O c 5 ( ) Therefore: TCG = TCG(TCB,x i ) Only if space-time position is fixed in the BCRS TCG becomes a function of TCB: x i i = x obs (t) i TCG = TCG(TCB, x obs (TCB)) = TCG(TCB)

4 4 Relativistic Time Scales: TCB and TCG Important special case x i = x i E (t) gives the TCG-TCB relation at the geocenter: linear drift removed:

5 5 Relativistic Time Scales: proper time scales proper time of each observer: what an ideal clock moving with the observer measures Proper time can be related to either TCB or TCG (or both) provided that the trajectory of the observer is given: i x obs (t) and/or X a obs (T ) The formulas are provided by the relativity theory: d dt = g t,x (t) 00 ( obs ) 2 c g t,x 0i obs (t) i ( ) x obs (t) 1 c 2 g ij i j ( t,x obs (t)) x obs (t) x obs (t) 1/2 d dt = G T,X (T ) 00 ( obs ) 2 c G T,X (T ) 0a obs ( ) X obs ( ) X a obs a (T ) 1 c 2 G ab T,X obs (T ) (T ) X b obs (T ) 1/2

6 Relativistic Time Scales: proper time scales Specially interesting case: an observer close to the Earth surface: d dt = c 2 2 X 2 obs (T ) +W E ( T,X obs )+ "tidal terms" + O c 4 ( ) Idea: let us define a time scale linearly related to T=TCG, but which is numerically close to the proper time of an observer on the geoid: TT = (1 L G ) TCG, L G d dtt = 1 1 c 2 "terms h, i "+ "tidal terms"+... ( )+... is the height above the geoid can be neglected in many cases 6 is the velocity relative to the rotating geoid

7 Relativistic Time Scales: TT Idea: let us define a time scale linearly related to T=TCG, but which is numerically close to the proper time of an observer on the geoid: TT = (1 L G ) TCG, L G d dtt = 1 1 ("terms h, i "+ "tidal terms"+...)+... c 2 h is the height above the geoid can be neglected in many cases i is the velocity relative to the rotating geoid To avoid errors and changes in TT implied by changes/improvements in the geoid, the IAU (2000) has made L G to be a defined constant: L G TAI is a practical realization of TT (up to a constant shift of s) 7 Older name TDT (introduced by IAU 1976): fully equivalent to TT

8 8 Relativistic Time Scales: TDB-1 Idea: to scale TCB in such a way that the scaled TCB remains close to TT IAU 1976: TDB is a time scale for the use for dynamical modelling of the Solar system motion which differs from TT only by periodic terms. This definition taken literally is flawed: such a TDB cannot be a linear function of TCB! But the relativistic dynamical model (EIH equations) used by e.g. JPL is valid only with TCB and linear functions of TCB

9 9 Relativistic Time Scales: T eph Since the original TDB definition has been recognized to be flawed Myles Standish (1998) introduced one more time scale T eph differing from TCB only by a constant offset and a constant rate: T eph = R TCB + T eph0 The coefficients are different for different ephemerides. The user has NO information on those coefficients from the ephemeris. The coefficients could only be restored by some additional numerical procedure (Fukushima s Time ephemeris ) T eph is de facto defined by a fixed relation to TT: by the Fairhead-Bretagnon formula based on VSOP-87

10 Relativistic Time Scales: TDB-2 The IAU Working Group on Nomenclature in Fundamental Astronomy suggested to re-define TDB to be a fixed linear function of TCB: TDB to be defined through a conventional relationship with TCB: TDB = TCB L B ( JD TCB T 0 ) TDB 0 T 0 = exactly, JD TCB = T 0 for the event 1977 Jan 1.0 TAI at the geocenter and increases by 1.0 for each 86400s of TCB, L B , TDB s. 10

11 11 Linear drifts between time scales Pair Drift per year (seconds) TT-TCG Difference at J2007 (seconds) TDB-TCB TCB-TCG

12 12 Scaled BCRS: not only time is scaled If one uses scaled version TCB T eph or TDB one effectively uses three scaling: time spatial coordinates masses (μ= GM) of each body t * = F TCB + t 0 * x * = F x μ * = F μ F = 1 L B WHY THREE SCALINGS?

13 13 Scaled BCRS These three scalings together leave the dynamical equations unchanged: for the motion of the solar system bodies: (first published in 1917!) for light propagation:

14 14 Scaled BCRS These three scalings lead to the following: semi-major axes period mean motion the 3 rd Kepler s law a * = F a P * = F P n * = F 1 n a 3 n 2 = μ a *3 n *2 = μ *

15 15 Scaled GCRS If one uses TT being a scaled version TCG one effectively uses three scaling: time spatial coordinates masses (μ= GM) of each body T ** = TT = L TCG X ** = L X μ ** = L μ L = 1 L G International Terrestrial Reference Frame (ITRF) uses such scaled GCRS coordinates and quantities

16 16 Quantities: numerical values and units of measurements Arbitrary quantity can be expressed by a numerical value A XX in some given units of measurements : { A} XX A = A { } A XX XX XX denote a name of unit or of a system of units, like SI Notations taken from ISO 31-0 Quantities and units Part 0: General principles, 1992

17 Quantities: numerical values and units of measurements Consider two quantities A and B, and a relation between them: B = F A, F = const No units are involved in this formula! A = A { } A XX The formula should be used on both sides before numerical values can be discussed. XX In particular, { B} = F { A} XX XX 17 is valid if and only if B = A XX XX

18 18 Scaled BCRS For the scaled BCRS this gives: Numerical values are scaled in the same way as quantities if and only if the same units of measurements are used.

19 19 Units of measurements: SI SI units time length mass t SI second s x SI meter m M kilogram kg SI Official definitions from the SI document, published by BIPM:

20 Astronomical units in the Newtonian framework System of astronomical units time length mass t A day x A AU M A Solar mass SM Day is by definition SI seconds The mass of the Sun expressed in astronomical units of mass is by definition 1 Any possible variability of the solar mass is ignored! 20

21 21 Astronomical units in the Newtonian framework Astronomical units vs SI ones: time length mass t = d t A, d = SI x = x A SI M = M A SI AU is the unit of length with which the gravitational constant G takes the value (IAU 1938, VIth General Assembly in Stockholm) { G} k A AU is the semi-major axis of the [hypothetic] orbit of a massless particle which has exactly a period of 2 / k days in the framework of unperturbed Newtonian Keplerian motion around the Sun

22 22 Astronomical units vs. geometrized units Geometrized units are defined implicitly by setting three fundamental constant to unity: Gravitational constant speed of light Planck constant { G} = 1 geo {} c = 1 geo {} h = 1 geo Why possible? G = m 3 kg 1 s 2 SI c SI = ms 1 h SI = m 2 kg s 1

23 23 Astronomical units vs. geometrized units Both system of units geometrized and astronomical - can be used without any relation to the directly measurable SI units The relations to the SI units of length, time and mass can only be obtained from experimental data.

