Random Walks and Foster s Resistance Theorem

Size: px
Start display at page:

Download "Random Walks and Foster s Resistance Theorem"

Transcription

1 Random Wals and Foster s Resistance Theorem Chen Qin March 14, 2013 Abstract Given any simple connected graph G =< V,E > such that each edge e E has unit resistance, Foster s Resistance Theorem states that the summation of effective resistances over all edges equals n 1. That is, R e = n 1 e E Further, given a general graph with resistances r e corresponding to edges e E, the theorem states: e E R e r e = n 1 Tetali[1] proved Foster s Resistance Theorem by considering traversals and then appling the Reciprocity theorem. In this paper, we go through that proof. 1 Introduction Doyle and Snell [1] discovered a connection between electrical networs and random wals in graphs. At the time, the discovery was novel and led to breathroughs in both avenues of research. Tetali [2] related the effective resistance R e for e E to traversals in a random wal. This idea was inspired by the commute time [3]; and, along with the Reciprocity Theorem and Kirchoff s Current Law, the idea was used to prove Foster s Resistance Theorem. 2 Preliminaries Consider a simple networ G =< V,E > where every edge e E has the same resistance r e. For a pair of vertices v i,v j V, we define P ij = Prob[v i can reach v j in one step] = 1/d(v i ) if (v i,v j ) E and P ij = 0 otherwise. 1

2 3 Theorems Theorem 3.1. In a simple networ where each edge has unit resistance, the effective resistance R i,j between any pair of vertices v i,v j V is equal to the expected number of traversals along any specific edge (v i,v ) before arriving at v j in a random wal from v i to v j. Proof. Let U i,j be the expected number of times we hit before reaching j on a random wal from i to j. To hit, we must first hit a neighbor of and then cross over an edge to. Therefore, = w since for w N() we have P w = 1 d(w). Next, we divide both sides by d() to get: wp w = w d() = 1 Uw ij d() d(w) w w d(w) Let V j denote the voltage difference between and j. Then, we have: Applying Kirchoff s Current Law, we get: ( ) V j = Uij d() V j = w 1 d() V wj where v w v i v w v j Applying the definition of effective resistance over edge R ij = V ij r ij where V w = V j V wj, we find: This completes the proof. i w = (V j V wj )/1 = Uij d() Uij w d(w) Theorem 3.2. The effective resistance R ij is equal to the expected number of edge traversals out of v along any specific edge (v,v w ) E where v v i v v j. Proof. Let U denote the expected number of visits to in a random wal that starts at v i, goes to v j, and returns bac to v i. It follows that the U = +Uji Applying, we get 2

3 Recall that U d() U = +Uji = V jd()+v i d() = V j d() V i d() = V ij d() R ij = U d() is the expected number of visits to along any specific edge (,z) where z N() in our random wal. The theorem follows. Given a graph G =< V,E >, suppose we consider two electrical setups in which we give special attention to four vertices i, j,, and w with (i,j) E and (,w) E. In the first setup, setup 1, we apply a battery across vertices i and j with a voltage difference V 1 i,j that admits a unit current from to w. In the second setup, we apply a battery across vertices and w with voltage difference V 2,w that admits a unit current from i to j. Theorem 3.3. In any single source connected graph, by the Reciprocity Theorem [4] we have V 1 i,j = V 2,w. We now consider two setups for the given graph. The first has source v i, sin v j, and a voltage is applied so that the current flowing from v to v j is a unit current. In the second setup we have source v, sin v j, and a voltage is applied so that the current flowing from v i to v j is a unit current. Let V ij and V j be these respective voltages. By and the previous theorem, we have: V ij = V j Uij d() = Uj i d(i) The right equation refers to random wals starting from v and v i respectively and ending at v j. The expected number of times we reach v j from one of its neighbours when v v j is exactly 1. Therefore, v N(v j ) d() = 1 v i v j We apply the result above to the Reciprocity Theorem to get: 3

4 v N(v j ) d() = v N(v j ) Since j = 0, we can sum over all vertices to get: v i V v N(v j ) Rewriting the previous equation, we get: (v i,v j ) E [ U j i d(i) = d() d() = 1 d() = n 1 /d()+uj i /d(i)] = n 1 Applying Theorem 3.2, we complete Tetali s proof of Forester s Resistance Theorem[4]: 4 General networ (i,j) E R i,j = n 1 In order to extend Foster s Resistance Theorem to general networs, we begin by defining conductance c e = 1/r e for edges e E and 0 along all other edges. For a vertex x, let c(x) be the sum of the conductances of edges incident on x. Rewriting, we see: We have: Theorem 4.1. V j = Uij c() <v i,v j > E R ij r ij = n 1 Proof. The proof starts by applying the Reciprocity Theorem[4] Multiplying both sides by c ij we get v N(v i ) /c() = Uj i /c(i) c ij/c() = v i N(v j ) 4 U j i c ij /c(i) = 1 if j

5 v j G {v i,v j } G By theorem 3.2, we obtain the proof. References v i N(v i ) c ij/c() = n 1 [ c ij/c()+u ji c ji/c()] = n 1 [1] Doyle P.G. and Snell J.L., Random Wals and Electrical Networs, The Mathematical Association of America(1984). [2] Tetali, P. Random Wals and the Effective Resistance of Networs. J. Theor. Prob. 4, , [3] Chandra A.K., Raghavan P., Ruzzo W.L., Smolensy R., and Tiwari P., The Electrical Resistance of a Graph Captures its Commute and Cover Times, Proceedings of the 21st Annual ACM symposium on Theory of Computing, May(1989). [4] Hayt W.H. and Kemmerly J.E., Engineering Circuit Analysis,McGraw-Hill,3rd ed.(1978). 5

