Laser-Doppler Analysis of the Separation Zone of a Ground Vortex Flow

Size: px
Start display at page:

Download "Laser-Doppler Analysis of the Separation Zone of a Ground Vortex Flow"

Transcription

1 Laser-Doppler Analysis of the Separation Zone of a Ground Vortex Flow André R. R. Silva 1, Diamantino F. G. Durão 2, Jorge M. M. Barata 3, Pedro Santos 4, Samuel Ribeiro 5 1: Aerospace Sciences Department, Universidade Beira Interior, Covilhã, Portugal, andre@ubi.pt 2: Universitdade Lusíada, Lisbon, Portugal, durao@lis.ulusiada.pt 3: Aerospace Sciences Department, Universidade Beira Interior, Covilhã, Portugal, jbarata@ubi.pt 4: Aerospace Sciences Department, Universidade Beira Interior, Covilhã, Portugal, pedroteixeirasantos1@hotmail.com 5: Aerospace Sciences Department, Universidade Beira Interior, Covilhã, Portugal, samuelavionico@gmail.com Abstract Laser Doppler measurements are presented for a highly curved flow generated by the collision of plane wall turbulent jet with a low-velocity boundary layer. The experiments were performed for a wall jetto-boundary layer velocity ratio of 2, and include mean and turbulent velocity characteristics along the two normal directions contained in planes parallel to the nozzle axis. The results, which have relevance to flows encountered by powered-lift aircraft operating in ground effect, quantify the structure of the complex ground vortex flow resulting from the collision of a wall jet with a boundary layer. The results revealed the existence of a very low-frequency instability. The source of this low frequency unsteadiness is probably associated with a small vortex located near the separation point. In the central zone of the upwash flow where the maximum values of the vertical velocity component occurs, additional distinct high frequency peaks were also identified. 1. Introduction A primary design consideration for V/STOL aircraft is the flow environment induced by the propulsion system during hover with zero or small forward momentum. Ground effect phenomena may occur and change the lift forces on the aircraft, cause re-ingestion of exhaust gases into the engine intake and raise fuselage skin temperatures. An important source of each is the ground vortex (Fig.1) which forms far upstream of the impinging jet when the resulting radial wall jet meets a crossflow (Barata et al., 1986, 1987, 1991a; VanDalsem et al., 1987; Cimbala et al., 1987; Knowles and Bray, 1991). Measurements of this type of flow are very scarce, and have only been reported in the context of a secondary flow within the impinging jet flow problem with relatively different configurations and operating conditions. Most of the studies published so far with relevance for the V/STOL problem used small impinging distances (h/d<8) and high jet-to-crossflow velocity ratios (V R = U jet / U CL >1). Some information relevant to the flow beneath a V/STOL aircraft in ground vicinity has been provided for some limiting cases such as h/d=.4, and without the presence of a crossflow (Saripalli, 1983, 1987). Others include the effect of the crossflow with a solid surface at the jet exit plane to simulate the underside of the aircraft fuselage and wings (Barata et al., 1996; Barata et al., 1991). Among the studies published so far without the presence of the surface at the jet exit there is some agreement that the flow includes large scale, probably coherent, unsteadiness, although there is not a consensus as to their causes. Cimbala et al. (1991) report frequency spectra obtained with hot-wire measurements that revealed broadband humps indicating very low frequency unsteadiness (f=4hz for h/d=3 and V R =1) that were attributed to the large-scale puffing oscillation (low-frequency pulsating behavior) of the ground vortex, and results in a significant variation in size of the ground vortex. This phenomenon was found to do not correlate with disturbances either in the crossflow, jet wake of the jet tube, the crossflow or any oscillations in the flowfield. The low frequency oscillations were, therefore, attributed to the gross features of the ground vortex flowfield itself that included some irregularities as its growth and break-up. The reported unsteadiness was found to - 1 -