24 24 Astronomical units in the Newtonian framework Values in SI and astronomical units: distance (e.g. semi-major axis) time (e.g. period) GM {} x = 1 {} x A SI {} t = d 1 {} t A SI { μ} = d 2 3 { μ} A SI Mass parameter of a body in SI can be directly expressed as { μ} = k 2 d 2 3 SI { M} A { M } Sun A

25 25 Astronomical units in the relativistic framework Be ready for a mess!

26 26 Astronomical units in the relativistic framework Let us interpret all formulas above as TCB-compatible astronomical units Now let us define a different TDB-compatible astronomical units t day * = d * t A* SI x AU * = * x A* SI M SM * = * M A* SI { G} ( k * ) 2 A* Four constants define the system of units: d *, *, *, k *

27 27 Astronomical units in the relativistic framework Considering that { μ * } = ( k * ) 2 { * M } A* Sun, A* { μ} = ( k) 2 { M } A Sun, A { μ * } = F A* the only constraint on the constants reads d * d 2 * 3 { μ} A ( k * ) 2 * M Sun k 2 { } * { } A* A M Sun 3 d * d 2 = F = 1 L B

28 28 Astronomical units in the relativistic framework Possibility I: Standish, 1995 d = d * = k = k * { * M } Sun = M A* Sun * = F 1/3 { } A = 1 This leads to { x * } = F 2/3 {} x A* A strange scaling { t * } = F {} t A* A { μ * } = { μ} A* A

29 29 Astronomical units in the relativistic framework Possibility II: Brumberg & Simon, 2004; Standish, 2005 d = d * = ( k * ) 2 * M Sun * = { } = F k 2 { M } A* Sun A Either k is different or the mass of the Sun is not 1 or both! This leads to { x * } = F {} x A* A { t * } = F {} t A* A { μ * } = F { μ} A* A The same scaling as with SI: { x * } = F {} x SI SI { t * } = F {} t SI SI { μ * } = F { μ} SI SI

30 How to extract planetary masses from the DEs From the DE405 header one gets: TDB-compatible AU: * = Using that (also can be found in the DE405 header!) { * μ } Sun k 2 = A* one gets the TDB-compatible GM of the Sun expressed in SI units 30 { * μ } * Sun = μ SI Sun { } ( * ) = A* The TCB-compatible GM reads (this value can be found in IERS Conventions 2003) { μ } Sun = SI 1 1 L B { * μ } Sun = SI

31 Scaled GCRS Again three scalings ( ** denote quantities defined in the scaled GCRS; these TT-compatible quantities): time spatial coordinates masses (μ=gm) of each body the scaling is fixed T ** = L TT X ** = L X μ ** = L μ L = 1 L G Note that the masses are the same in non-scaled BCRS and GCRS Example: GM of the Earth from SLR (Ries et al.,1992; Ries, 2005) 31 TT-compatible TCG-compatible { ** μ } = ± 0.4 SI Earth { μ } = Earth SI ( ) ** μ 1 L Earth G { } SI = ± 0.4 ( ) 10 6

32 32 TCG/TCB-, TT- and TDB-compatible planetary masses GM of the Earth from SLR: TT-compatible TCG/B-compatible TDB-compatible { ** μ } = ± 0.4 SI Earth { μ } = Earth SI ( ) ** μ 1 L Earth G { * μ } = 1 L B SI Earth ( ) μ { } SI = ± 0.4 Earth ( ) 10 6 { } SI = ± 0.4 ( ) 10 6 GM of the Earth from DE: Should the SLR mass be used for ephemerides? DE403 DE405 { * μ } = Earth { SI * μ } = SI Earth ( ) 10 6 ( ) 10 6

33 Do we need astronomical units? The reason to introduce astronomical units was that the angular measurements were many orders of magnitude more accurate than distance measurements. Arguments against astronomical units The situation has changed crucially since that time! Solar mass is time-dependent just below current accuracy of ephemerides M Sun / M Sun yr 1 Complicated situations with astronomical units in relativistic framework Why not to define AU conventionally as fixed number of meters? 33 Do you see any good reasons for astronomical units in their current form? NO!

Relativistic modeling for Gaia and BepiColombo

Relativistic modeling for Gaia and BepiColombo Relativistic modeling for Gaia and BepiColombo Sergei A. Klioner Lohrmann Observatory, Dresden Technical University BepiColombo MORE Meeting, 16 February 2009 1 2 Relativistic modeling for Gaia Astronomical

More information

10 General Relativistic Models for Space-time Coordinates and Equations of Motion

10 General Relativistic Models for Space-time Coordinates and Equations of Motion 10 General Relativistic Models for Space-time Coordinates and Equations of Motion 10.1 Time Coordinates IAU resolution A4 (1991) set the framework presently used to define the barycentric reference system

More information

Relativistic scaling of astronomical quantities and the system of astronomical units. S. A. Klioner

Relativistic scaling of astronomical quantities and the system of astronomical units. S. A. Klioner A&A 478, 951 958 (2008) DOI: 10.1051/0004-6361:20077786 c ESO 2008 Astronomy & Astrophysics Relativistic scaling of astronomical quantities and the system of astronomical units S. A. Klioner Lohrmann Observatory,

More information

RELATIVISTIC ASPECTS IN ASTRONOMICAL STANDARDS AND THE IERS CONVENTIONS

RELATIVISTIC ASPECTS IN ASTRONOMICAL STANDARDS AND THE IERS CONVENTIONS RELATIVISTIC ASPECTS IN ASTRONOMICAL STANDARDS AND THE IERS CONVENTIONS G. PETIT Bureau International des Poids et Mesures 92312 Sèvres France e-mail: gpetit@bipm.org ABSTRACT. In the last years, the definition

More information

IAU 2006 NFA GLOSSARY

IAU 2006 NFA GLOSSARY IAU 2006 NFA GLOSSARY Prepared by the IAU Division I Working Group Nomenclature for Fundamental Astronomy'' (latest revision: 20 November 2007) Those definitions corresponding to the IAU 2000 resolutions

