Geometry of Interaction

Size: px
Start display at page:

Download "Geometry of Interaction"

Transcription

1 Linear logic, Ludics, Implicit Complexity, Operator Algebras Geometry of Interaction Laurent Regnier Institut de Mathématiques de Luminy

2 Disclaimer Syntax/Semantics Syntax = nite (recursive) sets Semantics = embedding of syntax into abstract (nonrecursive) framework in model theory: formula sets, or elements of a (innite) boolean algebra in denotational semantics: proofs morphism between domains etc.

3 1987: birth of the GoI The three levels of logic The level of formula (truth) model theory The level of proofs (provability) denotational semantics The level of interaction (cut elimination) geometry of interaction GoI programme = build a semantics for cut elimination.

4 GoI in litterature Instances of GoI: a game semantics interpretation (Abramsky-Jagadeesan-Malacaria game model) traced monoidal categories the semantics of sharing reduction (Abadi-Gonthier-Lévy context semantics) an abstract machine (Danos-Regnier): a regular paths computing device a reversible automaton Krivine's machine an abstract version of proof-nets experiments a precursor of ludics: GoI admits localisation (that's kind of the problem)

5 The basic schema of GoI Formula A space S(A) Proof Π : A operator π acting on S(A) (notation: π : A) Cut given π 1 : A B and π 2 : B C, dene Ex(π 1, π 2 ) : A C Note: π 1, π 2 are not functions, Ex(π 1, π 2 ) is not composition Simplied (but not so much) version: Given π 1 : A and π 2 : A, dene Ex(π 1, π 2 ) : π 1 π 2 if Ex(π 1, π 2 ) (see ludics...)

6 Basic schema: the a priori typed variant Categorical avor, implicit use of duality (eg game semantics) S(A) is built by induction on A: S(A B) = S(A B) = S(A) + S(B) π : A is an operator on S(A) (satisfying... ) Possibly get a denability theorem: π : A if Π actually is a proof of A full abstraction of AJM game model What about pure lambda-calculus (or system F )? Remark ( ) π : A B = π A,A π A,B π B,A π B,B

7 Basic schema: the a posteriori typed variant Girard's symmetric realisability construction (at work in: LL strong normalization, phase semantics, ludics, quantum coherent spaces... ) Fix a given (universal) space S (eg S = l 2 ) S(A) = S for all A: all operators act on S Fix a duality, eg π π i ππ is nilpotent T (A) is a set of operators dened by induction on A: T (A ) = T (A) T (A B) = {π 1 + π 2, π 1 T (A), π 2 T (B)} Thus T (A B) = (T (A) T (B )) Adequation lemma: if Π proof of A then π T (A) Remark What is π 1 + π 2?

8 The multiplicative case: MLL Follow the a priori typed scheme: operators = partial permutations on nite sets Formula A S(A) = {occurrences of atoms in A} S(A B) = S(A B) = S(A) + S(B) Proof axiom links permutation on S(A) Cut identify atoms in A to their dual in A ;

9 The multiplicative case (continued) π 1 : A B, π 2 : B C, π = π 1 + π 2 : (A B) (B C) σ : (A B) (B C) partial permutation on S(A ) + S(B) + S(B ) + S(C) exchanging dual (occurrences of) atoms in B and B Remark π and σ are partial symetries: π 2 and σ 2 are projectors

10 Execution formula Matrix representation: ( ) π1 0 π = π 1 + π 2 = = 0 π 2 π A,A 1 π A,B π B,A 1 π B,B π B,B 0 0 π C,B σ = π B,C 2 2 π C,C 2 The execution formula Ex(π 1, π 2 ) = (1 σ 2 )π k 0(σπ) k (1 σ 2 )

11 GoI and experiments Hint: let A be a MLL formula. A point in A may be viewed as a set (ie a vector over F 2 ) of localisations(moves) in S(A) For example: a = (a 1, a 2 ) A 1 A 2 = A 1 A 2 α S(A 1 A 2 ) = S(A 1 ) + S(A 2 ) α = (i, α i ), i = 1 or 2, α i S(A i ) (a 1, a 2 ) = a 1 a 2 = {(1, α 1 ), α 1 a 1 )} {(2, α 2 ), α 2 a 2 )} Theorem If π : A is the GoI of Π : A then a Π i π(a) = a

12 The multiplicative case in the a posteriori typed scheme Fixed space = N (or l 2 ) p, q : N N (iso N + N N), eg p(k) = 2k and q(k) = 2k + 1 π 1 + π 2 = pπ 1 p + qπ 2 q (π 1 + π 2 )(2k) = 2π 1 (k) and (π 1 + π 2 )(2k + 1) = 2π 2 (k) + 1 NB Operators act now on innite space

13 Relating the two schemes A priori typed ( ) π π : A B = A,A π A,B π B,A π B,B A posteriori typed pπ A,A p +qπ A,B p + qπ B,A p qπ B,B q

14 Adding exponentials: the a priori typed scheme S(!A) = N S(A), adding a copy index From π : A B construct!π :!A!B:!π!A,!A (k, a) = (k, π A,A (a))!π!a,!b (k, a) = (k, π A,B (a))!π!b,!a (k, b) = (k, π B,A (b))!π!b,!b (k, b) = (k, π B,B (b))

15 Exponentials continued d :!A A : d d!a,a : (0, a) a : d A,!A c :!A!A 1!A 2 : c c!a,!a!a : (p(k), a) (k, a) 1 : c!a!a,!a (q(k), a) (k, a) 2 : c!a!a,!a dig :!A!!A : dig dig!a,!!a : (τ(k, k ), a) (k, (k, a)) : dig!!a,!a where τ : N N N

16 Exponentials: the a posteriori typed scheme Fixed space = N (or l 2 ) Use.,. : N N N for exponentials: (k, a) k, a Dene π π if ππ nilpotent (ie computation is nite) T (!A) = {!π, π T (A)} Theorem if Π : A then π T (A) This is a strong normalisation theorem. In the setting of Hilbert spaces one can alternatively dene duality by means of weak nilpotency, allowing to account for non terminating terms eg xed points.