2 lead to larger fluctuations in the height of the vortex which reaches more that 8 jet diameters for V R =2, with an inverse variation of the frequency which tends almost linearly to zero when V R increases. Saddington et al. (27) have also observed a distinct frequency oscillation for the case of a fountain flow resulting from two compressible impinging jets without an upper plate or crossflow and nozzle pressure ratios, NPR, from 1.5 up to 4, and impinging heights, h/d, of 4.4. The studies for the highest velocity ratios with a wall at the jet exit can be found in Barata et al. (1986, 1987, 1991a, 1991b), Barata (1996a, 1996b), and Barata and Durão (24), for single, twin, and three jets configurations. These studies report numerical and experimental results obtained with LDV for velocity ratios, V R =3, 42, and 73, and impingement heights, of h/d=3, 4, and 5, for the case of a confined crossflow. Their work includes an extensive analysis of the turbulence structure of the impinging and ground vortex zones. Nevertheless, their results did not exhibit any bimodal LDV histograms of discrete frequencies for single or multiple jets that could be associated with any instabilities or oscillations. These results could be considered somewhat surprising at first sight, but it should be pointed out that all the unsteadiness of the ground vortex has been reported for unconfined impinging jet configurations only. An extrapolation of the results of Cimbala et al. (1991), that present a comprehensive set of data on oscillations for the unconfined case, to the situation of a confined crossflow of Barata et al. (1987) would correspond to ground vortex puffing frequencies of about 1.2Hz for V R = 3, but were not noticeable from the LDV measurements using collision zone Fig.1 Jet impinging on a surface through a low-velocity crossflow - 2 -

3 samples of 1, values and data rates of about 1Hz. Also, the corresponding range of unsteady vortex height would be h/d=6 (from 3.5 to 9.5) which is larger than the available distance between the upper and the lower plates for the crossflow. Barata and Durão (24) further analyzed the ground vortex flow resulting from an impinging jet in a confined crossflow, and found that the shape, size and location of the ground vortex were dependent on the ratio between the jet exit and the crossflow velocities, and two different regimes were identified. One is characterized by the contact between the ground vortex and the impinging jet, while another is detached upstream the impinging zone. They also report that the crossflow acceleration over the ground vortex, resulting from the blockage effect due to confinement, was directly connected with the jet exit velocity, and the influence of the upstream wall jet was not limited to the ground vortex but spread vertically upwards by a mechanism not explained so far. The quantitative and the visualization results did not revealed any distinguishable oscillation of the ground vortex which size and location seems to be only dependant on the velocity ratio, V R, and impinging distance, h/d, for the case of the confined crossflow. These results seemed to indicate that the confinement may avoid or dissemble any instabilities of the ground vortex, but the unlike relevance of the jet exit velocity, U j, reported by Barata et al. (1986) and Cimbala et al. (1991) could be an indication that the jet-to-crossflow velocity ratio could be also another important parameter. The present research program is dedicated to the identification of the parameters and relevant regimes associated with instabilities and other secondary effects of a ground vortex flow. To avoid the influence of the impinging region a plane wall jet is produced independently using a configuration already used to study two-dimensional upwash flows (see Gilbert, 1983). The wall jet collides with the boundary layer produced using a conventional wind tunnel giving rise to a highly curved region, which can be studied for different velocity ratios between the wall jet and crossflow. This paper presents a detailed analysis of a ground vortex flow resulting from the collision of a wall jet with a boundary layer, and follows that of Barata and Durão (25), which has detected a small recirculating zone, located upstream the separation point not yet reported before for this type of flows. 2. Experimental Method and Procedures The experimental facility designed and constructed for conducting laser-doppler velocimeter measurements on wall jet to boundary layer collision flows is diagrammed in Fig.2. With this facility the three-dimensional effects created by skewing of pre-existing spanwise vorticity are eliminated, and makes our data particularly interesting to assess the turbulent or transient effects near the separation point of the ground vortex where the transverse velocity component is null. The recommendations of Metha and Bradshaw (1979) for open circuit wind tunnels were followed throughout all the design process especially for the boundary layer part of the flow. A fan of 15KW nominal power drives a maximum flow of 3 m 3 /h through the boundary layer and the wall jet tunnels of 3 x 4mm and 4 x 4 mm exit sections, respectively. The facility was built to allow variable heights of the wall jet exit from 15 up to 4mm, but in the present study a Y Fig.2 Diagram of the ground vortex facility. X - 3 -