Two Proofs of Commute Time being Proportional to Effective Resistance

Two Proofs of Commute Time being Proportional to Effective Resistance Two Proofs of Commute Time being Proportional to Effective Resistance Sandeep Nuckchady Report for Prof. Peter Winkler February 17, 2013 Abstract Chandra et al. have shown that the effective resistance,

More information

Stationary Probability and First-Passage Time of Biased Random Walk

Stationary Probability and First-Passage Time of Biased Random Walk Commun. Theor. Phys. 66 2016 330 334 Vol. 66, No. 3, September 1, 2016 Stationary Probability and First-Passage Time of Biased Random Walk Jing-Wen Li 李井文, Shen-Li Tang 唐沈立, and Xin-Ping Xu 徐新平 School

More information

Powerful tool for sampling from complicated distributions. Many use Markov chains to model events that arise in nature.

Powerful tool for sampling from complicated distributions. Many use Markov chains to model events that arise in nature. Markov Chains Markov chains: 2SAT: Powerful tool for sampling from complicated distributions rely only on local moves to explore state space. Many use Markov chains to model events that arise in nature.

More information

ELECTRICAL NETWORK THEORY AND RECURRENCE IN DISCRETE RANDOM WALKS

ELECTRICAL NETWORK THEORY AND RECURRENCE IN DISCRETE RANDOM WALKS ELECTRICAL NETWORK THEORY AND RECURRENCE IN DISCRETE RANDOM WALKS DANIEL STRAUS Abstract This paper investigates recurrence in one dimensional random walks After proving recurrence, an alternate approach

More information

Probability & Computing

Probability & Computing Probability & Computing Stochastic Process time t {X t t 2 T } state space Ω X t 2 state x 2 discrete time: T is countable T = {0,, 2,...} discrete space: Ω is finite or countably infinite X 0,X,X 2,...

More information

2 JOHAN JONASSON we address in this paper is if this pattern holds for any nvertex graph G, i.e. if the product graph G k is covered faster the larger

2 JOHAN JONASSON we address in this paper is if this pattern holds for any nvertex graph G, i.e. if the product graph G k is covered faster the larger An upper bound on the cover time for powers of graphs Johan Jonasson Chalmers University of Technology January 14, 1999 Abstract It is shown that if G is any connected graph on n vertices, then the cover

More information

EECS 495: Randomized Algorithms Lecture 14 Random Walks. j p ij = 1. Pr[X t+1 = j X 0 = i 0,..., X t 1 = i t 1, X t = i] = Pr[X t+

EECS 495: Randomized Algorithms Lecture 14 Random Walks. j p ij = 1. Pr[X t+1 = j X 0 = i 0,..., X t 1 = i t 1, X t = i] = Pr[X t+ EECS 495: Randomized Algorithms Lecture 14 Random Walks Reading: Motwani-Raghavan Chapter 6 Powerful tool for sampling complicated distributions since use only local moves Given: to explore state space.

More information

Random walks on graphs: a survey

Random walks on graphs: a survey Random walks on graphs: a survey University of Warwick 26th Cumberland Conference on Combinatorics, Graph Theory & Computing 24/5/13 Problem 1: A mailman has to deliver a letter to each vertex of a finite

More information

Random Walks and Electric Resistance on Distance-Regular Graphs

Random Walks and Electric Resistance on Distance-Regular Graphs Random Walks and Electric Resistance on Distance-Regular Graphs Greg Markowsky March 16, 2011 Graphs A graph is a set of vertices V (can be taken to be {1, 2,..., n}) and edges E, where each edge is an

More information

1 Random Walks and Electrical Networks

1 Random Walks and Electrical Networks CME 305: Discrete Mathematics and Algorithms Random Walks and Electrical Networks Random walks are widely used tools in algorithm design and probabilistic analysis and they have numerous applications.

More information

Agenda for Today. Elements of Physics II. Resistance Resistors Series Parallel Ohm s law Electric Circuits. Current Kirchoff s laws

Agenda for Today. Elements of Physics II. Resistance Resistors Series Parallel Ohm s law Electric Circuits. Current Kirchoff s laws Resistance Resistors Series Parallel Ohm s law Electric Circuits Physics 132: Lecture e 17 Elements of Physics II Current Kirchoff s laws Agenda for Today Physics 201: Lecture 1, Pg 1 Clicker Question

More information

(K2) For sum of the potential differences around any cycle is equal to zero. r uv resistance of {u, v}. [In other words, V ir.]