17 The GoI equationnal theory Monoid with 0 generated by p, q (multiplicatives), d (dereliction), r, s (contraction), t (digging) Involution: 0 = 0, 1 = 1, (uv) = v u Morphism:!(0) = 0,!(1) = 1,!(u)!(v) =!(uv),!(u) =!(u ) Annihilation equations: x y = δ xy Commutation equations:!(u)d = du!(u)x = x!(u) for x = r, s!(u)t = t!(!(u)) (x, y generators)

18 The theorem AB Orientate equations rewriting system Normal forms = 0 or AB Inverse semigroup structure

19 The path interpretation of GoI To a lambda-term M we associate a GoI weighted graph G n (M): Variable case: v n! n (d) n Abstraction case:! n (p) λ n! n (q)! n (p) λ n! n (q) G n (M) G n (M) G n (λxm):

20 The path interpretation of GoI Application case: G n (MN): c n! n n 1! n (p) G n (M) G n+1(n)! n (t)! n (t)! n (r)! n (s) n n n

21 The path interpretation of GoI Note: γ path in G n (M), w(γ) its weight is a GoI operator Denition Execution paths = invariant of beta-reduction = virtual redexes Regular path = non null weight path (w(γ) 0) Theorem γ is an execution path i γ is regular Theorem If M is a term (thus an MELL proof) then Ex(M) = γ R w(γ) where R = {regular paths G 0 (M)}

22 Interaction Abstract Machine Term (proof-net) weighted graph: token = element of S (the space in the a posteriori typed scheme) weighted edge = transition Term (proof-net) = automaton: the IAM Remark All transitions are reversible and have disjoint domains and codomains the automaton is bideterministic

23 IAM In order to make the abstract machine explicit, redene the space S of tokens: token (state) = (B, S) (really B.S): B = box stack of exponential signatures S = balanced stack of exponential signatures + multiplicative constants P and Q exponential signature = binary tree with leaves in {, R, S} Transitions = partial transformations on (B, S) Theorem KAM IAM

24 Conclusion A lot more to say GoI for additives Pointixion: relating GoI/AJM games with HO Coherence problems: Π Π 0 Ex(π) = π 0 GoI for other systems, eg interaction nets, π-calculus, dierential nets...

Reversible, Irreversible and Optimal -machines. Abstract

Reversible, Irreversible and Optimal -machines. Abstract Reversible, Irreversible and Optimal -machines Vincent Danos Equipe de logique de Paris 7 CNRS, Universite Paris 7 Paris, France Laurent Regnier Institut de Mathematiques de Luminy CNRS Marseille, France

More information

INTERDICTION REFUTATION

INTERDICTION REFUTATION INTERDICTION VS. REFUTATION JEAN-YVES GIRARD THE AMBIGUOUS STATUS OF NORMATIVITY I NORMATIVITY 1 THE DEPARTURE OBJECT/SUBJECT -1: Abuse of models neglects the subject: Epicycles: complexification of the

More information

A completeness theorem for symmetric product phase spaces

A completeness theorem for symmetric product phase spaces A completeness theorem for symmetric product phase spaces Thomas Ehrhard Fédération de Recherche des Unités de Mathématiques de Marseille CNRS FR 2291 Institut de Mathématiques de Luminy CNRS UPR 9016

More information

Copy-Cat Strategies and Information Flow in Physics, Geometry, Logic and Computation

Copy-Cat Strategies and Information Flow in Physics, Geometry, Logic and Computation Copy-Cat Strategies and Information Flow in Physics, Geometry, and Computation Samson Abramsky Oxford University Computing Laboratory Copy-Cat Strategies and Information Flow CQL Workshop August 2007 1

More information

On Categorical Models of GoI

On Categorical Models of GoI School of Informatics and Computing Indiana University Bloomington USA January 27, 2010 In this lecture We shall talk about the first categorical model of GoI. We will consider GoI 1 (Girard 1989) for

More information

Building a (sort of) GoI from denotational semantics: an improvisation

Building a (sort of) GoI from denotational semantics: an improvisation Building a (sort of) GoI from denotational semantics: an improvisation Damiano Mazza Laboratoire d Informatique de Paris Nord CNRS Université Paris 13 Workshop on Geometry of Interaction, Traced Monoidal

More information

in Linear Logic Denis Bechet LIPN - Institut Galilee Universite Paris 13 Avenue Jean-Baptiste Clement Villetaneuse, France Abstract

in Linear Logic Denis Bechet LIPN - Institut Galilee Universite Paris 13 Avenue Jean-Baptiste Clement Villetaneuse, France Abstract Second Order Connectives and roof Transformations in Linear Logic Denis Bechet LIN - Institut Galilee Universite aris 1 Avenue Jean-Baptiste Clement 90 Villetaneuse, France e-mail: dbe@lipnuniv-paris1fr