4 constant value of 16mm was used. The origin of the horizontal, X, and vertical, Y, coordinates is taken near the visual maximum penetration point. The X coordinate is positive in the wall jet flow direction and Y is positive upwards. The present results were obtained at the vertical plane of symmetry for a wall jet mean velocities of U j =13.7m/s and mean boundary layer velocity of U o =6.9m/s, corresponding to a velocity ratio, V R, of 2. Fig. 3 Laser Doppler velocimeter. The velocity field was measured with a two-color (two-component) laser-doppler velocimeter (Dantec Flowlite 2D), which comprised a 1 mw He-Ne and a mw diode-pumped frequency doubled Nd:YAG lasers. Bragg-cell frequency shifting at f o =4MHz was used in both channels to detect the flow reversals. The half-angle between the beams was 2.8 o and the scattered light was collected in backward scattering mode with a focal lens of 4mm. The probe volume with calculated axis dimensions at the e -2 intensity locations of 135x6.54x6.53µm and 112x5.46x5.45µm was positioned at the required location by use of a computer remotely driven X-Y-Z traversing unit with a precision of ±.mm. The horizontal, U, and the vertical, V, mean and turbulent velocities together with the shear stress, u ' v', were determined by a two-channel Dantec BSA F6 processor. The principal characteristics of the laser-doppler velocimeter are summarized in Table 1. The seeding of the flow was obtained with a smoke generator with particles of.1-5µm. The number of Table 1. Principal characteristics of the Laser-Doppler velocimeter. - Wave length, λ [nm] 633 (He-Ne) 532 (Diode Laser) - Focal length of focusing lens, f [mm] Beam diameter at e-2 intensity [mm] Beam spacing, s [mm] Calculated half-angle of beam intersection, θ 2.78 o 2.8 o - Fringe spacing, δ f [µm] Velocimeter transfer constant, K [MHz/ms -1 ]

5 the individual velocity values used in the measurements to form the averages was always above 1,. As a result, the largest statistical (random) errors were 1.5% and 3%, respectively for the mean and variance values for a 95% confidence interval following the analysis of Yanta and Smith (1978). 3. Results and Discussion Experimental visualization studies were first performed using a direct digital photography and a smoke generator to produce the tracer particles. The visualization results of the present complex flow were used to provide a first insight into the nature of the flow and to guide the choice of quantitative measurement locations. The wall jet collides with the boundary layer and is strongly Y boundary layer wall jet X U o U j Fig.4 Example of the visualization of the collision zone, and the coordinate system used. deflected backwards giving rise to an extremely complex flow, which includes a small secondary vortex flow near the separation point, probably due to the roll up of the vorticity of the boundary layer. More detailed visualization studies that confirmed the existence of this vortex were reported in Barata et al. (28) for V R =1.7. It was found to be highly unstable with its shape, size, and location varying almost constantly. The behavior of this small vortex was found to be quite similar to the puffing of the ground vortex as reported by Cimbala et al. (1991). First the vortex is very small, but growing. The lower part of the boundary layer with anticlockwise vorticity seems to merge into the growing vortex. As the small vortex continues to grow it becomes higher than the boundary layer, and breaks up suddenly while is convected upwards in the direction of the curved flow. Then, a new small vortex appears and starts to grow, and the cyclic process repeats itself with a frequency of about 8.33Hz. Cimbala et al. (1991) attributed the vortex growth to the shear layer vortices, which convect with the wall jet, and merge into the ground vortex. Barata et al. (28) found that a different mechanism should be present for the case of higher wall jet-to-boundary layer velocity ratios, because the secondary vortex cannot merge into the deflected flow resulting from the collision of the wall jet with the boundary layer, since the vertical velocity component is always positive above the vortex. So, probably the unsteadiness reported before is due to an additional small vortex upstream of the ground vortex that due to its extreme small size could not be observed so far, as in the case of high jet-to-crossflow velocity ratios (Barata et al., 1986, 1987, 1991a; Barata et al., 1991b; Barata, 1996a, 1996b; Barata and Durão, 24). In the present paper the velocity ratio, V R, was further increased to 2, which according to Cimbala et al. (1991) would correspond to a puffing frequency of about 18 ± 1 Hz. Fig. 5 shows contours of the mean horizontal, U mean, and vertical, V mean, velocity components, which confirm the above description of the flow and quantify the mean flow characteristics of the collision zone. Streamlines - 5 -