(K2) For sum of the potential differences around any cycle is equal to zero. r uv resistance of {u, v}. [In other words, V ir.] Lectures 16-17: Random walks on graphs CSE 525, Winter 2015 Instructor: James R. Lee 1 Random walks Let G V, E) be an undirected graph. The random walk on G is a Markov chain on V that, at each time step,

More information

LAPLACIAN SPECTRUM, EFFECTIVE RESISTANCE AND ROBUSTNESS IN ELECTRICAL NETWORK OF FULLERENE C 60

LAPLACIAN SPECTRUM, EFFECTIVE RESISTANCE AND ROBUSTNESS IN ELECTRICAL NETWORK OF FULLERENE C 60 Journal of Optoelectronics and Biomedical Materials Vol. 5 Issue 2, April - June 2013 p. 37-42 LAPLACIAN SPECTRUM, EFFECTIVE RESISTANCE AND ROBUSTNESS IN ELECTRICAL NETWORK OF FULLERENE C 60 EHSAN LIMOUCHI

More information

Exact Mixing in an Unknown Markov Chain

Exact Mixing in an Unknown Markov Chain Exact Mixing in an Unknown Markov Chain László Lovász and Peter Winkler Submitted: May 2, 1995; Accepted: May 27, 1995. Abstract We give a simple stopping rule which will stop an unknown, irreducible n-state

More information

Generating random spanning trees. Andrei Broder. DEC - Systems Research Center 130 Lytton Ave., Palo Alto, CA

Generating random spanning trees. Andrei Broder. DEC - Systems Research Center 130 Lytton Ave., Palo Alto, CA Generating random spanning trees Andrei Broder DEC - Systems Research Center 30 Lytton Ave., Palo Alto, CA 9430 Extended abstract Abstract. This paper describes a probabilistic algorithm that, given a

More information

AN APPLICATION OF LINEAR ALGEBRA TO NETWORKS

AN APPLICATION OF LINEAR ALGEBRA TO NETWORKS AN APPLICATION OF LINEAR ALGEBRA TO NETWORKS K. N. RAGHAVAN 1. Statement of the problem Imagine that between two nodes there is a network of electrical connections, as for example in the following picture

More information

Chapter 1: System of Linear Equations 1.3 Application of Li. (Read Only) Satya Mandal, KU. Summer 2017: Fall 18 Update

Chapter 1: System of Linear Equations 1.3 Application of Li. (Read Only) Satya Mandal, KU. Summer 2017: Fall 18 Update Chapter 1: System of Linear Equations 1.3 Application of Linear systems (Read Only) Summer 2017: Fall 18 Update Goals In this section, we do a few applications of linear systems, as follows. Fitting polynomials,

More information

UNIT 4 EXTENDING THE NUMBER SYSTEM Lesson 3: Operating with Complex Numbers Instruction

UNIT 4 EXTENDING THE NUMBER SYSTEM Lesson 3: Operating with Complex Numbers Instruction Prerequisite Skills This lesson requires the use of the following skills: simplifying sums and differences of numeric and algebraic quantities using the Commutative Property to reorder sums and differences

More information

8-5. A rational inequality is an inequality that contains one or more rational expressions. x x 6. 3 by using a graph and a table.

8-5. A rational inequality is an inequality that contains one or more rational expressions. x x 6. 3 by using a graph and a table. A rational inequality is an inequality that contains one or more rational expressions. x x 3 by using a graph and a table. Use a graph. On a graphing calculator, Y1 = x and Y = 3. x The graph of Y1 is

More information

Constant Arboricity Spectral Sparsifiers

Constant Arboricity Spectral Sparsifiers Constant Arboricity Spectral Sparsifiers arxiv:1808.0566v1 [cs.ds] 16 Aug 018 Timothy Chu oogle timchu@google.com Jakub W. Pachocki Carnegie Mellon University pachocki@cs.cmu.edu August 0, 018 Abstract

More information

Graphic sequences, adjacency matrix

Graphic sequences, adjacency matrix Chapter 2 Graphic sequences, adjacency matrix Definition 2.1. A sequence of integers (d 1,..., d n ) is called graphic if it is the degree sequence of a graph. Example 2.2. 1. (1, 2, 2, 3) is graphic:

More information

Walks, Springs, and Resistor Networks

Walks, Springs, and Resistor Networks Spectral Graph Theory Lecture 12 Walks, Springs, and Resistor Networks Daniel A. Spielman October 8, 2018 12.1 Overview In this lecture we will see how the analysis of random walks, spring networks, and

More information

Ngày 20 tháng 7 năm Discrete Optimization Graphs

Ngày 20 tháng 7 năm Discrete Optimization Graphs Discrete Optimization Graphs Ngày 20 tháng 7 năm 2011 Lecture 6: Graphs In this class we shall prove some simple, useful theorems about graphs. We start with very simple obseravations. Lecture 6: Graphs

More information

MA261-A Calculus III 2006 Fall Homework 7 Solutions Due 10/20/2006 8:00AM

MA261-A Calculus III 2006 Fall Homework 7 Solutions Due 10/20/2006 8:00AM MA26-A Calculus III 2006 Fall Homework 7 Solutions Due 0/20/2006 8:00AM 3 #4 Find the rst partial derivatives of the function f (; ) 5 + 3 3 2 + 3 4 f (; ) 5 4 + 9 2 2 + 3 4 f (; ) 6 3 + 2 3 3 #6 Find

More information

Establishing Relationships Linear Least Squares Fitting. Lecture 5 Physics 2CL Summer 2010

Establishing Relationships Linear Least Squares Fitting. Lecture 5 Physics 2CL Summer 2010 Establishing Relationships Linear Least Squares Fitting Lecture 5 Physics 2CL Summer 2010 Outline Determining the relationship between measured values Review of experiment # 2 Physics for experiment #