More information

1 General Definitions and Numerical Standards

1 General Definitions and Numerical Standards This chapter provides general definitions for some topics and the values of numerical standards that are used in the document. Those are based on the most recent reports of the appropriate working groups

More information

Time frames, leap seconds and GPS

Time frames, leap seconds and GPS Time frames, leap seconds and GPS Andy Shearer Centre for Astronomy NUI, Galway How important is absolute timing accuracy... I How important is absolute timing accuracy... II important enough for particle

More information

FUNDAMENTAL CONSTANTS FOR EPHEMERIS ASTRONOMY AND THE ORIENTATION OF PLANET EPHEMERIDES TO ICRF. Pitjeva E. V. Institute of Applied astronomy RAS

FUNDAMENTAL CONSTANTS FOR EPHEMERIS ASTRONOMY AND THE ORIENTATION OF PLANET EPHEMERIDES TO ICRF. Pitjeva E. V. Institute of Applied astronomy RAS FUNDAMENTAL CONSTANTS FOR EPHEMERIS ASTRONOMY AND THE ORIENTATION OF PLANET EPHEMERIDES TO ICRF Pitjeva E. V. Institute of Applied astronomy RAS Kutuzov quay 10, 191187 St.-Petersburg, Russia e-mail: evp@ipa.nw.ru

More information

ASTRONOMICAL REFERENCE SYSTEMS AND FRAMES, ASTROMETRIC TECHNIQUES AND CATALOGS

ASTRONOMICAL REFERENCE SYSTEMS AND FRAMES, ASTROMETRIC TECHNIQUES AND CATALOGS 1 ASTRONOMICAL REFERENCE SYSTEMS AND FRAMES, ASTROMETRIC TECHNIQUES AND CATALOGS Jan Vondrák, Astronomical Institute Prague P PART 1: Reference systems and frames used in astronomy:! Historical outline,

More information

On the definition and use of the ecliptic in modern astronomy

On the definition and use of the ecliptic in modern astronomy On the definition and use of the ecliptic in modern astronomy Nicole Capitaine (1), Michael Soffel (2) (1) : Observatoire de Paris / SYRTE (2) : Lohrmann Observatory, Dresden Technical University Introduction

More information

Proposed terminology for Fundamental Astronomy based on IAU 2000 resolutions

Proposed terminology for Fundamental Astronomy based on IAU 2000 resolutions Proposed terminology for Fundamental Astronomy based on IAU 2000 resolutions N. Capitaine and A. H. Andrei, M. Calabretta, V. Dehant, T. Fukushima, B. Guinot, C. Hohenkerk, G. Kaplan, S. Klioner, J. Kovalevsky,

More information

Did you Fall Back Today?

Did you Fall Back Today? Did you Fall Back Today? Yes this morning at 2AM Daylight Savings Time (DST) we switched to Standard Time (ST) and turned our clocks back 1 hour. Time is basically calculated based on Earth s rotation,

More information

MORE Orbit Determination Software status

MORE Orbit Determination Software status MORE Orbit Determination Software status Celestial Mechanics Group University of Pisa Department of Mathematics Progress Meeting MORE, October 15th 2009 1/ 25 Outline 1. Current status of the Orbit14 software

More information

Celestial Mechanics III. Time and reference frames Orbital elements Calculation of ephemerides Orbit determination

Celestial Mechanics III. Time and reference frames Orbital elements Calculation of ephemerides Orbit determination Celestial Mechanics III Time and reference frames Orbital elements Calculation of ephemerides Orbit determination Orbital position versus time: The choice of units Gravitational constant: SI units ([m],[kg],[s])

More information

DIVISION I WORKING GROUP on NOMENCLATURE FOR FUNDAMENTAL ASTRONOMY (NFA)

DIVISION I WORKING GROUP on NOMENCLATURE FOR FUNDAMENTAL ASTRONOMY (NFA) Transactions IAU, Volume XXVIB Proc. XXVIth IAU General Assembly, August 2006 K.A. van der Hucht, ed. c 2007 International Astronomical Union DOI: 00.0000/X000000000000000X DIVISION I WORKING GROUP on

More information

Time Systems. Roelf Botha. Hartebeesthoek Radio Astronomy Observatory Site, SARAO. AVN training 8 March 2018

Time Systems. Roelf Botha. Hartebeesthoek Radio Astronomy Observatory Site, SARAO. AVN training 8 March 2018 Time Systems Roelf Botha (adapted from Ludwig Combrinck) Hartebeesthoek Radio Astronomy Observatory Site, SARAO roelf@hartrao.ac.za AVN training 8 March 2018 What is time? The Critique of Pure Reason,

More information

Time Systems. Ludwig Combrinck. Hartebeesthoek Radio Astronomy Observatory. AVN training 9 March 2017

Time Systems. Ludwig Combrinck. Hartebeesthoek Radio Astronomy Observatory. AVN training 9 March 2017 Time Systems Ludwig Combrinck Hartebeesthoek Radio Astronomy Observatory ludwig@hartrao.ac.za AVN training 9 March 2017 What is time? AVN Training March 2017 2 The Critique of Pure Reason, by Immanuel

More information

arxiv: v1 [physics.gen-ph] 19 Jan 2012

arxiv: v1 [physics.gen-ph] 19 Jan 2012 Astronomy & Astrophysics manuscript no ms c ESO 212 January 2, 212 Are OPERA neutrinos faster than light because of non-inertial reference frames? INAF-Astronomical Observatory of Padova, Italy e-mail:claudiogermana@gmailcom

More information

DRAFT OF NOMENCLATURE & TERMINOLOGY FOR IAU WG 1

DRAFT OF NOMENCLATURE & TERMINOLOGY FOR IAU WG 1 s TIO terrestrial intermediate origin DRAFT OF NOMENCLATURE & TERMINOLOGY FOR IAU WG 1 This is not a complete list. Symbols are not, and need not necessarily be unique, eg φ is used for latitude, both

More information

REPORT OF THE IAU DIVISION 1 WORKING GROUP ON NOMENCLATURE FOR FUNDAMENTAL ASTRONOMY (NFA)

REPORT OF THE IAU DIVISION 1 WORKING GROUP ON NOMENCLATURE FOR FUNDAMENTAL ASTRONOMY (NFA) REPORT OF THE IAU DIVISION 1 WORKING GROUP ON NOMENCLATURE FOR FUNDAMENTAL ASTRONOMY (NFA) N. CAPITAINE, Observatoire de Paris, France and C. HOHENKERK, HMNAO, UK; A.H. ANDREI, Observatorio Nacional, Brazil;

