CEE 370 Environmental Engineering Principles

Size: px
Start display at page:

Download "CEE 370 Environmental Engineering Principles"

Transcription

1 Updated: 19 November 2015 Print version CEE 370 Environmental Engineering Principles Lecture #32 Wastewater Treatment III: Process Modeling & Residuals Reading M&Z: Chapter 9 Reading: Davis & Cornwall, Chapt 6-1 to 6-8 Reading: Davis & Masten, Chapter to David Reckhow CEE 370 L#32 1

2 Updated: 19 November 2015 Print version CEE 370 Environmental Engineering Principles Lecture #31 Wastewater Treatment II: Growth and Process Modeling Reading: Davis & Cornwall, Chapt 4-8 to 4-10 Reading: Davis & Masten, Chapter 11-8 to David Reckhow CEE 370 L#32 2

3 Microbial Biomass in a CMFR General Reactor mass balance dm A n (C Q ) (C Q ) r V i1 Ai i in n j1 Aj j out A But with CMFRs we have a single outlet concentration (C A ) and usually a single inlet flow as well C A0 Q 0 C A V C A Q 0 David Reckhow CEE 370 L#32 3

4 Batch Microbial Growth General Reactor mass balance dm A 0 0 n n (C Ai Q ) i in (C Aj Q ) j out - r AV i1 j1 Batch reactors are usually filled, allowed to react, then emptied for the next batch Because there isn t any flow in a batch reactor: And: 1 V dc dm A A - r - r A A k For 1 st order biomass growth C A David Reckhow CEE 370 L#32 4 V

5 Batch Microbial Growth Observed behavior tationary Covered in lecture #17 Lag Exponential Growth Death Time David Reckhow CEE 370 L#32 5

6 Exponential Growth model D&M Text d gr µ Covered in lecture #17 N t r dn/ where, concentration of microorganisms at time t t time µ proportionality constant or specific growth rate, [time 1 ] d/ microbial growth rate, [mass per volume-time] David Reckhow CEE 370 L#32 6

7 Exp. Growth (cont.) Covered in lecture #17 d gr µ or d gr µ ln o µ t µt o e David Reckhow CEE 370 L#32 7

8 ubstrate-limited Growth Also known as resource-limited growth THE MONOD MODEL µ µ max and K + d K µ µ max gr + where, µ max maximum specific growth rate, [day -1 ] concentration of limiting substrate, [mg/l] K s Monod or half-velocity constant, or half saturation coefficient, [mg/l] David Reckhow CEE 370 L#32 8

9 Monod Kinetics Covered in lecture #17 0.5*µ m K David Reckhow CEE 370 L#32 9

10 ubstrate Utilization & Yield Related to growth by Y, the yield coefficient Mass of cells produced per mass of substrate utilized Y d d Just pertains to cell growth H&H, Fig 11-38, pp.406 d gr Y d David Reckhow CEE 370 L#32 10

11 Microbial Growth d gr Y d d Monod kinetics in a chemostat (batch reactor) µ K µ max gr + Where ubstitute for d & Divide by Y d/ r su actual substrate utilization rate k maximum substrate utilization rate μ max /Y concentration of substrate ( e in H&H) K half-saturation constant Y cell yield d/d d µ max Y K + r su k K + e e David Reckhow CEE 370 L#32 11

12 Death Bacterial cells also die at a characteristic first order rate with a rate constant, k d d k d This occurs at all times, and is independent of the substrate concentration David Reckhow CEE 370 L#32 12

13 Overall model: chemostat Combining growth and death, we have: d net d µ max gr K + k And in terms of substrate utilization + d d d ee: M&Z equ 9.3 Y d gr d d net Y d k d David Reckhow CEE 370 L#32 13

14 Activated ludge Flow chematic Conventional o Q o Influent Aeration Basin V, ettling Tank e Effluent Q r r Return activated sludge Q w r Waste activated 14 sludge David Reckhow CEE 370 L#32

15 Efficiency & HRT Efficiency of BOD removal E ( ) Hydraulic Retention Time, HRT (Aeration Time) ame as retention time in DWT (t R ) Actual HRT is a bit different Isn t used as much in design o o 100% θ V Q θ act Q V + Q R David Reckhow CEE 370 L#32 15

16 RT solids retention time & R RT: Primary operation and design parameter How long does biomass stay in system θ c V V Q ( Q Qw ) e + Qw r w r ee: M&Z equ 9.10 Typically equals 5-15 days Recycle Ratio Values of are typical R Qr Q David Reckhow CEE 370 L#32 16

17 F:M Ratio and volumetric loading Food-to-Microorganism Ratio (F/M) Typical values are in complete mixed A BOD volumetric Loading Loading Typically lb BOD/day/1000ft 3 tank volume F M Q V o Q V o F M M&Z equ 9.16 Q BOD V David Reckhow CEE 370 L#32 17

18 Act. ludge: Biomass Model teady tate mass balance on biomass V d d 0 Q o Qe e Qw r + V µ max kd K + Incorporating the chemostat model gets: batch d net d gr + d From chemostat model d V d 0 Q o Qe e Qw r + V µ max kd K + And simplifying Q o + Q e e + Q w r V µ max K + k Finally, we recognize that the amount of solids entering with the WW (i.e., o ) and leaving in the treated effluent (i.e., e ) is quite small and can be neglected d David Reckhow CEE 370 L#32 18

19 Biomass Model II o it becomes Q And rearranging 1 θ c w r V µ max kd K + Qw V r µ max K + k d Earlier equation for RT θ c V V ( Q Qw ) e + Qw r Qw r David Reckhow CEE 370 L#32 19

20 Act. ludge: ubstrate Model teady state mass balance on substrate V d 0 Q ubstituting and noting that Q e Q-Q w Q o Q And further simplifying Q o Q w Q Q e + Q w w V + V Y µ max d ( ) V Y K + o µ max batch K + d µ max Y K + From chemostat model David Reckhow CEE 370 L#32 20

21 Merging the biomass & substrate models If we divide the previous equation by V and Q ( ) o V µ max Y K + Q ( ) V Y K + o µ max Multiply both sides by Y YQ( o ) µ max V K + Now insert the LH term into the earlier equation based on biomass 1 θ c Qw V r YQ o V ( ) k d M&Z equ θ c Q V w r µ max M&Z equ 9.9 K + k d David Reckhow CEE 370 L#32 21