6 a) b) Fig.5 Contours of the mean velocity characteristics for V R = 2: a) horizontal component, U mean ; b) vertical component, V mean. computed from the measured values are also plotted together with velocity vectors. The mean vertical velocity component is negative near the wall in the boundary layer side for Y<4mm, but is always positive elsewhere. This confirms the existence of the secondary vortex, but it also reveals that if it is unstable it will be simply swept upwards by the curved flow resulting from the collision between the wall jet and the boundary layer, and no puffing mechanism is observed. From the measured velocities it can be concluded that the center of the deflected flow corresponding to the maximum vertical velocity component is located in the wall jet side for X -2mm. This figure also indicates that the center of the secondary vortex flow is located upstream the separation point (with its center near X=+45mm) but probably somewhere before the so-called maximum penetration point. This result indicates that this secondary vortex flow may also be present for other situations, depending not only on the velocity ratio V R, but also on the relative size of the clockwise vorticity zone of the wall jet and the counterclockwise vorticity of the boundary layer. Figure 6 shows the turbulent velocity characteristics of the collision zone and deflected wall jet flow. The peaks of u ' 2 (Fig. 6a) are larger than the corresponding peaks of v ' 2 (Fig. 6b) in the 2 2 collision zone giving rise to high levels of anisotropy with u ' v' 2. 5.The maximum values of the horizontal velocity fluctuations are observed in the collision zone where the mean horizontal velocity component is zero giving rise to extremely high local turbulence intensity values of u' 2 U mean greater than 1%. For vertical velocity fluctuations the maximum values only coincide with - 6 -

7 the zero values of the mean vertical velocity component close the ground plane, and the local turbulence intensity are much smaller. These results are misleading to some extent because although the LDV measurements were obtained with a sufficiently high data rate to detect the possible low frequencies characteristic of these type of instabilities (18 ± 1 Hz according to Cimbala et al., 1991), the total time to obtain the 1, measurements needed to keep the statistical errors sufficient low (1.5% and 3%, respectively for the mean and variance values for a 95% confidence interval; Yanta and Smith, 1973) allow the averaging of about 2 cycles. And, as a consequence, such low frequency instabilities might be being treated as turbulence. a) b) c) Fig.6 Contours of the turbulent velocity characteristics for V R = 2: a) horizontal normal stress, 2 u ' ; b) vertical normal stress, 2 v ' ; c) Reynolds shear stress, u ' v' - 7 -

8 Fig. 6c shows contours of the turbulent shear stress, u ' v', that are generally consistent with the direction of the mean flow. The shear stress is positive along the vertical direction of the centre of the collision zone (X=) suggesting that faster moving elements of the wall jet (u > ) tend to move upwards with the deflected upper side of the boundary layer (v > ). Similarly, the shear stress along the wall jet side of the deflected flow (-11<X<-6mm and 12<Y<mm) is negative because the forward movement of fluid particles corresponds to negative vertical velocity fluctuations (v < ). However, the location of the zero values of the shear stress occur near X=, and do not coincide with the central zone of the deflected flow, which is associated with the maximum of the vertical V velocity component where =. Far from the wall (Y > mm) with the approach of the X U separation point (X = ), increases in the wall jet side (X < ) and decreases in the boundary Y V U layer side (X > ). Near the wall and are the most important shear strains, and the y X magnitude of the peak of the shear stress decreases. This is because the flow in this region is subjected to strongly stabilizing curvature that reduces the shear stress more than the turbulent kinetic energy. The largest positive values of the shear stress occur near the maximum center velocity of the upwash flow for Y>12mm with surrounding values both positive in the wall jet or the boundary layer sides. The particular ordered sequence that was identified from the preliminary visualization studies for the small recirculation zone that appears near the separation point can also be interpreted as an oscillation of the separation zone or of the virtual deflected flow origin, and can be confirmed by the bimodal histograms of the horizontal and vertical velocity measurements obtained in this zone. The histograms were classified in different types for the horizontal and vertical velocity components, and the results are plotted in Fig.7. For the horizontal velocity component, U, four different types of histograms were identified (Fig. 7a): bimodal histograms with symmetric peaks in the central region of the deflected flow; bimodal histograms with a larger positive peak in the wall jet side; bimodal histograms with a larger negative peak in the boundary layer side; and near- Gaussian histograms away from the collision zone. As shown in Fig. 7b for the vertical velocity component five different types of histograms were identified with the bimodal pattern occurring in a slightly different region around the upwash flow. In spite of the apparent organized sequence of the turbulent structure of the collision zone, the power spectra of the horizontal and vertical velocity components do not exhibit any accentuated particular peak for the same locations (Fig. 8). Three types of power spectra occurring in very well defined regions were identified, and are represented in Fig.8 for both velocity components. In the region of the collision zone where the bimodal histograms were obtained, the power spectra exhibit broadband humps with center frequencies between approximately 4 and 15Hz, which is an indication of the low frequency unsteadiness already mentioned before. Another type of spectra was found in the central zone of the upwash flow near the location of the maximum values (V mean 3 m/s). The broadband hump with a maximum value of about 15Hz can be observed, but distinguishable high frequency peaks have also appeared. The source of the low frequency unsteadiness is probably associated with a small vortex located upstream the separation point. As already mentioned before, this secondary vortex has a similar very low broadband pulsating behavior by expanding and contracting observed in some impinging jet configurations with ground vortex flows. The secondary vortex growth cannot be attributed to the shear layer vortices, which convect with the wall jet, since it cannot merge into the deflected flow resulting from the collision of the wall jet with the boundary layer, because the vertical velocity component is always positive above the vortex. The unsteadiness of the ground vortex - 8 -