More information

5 Transformation Between the Celestial and Terrestrial Systems

5 Transformation Between the Celestial and Terrestrial Systems No. 32 5 Transformation Between the Celestial and Terrestrial Systems The coordinate transformation to be used to transform from the terrestrial reference system (TRS) to the celestial reference system

More information

Relativistic time transfer for a Mars lander: from Areocentric Coordinate Time to Barycentric Coordinate Time

Relativistic time transfer for a Mars lander: from Areocentric Coordinate Time to Barycentric Coordinate Time Research in Astron. Astrophys. 217 Vol. X No. XX, http://www.raa-journal.org http://www.iop.org/journals/raa (L A TEX: 88.tex; printed on May 27, 217; 1:56) Research in Astronomy and Astrophysics Relativistic

More information

12 GENERAL RELATIVISTIC MODELS FOR PROPAGATION

12 GENERAL RELATIVISTIC MODELS FOR PROPAGATION CHAPTER 12 GENERAL RELATIVISTIC MODELS FOR PROPAGATION VLBI Time Delay There have been many papers dealing with relativistic effects which must be accounted for in VLBI processing; see (Robertson, 1975),

More information

INPOP06: the new European Planetary, Moon and Earth rotation Ephemeris

INPOP06: the new European Planetary, Moon and Earth rotation Ephemeris 22th August 2006 -- IAU XXVIth JD 16 INPOP06: the new European Planetary, Moon and Earth rotation Ephemeris A. Fienga (1), J.Laskar (1), H.Manche (1), M.Gastineau (1), C. Le Poncin-Lafitte (1),(2) (1)IMCCE

More information

INPOP08, a 4-D planetary ephemeris: From asteroid and time-scale computations to ESA Mars Express and Venus Express contributions.

INPOP08, a 4-D planetary ephemeris: From asteroid and time-scale computations to ESA Mars Express and Venus Express contributions. Astronomy & Astrophysics manuscript no. inpop8..v3c June 1, 9 (DOI: will be inserted by hand later) INPOP8, a 4-D planetary ephemeris: From asteroid and time-scale computations to ESA Mars Express and

More information

Application of the new concepts and definitions (ICRS, CIP and CEO) in fundamental astronomy. P. K. Seidelmann and J. Kovalevsky

Application of the new concepts and definitions (ICRS, CIP and CEO) in fundamental astronomy. P. K. Seidelmann and J. Kovalevsky A&A 392, 341 351 (2002) DOI: 10.1051/0004-6361:20020931 c ESO 2002 Astronomy & Astrophysics Application of the new concepts and definitions (ICRS, CIP and CEO) in fundamental astronomy P. K. Seidelmann

More information

imin...

imin... Pulsar Timing For a detailed look at pulsar timing and other pulsar observing techniques, see the Handbook of Pulsar Astronomy by Duncan Lorimer and Michael Kramer. Pulsars are intrinsically interesting

More information

accumulation of per riodic phenomenon vs. solution of equation of motion

accumulation of per riodic phenomenon vs. solution of equation of motion History of Timescales Mizuhiko Hosokawa NCT Japan IAU Commission 31, Time Dichotomies i Time system vs. Time scale accumulation of per riodic phenomenon vs. solution of equation of motion proper time vs.

More information

Comparison between high precision precession models for the ecliptic and the equator

Comparison between high precision precession models for the ecliptic and the equator A&A 421, 365 379 (2004) DOI: 10.1051/0004-6361:20035942 c ESO 2004 Astronomy & Astrophysics Comparison between high precision precession models for the ecliptic and the equator N. Capitaine 1,P.T.Wallace

More information

Advanced relativistic VLBI model for geodesy

Advanced relativistic VLBI model for geodesy Advanced relativistic VLBI model for geodesy Michael Soffel 1, Sergei Kopeikin 2,3 and Wen-Biao Han 4 arxiv:1710.09144v1 [astro-ph.im] 25 Oct 2017 1. Lohrmann Observatory, Dresden Technical University,

More information

Week 02. Assist. Prof. Dr. Himmet KARAMAN

Week 02. Assist. Prof. Dr. Himmet KARAMAN Week 02 Assist. Prof. Dr. Himmet KARAMAN Contents Satellite Orbits Ephemerides GPS Review Accuracy & Usage Limitation Reference Systems GPS Services GPS Segments Satellite Positioning 2 Satellite Orbits

More information

Michael Soffel. Dresden Technical University

Michael Soffel. Dresden Technical University Space-Time reference systems Michael Soffel Dresden Technical University What are Space-Time Reference Systems (RS)? Science talks about events (e.g., observations): something that happens during a short

More information

M2 GLOSSARY aphelion: the point in an orbit that is the most distant from the Sun. apocenter: the point in an orbit that is farthest from the origin o

M2 GLOSSARY aphelion: the point in an orbit that is the most distant from the Sun. apocenter: the point in an orbit that is farthest from the origin o M1 T: the difference between Terrestrial Time (TT) and Universal Time (UT): T = TT UT1. UT1 (or UT): the value of the difference between Universal Time (UT) and Coordinated Universal Time (UTC): UT1 =

More information

Orbit Representation

Orbit Representation 7.1 Fundamentals 223 For this purpose, code-pseudorange and carrier observations are made of all visible satellites at all monitor stations. The data are corrected for ionospheric and tropospheric delays,

More information

NGA GNSS Division Precise Ephemeris Parameters

NGA GNSS Division Precise Ephemeris Parameters NGA GNSS Division Precise Ephemeris Parameters Precise Ephemeris Units. Earth-centered, Earth-fixed Coordinate system Position Velocity GPS time Trajectory interval Standard Trajectory Optional Trajectory

More information

aberration (of light): aberration, annual: aberration, diurnal: aberration, E-terms of: aberration, elliptic: aberration, planetary:

aberration (of light): aberration, annual: aberration, diurnal: aberration, E-terms of: aberration, elliptic: aberration, planetary: M1 aberration (of light): the relativistic apparent angular displacement of the observed position of a celestial object from its geometric position, caused by the motion of the observer in the reference