22 Combined model II Now recognize that Q/V is the reciprocal of the HRT 1 Y ( ) 1 θ θ c o k d David Reckhow CEE 370 L#32 22

23 Question All else being equal, as RT goes up: 1. ettleability goes down 2. F/M goes down 3. Waste sludge return ratio must go down 4. Endogenous respiration becomes less important 5. ludge yield increases David Reckhow CEE 370 L#32 23

24 Aeration: Loadings Food-to-Microorganism Ratio (F/M) F M Q BOD V ludge Age or mean cell residence time (ɵ c ) θ c ( Q ) + ( Q ) W e V Q e W V W W Where QWW flow Vvolume of aeration tank MLVmixed liquor volatile suspended solids (biomass concentration) e V e suspended solids in wastewater effluent W V w suspended solids in waste sludge Q w flow of waste sludge is sometimes used instead of V David Reckhow CEE 370 L#32 24

25 Operating Criteria Loading, biomass, retention time, etc H&H, Table11-4, pp.395 David Reckhow CEE 370 L#32 25

26 Activated ludge Mixed liquor Return Activated sludge 1. urface aerators 2. Bubble diffusers David Reckhow CEE 370 L#32 26

27 Updated: 19 November 2015 Print version CEE 370 Environmental Engineering Principles Lecture #32 Wastewater Treatment III: Process Modeling & Residuals Reading: Davis & Cornwall, Chapt 6-1 to 6-8 Reading: Davis & Masten, Chapter to David Reckhow CEE 370 L#32 27

28 Anaerobic Digester Problem Anaerobic digesters are commonly used in wastewater treatment. The biological process produces both carbon dioxide and methane gases. A laboratory worker plans to make a "synthetic" digester gas. There is currently 2 L of methane gas at 1.5 atm and 1 L of carbon dioxide gas at 1 atm in the lab. If these two samples are mixed in a 4 L tank, what will be the partial pressures of the individual gases? The total pressure? Example 4.4 from Ray David Reckhow CEE 370 L#32 28

29 olution to Anaerobic Digester Problem First, we must find the partial pressures of the individual gases using the ideal gas law: 1 P P V V 2 P1 V 1 nrt P2 V2 or 2 1 For methane gas For carbon dioxide gas: P atm P 2 1 atm 2 L 4 L 1 L 4 L 0.75 atm 0.25 atm And the total is: P t P CH + P CO 1 atm 4 2 David Reckhow CEE 370 L#32 29

30 RTsolids retention time olids Balance RT V Q w u mass of organisms in tank mass of organisms removed per day Q 0 0 Aeration Tank V, econdary Clarifier Q 0 -Q w e Q R Return Activated ludge (RA) u ludge HRT V Q Q w Waste Activated ludge (WA) David Reckhow CEE 370 L#32 30

31 olids Mass Balance We will cover this in CEE 371 Consider aeration tank and clarifier together Biomass in + biomass produced due to growth biomass out d Q V 0 + ( Q Qw ) e Qw w Now using the combined growth equation without limitation to carrying capacity: d µ max K s + k d Combining and assuming 0 and e to be negligible: µ max K s + Qw V David Reckhow CEE 370 L#32 31 w + k d

32 ubstrate Mass Balance We cover this in detail in CEE 471 Consider aeration tank and clarifier together ubstrate in + substrate consumed by biomass substrate out Q d + V 0 Now using the combined substrate utilization equation without limitation to carrying capacity: Combining and rearranging: 0 0 d µ max K 1 µ Y max s + ( Q Q ) Q Q0Y V w + ( ) David Reckhow CEE 370 L#32 32 K s + 0 k w d Note that effluent and waste sludge substrate concentrations are considered the same

33 Combined Mass Balances We cover this in CEE 471 In summary the solids and substrate mass balance equations are: µ Qw µ max w max Q0Y + k ( ) d 0 K s + V K s + V These can be easily combined (left hand terms are the same): 1 Θ c Qw V w Q0Y V 0 ( ) kd The mean cell residence time, or sludge age David Reckhow CEE 370 L#32 33

34 ludge Treatment Depends on type of sludge Typical process train Thickening or dewatering Conditioning tabilization (usually for wastewater) Disposal Nonmechanical methods Lagoons and-drying beds Freeze treatment Mechanical methods Centrifugation Vacuum filtration Belt filter press Plate filters David Reckhow CEE 370 L#32 34

35 Centrifuge David Reckhow CEE 370 L#32 35

36 Vacuum Filter David Reckhow CEE 370 L#32 36

37 Belt Filter Press David Reckhow CEE 370 L#32 37

38 To next lecture David Reckhow CEE 370 L#32 38

CEE 370 Environmental Engineering Principles

CEE 370 Environmental Engineering Principles Updated: 29 September 2015 Print version EE 370 Environmental Engineering Principles Lecture #9 Material Balances I Reading: Mihelcic & Zimmerman, hapter 4 Davis & Masten, hapter 4 David Reckhow EE 370

More information

Stationary phase. Time

Stationary phase. Time An introduction to modeling of bioreactors Bengt Carlsson Dept of Systems and Control Information Technology Uppsala University August 19, 2002 Abstract This material is made for the course Wastewater

More information

Inflow Qin, Sin. S, X Outflow Qout, S, X. Volume V

Inflow Qin, Sin. S, X Outflow Qout, S, X. Volume V UPPSALA UNIVERSITET AVDELNINGEN FÖR SYSTEMTEKNIK BC,PSA 9809, Last rev August 17, 2000 SIMULATION OF SIMPLE BIOREACTORS Computer laboratory work in Wastewater Treatment W4 1. Microbial growth in a "Monode"

More information

CEE 370 Environmental Engineering Principles

CEE 370 Environmental Engineering Principles Updated: 7 October 2015 Print version EE 70 Environmental Engineering Principles Lecture #11 Ecosystems I: Water & Element ycling, Ecological Principles Reading: Mihelcic & Zimmerman, hapter 4 Davis &

More information

CEE 160L Introduction to Environmental Engineering and Science. Lecture 5 and 6 Mass Balances

CEE 160L Introduction to Environmental Engineering and Science. Lecture 5 and 6 Mass Balances CEE 160L Introduction to Environmental Engineering and Science Lecture 5 and 6 Mass Balances Mass Balance (MB) Very important tool Track pollutants in the environment Reactor/treatment design Basis: Law