More information

Denotational semantics of linear logic

Denotational semantics of linear logic Denotational semantics of linear logic Lionel Vaux I2M, Université d Aix-Marseille, France LL2016, Lyon school: 7 and 8 November 2016 L. Vaux (I2M) Denotational semantics of linear logic LL2016 1 / 31

More information

Linear Logic Pages. Yves Lafont (last correction in 2017)

Linear Logic Pages. Yves Lafont (last correction in 2017) Linear Logic Pages Yves Lafont 1999 (last correction in 2017) http://iml.univ-mrs.fr/~lafont/linear/ Sequent calculus Proofs Formulas - Sequents and rules - Basic equivalences and second order definability

More information

Resource lambda-calculus: the differential viewpoint

Resource lambda-calculus: the differential viewpoint Resource lambda-calculus: the differential viewpoint Preuves, Programmes et Systèmes (PPS) Université Paris Diderot and CNRS September 13, 2011 History ( 1985): Girard Girard had differential intuitions

More information

Categories, Proofs and Programs

Categories, Proofs and Programs Categories, Proofs and Programs Samson Abramsky and Nikos Tzevelekos Lecture 4: Curry-Howard Correspondence and Cartesian Closed Categories In A Nutshell Logic Computation 555555555555555555 5 Categories

More information

Logarithmic Space and Permutations

Logarithmic Space and Permutations Logarithmic Space and Permutations Clément Aubert and Thomas Seiller Abstract In a recent work, Girard [6] proposed a new and innovative approach to computational complexity based on the proofs-as-programs

More information

EFFICIENT PROOF NET VERIFICATION AND SEQUENTIALIZATION

EFFICIENT PROOF NET VERIFICATION AND SEQUENTIALIZATION EFFICIENT PROOF NET VERIFICATION AND SEQUENTIALIZATION ARTHUR VALE Abstract. When Girard introduced Linear Logic [Gir87], he also developed a novel syntax for writing proofs, proof nets, which enjoys many

More information

Parsing MELL Proof Nets

Parsing MELL Proof Nets University of Pennsylvania ScholarlyCommons IRCS Technical Reports Series Institute for Research in Cognitive Science October 1996 Parsing MELL Proof Nets Stefano Guerrini University of Pennsylvania Andrea

More information

Elementary Complexity and Geometry of. Interaction (Extended Abstract) Institut de Mathematiques de Luminy (Marseille), C.N.R.S.

Elementary Complexity and Geometry of. Interaction (Extended Abstract) Institut de Mathematiques de Luminy (Marseille), C.N.R.S. Elementary Complexity and Geometry of Interaction (Extended Abstract) Patrick Baillot 1 and Marco Pedicini 2 1 Institut de Mathematiques de Luminy (Marseille), C.N.R.S. baillot@iml.univ-mrs.fr 2 Istituto

More information

usual one uses sequents and rules. The second one used special graphs known as proofnets.

usual one uses sequents and rules. The second one used special graphs known as proofnets. Math. Struct. in omp. Science (1993), vol. 11, pp. 1000 opyright c ambridge University Press Minimality of the orrectness riterion for Multiplicative Proof Nets D E N I S B E H E T RIN-NRS & INRILorraine

More information

The Dierential Lambda-Calculus

The Dierential Lambda-Calculus The Dierential Lambda-Calculus Thomas Ehrhard and Laurent Regnier Institut de Mathématiques de Luminy, C.N.R.S. U.P.R. 9016 ehrhard@iml.univ-mrs.fr and regnier@iml.univ-mrs.fr July 17, 2003 Abstract We

More information

Attack of the Exponentials

Attack of the Exponentials Attack of the Exponentials Damiano Mazza LIPN, CNRS Université Paris 13, France LL2016, Lyon school: 7 and 8 November 2016 D. Mazza (LIPN) Attack of the Exponentials LL2016 1 / 26 Something is missing...

More information

Implicit Computational Complexity

Implicit Computational Complexity Implicit Computational Complexity Simone Martini Dipartimento di Scienze dell Informazione Università di Bologna Italy Bertinoro International Spring School for Graduate Studies in Computer Science, 6

More information

Completeness Theorems and λ-calculus

Completeness Theorems and λ-calculus Thierry Coquand Apr. 23, 2005 Content of the talk We explain how to discover some variants of Hindley s completeness theorem (1983) via analysing proof theory of impredicative systems We present some remarks

More information

Stratifications and complexity in linear logic. Daniel Murfet

Stratifications and complexity in linear logic. Daniel Murfet Stratifications and complexity in linear logic Daniel Murfet Curry-Howard correspondence logic programming categories formula type objects sequent input/output spec proof program morphisms cut-elimination

More information

Quantum groupoids and logical dualities

Quantum groupoids and logical dualities Quantum groupoids and logical dualities (work in progress) Paul-André Melliès CNS, Université Paris Denis Diderot Categories, ogic and Foundations of Physics ondon 14 May 2008 1 Proof-knots Aim: formulate

More information

Proof nets and the λ-calculus

Proof nets and the λ-calculus Proof nets and the λ-calculus Stefano Guerrini Dipartimento di Scienze dell Informazione - Università di Roma I, La Sapienza Via Salaria, 113 - I-00198, Roma, Italy - Email: guerrini@dsi.uniroma1.it December