9 a) b) Fig.7 Typical histograms at the collision zone for V R =2: a) horizontal velocity component, U; b) vertical velocity component, V - 9 -

10 1 a) Spectrum [LDA2] [x²/ Hz] -1-1 b) Spectrum [LDA2] [x²/hz] Fig.8 Typical power spectra at the collision zone for V R =2: a) horizontal velocity component, U; b) vertical velocity component, V - 1 -

11 reported before for the case of impinging jets in unconfined crossflows may also be associated with an additional small vortex upstream separation point, but due to its extreme small size could not be observed so far, as in the case of large jet-to-crossflow velocity ratios. The present results are in agreement with the results of Barata et al. (28) and Cimbala et al. (1991) as far as the low frequency unsteadiness is concerned but more information of its source and relation to the high frequency now observed is still needed. Spectrum [LDA1] [x²/ Hz] 1E-2 1E-3 1E-4 1E-5 4. Conclusions Laser-Doppler measurements of the velocity characteristics of a two dimensional ground vortex flow resulting from the collision of a wall jet with a boundary layer were presented and discussed with visualization results for a wall jet-to-boundary layer velocity ratio of 2. 1E-6 1, 1, 1, Frequency [Hz] Fig.9 Spectra of the vertical velocity component, V with high frequency peaks at (X,Y,Z)=(-2,18,) for V R =2. The results revealed the existence of a very low broadband humps in the frequency spectra indicating concentration of unsteady turbulent energy. The source of this low frequency unsteadiness is probably associated with a small vortex located upstream the separation point. The particular ordered sequence that was identified from the visualization studies for the small recirculation zone that appears near the separation point can also be interpreted as an oscillation of the separation zone or of the virtual deflected flow origin, and can be confirmed by the bimodal histogram of the horizontal velocity measurements obtained in this zone. In spite of the apparent organized sequence of the turbulent structure of the collision zone, the power spectra of the horizontal velocity component does not exhibit any pronounced particular peak for the same location. In the central zone of the upwash flow where the maximum values of the vertical velocity component occurs, additional distinct high frequency peaks were also identified. Aknowledgements The present work has been performed in the scope of the activities of the Aeronautics and Astronautics Research Center - AeroG of the University of Beira Interior. The financial support of the FCT-Fundação para a Ciência e Tecnologia of the Portuguese Ministry of Science under Contract nº PTDC/EME/-MFE/64493/26 is gratefully acknowledged. References Barata, J.M.M., Durão, D.F.G., Heitor, M.V. (1986) Experimental and Numerical Study on the Aerodynamics of Jets in Ground Effect. Tenth Symposium on Turbulence, September 22-24, Rolla, Missouri. Barata, J.M.M., Durão, D.F.G., Heitor, M.V. (1987), The Turbulent Characteristics of a Single Impinging Jet Through a Crossflow. Sixth Symposium on Turbulent Shear Flows, September 7-9,