More information

Chapter 6: Solid-Liquid Separation in WWTPs. Raúl Muñoz Pedro García Encina

Chapter 6: Solid-Liquid Separation in WWTPs. Raúl Muñoz Pedro García Encina Chapter 6: Solid-Liquid Separation in WWTPs Raúl Muñoz Pedro García Encina 1 Introduction to Solid-Liquid Separation 2 Introduction: Separation Methods Solid/liquid separation technologies Ensure good

More information

Comments on Productivity of Batch & Continuous Bioreactors (Chapter 9)

Comments on Productivity of Batch & Continuous Bioreactors (Chapter 9) Comments on Productivity of Batch & Continuous Bioreactors (Chapter 9) Topics Definition of productivity Comparison of productivity of batch vs flowing systems Review Batch Reactor Cell Balances (constant

More information

BAE 820 Physical Principles of Environmental Systems

BAE 820 Physical Principles of Environmental Systems BAE 820 Physical Principles of Environmental Systems Type of reactors Dr. Zifei Liu Ideal reactors A reactor is an apparatus in which chemical, biological, and physical processes (reactions) proceed intentionally,

More information

MIDTERM EXAMINATION Chemical Engineering 140 Fall 2002 Professors Jay D. Keasling and Jeffrey A. Reimer. Your SID #:

MIDTERM EXAMINATION Chemical Engineering 140 Fall 2002 Professors Jay D. Keasling and Jeffrey A. Reimer. Your SID #: MIDTERM EXAMINATION Chemical Engineering 140 Fall 2002 Professors Jay D. Keasling and Jeffrey A. Reimer Your SID #: DO NOT PRINT YOUR NAME ANYWHERE ON THIS EXAM!! INSTRUCTIONS Read over the whole exam

More information

CEE 772: Instrumental Methods in Environmental Analysis

CEE 772: Instrumental Methods in Environmental Analysis Updated: 10 December 2014 Print version CEE 772: Instrumental Methods in Environmental Analysis Lecture #22 Mass Spectrometry: Chemical Ionization (Skoog,) (Harris, Chapt.) Mercer/Goodwill CEE 772 #22

More information

CEE 370 Environmental Engineering Principles

CEE 370 Environmental Engineering Principles Updated: 29 September 2015 Print version CEE 370 Environmental Engineering Principles Lecture #7 Environmental Chemistry V: Thermodynamics, Henry s Law, Acids-bases II Reading: Mihelcic & Zimmerman, Chapter

More information

IN THE DESCRIPTION OF

IN THE DESCRIPTION OF Pure & Appi. Chem., Vol.55, No.6, ppjo35 IO4O, 1983. Printed in Great Britain. INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY APPLIED CHEMISTRY DIVISION COMMISSION ON WATER QUALITY* in conjunction with

More information

ENV 4001: ENVIRONMENTAL SYSTEMS ENGINEERING. University of South Florida Civil & Environmental Eng.

ENV 4001: ENVIRONMENTAL SYSTEMS ENGINEERING. University of South Florida Civil & Environmental Eng. ENV 4001: ENVIRONMENTAL SYSTEMS ENGINEERING Fall 2016 Quiz #1 Wednesday, September 28 University of South Florida Civil & Environmental Eng. Prof. J.A. Cunningham Instructions: 1. You may read these instructions,

More information

CEE 370 Environmental Engineering Principles

CEE 370 Environmental Engineering Principles Updated: 29 September 2015 Print version CEE 370 Environmental Engineering Principles Lecture #7 Environmental Chemistry V: Thermodynamics, Henry s Law, Acidsbases II Reading: Mihelcic & Zimmerman, Chapter

More information

Elementary Reactions

Elementary Reactions Updated: 3 September 2013 Print version Lecture #5 Kinetics and Thermodynamics: Fundamentals of Kinetics and Analysis of Kinetic Data (Benjamin, 1.6) (Stumm & Morgan, Chapt.2 ) (pp.16-20; 69-81) David

More information

Control Introduction. Gustaf Olsson IEA Lund University.

Control Introduction. Gustaf Olsson IEA Lund University. Control Introduction Gustaf Olsson IEA Lund University Gustaf.Olsson@iea.lth.se Lecture 3 Dec Nonlinear and linear systems Aeration, Growth rate, DO saturation Feedback control Cascade control Manipulated

More information

CEE 370 Environmental Engineering Principles. Equilibrium Chemistry

CEE 370 Environmental Engineering Principles. Equilibrium Chemistry Updated: 9 September 015 Print version CEE 370 Environmental Engineering Principles Lecture #6 Environmental Chemistry IV: Thermodynamics, Equilibria, Acids-bases I Reading: Mihelcic & Zimmerman, Chapter

More information

ENV 4001: ENVIRONMENTAL SYSTEMS ENGINEERING. University of South Florida Civil & Environmental Eng.

ENV 4001: ENVIRONMENTAL SYSTEMS ENGINEERING. University of South Florida Civil & Environmental Eng. ENV 4001: ENVIRONMENTAL SYSTEMS ENGINEERING Fall 2018 Quiz #3 Wednesday, November 28 University of South Florida Civil & Environmental Eng. Prof. J.A. Cunningham Instructions: 1. You may read these instructions,

More information

Effects of nanomaterial disposal on wastewater treatment microbial communities and toxicity implications

Effects of nanomaterial disposal on wastewater treatment microbial communities and toxicity implications 2013 Sustainable Nanotechnology Organization Conference Effects of nanomaterial disposal on wastewater treatment microbial communities and toxicity implications Yanjun Ma Jacob Metch, Eric Vejerano, Amy

More information

A First Course on Kinetics and Reaction Engineering Unit 4. Reaction Rates and Temperature Effects

A First Course on Kinetics and Reaction Engineering Unit 4. Reaction Rates and Temperature Effects Unit 4. Reaction Rates and Temperature Effects Overview This course is divided into four parts, I through IV. Part II is focused upon modeling the rates of chemical reactions. Unit 4 is the first unit

More information

Lecture #46 Redox Chemistry: Basic Calculations

Lecture #46 Redox Chemistry: Basic Calculations Updated: 3 April 08 Print version Lecture #46 Redox Chemistry: Basic Calculations (Stumm & Morgan, Chapt.8 ) Benjamin; Chapter 9 David Reckhow CEE 680 #47 Fe and NOM increasing Acid/base, complexation