More information

arxiv: v1 [astro-ph.im] 14 Feb 2014

arxiv: v1 [astro-ph.im] 14 Feb 2014 Research in Astronomy and Astrophysics manuscript no. L A TEX: SVLBI delay model.tex; printed on September 14, 218; :15) arxiv:146.4846v1 [astro-ph.im] 14 Feb 214 A geometric delay model for Space VLBI

More information

arxiv: v3 [astro-ph.im] 27 Jul 2010

arxiv: v3 [astro-ph.im] 27 Jul 2010 DRAFT VERSION JULY 28, 2010 Preprint typeset using LATEX style emulateapj v. 11/10/09 ACHIEVING BETTER THAN 1 MINUTE ACCURACY IN THE HELIOCENTRIC AND BARYCENTRIC JULIAN DATES JASON EASTMAN, ROBERT SIVERD,

More information

A study upon Eris. I. Describing and characterizing the orbit of Eris around the Sun. I. Breda 1

A study upon Eris. I. Describing and characterizing the orbit of Eris around the Sun. I. Breda 1 Astronomy & Astrophysics manuscript no. Eris c ESO 2013 March 27, 2013 A study upon Eris I. Describing and characterizing the orbit of Eris around the Sun I. Breda 1 Faculty of Sciences (FCUP), University

More information

Third Body Perturbation

Third Body Perturbation Third Body Perturbation p. 1/30 Third Body Perturbation Modeling the Space Environment Manuel Ruiz Delgado European Masters in Aeronautics and Space E.T.S.I. Aeronáuticos Universidad Politécnica de Madrid

More information

Light-time computations for the BepiColombo Radio Science Experiment

Light-time computations for the BepiColombo Radio Science Experiment Light-time computations for the BepiColombo Radio Science Experiment G. Tommei 1, A. Milani 1 and D. Vokrouhlický 2 1 Department of Mathematics, University of Pisa, Largo B. Pontecorvo 5, 56127 Pisa, Italy

More information

GGOS Bureau for Standards and Conventions

GGOS Bureau for Standards and Conventions GGOS D. Angermann (1), T. Gruber (2), J. Bouman (1), M. Gerstl (1), R. Heinkelmann (1), U. Hugentobler (2), L. Sánchez (1), P. Steigenberger (2) (1) Deutsches Geodätisches Forschungsinstitut (DGFI), München

More information

EPM the high-precision planetary ephemerides of IAA RAS for scientific research, astronavigation on the Earth and space

EPM the high-precision planetary ephemerides of IAA RAS for scientific research, astronavigation on the Earth and space EPM the high-precision planetary ephemerides of IAA RAS for scientific research, astronavigation on the Earth and space Pitjeva E.V. Institute of Applied Astronomy, Russian Academy of Sciences Kutuzov

More information

Proper initial conditions for long-term integrations of the solar system

Proper initial conditions for long-term integrations of the solar system Proper initial conditions for long-term integrations of the solar system M. Arminjon Laboratoire Sols, Solides, Structures [CNRS / Université Joseph Fourier / Institut National Polytechnique de Grenoble]

More information

Tests of General Relativity from observations of planets and spacecraft

Tests of General Relativity from observations of planets and spacecraft Tests of General Relativity from observations of planets and spacecraft Pitjeva E.V. Institute of Applied Astronomy, Russian Academy of Sciences Kutuzov Quay 10, St.Petersburg, 191187 Russia e-mail: evp@ipa.nw.ru

More information

Global reference systems and Earth rotation

Global reference systems and Earth rotation current realizations and scientific problems Aleksander Brzeziński 1,2, Tomasz Liwosz 1, Jerzy Rogowski 1, Jan Kryński 3 1 Department of Geodesy and Geodetic Astronomy Warsaw University of Technology 2

More information

GOCE High Level Processing Facility. GOCE Standards. Doc. No.: GO-TN-HPF-GS-0111 Issue: 4 Revision: 0 Date: 14 / 05 / 2014

GOCE High Level Processing Facility. GOCE Standards. Doc. No.: GO-TN-HPF-GS-0111 Issue: 4 Revision: 0 Date: 14 / 05 / 2014 15.2014 1 of 81 GOCE High Level Processing Facility GOCE Standards Doc. No.: 4 Revision: 0 14 / 05 / 2014 Prepared by: The European GOCE Gravity Consortium EGG-C 1 15.2014 2 of 81 Document Information

More information

ROCZNIK ASTRONOMICZNY (ASTRONOMICAL ALMANAC) OF THE INSTITUTE OF GEODESY AND CARTOGRAPHY AGAINST THE IAU 2000 RESOLUTIONS

ROCZNIK ASTRONOMICZNY (ASTRONOMICAL ALMANAC) OF THE INSTITUTE OF GEODESY AND CARTOGRAPHY AGAINST THE IAU 2000 RESOLUTIONS ROCZNIK ASTRONOMICZNY (ASTRONOMICAL ALMANAC) OF THE INSTITUTE OF GEODESY AND CARTOGRAPHY AGAINST THE IAU 2000 RESOLUTIONS M. SĘKOWSKI Institute of Geodesy and Cartography ul. Modzelewskiego 27, Warsaw,

More information

Development of Software

Development of Software PPS03-06 Development of Software for Precise LLR Data Analysis and initial results of parameter estimation for lunar motion Ryosuke Nagasawa Sokendai (GUAS) Toshimichi Otsubo Hitotsubashi Univ. Mamoru

More information

2-3 Relativisitic Effects in Time and Frequency Standards

2-3 Relativisitic Effects in Time and Frequency Standards 2-3 Relativisitic Effects in Time and Frequency Standards Recent technology on the precise measurement of time and frequency makes it rather easy to detect the relativistic effects. It is, therefore, indispensable

More information

Relativistic Celestial Mechanics of the Solar System

Relativistic Celestial Mechanics of the Solar System Sergei Kopeikin, Michael Efroimsky, and George Kaplan Relativistic Celestial Mechanics of the Solar System WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents Preface XVII Symbols and Abbreviations References

More information

Relativistic precession model of the Earth for long time interval

Relativistic precession model of the Earth for long time interval Relativistic precession model of the Earth for long time interval Kai Tang, Michael H Soffel, Jin-He Tao, Zheng-Hong Tang 2014-09-22 St Petersburg () Journess2014 2014-09-22 1 / 19 1 Motivation 2 Long-term

More information

Long-Term Evolution of High Earth Orbits: Effects of Direct Solar Radiation Pressure and Comparison of Trajectory Propagators