12 Toulouse. Barata, J.M.M., Durão, D.F.G., Heitor, M.V. (1991a) Turbulent Energy Budgets in Impinging Zones. Eighth Symposium on Turbulent Shear Flows, September 9-11, Munich. Barata, J.M.M., Durão, D.F.G., Heitor, M.V. (1991b) Impingement of Single and Twin Turbulent Jets Through a Crossflow. AIAA Journal, Vol. 29, No. 4: Barata, J.M.M. (1996a) Ground Vortex Formation with Twin Impinging Jets. International Powered Lift Conference. SAE Paper 9627, November 18-2, Jupiter, Florida. Barata, J.M.M. (1996b) Fountain Flows Produced by Multiple Jets in a Crossflow. AIAA Journal, Vol. 34, No. 12: Barata, J.M.M., Durão, D.F.G. (24) Laser-Doppler Measurements of Impinging Jets Through a Crossflow. Experiments in Fluids, Vol.36, No.5: Barata, J.M.M., Durão, D.F.G. (25) Laser-Doppler Measurements of a Highly Curved Flow. AIAA Journal, Vol. 43, No.12: Cimbala, J.M., Billet, M.L., Gaublomme, D.P., Oefelein, J.C. (1991) Experiments on the Unsteadiness Associated with a Ground Vortex. Journal of Aircraft, Vol. 28, No. 4: Gilbert, B.L. (1983) Detailed Turbulence Measurements in a Two-Dimensional Upwash. AIAA 16 th Fluid and Plasma Dynamics Conference, AIAA paper , July 12-14, Danvers, Massachusetts. Knowles, K., Bray, D. (1991) The Ground Vortex Formed by Impinging Jets in Crossflow. AIAA 29th Aerospace Sciences Meeting, AIAA Paper , January 7-1, Reno, Nevada. Metha R.D., Bradshaw P. (1979) Design Rules for Small Low-Speed Wind Tunnels. Saddington, A.J., Knowles, K., Cabrita, P.M. (27) Flow Visualization and Measurements in a Short Take-off, Vertical Landing Fountain Flow. 45 th AIAA Aerospace Sciences Meeting and Exhibit, January 8-11, Reno, Nevada. Saripalli, K.R. (1987) Laser Doppler Velocimeter Measurements in 3D Impinging Twin-Jet Fountain Flows. Turbulent Shear Flows, edited by Durst et al., Springer-Verlag, Berlin, 5: Saripalli, K.R. (1983) Visualization of Multijet Impingement Flow. AIAA Journal, 21: Van Dalsem, W.R., Panaras, A.G., Steger, J.L. (1987) Numerical Investigation of a Jet in a Ground Effect with a Crossflow. International Powered Lift Conference, SAE Paper , December 7-1, Santa Clara, California. Yanta, Z., Smith, R.A. (1973) Measurements of Turbulent-Transport Properties with Laser- Doppler Velocimeter. AIAA Paper , 11 th Aerospace Sciences Meeting, Washington

Experimental Study of Two Impinging Jets Aligned With a Crossflow

Experimental Study of Two Impinging Jets Aligned With a Crossflow Journal of Modern Physics,,, 779-788 Published Online October in SciRes. http://www.scirp.org/journal/jmp http://dx.doi.org/.6/jmp..67 Experimental Study of Two Impinging Jets Aligned With a Crossflow

More information

AN UNSTEADY AND TIME-AVERAGED STUDY OF A GROUND VORTEX FLOW

AN UNSTEADY AND TIME-AVERAGED STUDY OF A GROUND VORTEX FLOW 24 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES AN UNSTEADY AND TIME-AVERAGED STUDY OF A GROUND VORTEX FLOW N J Lawson*, J M Eyles**, K Knowles** *College of Aeronautics, Cranfield University,

More information

Laser Doppler Measurements of Twin Impinging Jets in Tandem through a Crossflow

Laser Doppler Measurements of Twin Impinging Jets in Tandem through a Crossflow Lisbon, Portugal, 7-1 July, 214 Laser Doppler Measurements of Twin Impinging Jets in Tandem through a Crossflow Diana F. C. Vieira 1*, Diamantino F. G. Durão 2, Fernando M. S. P. Neves 1, André R. R. Silva

More information

LARGE-SCALE INSTABILITIES IN A STOVL UPWASH FOUNTAIN

LARGE-SCALE INSTABILITIES IN A STOVL UPWASH FOUNTAIN LARGE-SCALE INSTABILITIES IN A STOVL UPWASH FOUNTAIN A. J. Saddington, P. M. Cabrita and K. Knowles Aeromechanical Systems Group, Cranfield University, RMCS, Shrivenham, Swindon, Wiltshire, SN 8LA, UK

More information

Convection in Three-Dimensional Separated and Attached Flow

Convection in Three-Dimensional Separated and Attached Flow Convection in Three-Dimensional Separated and Attached Flow B. F. Armaly Convection Heat Transfer Laboratory Department of Mechanical and Aerospace Engineering, and Engineering Mechanics University of