More information

CEE 371 Water and Wastewater Systems

CEE 371 Water and Wastewater Systems Updated: 22 November 2009 CEE 371 Water and Wastewater Systems Print version Lecture #23 Drinking Water Treatment: Ion Exchange, Adsorption & Arsenic Reading: Chapter 7, pp.262-266 David Reckhow CEE 371

More information

Process design decisions and project economics Dr. V. S. Moholkar Department of chemical engineering Indian Institute of Technology, Guwahati

Process design decisions and project economics Dr. V. S. Moholkar Department of chemical engineering Indian Institute of Technology, Guwahati Process design decisions and project economics Dr. V. S. Moholkar Department of chemical engineering Indian Institute of Technology, Guwahati Module - 02 Flowsheet Synthesis (Conceptual Design of a Chemical

More information

Comments Transient Material Balances

Comments Transient Material Balances Comments Transient aterial Balances Description of cell mass growth Qualitative ubstrates Cells extracelluar Products more Cells Quantitative X P nx i i toichiometry (example, aerobic) CHmO n a O b NH

More information

THINK FLUID DYNAMIX CFD Simulation of Clarifiers. THINK Fluid Dynamix

THINK FLUID DYNAMIX CFD Simulation of Clarifiers. THINK Fluid Dynamix THINK FLUID DYNAMIX CFD Simulation of Clarifiers Provided by: THINK Fluid Dynamix Am Pestalozziring 21 D-91058 Erlangen (Germany) Tel. +49 (0)9131 69098-00 http://www.think-fd.com CFD ENGINEERING & CONSULTING

More information

Modeling Microbial Populations in the Chemostat

Modeling Microbial Populations in the Chemostat Modeling Microbial Populations in the Chemostat Hal Smith A R I Z O N A S T A T E U N I V E R S I T Y H.L. Smith (ASU) Modeling Microbial Populations in the Chemostat MBI, June 3, 204 / 34 Outline Why

More information

Lecture #44 Precipitation and Dissolution: Application to Mineral Formation (Stumm & Morgan, Chapt.7) Benjamin; Chapter

Lecture #44 Precipitation and Dissolution: Application to Mineral Formation (Stumm & Morgan, Chapt.7) Benjamin; Chapter Updated: 22 November 2013 Print version Lecture #44 Precipitation and Dissolution: Application to Mineral Formation (Stumm & Morgan, Chapt.7) Benjamin; Chapter 8.7-8.15 David Reckhow CEE 680 #44 1 Mg phases

More information

Development of Dynamic Models. Chapter 2. Illustrative Example: A Blending Process

Development of Dynamic Models. Chapter 2. Illustrative Example: A Blending Process Development of Dynamic Models Illustrative Example: A Blending Process An unsteady-state mass balance for the blending system: rate of accumulation rate of rate of = of mass in the tank mass in mass out

More information

APPLICATION OF METAKAOLIN GEOPOLYMER FOR AMMONIUM REMOVAL IN SMALL-SCALE WASTEWATER TREATMENT SYSTEMS

APPLICATION OF METAKAOLIN GEOPOLYMER FOR AMMONIUM REMOVAL IN SMALL-SCALE WASTEWATER TREATMENT SYSTEMS APPLICATION OF METAKAOLIN GEOPOLYMER FOR AMMONIUM REMOVAL IN SMALL-SCALE WASTEWATER TREATMENT SYSTEMS Tero Luukkonen, Kateřina VĕžnÍková, Emma-Tuulia Tolonen, Hanna Runtti, Juho Yliniemi, Tao Hu, Kimmo

More information

CFD for Wastewater Case Studies: Sedimentation, Mixing and Disinfection

CFD for Wastewater Case Studies: Sedimentation, Mixing and Disinfection CFD for Wastewater Case Studies: Sedimentation, Mixing and Disinfection Randal Samstag Civil and Sanitary Engineer Ed Wicklein Carollo Engineers Joel Ducoste North Carolina State University Stephen Saunders

More information

SUMMARY OF KEY WASTEWATER COLLECTION MATH FORMULAS. 1. Mass, Lbs/Day = (Vol, MGD) x ( Conc., mg/l) x ( 8.34 lbs/gal)

SUMMARY OF KEY WASTEWATER COLLECTION MATH FORMULAS. 1. Mass, Lbs/Day = (Vol, MGD) x ( Conc., mg/l) x ( 8.34 lbs/gal) COLLECTION MATH FORMULAS General: 1. Mass, Lbs/Day = (Vol, MGD) x ( Conc., mg/l) x ( 8.34 lbs/gal) (BOD)/(SS), Lbs/Day = (Vol, MGD) x ( SS, mg/l) x ( 8.34 lbs/gal) 2. Dosage, mg/l = ( Feed, lbs/day ) (

More information

MATHEMATICAL MODELING OF METHANOGENESIS

MATHEMATICAL MODELING OF METHANOGENESIS U.P.B. Sci. Bull., Series B, Vol. 76, Iss. 2, 2014 ISSN 1454 2331 MATHEMATICAL MODELING OF METHANOGENESIS Iuliana ROGOVEANU RADOSAVLEVICI 1, Dan Niculae ROBESCU 2 The mathematical modeling of a process,

More information

PROJECT 3A. WATER DISINFECTION

PROJECT 3A. WATER DISINFECTION PROJECT 3A. WATER DISINFECTION 1 1. Disinfection Review Basic concepts - Disinfection: selective kill of disease-causing organisms Sterilization: kill of all organisms disinfection sterilization - Common

More information

CEE 772 Lecture #27 12/10/2014. CEE 772: Instrumental Methods in Environmental Analysis

CEE 772 Lecture #27 12/10/2014. CEE 772: Instrumental Methods in Environmental Analysis Updated: 10 December 2014 Print version CEE 772: Instrumental Methods in Environmental Analysis Lecture #21 Mass Spectrometry: Mass Filters & Spectrometers (Skoog, Chapt. 20, pp.511 524) (Harris, Chapt.

More information

CEE 772: Instrumental Methods in Environmental Analysis

CEE 772: Instrumental Methods in Environmental Analysis Updated: 10 December 2014 Print version CEE 772: Instrumental Methods in Environmental Analysis Lecture #21 Mass Spectrometry: Mass Filters & Spectrometers (Skoog, Chapt. 20, pp.511-524) (Harris, Chapt.