More information

Deterministic approximation for the cover time of trees

Deterministic approximation for the cover time of trees Deterministic approximation for the cover time of trees Uriel Feige Ofer Zeitouni September 10, 2009 Abstract We present a deterministic algorithm that given a tree T with n vertices, a starting vertex

More information

Electrical networks and Markov chains

Electrical networks and Markov chains A.A. Peters Electrical networks and Markov chains Classical results and beyond Masterthesis Date master exam: 04-07-016 Supervisors: Dr. L. Avena & Dr. S. Taati Mathematisch Instituut, Universiteit Leiden

More information

I. Impedance of an R-L circuit.

I. Impedance of an R-L circuit. I. Impedance of an R-L circuit. [For inductor in an AC Circuit, see Chapter 31, pg. 1024] Consider the R-L circuit shown in Figure: 1. A current i(t) = I cos(ωt) is driven across the circuit using an AC

More information

21-301, Spring 2019 Homework 5 Solutions

21-301, Spring 2019 Homework 5 Solutions 21-301, Spring 2019 Homewor 5 Solutions Michael Anastos Not to be published without written consent of the author or the instructors of the course. (Please contact me if you find any errors!) Problem 1

More information

Graph fundamentals. Matrices associated with a graph

Graph fundamentals. Matrices associated with a graph Graph fundamentals Matrices associated with a graph Drawing a picture of a graph is one way to represent it. Another type of representation is via a matrix. Let G be a graph with V (G) ={v 1,v,...,v n

More information

Class VIII Chapter 1 Rational Numbers Maths. Exercise 1.1

Class VIII Chapter 1 Rational Numbers Maths. Exercise 1.1 Question 1: Using appropriate properties find: Exercise 1.1 (By commutativity) Page 1 of 11 Question 2: Write the additive inverse of each of the following: (iii) (iv) (v) Additive inverse = Additive inverse

More information

Chapter 18 Electric Currents

Chapter 18 Electric Currents Chapter 18 Electric Currents 1 The Electric Battery Volta discovered that electricity could be created if dissimilar metals were connected by a conductive solution called an electrolyte. This is a simple

More information

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved.

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved. Analytic Trigonometry Copyright Cengage Learning. All rights reserved. 7.1 Trigonometric Identities Copyright Cengage Learning. All rights reserved. Objectives Simplifying Trigonometric Expressions Proving

More information

Physics for Scientists & Engineers 2

Physics for Scientists & Engineers 2 Electromagnetic Oscillations Physics for Scientists & Engineers Spring Semester 005 Lecture 8! We have been working with circuits that have a constant current a current that increases to a constant current

More information

The Generalized Regenerator Location Problem

The Generalized Regenerator Location Problem The Generalized Regenerator Location Problem Si Chen Ivana Ljubić S. Raghavan College of Business and Public Affairs, Murray State University Murray, KY 42071, USA Faculty of Business, Economics, and Statistics,

More information

arxiv: v3 [math.co] 19 Sep 2018

arxiv: v3 [math.co] 19 Sep 2018 Decycling Number of Linear Graphs of Trees arxiv:170101953v3 [mathco] 19 Sep 2018 Jian Wang a, Xirong Xu b, a Department of Mathematics Taiyuan University of Technology, Taiyuan, 030024, PRChina b School

More information

Power lines. Why do birds sitting on a high-voltage power line survive?

Power lines. Why do birds sitting on a high-voltage power line survive? Power lines At large distances, the resistance of power lines becomes significant. To transmit maximum power, is it better to transmit high V, low I or high I, low V? (a) high V, low I (b) low V, high

More information

A. B. C. D. Quadratics Practice Test. Question 1. Select the graph of the quadratic function. g (x ) = 1 3 x 2. 3/8/2018 Print Assignment

A. B. C. D. Quadratics Practice Test. Question 1. Select the graph of the quadratic function. g (x ) = 1 3 x 2. 3/8/2018 Print Assignment Question 1. Select the graph of the quadratic function. g (x ) = 1 3 x 2 C. D. https://my.hrw.com/wwtb2/viewer/printall_vs23.html?umk5tfdnj31tcldd29v4nnzkclztk3w8q6wgvr262aca0a5fsymn1tfv8j1vs4qotwclvofjr8xhs0cldd29v4

More information

Iranian Journal of Mathematical Chemistry, Vol. 4, No.1, March 2013, pp On terminal Wiener indices of kenograms and plerograms

Iranian Journal of Mathematical Chemistry, Vol. 4, No.1, March 2013, pp On terminal Wiener indices of kenograms and plerograms Iranian Journal of Mathematical Chemistry, Vol. 4, No.1, March 013, pp. 77 89 IJMC On terminal Wiener indices of kenograms and plerograms I. GUTMAN a,, B. FURTULA a, J. TOŠOVIĆ a, M. ESSALIH b AND M. EL

More information

Capacitance. A capacitor consists of two conductors that are close but not touching. A capacitor has the ability to store electric charge.

Capacitance. A capacitor consists of two conductors that are close but not touching. A capacitor has the ability to store electric charge. Capacitance A capacitor consists of two conductors that are close but not touching. A capacitor has the ability to store electric charge. a) Parallel-plate capacitor connected to battery. (b) is a circuit

More information

A Note on Perfect Partial Elimination

A Note on Perfect Partial Elimination A Note on Perfect Partial Elimination Matthijs Bomhoff, Walter Kern, and Georg Still University of Twente, Faculty of Electrical Engineering, Mathematics and Computer Science, P.O. Box 217, 7500 AE Enschede,

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION 4.9 Antiderivatives In this section, we will learn about: Antiderivatives and how they are useful in solving certain scientific problems.