More information

In the beginning God created tensor... as a picture

In the beginning God created tensor... as a picture In the beginning God created tensor... as a picture Bob Coecke coecke@comlab.ox.ac.uk EPSRC Advanced Research Fellow Oxford University Computing Laboratory se10.comlab.ox.ac.uk:8080/bobcoecke/home en.html

More information

Böhm trees, Krivine machine and the Taylor expansion of ordinary lambda-terms

Böhm trees, Krivine machine and the Taylor expansion of ordinary lambda-terms Böhm trees, Krivine machine and the Taylor expansion of ordinary lambda-terms Thomas Ehrhard and Laurent Regnier Institut de Mathématiques de Luminy CNRS and Université de la Méditerranée UMR 6206 Thomas.Ehrhard@iml.univ-mrs.fr

More information

A few bridges between operational and denotational semantics of programming languages

A few bridges between operational and denotational semantics of programming languages A few bridges between operational and denotational semantics of programming languages Soutenance d habilitation à diriger les recherches Tom Hirschowitz November 17, 2017 Hirschowitz Bridges between operational

More information

Encoding Linear Logic with Interaction Combinators

Encoding Linear Logic with Interaction Combinators Encoding Linear Logic with Interaction Combinators Ian Mackie CNRS (UMR 7650), LIX, École Polytechnique 91128 Palaiseau Cedex, France E-mail: mackielix.polytechnique.fr and Jorge Sousa Pinto Departamento

More information

Multiplicative Conjunction and an Algebraic. Meaning of Contraction and Weakening. A. Avron. School of Mathematical Sciences

Multiplicative Conjunction and an Algebraic. Meaning of Contraction and Weakening. A. Avron. School of Mathematical Sciences Multiplicative Conjunction and an Algebraic Meaning of Contraction and Weakening A. Avron School of Mathematical Sciences Sackler Faculty of Exact Sciences Tel Aviv University, Tel Aviv 69978, Israel Abstract

More information

Asynchronous games 1: Uniformity by group invariance

Asynchronous games 1: Uniformity by group invariance synchronous games 1: Uniformity by group invariance Paul-ndré Melliès Équipe Preuves, Programmes, Systèmes CNRS, Université Paris 7 Received Ten years ago, bramsky, Jagadeesan,

More information

Sequents are written as A, where A; B represent formulae and ; represent multisets of formulae. Where represents the multiset A 1 ; : : : ; A n, then!

Sequents are written as A, where A; B represent formulae and ; represent multisets of formulae. Where represents the multiset A 1 ; : : : ; A n, then! What is a Categorical Model of ntuitionistic Linear Logic G.M. Bierman University of Cambridge Computer Laboratory Abstract. This paper re-addresses the old problem of providing a categorical model for

More information

Modèles des langages de programmation Domaines, catégories, jeux. Programme de cette seconde séance:

Modèles des langages de programmation Domaines, catégories, jeux. Programme de cette seconde séance: Modèles des langages de programmation Domaines, catégories, jeux Programme de cette seconde séance: Modèle ensembliste du lambda-calcul ; Catégories cartésiennes fermées 1 Synopsis 1 the simply-typed λ-calculus,

More information

On Geometry of Interaction for Polarized Linear Logic

On Geometry of Interaction for Polarized Linear Logic nder consideration for publication in Math. Struct. in Comp. Science On Geometry of Interaction for Polarized Linear Logic M A S A H I R O H A M A N O 1 and P H I L I P S C O T T 2 1 PRESTO, Japan Science

More information

Variations on a theme: call-by-value and factorization

Variations on a theme: call-by-value and factorization Variations on a theme: call-by-value and factorization Beniamino Accattoli INRIA & LIX, Ecole Polytechnique Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and factorization 1 / 31 Outline

More information

Full completeness of the multiplicative linear logic of Chu spaces

Full completeness of the multiplicative linear logic of Chu spaces Full completeness of the multiplicative linear logic of Chu spaces HARISH DEVARAJAN Stanford University DOMINIC HUGHES Stanford University GORDON PLOTKIN University of Edinburgh VAUGHAN PRATT Stanford

More information

Handbook of Logic and Proof Techniques for Computer Science

Handbook of Logic and Proof Techniques for Computer Science Steven G. Krantz Handbook of Logic and Proof Techniques for Computer Science With 16 Figures BIRKHAUSER SPRINGER BOSTON * NEW YORK Preface xvii 1 Notation and First-Order Logic 1 1.1 The Use of Connectives

More information

Finiteness spaces. Thomas Ehrhard. Institut de Mathematiques de Luminy, C.N.R.S. U.P.R February 6, 2001.

Finiteness spaces. Thomas Ehrhard. Institut de Mathematiques de Luminy, C.N.R.S. U.P.R February 6, 2001. Finiteness spaces Thomas Ehrhard Institut de Mathematiques de Luminy, C.N.R.S. U.P.R. 9016 ehrhard@iml.univ-mrs.fr February 6, 2001 Abstract We investigate a new denotational model of linear logic based

More information

A Graph Theoretic Perspective on CPM(Rel)

A Graph Theoretic Perspective on CPM(Rel) A Graph Theoretic Perspective on CPM(Rel) Daniel Marsden Mixed states are of interest in quantum mechanics for modelling partial information. More recently categorical approaches to linguistics have also

More information

Grammatical resources: logic, structure and control

Grammatical resources: logic, structure and control Grammatical resources: logic, structure and control Michael Moortgat & Dick Oehrle 1 Grammatical composition.................................. 5 1.1 Grammar logic: the vocabulary.......................