Long-Term Evolution of High Earth Orbits: Effects of Direct Solar Radiation Pressure and Comparison of Trajectory Propagators Long-Term Evolution of High Earth Orbits: Effects of Direct Solar Radiation Pressure and Comparison of Trajectory Propagators by L. Anselmo and C. Pardini (Luciano.Anselmo@isti.cnr.it & Carmen.Pardini@isti.cnr.it)

More information

Past, present and possible updates to the IERS Conventions. J. Ray, NGS G. Petit, BIPM

Past, present and possible updates to the IERS Conventions. J. Ray, NGS G. Petit, BIPM Past, present and possible updates to the IERS Conventions J. Ray, NGS G. Petit, BIPM IERS Conventions update: electronic access http://tai.bipm.org/iers/convupdt/listupdt.html Introduction Add a set of

More information

Consideration of a Global Vertical Reference System (GVRS) in the IERS Conventions

Consideration of a Global Vertical Reference System (GVRS) in the IERS Conventions Consideration of a Global Vertical Reference System (GVRS) in the IERS Conventions Johannes Ihde Federal Agency for Cartography and Geodesy (BKG) Chair of IAG ICP1.2 (2003-2007) Vertical Reference Frames

More information

Space-Time Reference Systems

Space-Time Reference Systems Space-Time Reference Systems Bearbeitet von Michael Soffel, Ralf Langhans 1. Auflage 2012. Buch. xiv, 314 S. Hardcover ISBN 978 3 642 30225 1 Format (B x L): 15,5 x 23,5 cm Gewicht: 654 g Weitere Fachgebiete

More information

GOCE High Level Processing Facility. GOCE Standards. Doc. No.: GO-TN-HPF-GS-0111 Issue: 3 Revision: 1 Date: 30 / 04 / 2009

GOCE High Level Processing Facility. GOCE Standards. Doc. No.: GO-TN-HPF-GS-0111 Issue: 3 Revision: 1 Date: 30 / 04 / 2009 1 of 81 GOCE High Level Processing Facility GOCE Standards Doc. No.: 3 Revision: 1 30 / 04 / 2009 Prepared by: The European GOCE Gravity Consortium EGG-C 1 2 of 81 Document Information Sheet Document Name

More information

orbits Moon, Planets Spacecrafts Calculating the and by Dr. Shiu-Sing TONG

orbits Moon, Planets Spacecrafts Calculating the and by Dr. Shiu-Sing TONG A Science Enrichment Programme for Secondary 3-4 Students : Teaching and Learning Resources the and Spacecrafts orbits Moon, Planets Calculating the 171 of by Dr. Shiu-Sing TONG 172 Calculating the orbits

More information

Very Long Baseline Interferometry for Geodesy and Astrometry

Very Long Baseline Interferometry for Geodesy and Astrometry VieVS User-Workshop 2017 Very Long Baseline Interferometry for Geodesy and Astrometry Johannes Böhm VLBI How does it work? VLBI a flowchart SINEX skd vex2 drudge drudge snp/prc snp/prc NGS Mark4 Mark4

More information

Orbital Energy and Perturbing Potential. (v-2) Copyright RTA

Orbital Energy and Perturbing Potential. (v-2) Copyright RTA Orbital Energy and Perturbing Potential. (v-) Copyright RTA --15 Javier Bootello Independent Research. Email : trenaveing@gmail.com ABSTRACT. This article checks a perturbing gravitational potential, with

More information

FUNDAMENTAL ASTRONOMY

FUNDAMENTAL ASTRONOMY FUNDAMENTAL ASTRONOMY Magda Stavinschi Astronomical Institute of the Romanian Academy No indication of the distance to the objects The astrometric information is generally NOT the direction from which

More information

Report of the IAU WORKING GROUP "Nomenclature for Fundamental Astronomy" (NFA)

Report of the IAU WORKING GROUP Nomenclature for Fundamental Astronomy (NFA) Report of the IAU WORKING GROUP "Nomenclature for Fundamental Astronomy" (NFA) Nicole Capitaine, Observatoire de Paris, France Membership Nicole CAPITAINE (Paris Observatory, France), Chair Catherine HOHENKERK

More information

EPM EPHEMERIDES OF PLANETS AND THE MOON OF IAA RAS: THEIR MODEL, ACCURACY, AVAILABILITY

EPM EPHEMERIDES OF PLANETS AND THE MOON OF IAA RAS: THEIR MODEL, ACCURACY, AVAILABILITY EPM EPHEMERIDES OF PLANETS AND THE MOON OF IAA RAS: THEIR MODEL, ACCURACY, AVAILABILITY E.V. PITJEVA, O.A. BRATSEVA, V.E. PANFILOV Institute of Applied astronomy RAS Kutuzov Quay 10, 191187 St.-Petersburg

More information

Very Long Baseline Interferometry for Geodesy and Astrometry

Very Long Baseline Interferometry for Geodesy and Astrometry Very Long Baseline Interferometry for Geodesy and Astrometry Johannes Böhm Harald Schuh and Johannes Böhm, Very Long Baseline Interferometry for Geodesy and Astrometry, in Guochang Xu (editor): Sciences

More information

Astrodynamics (AERO0024)

Astrodynamics (AERO0024) Astrodynamics (AERO0024) 3. The Orbit in Space Gaëtan Kerschen Space Structures & Systems Lab (S3L) Motivation: Space We need means of describing orbits in three-dimensional space. Example: Earth s oblateness

More information

TIME DILATION AND THE LENGTH OF THE SECOND: WHY TIMESCALES DIVERGE

TIME DILATION AND THE LENGTH OF THE SECOND: WHY TIMESCALES DIVERGE The Astronomical Journal, 134:64Y70, 2007 July # 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A. A TIME DILATION AND THE LENGTH OF THE SECOND: WHY TIMESCALES DIVERGE Steven

More information

The IAU 2009 system of astronomical constants: the report of the IAU working group on numerical standards for Fundamental Astronomy

The IAU 2009 system of astronomical constants: the report of the IAU working group on numerical standards for Fundamental Astronomy Celest Mech Dyn Astr (2011) 110:293 304 DOI 10.1007/s10569-011-9352-4 SPECIAL REPORT The IAU 2009 system of astronomical constants: the report of the IAU working group on numerical standards for Fundamental

More information

The IAU 2000 Resolutions for Astrometry, Celestial Mechanics, and Metrology in the Relativistic Framework: Explanatory Supplement