More information

SEDIMENTATION INTRODUCTION

SEDIMENTATION INTRODUCTION SEDIMENTATION INTRODUCTION Sedimentation is removal of particulate materials suspended in water by quiescent settling due to gravity Commonly used unit operation in water and wastewater treatment plants

More information

Controlling the nitrite:ammonium ratio in a SHARON reactor in view of its coupling with an Anammox process

Controlling the nitrite:ammonium ratio in a SHARON reactor in view of its coupling with an Anammox process Controlling the nitrite:ammonium ratio in a SHARON reactor in view of its coupling with an Anammox process E.I.P. Volcke*, M.C.M. van Loosdrecht** and P.A. Vanrolleghem* *BIOMATH, Department of Applied

More information

SETTLING VELOCITY OF PARTICLES

SETTLING VELOCITY OF PARTICLES SETTLING VELOCITY OF PARTICLES Equation for one-dimensional motion of particle through fluid Expression for acceleration of a particle settling in a fluid: m du dt = F e F b F D Where, F e = ma e acceleration

More information

What do I need to know to pass an Advanced Industrial Wastewater License Test?

What do I need to know to pass an Advanced Industrial Wastewater License Test? What do I need to know to pass an Advanced Industrial Wastewater License Test? [Activated sludge, metals finishing, sedimentation/clarification with chemicals, DAF] All of the Basic Industrial Wastewater

More information

Introduction. Growth and product formation in reactors. Downstream processing. Fermentation technology. Typical fermentation

Introduction. Growth and product formation in reactors. Downstream processing. Fermentation technology. Typical fermentation Growth and producormation in reactors Introduction Typical fermentation product classes volume ton/year Introduction Batch, chemostat and fed batch Microbial competition / selection Mixed and mixed culture

More information

4 CONTROL OF ACTIVATED SLUDGE WASTEWATER SYSTEM

4 CONTROL OF ACTIVATED SLUDGE WASTEWATER SYSTEM Progress in Process Tomography and Instrumentation System: Series 2 57 4 CONTROL OF ACTIVATED SLUDGE WASTEWATER SYSTEM Norhaliza Abdul Wahab Reza Katebi Mohd Fuaad Rahmat Aznah Md Noor 4.1 INTRODUCTION

More information

1. Introductory Material

1. Introductory Material CHEE 321: Chemical Reaction Engineering 1. Introductory Material 1b. The General Mole Balance Equation (GMBE) and Ideal Reactors (Fogler Chapter 1) Recap: Module 1a System with Rxn: use mole balances Input

More information

Process Control and Instrumentation Prof. A. K. Jana Department of Chemical Engineering Indian Institute of Technology, Kharagpur

Process Control and Instrumentation Prof. A. K. Jana Department of Chemical Engineering Indian Institute of Technology, Kharagpur Process Control and Instrumentation Prof. A. K. Jana Department of Chemical Engineering Indian Institute of Technology, Kharagpur Lecture - 10 Dynamic Behavior of Chemical Processes (Contd.) (Refer Slide

More information

DRINKING WATER - LAB EXPERIMENTS LAB EXPERIMENTS. Adsorption

DRINKING WATER - LAB EXPERIMENTS LAB EXPERIMENTS. Adsorption DRINKING WATER - LAB EXPERIMENTS LAB EXPERIMENTS Adsorption adsorption lab experiments Framework This module explains the lab experiments on adsorption. Contents This module has the following contents:

More information

CEE 371 Water and Wastewater Systems

CEE 371 Water and Wastewater Systems Updated: 21 November 2009 CEE 371 Water and Wastewater Systems Print version Lecture #14 Drinking Water Treatment: Chlorination Reading: Chapter 7, pp.233-238, 259-262 David Reckhow CEE 371 L#14 1 Forms

More information

Water Pollution Control: Physical Methods. AWPPCE RPI Fall 2013

Water Pollution Control: Physical Methods. AWPPCE RPI Fall 2013 Water Pollution Control: Physical Methods AWPPCE RPI Fall 2013 Water Pollution Control Processes Water and Waste Water Treatment are usually carried out in specially designed vessels (reactors) under controlled

More information

Web Solved Problems Web Example SP-8.1 Hydrodealkylation of Mesitylene in a PFR CH 3 H 2. m-xylene can also undergo hydrodealkylation to form toluene:

Web Solved Problems Web Example SP-8.1 Hydrodealkylation of Mesitylene in a PFR CH 3 H 2. m-xylene can also undergo hydrodealkylation to form toluene: Chapter 8 Multiple Reactions W8-1 Web Solved Problems Web Example SP-8.1 Hydrodealkylation of Mesitylene in a PFR The production of m-xylene by the hydrodealkylation of mesitylene over a Houdry Detrol

More information

7/26/2018 3:17 PM Approved (Changed Course) WWTR 122 Course Outline as of Fall 2017

7/26/2018 3:17 PM Approved (Changed Course) WWTR 122 Course Outline as of Fall 2017 7/26/2018 3:17 PM Approved (Changed Course) WWTR 122 Course Outline as of Fall 2017 CATALOG INFORMATION Dept and Nbr: WWTR 122 Title: CHEM FOR WATER TECH Full Title: Chemistry for Water and Wastewater

More information

CHAPTER 2. Stoichiometry a nd and Bacterial Energetics

CHAPTER 2. Stoichiometry a nd and Bacterial Energetics CHAPTER 2. Stoichiometry and Bacterial Energetics 2. Stoichiometry and Bacterial Energetics Mass balance: the important concept in the engineering design of system for biological treatment Determine the

More information

Kinetics of Microbial Growth

Kinetics of Microbial Growth Kinetics of Microbial Growth Unlimited growth Assuming t d 0.33 h, in 48 h, one cell would become 2.33 X 10 43 cells If a cell weighs 10-12 g, then the total would be 2.23 X 10 31 g This would be 4000

More information

COMPLEX ANALYTICAL PROCEDURE FOR THE CHARACTERIZATON OF MODIFIED ZEOLIZE AND FOR THE ASSESSMENT ITS EFFECTS ON BIOLOGICAL WASTEWATER TREATMENT

COMPLEX ANALYTICAL PROCEDURE FOR THE CHARACTERIZATON OF MODIFIED ZEOLIZE AND FOR THE ASSESSMENT ITS EFFECTS ON BIOLOGICAL WASTEWATER TREATMENT XVII IMEKO World Congress Metrology in the 3rd Millennium June 22 27, 2003, Dubrovnik, Croatia COMPLEX ANALYTICAL PROCEDURE FOR THE CHARACTERIZATON OF MODIFIED ZEOLIZE AND FOR THE ASSESSMENT ITS EFFECTS