More information

Call-by-value non-determinism in a linear logic type discipline

Call-by-value non-determinism in a linear logic type discipline Call-by-value non-determinism in a linear logic type discipline Alejandro Díaz-Caro? Giulio Manzonetto Université Paris-Ouest & INRIA LIPN, Université Paris 13 Michele Pagani LIPN, Université Paris 13

More information

Programming Languages in String Diagrams. [ one ] String Diagrams. Paul-André Melliès. Oregon Summer School in Programming Languages June 2011

Programming Languages in String Diagrams. [ one ] String Diagrams. Paul-André Melliès. Oregon Summer School in Programming Languages June 2011 Programming Languages in String Diagrams [ one ] String Diagrams Paul-ndré Melliès Oregon Summer School in Programming Languages June 2011 String diagrams diagrammatic account o logic and programming 2

More information

University of Oxford, Michaelis November 16, Categorical Semantics and Topos Theory Homotopy type theor

University of Oxford, Michaelis November 16, Categorical Semantics and Topos Theory Homotopy type theor Categorical Semantics and Topos Theory Homotopy type theory Seminar University of Oxford, Michaelis 2011 November 16, 2011 References Johnstone, P.T.: Sketches of an Elephant. A Topos-Theory Compendium.

More information

A Fully Labelled Lambda Calculus: Towards Closed Reduction in the Geometry of Interaction Machine

A Fully Labelled Lambda Calculus: Towards Closed Reduction in the Geometry of Interaction Machine Electronic Notes in Theoretical Computer Science 171 (2007) 111 126 www.elsevier.com/locate/entcs A Fully Labelled Lambda Calculus: Towards Closed Reduction in the Geometry of Interaction Machine Nikolaos

More information

Introduction to Linear Logic

Introduction to Linear Logic Introduction to Linear Logic Shane Steinert-Threlkeld November 29, 2011 What is Linear Logic? Structural Motivations Introduced by Jean-Yves Girard in 1987 [Gir87]. Linear logic is: Sequent calculus without

More information

Geometry of Interaction: Old and New

Geometry of Interaction: Old and New Geometry of Interaction: Old and New Thomas Seiller October 29th, 2013 Oberseminar Logik und Sprachtheorie, Tübingen University Linear Logic Studying models of the λ-calculus, Girard realized that the

More information

Boolean Algebra and Propositional Logic

Boolean Algebra and Propositional Logic Boolean Algebra and Propositional Logic Takahiro Kato September 10, 2015 ABSTRACT. This article provides yet another characterization of Boolean algebras and, using this characterization, establishes a

More information

Boolean Algebra and Propositional Logic

Boolean Algebra and Propositional Logic Boolean Algebra and Propositional Logic Takahiro Kato June 23, 2015 This article provides yet another characterization of Boolean algebras and, using this characterization, establishes a more direct connection

More information

Primitive recursion in niteness spaces

Primitive recursion in niteness spaces Primitive recursion in niteness spaces Lionel Vaux Laboratoire de Mathématiques de l'université de Savoie UFR SF, Campus Scientique, 73376 Le Bourget-du-Lac Cedex, France E-mail: lionel.vaux@univ-savoie.fr

More information

A Linear/Producer/Consumer model of Classical Linear Logic

A Linear/Producer/Consumer model of Classical Linear Logic A Linear/Producer/Consumer model of Classical Linear Logic Jennifer Paykin Steve Zdancewic February 14, 2014 Abstract This paper defines a new proof- and category-theoretic framework for classical linear

More information

Propositional Logic Language

Propositional Logic Language Propositional Logic Language A logic consists of: an alphabet A, a language L, i.e., a set of formulas, and a binary relation = between a set of formulas and a formula. An alphabet A consists of a finite

More information

Preuves de logique linéaire sur machine, ENS-Lyon, Dec. 18, 2018

Preuves de logique linéaire sur machine, ENS-Lyon, Dec. 18, 2018 Université de Lorraine, LORIA, CNRS, Nancy, France Preuves de logique linéaire sur machine, ENS-Lyon, Dec. 18, 2018 Introduction Linear logic introduced by Girard both classical and intuitionistic separate

More information

Hardware Design I Chap. 2 Basis of logical circuit, logical expression, and logical function

Hardware Design I Chap. 2 Basis of logical circuit, logical expression, and logical function Hardware Design I Chap. 2 Basis of logical circuit, logical expression, and logical function E-mail: shimada@is.naist.jp Outline Combinational logical circuit Logic gate (logic element) Definition of combinational

More information

Lab 1 starts this week: go to your session

Lab 1 starts this week: go to your session Lecture 3: Boolean Algebra Logistics Class email sign up Homework 1 due on Wednesday Lab 1 starts this week: go to your session Last lecture --- Numbers Binary numbers Base conversion Number systems for

More information

arxiv: v1 [cs.lo] 25 May 2009

arxiv: v1 [cs.lo] 25 May 2009 Synchronous Games, Simulations and λ-calculus Pierre Hyvernat 1,2 arxiv:0905.4066v1 [cs.lo] 25 May 2009 1 Institut mathématique de Luminy, Marseille, France 2 Chalmers Institute of Technology, Göteborg,

More information

Sémantique des jeux asynchrones et réécriture 2-dimensionnelle

Sémantique des jeux asynchrones et réécriture 2-dimensionnelle Sémantique des jeux asynchrones et réécriture 2-dimensionnelle Soutenance de thèse de doctorat Samuel Mimram Laboratoire PPS (CNRS Université Paris Diderot) 1 er décembre 2008 1 / 64 A program is a text