The IAU 2000 Resolutions for Astrometry, Celestial Mechanics, and Metrology in the Relativistic Framework: Explanatory Supplement The IAU 2000 Resolutions for Astrometry, Celestial Mechanics, and Metrology in the Relativistic Framework: xplanatory Supplement Soffel, M.; Klioner, S. A.; Petit, G.; Wolf, P.; Kopeikin, S. M.; Bretagnon,

More information

AN EXTENSION OF THE IAU FRAMEWORK FOR REFERENCE SYSTEMS

AN EXTENSION OF THE IAU FRAMEWORK FOR REFERENCE SYSTEMS AN EXTENSION OF THE IAU FRAMEWORK FOR REFERENCE SYSTEMS S.M. KOPEIKIN Department of Physics & Astronomy, University of Missouri-Columbia 223 Physics Bldg., Columbia, Missouri 65211, USA e-mail: kopeikins@missouri.edu

More information

Relativity in Modern Astrometry and Celestial Mechanics. Abstract. After a short introduction into experimental foundations of

Relativity in Modern Astrometry and Celestial Mechanics. Abstract. After a short introduction into experimental foundations of Relativity in Modern Astrometry and Celestial Mechanics AnOverview S. Klioner Lohrmann Observatory, Dresden Technical University, 01062 Germany Abstract. After a short introduction into experimental foundations

More information

The International Terrestrial Reference System and ETRS89: Part II : ITRS & ETRS89 relationship

The International Terrestrial Reference System and ETRS89: Part II : ITRS & ETRS89 relationship The International Terrestrial Reference System and ETRS89: Part II : ITRS & ETRS89 relationship Zuheir ALTAMIMI Laboratoire de Recherche en Géodésie Institut national de l information géographique et forestière

More information

Gravitation and the Waltz of the Planets

Gravitation and the Waltz of the Planets Gravitation and the Waltz of the Planets Chapter Four Guiding Questions 1. How did ancient astronomers explain the motions of the planets? 2. Why did Copernicus think that the Earth and the other planets

More information

Gravitation and the Waltz of the Planets. Chapter Four

Gravitation and the Waltz of the Planets. Chapter Four Gravitation and the Waltz of the Planets Chapter Four Guiding Questions 1. How did ancient astronomers explain the motions of the planets? 2. Why did Copernicus think that the Earth and the other planets

More information

CERGA, Observatoire de la C^ote d'azur, Grasse, France. foundations of celestial reference systems and of the IAU decisions taken

CERGA, Observatoire de la C^ote d'azur, Grasse, France. foundations of celestial reference systems and of the IAU decisions taken Celestial Reference Systems An Overview J. Kovalevsky CERGA, Observatoire de la C^ote d'azur, 06130 Grasse, France Abstract. The paper starts with a short presentation of the conceptual foundations of

More information

Gravitation and the Motion of the Planets

Gravitation and the Motion of the Planets Gravitation and the Motion of the Planets 1 Guiding Questions 1. How did ancient astronomers explain the motions of the planets? 2. Why did Copernicus think that the Earth and the other planets go around

More information

2. Time and Reference Systems

2. Time and Reference Systems time Earth!rotation day!solar second Cesium!133 atom SI second 23 2. Time and Reference Systems Ref Part A 2.1 Christopher Jekeli, Oliver Montenbruck Geodesy is the science of the measurement and mapping

More information

User s Guide to NOVAS Version F3.0

User s Guide to NOVAS Version F3.0 User s Guide to NOVAS Version F3.0 Naval Observatory Vector Astrometry Software Fortran Edition George Kaplan Jennifer Bartlett Alice Monet John Bangert Wendy Puatua Part I of USNO Circular 180 U.S. Naval

More information

Perturbations to the Lunar Orbit

Perturbations to the Lunar Orbit Perturbations to the Lunar Orbit th January 006 Abstract In this paper, a general approach to performing perturbation analysis on a two-dimensional orbit is presented. The specific examples of the solar

More information

GNSS: Global Navigation Satellite Systems

GNSS: Global Navigation Satellite Systems GNSS: Global Navigation Satellite Systems Global: today the American GPS (Global Positioning Service), http://gps.losangeles.af.mil/index.html the Russian GLONASS, http://www.glonass-center.ru/frame_e.html

More information

is a revolution relative to a fixed celestial position. is the instant of transit of mean equinox relative to a fixed meridian position.

is a revolution relative to a fixed celestial position. is the instant of transit of mean equinox relative to a fixed meridian position. PERIODICITY FORMULAS: Sidereal Orbit Tropical Year Eclipse Year Anomalistic Year Sidereal Lunar Orbit Lunar Mean Daily Sidereal Motion Lunar Synodical Period Centenial General Precession Longitude (365.25636042

More information

Nutation determination by means of GNSS

Nutation determination by means of GNSS Nutation determination by means of GNSS - Comparison with VLBI Nicole Capitaine, Kunliang Yao SYRTE - Observatoire de Paris, CNRS/UPMC, France Introduction Space geodetic techniques cannot be used for

More information

5.1. Accelerated Coordinate Systems:

5.1. Accelerated Coordinate Systems: 5.1. Accelerated Coordinate Systems: Recall: Uniformly moving reference frames (e.g. those considered at 'rest' or moving with constant velocity in a straight line) are called inertial reference frames.

More information

Determination of the lunar orbital and rotational parameters and of the ecliptic reference system orientation from LLR measurements and IERS data

Determination of the lunar orbital and rotational parameters and of the ecliptic reference system orientation from LLR measurements and IERS data Astron. Astrophys. 343, 624 633 (1999) ASTRONOMY AND ASTROPHYSICS Determination of the lunar orbital and rotational parameters and of the ecliptic reference system orientation from LLR measurements and

More information

Recent and Anticipated Changes to the International Earth Rotation and Reference Systems Service (IERS) Conventions

Recent and Anticipated Changes to the International Earth Rotation and Reference Systems Service (IERS) Conventions Recent and Anticipated Changes to the International Earth Rotation and Reference Systems Service (IERS) Conventions Brian Luzum, U.S. Naval Observatory BIOGRAPHY Brian Luzum began full-time employment

More information

Elements of Geodesy. Shape of the Earth Tides Terrestrial coordinate systems Inertial coordinate systems Earth orientation parameters

Elements of Geodesy. Shape of the Earth Tides Terrestrial coordinate systems Inertial coordinate systems Earth orientation parameters Elements of Geodesy Shape of the Earth Tides Terrestrial coordinate systems Inertial coordinate systems Earth orientation parameters E. Calais Purdue University - EAS Department Civil 3273 ecalais@purdue.edu