More information

( ) ( s) ( ) ( ) ( ) Coagulation Chemistry: Effects on the Acid/Base Balance. Coagulation Chemistry: Effects on the Acid/Base Balance

( ) ( s) ( ) ( ) ( ) Coagulation Chemistry: Effects on the Acid/Base Balance. Coagulation Chemistry: Effects on the Acid/Base Balance Coagulation Chemistry: Effects on the Acid/Base Balance Via chemical equilibrium reactions, consumption of H in the precipitation step has a domino effect on the concentrations of H +, H, H C, HC, and

More information

Design of fixed bed adsorption columns

Design of fixed bed adsorption columns Design of fixed bed adsorption columns Fixed bed is a widely used method for adsorption of solutes from liquid or gases. Granular particles are packed inside the fixed-bed. The fluid to be treated is passed

More information

A COMSOL Multiphysics -based Model for Simulation of Methane-Hydrate Dissociation by Injection of Superheated CO 2. CH 4 -CO 2 -hydrate conversion

A COMSOL Multiphysics -based Model for Simulation of Methane-Hydrate Dissociation by Injection of Superheated CO 2. CH 4 -CO 2 -hydrate conversion A COMSOL Multiphysics -based Model for Simulation of Methane-Hydrate Dissociation by Injection of Superheated CO 2 CH 4 -CO 2 -hydrate conversion Experimental setup CTD PTS Raman IR CO 2 CH 4 CO 2 CH 4

More information

Unsaturated Flow (brief lecture)

Unsaturated Flow (brief lecture) Physical Hydrogeology Unsaturated Flow (brief lecture) Why study the unsaturated zone? Evapotranspiration Infiltration Toxic Waste Leak Irrigation UNSATURATAED ZONE Aquifer Important to: Agriculture (most

More information

CEE 697K ENVIRONMENTAL REACTION KINETICS

CEE 697K ENVIRONMENTAL REACTION KINETICS Updated: 19 November 2013 1 Print version CEE 697K ENVIRONMENTAL REACTION KINETICS Lecture #19 Chloramines Cont: Primary Literature Enzyme Kinetics: basics Brezonik, pp. 419-450 Introduction Conclusions

More information

Review of Fitting Kinetic Data

Review of Fitting Kinetic Data L6-1 Review of Fitting Kinetic Data True or false: The goal of fitting kinetic data is to find the true rate expression. What are the two general methods used to fit kinetic data? L6-2 Advantages and Drawbacks

More information

BAE 820 Physical Principles of Environmental Systems

BAE 820 Physical Principles of Environmental Systems BAE 820 Physical Principles of Environmental Systems Inter phase mass transfer Dr. Zifei Liu Mass transfer between two phases For a two phase system not at equilibrium (concentrations in the two phases

More information

ChE 344 Winter 2011 Mid Term Exam I + Solution. Closed Book, Web, and Notes

ChE 344 Winter 2011 Mid Term Exam I + Solution. Closed Book, Web, and Notes ChE 344 Winter 011 Mid Term Exam I + Thursday, February 17, 011 Closed Book, Web, and Notes Name Honor Code (sign at the end of exam) 1) / 5 pts ) / 5 pts 3) / 5 pts 4) / 15 pts 5) / 5 pts 6) / 5 pts 7)

More information

PHEN 612 SPRING 2008 WEEK 1 LAURENT SIMON

PHEN 612 SPRING 2008 WEEK 1 LAURENT SIMON PHEN 612 SPRING 2008 WEEK 1 LAURENT SIMON Chapter 1 * 1.1 Rate of reactions r A A+B->C Species A, B, and C We are interested in the rate of disappearance of A The rate of reaction, ra, is the number of

More information

Lecture #20 Dissolved Carbon Dioxide: Closed Systems II & Alkalinity (Stumm & Morgan, Chapt.4 ) Benjamin; Chapter 5.4 & 7

Lecture #20 Dissolved Carbon Dioxide: Closed Systems II & Alkalinity (Stumm & Morgan, Chapt.4 ) Benjamin; Chapter 5.4 & 7 Updated: 6 ctober 2013 Print version Lecture #20 Dissolved Carbon Dioxide: Closed Systems II & Alkalinity (Stumm & Morgan, Chapt.4 ) Benjamin; Chapter 5.4 & 7 David Reckhow CEE 680 #20 1 Alkalinity Alkalinity:

More information

Chemical Reaction Engineering - Part 14 - intro to CSTRs Richard K. Herz,

Chemical Reaction Engineering - Part 14 - intro to CSTRs Richard K. Herz, Chemical Reaction Engineering - Part 4 - intro to CSTRs Richard K. Herz, rherz@ucsd.edu, www.reactorlab.net Continuous Stirred Tank Reactors - CSTRs Here are a couple screenshots from the ReactorLab, Division

More information

Removal of suspended and dissolved organic solids

Removal of suspended and dissolved organic solids Removal of suspended and dissolved organic solids Types of dissolved solids The dissolved solids are of both organic and inorganic types. A number of methods have been investigated for the removal of inorganic

More information

Alonso G Griborio, PhD, PE 1 Randal W Samstag, MS, PE, BCEE 2. Hazen and Sawyer, Hollywood, FL, US

Alonso G Griborio, PhD, PE 1 Randal W Samstag, MS, PE, BCEE 2. Hazen and Sawyer, Hollywood, FL, US Alonso G Griborio, PhD, PE 1 Randal W Samstag, MS, PE, BCEE 2 1 Hazen and Sawyer, Hollywood, FL, US 2 Civil and Sanitary Engineer, Bainbridge Island, WA, US Introduction Clarifier Modeling Options Role

More information

CEE 772: Instrumental Methods in Environmental Analysis

CEE 772: Instrumental Methods in Environmental Analysis Updated: 11 November 2014 Print version CEE 772: Instrumental Methods in Environmental Analysis Lecture #19 Mass Spectrometry: Basics (Skoog, Chapt. 11, 26, 27, 28, pp.253 271, 674 693 718 721, 738 739)

More information

CEE 772: Instrumental Methods in Environmental Analysis

CEE 772: Instrumental Methods in Environmental Analysis Updated: 11 November 2014 Print version CEE 772: Instrumental Methods in Environmental Analysis Lecture #19 Mass Spectrometry: Basics (Skoog, Chapt. 11, 26, 27, 28, pp.253-271, 674-693 718-721, 738-739)