More information

Graph G = (V, E). V ={vertices}, E={edges}. V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)}

Graph G = (V, E). V ={vertices}, E={edges}. V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)} Graph Theory Graph G = (V, E). V ={vertices}, E={edges}. a b c h k d g f e V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)} E =16. Digraph D = (V, A). V ={vertices}, E={edges}.

More information

1 Matrices and matrix algebra

1 Matrices and matrix algebra 1 Matrices and matrix algebra 1.1 Examples of matrices A matrix is a rectangular array of numbers and/or variables. For instance 4 2 0 3 1 A = 5 1.2 0.7 x 3 π 3 4 6 27 is a matrix with 3 rows and 5 columns

More information

Electric Currents & Resistance

Electric Currents & Resistance Electric Currents & Resistance Electric Battery A battery produces electricity by transforming chemical energy into electrical energy. The simplest battery contains two plates or rods made of dissimilar

More information

PHYS 2135 Exam II March 20, 2018

PHYS 2135 Exam II March 20, 2018 Exam Total /200 PHYS 2135 Exam II March 20, 2018 Name: Recitation Section: Five multiple choice questions, 8 points each. Choose the best or most nearly correct answer. For questions 6-9, solutions must

More information

arxiv: v1 [math.co] 7 Nov 2018

arxiv: v1 [math.co] 7 Nov 2018 DP-4-COLORABILITY OF TWO CLASSES OF PLANAR GRAPHS LILY CHEN 1 AND RUNRUN LIU 2 AND GEXIN YU 2, AND REN ZHAO 1 AND XIANGQIAN ZHOU 1,4 arxiv:1811.02920v1 [math.co] Nov 2018 1 School of Mathematical Sciences,

More information

KYUNGPOOK NATIONAL UNIVERSITY

KYUNGPOOK NATIONAL UNIVERSITY KYUNGPOOK NATIONAL UNIVERSITY COLLEGE OF IT ENGINEERING CIRCUIT THEORY (ELEC 243-003) Assoc Prof. Kalyana Veluvolu Office: IT1-817 Tel: 053-950-7232 E-mail: veluvolu@ee.knu.ac.kr http://ncbs.knu.ac.kr

More information

Lecture 5: Counting independent sets up to the tree threshold

Lecture 5: Counting independent sets up to the tree threshold CS 7535: Markov Chain Monte Carlo Algorithms Fall 2014 Lecture 5: Counting independent sets up to the tree threshold Lecturer: Richard Brooks and Rakshit Trivedi Date: December 02 In this lecture, we will

More information

Ring Sums, Bridges and Fundamental Sets

Ring Sums, Bridges and Fundamental Sets 1 Ring Sums Definition 1 Given two graphs G 1 = (V 1, E 1 ) and G 2 = (V 2, E 2 ) we define the ring sum G 1 G 2 = (V 1 V 2, (E 1 E 2 ) (E 1 E 2 )) with isolated points dropped. So an edge is in G 1 G

More information

THE HARMONIC INDEX OF UNICYCLIC GRAPHS WITH GIVEN MATCHING NUMBER

THE HARMONIC INDEX OF UNICYCLIC GRAPHS WITH GIVEN MATCHING NUMBER Kragujevac Journal of Mathematics Volume 38(1 (2014, Pages 173 183. THE HARMONIC INDEX OF UNICYCLIC GRAPHS WITH GIVEN MATCHING NUMBER JIAN-BO LV 1, JIANXI LI 1, AND WAI CHEE SHIU 2 Abstract. The harmonic

More information

Sums and Products. a i = a 1. i=1. a i = a i a n. n 1

Sums and Products. a i = a 1. i=1. a i = a i a n. n 1 Sums and Products -27-209 In this section, I ll review the notation for sums and products Addition and multiplication are binary operations: They operate on two numbers at a time If you want to add or

More information

Grade 6 Math Circles. Circuits

Grade 6 Math Circles. Circuits Faculty of Mathematics Waterloo, Ontario NL 3G Electricity Grade 6 Math Circles March 8/9, 04 Circuits Centre for Education in Mathematics and Computing Electricity is a type of energy that deals with

More information

A Graph-Theoretic Characterization of Structural Controllability for Multi-Agent System with Switching Topology

A Graph-Theoretic Characterization of Structural Controllability for Multi-Agent System with Switching Topology Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference Shanghai, P.R. China, December 16-18, 29 FrAIn2.3 A Graph-Theoretic Characterization of Structural Controllability

More information

2 Chandra, et al. 1994, Feige 1993), and in the design of approximation algorithms for some hard combinatorial problems (Dyer et al. 1991, Jerrum & Si

2 Chandra, et al. 1994, Feige 1993), and in the design of approximation algorithms for some hard combinatorial problems (Dyer et al. 1991, Jerrum & Si THE ELECTRICAL RESISTANCE OF A GRAPH CAPTURES ITS COMMUTE AND COVER TIMES Ashok K. Chandra, Prabhakar Raghavan, Walter L. Ruzzo, Roman Smolensky, and Prasoon Tiwari Abstract. View an n-vertex, m-edge undirected