More information

Astrodynamics (AERO0024)

Astrodynamics (AERO0024) Astrodynamics (AERO0024) 3B. The Orbit in Space and Time Gaëtan Kerschen Space Structures & Systems Lab (S3L) Previous Lecture: The Orbit in Time 3.1 ORBITAL POSITION AS A FUNCTION OF TIME 3.1.1 Kepler

More information

arxiv: v1 [gr-qc] 25 Apr 2018

arxiv: v1 [gr-qc] 25 Apr 2018 Chronometric geodesy: methods and applications arxiv:1804.09506v1 [gr-qc] 25 Apr 2018 P. Delva 1, H. Denker 2 and G. Lion 3 1 SYRTE Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, LNE

More information

Fundamentals of Astrodynamics and Applications

Fundamentals of Astrodynamics and Applications Fundamentals of Astrodynamics and Applications Third Edition David A. Vallado with technical contributions by Wayne D. McClain Space Technology Library Published Jointly by Microcosm Press Hawthorne, CA

More information

PTYS206-2 Spring 2008 Homework #6 KEY. a) Acceleration due to gravity: a = GM/R 2 If radius is doubled, does acceleration increase or decrease?

PTYS206-2 Spring 2008 Homework #6 KEY. a) Acceleration due to gravity: a = GM/R 2 If radius is doubled, does acceleration increase or decrease? PTYS206-2 Spring 2008 Homework #6 KEY 1. Understanding physical relationships (part 1). a) Acceleration due to gravity: a = GM/R 2 If radius is doubled, does acceleration increase or decrease? b) Escape

More information

The changes in normalized second degree geopotential coefficients. - f P 20 (sin4) J.), (la) /5 'GM*ft r] (lb) Ac 21 -ia* 21 = i n ^ S i f RI J^ GM.

The changes in normalized second degree geopotential coefficients. - f P 20 (sin4) J.), (la) /5 'GM*ft r] (lb) Ac 21 -ia* 21 = i n ^ S i f RI J^ GM. CHAPTER 7 SOLID EARTH TIDES The solid Earth tide model is based on an abbreviated form of the Wahr model (Wahr, 98) using the Earth model 66A of Gilbert and Dziewonski (975). The Love numbers for the induced

More information

User s Guide to NOVAS Version C3.1

User s Guide to NOVAS Version C3.1 User s Guide to NOVAS Version C3.1 Naval Observatory Vector Astrometry Software C Edition John Bangert Wendy Puatua George Kaplan Jennifer Bartlett William Harris Amy Fredericks Alice Monet U.S. Naval

More information

5. Noise in the IPTA data

5. Noise in the IPTA data 5. Noise in the IPTA data Aims and objectives Understand the different noise processes that affect pulsar timing data Study the PSRs J1939+2134 and J1909 3744 data sets from the Parkes Pulsar Timing Array

More information

GRACE. Gravity Recovery and Climate Experiment. JPL Level-2 Processing Standards Document. For Level-2 Product Release 05.1

GRACE. Gravity Recovery and Climate Experiment. JPL Level-2 Processing Standards Document. For Level-2 Product Release 05.1 GRACE Gravity Recovery and Climate Experiment JPL Level-2 Processing Standards Document For Level-2 Product Release 05.1 Michael M. Watkins and Dah-Ning Yuan Jet Propulsion Laboratory California Institute

More information

CALCULATION OF POSITION AND VELOCITY OF GLONASS SATELLITE BASED ON ANALYTICAL THEORY OF MOTION

CALCULATION OF POSITION AND VELOCITY OF GLONASS SATELLITE BASED ON ANALYTICAL THEORY OF MOTION ARTIFICIAL SATELLITES, Vol. 50, No. 3 2015 DOI: 10.1515/arsa-2015-0008 CALCULATION OF POSITION AND VELOCITY OF GLONASS SATELLITE BASED ON ANALYTICAL THEORY OF MOTION W. Góral, B. Skorupa AGH University

More information

Resolution B3 on recommended nominal conversion constants for selected solar and planetary properties

Resolution B3 on recommended nominal conversion constants for selected solar and planetary properties arxiv:1510.07674v1 [astro-ph.sr] 26 Oct 2015 Resolution B3 on recommended nominal conversion constants for selected solar and planetary properties Proposed by IAU Inter-Division A-G Working Group on Nominal

More information

The Mass of Jupiter Student Guide

The Mass of Jupiter Student Guide The Mass of Jupiter Student Guide Introduction: In this lab, you will use astronomical observations of Jupiter and its satellites to measure the mass of Jupiter. We will use the program Stellarium to simulate

More information

Homework 2; due on Thursday, October 4 PY 502, Computational Physics, Fall 2018

Homework 2; due on Thursday, October 4 PY 502, Computational Physics, Fall 2018 Homework 2; due on Thursday, October 4 PY 502, Computational Physics, Fall 2018 Department of Physics, Boston University Instructor: Anders Sandvik PERTURBATION OF A GEO-STATIONARY ORBIT Here you will

More information

THE LUNAR LIBRATION: COMPARISONS BETWEEN VARIOUS MODELS- A MODEL FITTED TO LLR OBSERVATIONS

THE LUNAR LIBRATION: COMPARISONS BETWEEN VARIOUS MODELS- A MODEL FITTED TO LLR OBSERVATIONS THE LUNAR LIBRATION: COMPARISONS BETWEEN VARIOUS MODELS- A MODEL FITTED TO LLR OBSERVATIONS J. CHAPRONT, G. FRANCOU SYRTE - Observatoire de Paris - UMR 8630/CNRS 61, avenue de l Observatoire 75014 Paris

More information

Introduction to geodetic VLBI

Introduction to geodetic VLBI Introduction to geodetic VLBI David Mayer Andreas Hellerschmied Johannes Böhm Harald Schuh and Johannes Böhm, Very Long Baseline Interferometry for Geodesy and Astrometry, in Guochang Xu (editor): Sciences

More information

a few microarcseconds. Data processing of such extremely highprecision light ray propagation developed in the framework of General Relativity.

a few microarcseconds. Data processing of such extremely highprecision light ray propagation developed in the framework of General Relativity. Numerical Data-Processing Simulations of Microarcsecond Classical and Relativistic Eects in Space Astrometry Sergei M. Kopeikin Department of Physics & Astronomy, University of Missouri-Columbia, 223 Physics

More information