More information

Modeling the Transition from Zone Settling to Compression of a Bulking Activated Sludge

Modeling the Transition from Zone Settling to Compression of a Bulking Activated Sludge 41 [Japanese Journal of Water Treatment Biology Vol.34 No.1. 41-55 1998] Modeling the Transition from Zone Settling to Compression of a Bulking Activated Sludge MASAFUMI TATEDA1, YOUNGCHUL KIM2 and WESLEY

More information

WEF Residuals and Biosolids Conference 2017

WEF Residuals and Biosolids Conference 2017 The sludge ozonation for different types of mixed liquor under high and low ph conditions by a plug-flow reactor Xiaoyu Zheng and Eric R. Hall Department of Civil Engineering, The University of British

More information

S N 2 Reactions: Stereochemistry of Consecutive Displacement Reactions

S N 2 Reactions: Stereochemistry of Consecutive Displacement Reactions S N 2 Reactions: Stereochemistry of Consecutive Displacement Reactions The S N 2 reaction is a very useful tool in synthetic organic chemistry because: It allows for the displacement of good leaving groups

More information

WW CSO WQA IWO PMT IWI NV16-06 Hazardous Waste Treatment Ted Cudal 1 hour 4/14/2016 4/14/2017 X X X X X

WW CSO WQA IWO PMT IWI NV16-06 Hazardous Waste Treatment Ted Cudal   1 hour 4/14/2016 4/14/2017 X X X X X NWEA 2016 Approved Courses for Continuing Education Course # Name of Course Instructor Approved Approval Expiration Contact hours Date Date WW CSO WQA IWO PMT IWI NV16-06 Hazardous Waste Treatment Ted

More information

Photo-Biological Reactor for Organic Waste Consumption and Hydrogen Production

Photo-Biological Reactor for Organic Waste Consumption and Hydrogen Production Photo-Biological Reactor for Organic Waste Consumption and Hydrogen Production L. F. de Souza 1 1 Universidade Federal do Paraná, Curitiba, Paraná, Brazil *Corresponding Author: Rua Cerro Azul 1498, Colombo

More information

Validation of a multi-phase Plant-Wide Model for the description of the aeration system in a WWTP

Validation of a multi-phase Plant-Wide Model for the description of the aeration system in a WWTP Validation of a multi-phase Plant-Wide Model for the description of the aeration system in a WWTP I. Lizarralde, T. Fernández-Arévalo, S. Beltrán, E. Ayesa and P. Grau Introduction Objectives Fundamentals

More information

Technology offer: Wastewater treatment by electrocoagulation (EC)

Technology offer: Wastewater treatment by electrocoagulation (EC) Technology offer: Wastewater treatment by electrocoagulation (EC) Technology offer Wastewater treatment by Electrocoagulation (EC) Reference: TO-ECOAG SUMMARY The Department of Physical Chemistry (Applied

More information

Basic Concepts in Reactor Design

Basic Concepts in Reactor Design Basic Concepts in Reactor Design Lecture # 01 KBK (ChE) Ch. 8 1 / 32 Introduction Objectives Learning Objectives 1 Different types of reactors 2 Fundamental concepts used in reactor design 3 Design equations

More information

THE RESEARCH OF ACTIVATED SLUDGE DEWATERING PROCESSES.

THE RESEARCH OF ACTIVATED SLUDGE DEWATERING PROCESSES. THE RESEARCH OF ACTIVATED SLUDGE DEWATERING PROCESSES. M.D. Gomelya, I. V Radovenchyk Department of Ecology and Plant Polymers Technology, National Technical University of Ukraine Kiev Polytechnic Institute.

More information

Real Time Control to increase Hydraulic Capacity of Wastewater Treatment Plants during rain

Real Time Control to increase Hydraulic Capacity of Wastewater Treatment Plants during rain Real Time Control to increase Hydraulic Capacity of Wastewater Treatment Plants during rain Anders Lynggaard-Jensen, Hans Peter Hansen, DHI Flemming Husum, Jakob Kaltoft, Morten Nygaard, Aarhus Water Prepared

More information

Advanced Chemical Reaction Engineering Prof. H. S. Shankar Department of Chemical Engineering IIT Bombay. Lecture - 03 Design Equations-1

Advanced Chemical Reaction Engineering Prof. H. S. Shankar Department of Chemical Engineering IIT Bombay. Lecture - 03 Design Equations-1 (Refer Slide Time: 00:19) Advanced Chemical Reaction Engineering Prof. H. S. Shankar Department of Chemical Engineering IIT Bombay Lecture - 03 Design Equations-1 We are looking at advanced reaction engineering;

More information

PRESENCE OF PROTOZOA AND METAZOA IN ACTIVATED SLUDGE DURING FAVOURABLE AND UNFAVOURABLE CONDITIONS

PRESENCE OF PROTOZOA AND METAZOA IN ACTIVATED SLUDGE DURING FAVOURABLE AND UNFAVOURABLE CONDITIONS PRESENCE OF PROTOZOA AND METAZOA IN ACTIVATED SLUDGE DURING FAVOURABLE AND UNFAVOURABLE CONDITIONS ABSTRACT Kimoni Dhunpath ethekwini Municipality, Water and Sanitation, Scientific Services, P.O.Box 1038,

More information

Analytical Procedures for Monitoring Farmbased Anaerobic Digestion (AD) Systems: PROTOCOL II

Analytical Procedures for Monitoring Farmbased Anaerobic Digestion (AD) Systems: PROTOCOL II Analytical Procedures for Monitoring Farmbased Anaerobic Digestion (AD) Systems: PROTOCOL II Prepared by Rodrigo Labatut & Curt Gooch Copyright Cornell University All rights reserved Updated July, 2012

More information

Mass Transfer (Stoffaustausch) Fall Semester 2014

Mass Transfer (Stoffaustausch) Fall Semester 2014 Ma Tranfer (Stoffautauch) Fall Semeter 4 Tet 5 Noember 4 Name: Legi-Nr.: Tet Duration: 45 minute Permitted material: NOT permitted: calculator copy of Culer book Diffuion ( nd or rd edition) printout of

More information

Coagulation Chemistry: Effects on the Acid/Base Balance

Coagulation Chemistry: Effects on the Acid/Base Balance Coagulation Chemistry: Effects on the Acid/Base Balance Via chemical equilibrium reactions, consumption of OH in the precipitation step has a domino effect on the concentrations of H +, OH, H 2 CO 3, HCO