More information

ELEC Digital Logic Circuits Fall 2014 Boolean Algebra (Chapter 2)

ELEC Digital Logic Circuits Fall 2014 Boolean Algebra (Chapter 2) ELEC 2200-002 Digital Logic Circuits Fall 2014 Boolean Algebra (Chapter 2) Vishwani D. Agrawal James J. Danaher Professor Department of Electrical and Computer Engineering Auburn University, Auburn, AL

More information

On the dependencies of logical rules

On the dependencies of logical rules On the dependencies of logical rules Marc Bagnol 1, Amina Doumane 2, and Alexis Saurin 2 1 IML, Université d'aix-marseille, bagnol@iml.univ-mrs.fr 2 PPS, CNRS, Université Paris Diderot & INRIA, {amina.doumane,alexis.saurin}@pps.univ-paris-diderot.fr

More information

3 Propositional Logic

3 Propositional Logic 3 Propositional Logic 3.1 Syntax 3.2 Semantics 3.3 Equivalence and Normal Forms 3.4 Proof Procedures 3.5 Properties Propositional Logic (25th October 2007) 1 3.1 Syntax Definition 3.0 An alphabet Σ consists

More information

Notes on proof-nets. Daniel Murfet. 8/4/2016 therisingsea.org/post/seminar-proofnets/

Notes on proof-nets. Daniel Murfet. 8/4/2016 therisingsea.org/post/seminar-proofnets/ Notes on proof-nets Daniel Murfet 8/4/2016 therisingseaorg/post/seminar-proofnets/ Why proof-nets Girard Proof-nets: the parallel syntax for proof-theory The formulas of second order unit-free multiplicative

More information

Version January Please send comments and corrections to

Version January Please send comments and corrections to Mathematical Logic for Computer Science Second revised edition, Springer-Verlag London, 2001 Answers to Exercises Mordechai Ben-Ari Department of Science Teaching Weizmann Institute of Science Rehovot

More information

SHARING IN THE WEAK LAMBDA-CALCULUS REVISITED

SHARING IN THE WEAK LAMBDA-CALCULUS REVISITED SHARING IN THE WEAK LAMBDA-CALCULUS REVISITED TOMASZ BLANC, JEAN-JACQUES LÉVY, AND LUC MARANGET INRIA e-mail address: tomasz.blanc@inria.fr INRIA, Microsoft Research-INRIA Joint Centre e-mail address:

More information

03 Review of First-Order Logic

03 Review of First-Order Logic CAS 734 Winter 2014 03 Review of First-Order Logic William M. Farmer Department of Computing and Software McMaster University 18 January 2014 What is First-Order Logic? First-order logic is the study of

More information

Proofs, Denotational Semantics and Observational Equivalences in Multiplicative Linear Logic

Proofs, Denotational Semantics and Observational Equivalences in Multiplicative Linear Logic Under consideration for publication in Math. Struct. in Comp. Science Proofs, Denotational Semantics and Observational Equivalences in Multiplicative Linear Logic M I C H E L E P A G A N I Dipartimento

More information

Boolean Algebra & Logic Gates. By : Ali Mustafa

Boolean Algebra & Logic Gates. By : Ali Mustafa Boolean Algebra & Logic Gates By : Ali Mustafa Digital Logic Gates There are three fundamental logical operations, from which all other functions, no matter how complex, can be derived. These Basic functions

More information

A call-by-name lambda-calculus machine

A call-by-name lambda-calculus machine A call-by-name lambda-calculus machine Jean-Louis Krivine University Paris VII, C.N.R.S. 2 place Jussieu 75251 Paris cedex 05 (krivine@pps.jussieu.fr) Introduction We present, in this paper, a particularly

More information

On space efficiency of Krivine s abstract machine and Hyland-Ong games

On space efficiency of Krivine s abstract machine and Hyland-Ong games 13/02/08, LIPN p.1/28 On space efficiency of Krivine s abstract machine and Hyland-Ong games Kazushige Terui terui@nii.ac.jp National Institute of Informatics, Tokyo Laboratoire d Informatics de Paris

More information

CHAPTER 2 BOOLEAN ALGEBRA

CHAPTER 2 BOOLEAN ALGEBRA CHAPTER 2 BOOLEAN ALGEBRA This chapter in the book includes: Objectives Study Guide 2.1 Introduction 2.2 Basic Operations 2.3 Boolean Expressions and Truth Tables 2.4 Basic Theorems 2.5 Commutative, Associative,

More information

A categorical quantum logic

A categorical quantum logic Proc QPL 2004, pp 3 20 A categorical quantum logic Samson Abramsky Ross Duncan Oxford University Computing Laboratory Abstract We define a sequent calculus corresponding to the logic of strongly compact

More information

Dynamic Semantics. Dynamic Semantics. Operational Semantics Axiomatic Semantics Denotational Semantic. Operational Semantics

Dynamic Semantics. Dynamic Semantics. Operational Semantics Axiomatic Semantics Denotational Semantic. Operational Semantics Dynamic Semantics Operational Semantics Denotational Semantic Dynamic Semantics Operational Semantics Operational Semantics Describe meaning by executing program on machine Machine can be actual or simulated

More information

Administrative Notes. Chapter 2 <9>

Administrative Notes. Chapter 2 <9> Administrative Notes Note: New homework instructions starting with HW03 Homework is due at the beginning of class Homework must be organized, legible (messy is not), and stapled to be graded Chapter 2