More information

Extremal Kirchhoff index of a class of unicyclic graph

Extremal Kirchhoff index of a class of unicyclic graph South Asian Journal of Mathematics 01, Vol ( 5): 07 1 wwwsajm-onlinecom ISSN 51-15 RESEARCH ARTICLE Extremal Kirchhoff index of a class of unicyclic graph Shubo Chen 1, Fangli Xia 1, Xia Cai, Jianguang

More information

A fixed-point approximation accounting for link interactions in a loss network

A fixed-point approximation accounting for link interactions in a loss network A fixed-point approximation accounting for link interactions in a loss network MR Thompson PK Pollett Department of Mathematics The University of Queensland Abstract This paper is concerned with evaluating

More information

Module 2. DC Circuit. Version 2 EE IIT, Kharagpur

Module 2. DC Circuit. Version 2 EE IIT, Kharagpur Module 2 DC Circuit Lesson 5 Node-voltage analysis of resistive circuit in the context of dc voltages and currents Objectives To provide a powerful but simple circuit analysis tool based on Kirchhoff s

More information

AP PHYSICS C: ELECTRICITY AND MAGNETISM 2015 SCORING GUIDELINES

AP PHYSICS C: ELECTRICITY AND MAGNETISM 2015 SCORING GUIDELINES AP PHYSICS C: ELECTRICITY AND MAGNETISM 2015 SCORING GUIDELINES Question 2 15 points total Distribution of points (a) i. 2 points Using Ohm s law: V = IR For a correct application of Kirchhoff s loop rule

More information

On The Inverse Mean First Passage Matrix Problem And The Inverse M Matrix Problem

On The Inverse Mean First Passage Matrix Problem And The Inverse M Matrix Problem On The Inverse Mean First Passage Matrix Problem And The Inverse M Matrix Problem Michael Neumann Nung Sing Sze Abstract The inverse mean first passage time problem is given a positive matrix M R n,n,

More information

Maintaining Communication Between an Explorer and a Base Station

Maintaining Communication Between an Explorer and a Base Station Maintaining Communication Between an Explorer and a Base Station Miroslaw Dynia, Jaros law Kuty lowski 2, Pawe l Lorek 3, and Friedhelm Meyer auf der Heide 4 DFG Graduate College Automatic Configuration

More information

Linear estimation in models based on a graph

Linear estimation in models based on a graph Linear Algebra and its Applications 302±303 (1999) 223±230 www.elsevier.com/locate/laa Linear estimation in models based on a graph R.B. Bapat * Indian Statistical Institute, New Delhi 110 016, India Received

More information

Sinusoids and Phasors

Sinusoids and Phasors CHAPTER 9 Sinusoids and Phasors We now begins the analysis of circuits in which the voltage or current sources are time-varying. In this chapter, we are particularly interested in sinusoidally time-varying

More information

Nash Equilibrium: Existence & Computation

Nash Equilibrium: Existence & Computation : & IIIS, Tsinghua University zoy.blood@gmail.com March 28, 2016 Overview 1 Fixed-Point Theorems: Kakutani & Brouwer Proof of 2 A Brute Force Solution Lemke Howson Algorithm Overview Fixed-Point Theorems:

More information

PARTITIONING PROBLEMS IN DENSE HYPERGRAPHS

PARTITIONING PROBLEMS IN DENSE HYPERGRAPHS PARTITIONING PROBLEMS IN DENSE HYPERGRAPHS A. CZYGRINOW Abstract. We study the general partitioning problem and the discrepancy problem in dense hypergraphs. Using the regularity lemma [16] and its algorithmic

More information

Lecture 21 Nov 18, 2015

Lecture 21 Nov 18, 2015 CS 388R: Randoized Algoriths Fall 05 Prof. Eric Price Lecture Nov 8, 05 Scribe: Chad Voegele, Arun Sai Overview In the last class, we defined the ters cut sparsifier and spectral sparsifier and introduced

More information

6.207/14.15: Networks Lectures 4, 5 & 6: Linear Dynamics, Markov Chains, Centralities

6.207/14.15: Networks Lectures 4, 5 & 6: Linear Dynamics, Markov Chains, Centralities 6.207/14.15: Networks Lectures 4, 5 & 6: Linear Dynamics, Markov Chains, Centralities 1 Outline Outline Dynamical systems. Linear and Non-linear. Convergence. Linear algebra and Lyapunov functions. Markov

More information

6.842 Randomness and Computation February 24, Lecture 6

6.842 Randomness and Computation February 24, Lecture 6 6.8 Randomness and Computation February, Lecture 6 Lecturer: Ronitt Rubinfeld Scribe: Mutaamba Maasha Outline Random Walks Markov Chains Stationary Distributions Hitting, Cover, Commute times Markov Chains

More information

Q-2 How many coulombs of charge leave the power supply during each second?