More information

MASS, MOMENTUM, AND ENERGY EQUATIONS

MASS, MOMENTUM, AND ENERGY EQUATIONS MASS, MOMENTUM, AND ENERGY EQUATIONS This chapter deals with four equations commonly used in fluid mechanics: the mass, Bernoulli, Momentum and energy equations. The mass equation is an expression of the

More information

PRIMARY TREATMENT NATURE

PRIMARY TREATMENT NATURE PRIMARY TREATMENT NATURE Physical and chemical processes. Physical: sedimentation based in density differences Chemical: coagulation and flocculation, ph adjustment, precipitation (formation of insoluble

More information

Exercise 1. Material balance HDA plant

Exercise 1. Material balance HDA plant Process Systems Engineering Prof. Davide Manca Politecnico di Milano Exercise 1 Material balance HDA plant Lab assistants: Adriana Savoca LAB1-1 Conceptual design It is a systematic procedure to evaluate

More information

BEng Chemical Engineering (Distance Learning)

BEng Chemical Engineering (Distance Learning) BEng Chemical Engineering (Distance Learning) COURSE OVERVIEW AND MODULE DESCRIPTIONS Department of Chemical and Process Engineering Note: The module descriptions in this booklet are intended as a guide,

More information

Structure of the chemical industry

Structure of the chemical industry CEE-Lectures on Industrial Chemistry Lecture 1. Crystallization as an example of an industrial process (ex. of Ind. Inorg. Chemistry) Fundamentals (solubility (thermodynamics), kinetics, principle) Process

More information

A First Course on Kinetics and Reaction Engineering Example 14.3

A First Course on Kinetics and Reaction Engineering Example 14.3 Example 14.3 Problem Purpose This problem illustrates differential analysis using data from a differentially operated PFR. Problem Statement The isomerization of cyclopropane, equation (1), was known from

More information

Next, make a stoichiometric table for the flow system (see Table 3-4 in Fogler). This table applies to both a PFR and CSTR reactor.

Next, make a stoichiometric table for the flow system (see Table 3-4 in Fogler). This table applies to both a PFR and CSTR reactor. Cite as: William Green, Jr., and K. Dane Wittrup, course materials for.37 Chemical and Biological Reaction Engineering, Spring 27. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology.

More information

AGITATION AND AERATION

AGITATION AND AERATION AGITATION AND AERATION Although in many aerobic cultures, gas sparging provides the method for both mixing and aeration - it is important that these two aspects of fermenter design be considered separately.

More information

Lecture no. 11 MATERIAL BALANCES

Lecture no. 11 MATERIAL BALANCES MATERIAL BALANCES Lecture no. 11 Conservation laws occupy a special place in science and engineering. Common statements of se laws take form of "mass (energy) is neir created nor destroyed," " mass (energy)

More information

Nirma University Institute of Technology Chemical Engineering Department, Handouts -RRP- CRE-II. Handouts

Nirma University Institute of Technology Chemical Engineering Department, Handouts -RRP- CRE-II. Handouts Handouts Handout 1: Practical reactor performance deviates from that of ideal reactor s : Packed bed reactor Channeling CSTR & Batch Dead Zones, Bypass PFR deviation from plug flow dispersion Deviation

More information

Nonlinear PI control for dissolved oxygen tracking at wastewater treatment plant

Nonlinear PI control for dissolved oxygen tracking at wastewater treatment plant Proceedings of the 7th World Congress The International Federation of Automatic Control Seoul, Korea, July 6-, 008 Nonlinear PI control for dissolved oxygen tracking at wastewater treatment plant Y. Han

More information

Performance Improvement of Activated Sludge Wastewater Treatment by Nonlinear Natural Oscillations

Performance Improvement of Activated Sludge Wastewater Treatment by Nonlinear Natural Oscillations Performance Improvement of Activated Sludge Wastewater Treatment by Nonlinear Natural Oscillations By Shen Jianqiang and Ajay K. Ray* The paper describes a novel operation strategy for improvement in the

More information

Are we about to upgrade wastewater treatment for removing organic micropollutants?

Are we about to upgrade wastewater treatment for removing organic micropollutants? Are we about to upgrade wastewater treatment for removing organic micropollutants? Adriano Joss, Hansruedi Siegrist, Eawag, Switzerland Arne Wick, Michael Schlüsener, Thomas Ternes, BfG, Germany Neptune

More information

Water & Wastewater Mixing: Lighting Up A Dark Art (or cramming a quart into a pint pot!)

Water & Wastewater Mixing: Lighting Up A Dark Art (or cramming a quart into a pint pot!) Water & Wastewater Mixing: Lighting Up A Dark Art (or cramming a quart into a pint pot!) Dr Mick Dawson Process Director mdawson@bhrgroup.co.uk 25th October 2011 BHR Group 2011 BHR Group is a trading name

More information

Chemical Reaction Engineering. Dr. Yahia Alhamed

Chemical Reaction Engineering. Dr. Yahia Alhamed Chemical Reaction Engineering Dr. Yahia Alhamed 1 Kinetics and Reaction Rate What is reaction rate? It is the rate at which a species looses its chemical identity per unit volume. The rate of a reaction

More information

What is physical treatment? What is chemical treatment?

What is physical treatment? What is chemical treatment? What is physical treatment? What is chemical treatment? Physical : having material existence and subject to the laws of nature. Chemical : any material used in, or produced by chemistry. Chemistry : is

More information

Introduction to Mechanical Process Engineering WS 2013/2014

Introduction to Mechanical Process Engineering WS 2013/2014 Introduction to Mechanical rocess Engineering WS 2013/2014 rof. Dr.-Ing. Rolf Gimbel - FOR ERSONAL USE ONLY! - Institut für Energieund Umwelterfahrenstechnik (EUT) Department of rocess Engineering / Water

More information

Investigation of adiabatic batch reactor

Investigation of adiabatic batch reactor Investigation of adiabatic batch reactor Introduction The theory of chemical reactors is summarized in instructions to Investigation of chemical reactors. If a reactor operates adiabatically then no heat

More information

Disinfection. Disinfection is used to treat both domestic water and wastewater.

Disinfection. Disinfection is used to treat both domestic water and wastewater. Disinfection Disinfection is the selective destruction of disease causing organisms (viruses, bacteria, protozoans). It destroys most recognized pathogenic microorganisms, but not necessarily all microbial

More information