More information

Sequential and Parallel Abstract Machines for Optimal Reduction

Sequential and Parallel Abstract Machines for Optimal Reduction Sequential and Parallel Abstract Machines for Optimal Reduction Marco Pedicini 1, Giulio Pellitta 2, and Mario Piazza 3 1 Department of Mathematics and Physics, University of Roma Tre Largo San Leonardo

More information

Algebras with finite descriptions

Algebras with finite descriptions Algebras with finite descriptions André Nies The University of Auckland July 19, 2005 Part 1: FA-presentability A countable structure in a finite signature is finite-automaton presentable (or automatic)

More information

Duality in Logic. Duality in Logic. Lecture 2. Mai Gehrke. Université Paris 7 and CNRS. {ε} A ((ab) (ba) ) (ab) + (ba) +

Duality in Logic. Duality in Logic. Lecture 2. Mai Gehrke. Université Paris 7 and CNRS. {ε} A ((ab) (ba) ) (ab) + (ba) + Lecture 2 Mai Gehrke Université Paris 7 and CNRS A {ε} A ((ab) (ba) ) (ab) + (ba) + Further examples - revisited 1. Completeness of modal logic with respect to Kripke semantics was obtained via duality

More information

Relational Graph Models, Taylor Expansion and Extensionality

Relational Graph Models, Taylor Expansion and Extensionality Relational Graph Models, Taylor Expansion and Extensionality Domenico Ruoppolo Giulio Manzonetto Laboratoire d Informatique de Paris Nord Université Paris-Nord Paris 13 (France) MFPS XXX Ithaca, New York

More information

EXTENDED ABSTRACT. 2;4 fax: , 3;5 fax: Abstract

EXTENDED ABSTRACT. 2;4 fax: , 3;5 fax: Abstract 1 Syntactic denitions of undened: EXTENDED ABSTRACT on dening the undened Zena Ariola 1, Richard Kennaway 2, Jan Willem Klop 3, Ronan Sleep 4 and Fer-Jan de Vries 5 1 Computer and Information Science Department,

More information

Term Assignment for Intuitionistic Linear Logic (Preliminary Report) Nick Benton Gavin Bierman Valeria de Paiva Computer Laboratory University of Camb

Term Assignment for Intuitionistic Linear Logic (Preliminary Report) Nick Benton Gavin Bierman Valeria de Paiva Computer Laboratory University of Camb Term Assignment for Intuitionistic Linear Logic (Preliminary Report) Nick Benton Gavin Bierman Valeria de Paiva Computer Laboratory University of Cambridge fpnb,gmb,vcvpg@cl.cam.ac.uk Martin Hyland Department

More information

Games and Full Completeness for Multiplicative Linear Logic. Imperial College of Science, Technology and Medicine. Technical Report DoC 92/24

Games and Full Completeness for Multiplicative Linear Logic. Imperial College of Science, Technology and Medicine. Technical Report DoC 92/24 Games and Full Completeness for Multiplicative Linear Logic Samson Abramsky and Radha Jagadeesan Department of Computing Imperial College of Science, Technology and Medicine Technical Report DoC 92/24

More information

FROM COHERENT TO FINITENESS SPACES

FROM COHERENT TO FINITENESS SPACES FROM COHERENT TO FINITENESS SPACES PIERRE HYVERNAT Laboratoire de Mathématiques, Université de Savoie, 73376 Le Bourget-du-Lac Cedex, France. e-mail address: Pierre.Hyvernat@univ-savoie.fr Abstract. This

More information

A survey on Geometry of Interactions

A survey on Geometry of Interactions A survey on Geometry of Interactions Università di Bologna 13 may 2010 Foundation: linear logic References for G.o.I. (1) J.-Y. Girard. Le point aveugle, tome 1: vers la perfection, tome 2: vers limperfection.

More information

BASIC MATHEMATICAL TECHNIQUES

BASIC MATHEMATICAL TECHNIQUES CHAPTER 1 ASIC MATHEMATICAL TECHNIQUES 1.1 Introduction To understand automata theory, one must have a strong foundation about discrete mathematics. Discrete mathematics is a branch of mathematics dealing

More information

Towards a Typed Geometry of Interaction

Towards a Typed Geometry of Interaction Towards a Typed Geometry of Interaction Esfandiar Haghverdi 1 and Philip J. Scott 2 1 School of Informatics, Indiana University Bloomington, IN 47406, USA, ehaghver@indiana.edu, WWW homepage: http://xavier.informatics.indiana.edu/

More information

Using BV to Describe Causal Quantum Evolution

Using BV to Describe Causal Quantum Evolution Using BV to Describe Causal Quantum Evolution Prakash Panangaden Computing Laboratory Oxford University Oxford, U.K. prakash@cs.mcgill.ca July 5, 2004 1 Basic Notions and Definitions In this note I describe

More information

The Inverse Taylor Expansion Problem in Linear Logic

The Inverse Taylor Expansion Problem in Linear Logic The Inverse Taylor Expansion Problem in Linear Logic Michele Pagani Dipartimento di Informatica Università degli Studi di Torino Torino, Italia michele.pagani@pps.jussieu.fr Christine Tasson Laboratoire

More information

Subtractive Logic. To appear in Theoretical Computer Science. Tristan Crolard May 3, 1999