Q-2 How many coulombs of charge leave the power supply during each second? Part I - Circuit Elements in Series In Figure 1 at the right circuit elements #1, #2, #3 (in this case light bulbs) are said to be connected "IN SERIES". That is, they are connected in a series one right

More information

The Local Spectra of Regular Line Graphs

The Local Spectra of Regular Line Graphs The Local Spectra of Regular Line Graphs M. A. Fiol a, M. Mitjana b, a Departament de Matemàtica Aplicada IV Universitat Politècnica de Catalunya Barcelona, Spain b Departament de Matemàtica Aplicada I

More information

Deterministic Decentralized Search in Random Graphs

Deterministic Decentralized Search in Random Graphs Deterministic Decentralized Search in Random Graphs Esteban Arcaute 1,, Ning Chen 2,, Ravi Kumar 3, David Liben-Nowell 4,, Mohammad Mahdian 3, Hamid Nazerzadeh 1,, and Ying Xu 1, 1 Stanford University.

More information

MINIMAL VERTEX DEGREE SUM OF A 3-PATH IN PLANE MAPS

MINIMAL VERTEX DEGREE SUM OF A 3-PATH IN PLANE MAPS Discussiones Mathematicae Graph Theory 17 (1997 ) 279 284 MINIMAL VERTEX DEGREE SUM OF A 3-PATH IN PLANE MAPS O.V. Borodin Novosibirsk State University Novosibirsk, 630090, Russia Abstract Let w k be the

More information

An approximation algorithm for the minimum latency set cover problem

An approximation algorithm for the minimum latency set cover problem An approximation algorithm for the minimum latency set cover problem Refael Hassin 1 and Asaf Levin 2 1 Department of Statistics and Operations Research, Tel-Aviv University, Tel-Aviv, Israel. hassin@post.tau.ac.il

More information

Laplacian eigenvalues and optimality: II. The Laplacian of a graph. R. A. Bailey and Peter Cameron

Laplacian eigenvalues and optimality: II. The Laplacian of a graph. R. A. Bailey and Peter Cameron Laplacian eigenvalues and optimality: II. The Laplacian of a graph R. A. Bailey and Peter Cameron London Taught Course Centre, June 2012 The Laplacian of a graph This lecture will be about the Laplacian

More information

4.2 Graphs of Rational Functions

4.2 Graphs of Rational Functions 4.2. Graphs of Rational Functions www.ck12.org 4.2 Graphs of Rational Functions Learning Objectives Compare graphs of inverse variation equations. Graph rational functions. Solve real-world problems using

More information

Slide 1 / 26. Inductance by Bryan Pflueger

Slide 1 / 26. Inductance by Bryan Pflueger Slide 1 / 26 Inductance 2011 by Bryan Pflueger Slide 2 / 26 Mutual Inductance If two coils of wire are placed near each other and have a current passing through them, they will each induce an emf on one

More information

Physical Metaphors for Graphs

Physical Metaphors for Graphs Graphs and Networks Lecture 3 Physical Metaphors for Graphs Daniel A. Spielman October 9, 203 3. Overview We will examine physical metaphors for graphs. We begin with a spring model and then discuss resistor

More information

arxiv: v2 [math.co] 6 Sep 2016

arxiv: v2 [math.co] 6 Sep 2016 Acyclic chromatic index of triangle-free -planar graphs Jijuan Chen Tao Wang Huiqin Zhang Institute of Applied Mathematics Henan University, Kaifeng, 475004, P. R. China arxiv:504.06234v2 [math.co] 6 Sep

More information

Notice that lemma 4 has nothing to do with 3-colorability. To obtain a better result for 3-colorable graphs, we need the following observation.

Notice that lemma 4 has nothing to do with 3-colorability. To obtain a better result for 3-colorable graphs, we need the following observation. COMPSCI 632: Approximation Algorithms November 1, 2017 Lecturer: Debmalya Panigrahi Lecture 18 Scribe: Feng Gui 1 Overview In this lecture, we examine graph coloring algorithms. We first briefly discuss

More information

AC vs. DC Circuits. Constant voltage circuits. The voltage from an outlet is alternating voltage

AC vs. DC Circuits. Constant voltage circuits. The voltage from an outlet is alternating voltage Circuits AC vs. DC Circuits Constant voltage circuits Typically referred to as direct current or DC Computers, logic circuits, and battery operated devices are examples of DC circuits The voltage from

More information

On the Spanning Ratio of Theta-Graphs

On the Spanning Ratio of Theta-Graphs On the Spanning Ratio of Theta-Graphs Prosenjit Bose, André van Renssen, and Sander Verdonschot School of Computer Science, Carleton University, Ottawa, Canada. jit@scs.carleton.ca, andre@cg.scs.carleton.ca,

More information

Forward-Active Terminal Currents

Forward-Active Terminal Currents Forward-Active Terminal Currents Collector current: (electron diffusion current density) x (emitter area) diff J n AE qd n n po A E V E V th ------------------------------ e W (why minus sign? is by def.

More information

INTRODUCTION TO SIGMA NOTATION

INTRODUCTION TO SIGMA NOTATION INTRODUCTION TO SIGMA NOTATION The notation itself Sigma notation is a way of writing a sum of many terms, in a concise form A sum in sigma notation looks something like this: 3k The Σ sigma) indicates

More information

Complex Numbers. 1, and are operated with as if they are polynomials in i.

Complex Numbers. 1, and are operated with as if they are polynomials in i. Lesson 6-9 Complex Numbers BIG IDEA Complex numbers are numbers of the form a + bi, where i = 1, and are operated with as if they are polynomials in i. Vocabulary complex number real part, imaginary part

More information

Exercise 2: Millman s Theorem

Exercise 2: Millman s Theorem Exercise 2: Millman s Theorem EXERCISE OBJECTIVE When you have completed this exercise, you will be able to solve a circuit by applying Millman s theorem. You will verify your results by comparing calculated

More information

2 Analogies between addition and multiplication

2 Analogies between addition and multiplication Problem Analysis The problem Start out with 99% water. Some of the water evaporates, end up with 98% water. How much of the water evaporates? Guesses Solution: Guesses: Not %. 2%. 5%. Not 00%. 3%..0%..5%.

More information

11 The Max-Product Algorithm

11 The Max-Product Algorithm Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms for Inference Fall 2014 11 The Max-Product Algorithm In the previous lecture, we introduced

More information

Connectedness of Random Walk Segmentation

Connectedness of Random Walk Segmentation Connectedness of Random Walk Segmentation Ming-Ming Cheng and Guo-Xin Zhang TNList, Tsinghua University, Beijing, China. Abstract Connectedness of random walk segmentation is examined, and novel properties

More information

arxiv: v1 [cs.dm] 12 Jun 2016

arxiv: v1 [cs.dm] 12 Jun 2016 A Simple Extension of Dirac s Theorem on Hamiltonicity Yasemin Büyükçolak a,, Didem Gözüpek b, Sibel Özkana, Mordechai Shalom c,d,1 a Department of Mathematics, Gebze Technical University, Kocaeli, Turkey

More information

Errata List for the Second Printing

Errata List for the Second Printing Errata List for the Second Printing The Second Revised Edition has had two printings, and it also exists on the web. The second printing can be distinguished from the first printing by the fact that on

More information

LABORATORY 4 ELECTRIC CIRCUITS I. Objectives

LABORATORY 4 ELECTRIC CIRCUITS I. Objectives LABORATORY 4 ELECTRIC CIRCUITS I Objectives to be able to discuss potential difference and current in a circuit in terms of electric field, work per unit charge and motion of charges to understand that

More information

UNIT-I ECONOMIC OPERATION OF POWER SYSTEM-1

UNIT-I ECONOMIC OPERATION OF POWER SYSTEM-1 UNIT-I ECONOMIC OPERATION OF POWER SYSTEM-1 1.1 HEAT RATE CURVE: The heat rate characteristics obtained from the plot of the net heat rate in Btu/Wh or cal/wh versus power output in W is shown in fig.1

More information

On the Complexity of the Minimum Independent Set Partition Problem

On the Complexity of the Minimum Independent Set Partition Problem On the Complexity of the Minimum Independent Set Partition Problem T-H. Hubert Chan 1, Charalampos Papamanthou 2, and Zhichao Zhao 1 1 Department of Computer Science the University of Hong Kong {hubert,zczhao}@cs.hku.hk

More information

Deterministic identity testing for sum of read-once oblivious arithmetic branching programs

Deterministic identity testing for sum of read-once oblivious arithmetic branching programs Deterministic identity testing for sum of read-once oblivious arithmetic branching programs Rohit Gurjar, Arpita Korwar, Nitin Saxena, IIT Kanpur Thomas Thierauf Aalen University June 18, 2015 Gurjar,

More information

Scattering Parameters

Scattering Parameters Berkeley Scattering Parameters Prof. Ali M. Niknejad U.C. Berkeley Copyright c 2016 by Ali M. Niknejad September 7, 2017 1 / 57 Scattering Parameters 2 / 57 Scattering Matrix Voltages and currents are

More information

Name Class Date. t = = 10m. n + 19 = = 2f + 9

Name Class Date. t = = 10m. n + 19 = = 2f + 9 1-4 Reteaching Solving Equations To solve an equation that contains a variable, find all of the values of the variable that make the equation true. Use the equality properties of real numbers and inverse

More information

ALTERNATING KNOT DIAGRAMS, EULER CIRCUITS AND THE INTERLACE POLYNOMIAL

ALTERNATING KNOT DIAGRAMS, EULER CIRCUITS AND THE INTERLACE POLYNOMIAL ALTERNATING KNOT DIAGRAMS, EULER CIRCUITS AND THE INTERLACE POLYNOMIAL P. N. BALISTER, B. BOLLOBÁS, O. M. RIORDAN AND A. D. SCOTT Abstract. We show that two classical theorems in graph theory and a simple

More information

Increasing the Span of Stars

Increasing the Span of Stars Increasing the Span of Stars Ning Chen Roee Engelberg C. Thach Nguyen Prasad Raghavendra Atri Rudra Gynanit Singh Department of Computer Science and Engineering, University of Washington, Seattle, WA.

More information

arxiv: v2 [math.fa] 5 Oct 2017

arxiv: v2 [math.fa] 5 Oct 2017 Construction of Local Regular Dirichlet Form on the Sierpińsi Gaset using Γ-Convergence Meng Yang arxiv:70604998v [mathfa] Oct 07 Abstract We construct a self-similar local regular Dirichlet form on the

More information

Sect Properties of Real Numbers and Simplifying Expressions

Sect Properties of Real Numbers and Simplifying Expressions Sect 1.7 - Properties of Real Numbers and Simplifying Expressions Concept #1 Commutative Properties of Real Numbers Ex. 1a 9.34 + 2.5 Ex. 1b 2.5 + ( 9.34) Ex. 1c 6.3(4.2) Ex. 1d 4.2( 6.3) a) 9.34 + 2.5

More information