Subtractive Logic. To appear in Theoretical Computer Science. Tristan Crolard May 3, 1999 Subtractive Logic To appear in Theoretical Computer Science Tristan Crolard crolard@ufr-info-p7.jussieu.fr May 3, 1999 Abstract This paper is the first part of a work whose purpose is to investigate duality

More information

About Translations of Classical Logic into Polarized Linear Logic

About Translations of Classical Logic into Polarized Linear Logic About Translations of Classical Logic into Polarized Linear Logic Olivier Laurent Preuves Programmes Systèmes CNRS - Paris 7 OlivierLaurent@ppsjussieufr Laurent Regnier Institut de Mathématiques de Luminy

More information

Diagram rewriting for orthogonal matrices: a study of critical peaks

Diagram rewriting for orthogonal matrices: a study of critical peaks Diagram rewriting for orthogonal matrices: a study of critical peaks Yves Lafont & Pierre Rannou Institut de Mathématiques de Luminy, UMR 6206 du CNRS Université de la Méditerranée (ix-marseille 2) February

More information

A General Type for Storage Operators

A General Type for Storage Operators A General Type for Storage Operators Karim NOUR LAMA - Equipe de Logique, Université de Chambéry 73376 Le Bourget du Lac e-mail nour@univ-savoie.fr Abstract In 1990, J.L. Krivine introduced the notion

More information

Geometry of Interaction for MALL via Hughes-vanGlabbeek Proof-Nets

Geometry of Interaction for MALL via Hughes-vanGlabbeek Proof-Nets Geometry of Interaction for MALL via Hughes-vanGlabbeek Proof-Nets Masahiro HAMANO Institute of Information Science, Academia Sinica, Taiwan hamano@jaist.ac.jp July 20, 2017 arxiv:1503.08925v2 cs.lo 20

More information

A Denotational Semantics for the Symmetric Interaction Combinators

A Denotational Semantics for the Symmetric Interaction Combinators Math. Struct. in Comp. Science (2007), vol. 17, pp. 527 562. c 2007 Cambridge University Press A Denotational Semantics for the Symmetric Interaction Combinators D a m i a n o M a z z a Institut de Mathématiques

More information

A topological correctness criterion for non-commutative logic

A topological correctness criterion for non-commutative logic A topological correctness criterion for non-commutative logic Paul-André Melliès To cite this version: Paul-André Melliès. A topological correctness criterion for non-commutative logic. Thomas Ehrhard

More information

Partially commutative linear logic: sequent calculus and phase semantics

Partially commutative linear logic: sequent calculus and phase semantics Partially commutative linear logic: sequent calculus and phase semantics Philippe de Groote Projet Calligramme INRIA-Lorraine & CRIN CNRS 615 rue du Jardin Botanique - B.P. 101 F 54602 Villers-lès-Nancy

More information

About categorical semantics

About categorical semantics About categorical semantics Dominique Duval LJK, University of Grenoble October 15., 2010 Capp Café, LIG, University of Grenoble Outline Introduction Logics Effects Conclusion The issue Semantics of programming

More information

Introduction to linear logic

Introduction to linear logic Introduction to linear logic Emmanuel Beffara To cite this version: Emmanuel Beffara Introduction to linear logic Master Italy 2013 HAL Id: cel-01144229 https://halarchives-ouvertesfr/cel-01144229

More information

The dagger lambda calculus

The dagger lambda calculus The dagger lambda calculus Philip Atzemoglou University of Oxford Quantum Physics and Logic 2014 Philip Atzemoglou (University of Oxford) The dagger lambda calculus QPL 2014 1 / 20 Why higher-order? Teleportation

More information

Introduction to linear logic and ludics, part II

Introduction to linear logic and ludics, part II Introduction to linear logic and ludics, part II Pierre-Louis Curien To cite this version: Pierre-Louis Curien Introduction to linear logic and ludics, part II Advances in polymer science, Springer Verlag,

More information

2 Application of Boolean Algebra Theorems (15 Points - graded for completion only)

2 Application of Boolean Algebra Theorems (15 Points - graded for completion only) CSE140 HW1 Solution (100 Points) 1 Introduction The purpose of this assignment is three-fold. First, it aims to help you practice the application of Boolean Algebra theorems to transform and reduce Boolean

More information

Decomposing Modalities

Decomposing Modalities Decomposing Modalities Frank Pfenning Department of Computer Science Carnegie Mellon University Logical Frameworks and Meta-Languages: Theory and Practice (LFMTP 15) Berlin, Germany August 1, 2015 1 /

More information

A categorical model for a quantum circuit description language

A categorical model for a quantum circuit description language A categorical model for a quantum circuit description language Francisco Rios (joint work with Peter Selinger) Department of Mathematics and Statistics Dalhousie University CT July 16th 22th, 2017 What

More information

Five Basic Concepts of. Axiomatic Rewriting Theory

Five Basic Concepts of. Axiomatic Rewriting Theory Five Basic Concepts of Axiomatic Rewriting Theory Paul-André Melliès Institut de Recherche en Informatique Fondamentale (IRIF) CNRS & Université Paris Denis Diderot 5th International Workshop on Confluence

More information

Slides for Lecture 10

Slides for Lecture 10 Slides for Lecture 10 ENEL 353: Digital Circuits Fall 2013 Term Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary 30 September, 2013 ENEL 353

More information

Simple multiplicative proof nets with units

Simple multiplicative proof nets with units Simple multiplicative proof nets with units DOMINIC J. D. HUGHES Stanford University Abstract. This paper presents a simple notion of proof net for multiplicative linear logic with units. Cut elimination

More information