More information

A comparison of turbulence models for an impinging jet in a crossflow

A comparison of turbulence models for an impinging jet in a crossflow A comparison of turbulence models for an impinging jet in a crossflow C. Diaz and J. Tso Aerospace Engineering Department, California Polyteclznic State University, USA. Abstract A numerical simulation

More information

Experimental investigation of flow control devices for the reduction of transonic buffeting on rocket afterbodies

Experimental investigation of flow control devices for the reduction of transonic buffeting on rocket afterbodies Experimental investigation of flow control devices for the reduction of transonic buffeting on rocket afterbodies F.F.J. Schrijer 1, A. Sciacchitano 1, F. Scarano 1 1: Faculty of Aerospace Engineering,

More information

LDA-Measurements of Jets in Crossflow for Effusion Cooling Applications

LDA-Measurements of Jets in Crossflow for Effusion Cooling Applications LDA-Measurements of Jets in Crossflow for Effusion Cooling Applications by K. M. Bernhard Gustafsson Department of Thermo and Fluid Dynamics Chalmers University of Technology SE-41296 Göteborg, SWEDEN

More information

Experimental Study of Near Wake Flow Behind a Rectangular Cylinder

Experimental Study of Near Wake Flow Behind a Rectangular Cylinder American Journal of Applied Sciences 5 (8): 97-926, 28 ISSN 546-9239 28 Science Publications Experimental Study of Near Wake Flow Behind a Rectangular Cylinder Abdollah Shadaram, Mahdi Azimi Fard and Noorallah

More information

On the aeroacoustic tonal noise generation mechanism of a sharp-edged. plate

On the aeroacoustic tonal noise generation mechanism of a sharp-edged. plate On the aeroacoustic tonal noise generation mechanism of a sharp-edged plate Danielle J. Moreau, Laura A. Brooks and Con J. Doolan School of Mechanical Engineering, The University of Adelaide, South Australia,

More information

Chapter 5 Phenomena of laminar-turbulent boundary layer transition (including free shear layers)

Chapter 5 Phenomena of laminar-turbulent boundary layer transition (including free shear layers) Chapter 5 Phenomena of laminar-turbulent boundary layer transition (including free shear layers) T-S Leu May. 3, 2018 Chapter 5: Phenomena of laminar-turbulent boundary layer transition (including free

More information

6. Laser Doppler Anemometry. Introduction to principles and applications

6. Laser Doppler Anemometry. Introduction to principles and applications 6. Laser Doppler Anemometry Introduction to principles and applications Characteristics of LDA Invented by Yeh and Cummins in 1964 Velocity measurements in Fluid Dynamics (gas, liquid) Up to 3 velocity

More information

Part 3. Stability and Transition

Part 3. Stability and Transition Part 3 Stability and Transition 281 Overview T. Cebeci 1 Recent interest in the reduction of drag of underwater vehicles and aircraft components has rekindled research in the area of stability and transition.

More information

The Effect of Endplates on Rectangular Jets of Different Aspect Ratios

The Effect of Endplates on Rectangular Jets of Different Aspect Ratios The Effect of Endplates on Rectangular Jets of Different Aspect Ratios M. Alnahhal *, Th. Panidis Laboratory of Applied Thermodynamics, Mechanical Engineering and Aeronautics Department, University of

More information

International Conference on Methods of Aerophysical Research, ICMAR 2008

International Conference on Methods of Aerophysical Research, ICMAR 2008 International Conference on Methods of Aerophysical Research, ICMAR 8 EXPERIMENTAL STUDY OF UNSTEADY EFFECTS IN SHOCK WAVE / TURBULENT BOUNDARY LAYER INTERACTION P.A. Polivanov, А.А. Sidorenko, A.A. Maslov

More information

FINAL REPORT. Office of Naval Research. entitled. Anatol Roshko Theodore Von Karman Professor of Aeronautics

FINAL REPORT. Office of Naval Research. entitled. Anatol Roshko Theodore Von Karman Professor of Aeronautics to F11 F rnpv FINAL REPORT 4to Office of Naval Research on Contract No. N00014-85-C-0646 Work Unit No. 4328-434 entitled STRUCTURE AND MIXING IN TURBULENT SHEAR FLOWS 1 July 1985-31 October 1988 Anatol

More information

Investigation of the Vortical Flow Above an F/A-18 Using Doppler Global Velocimetry

Investigation of the Vortical Flow Above an F/A-18 Using Doppler Global Velocimetry Investigation of the Vortical Flow Above an F/A-18 Using Doppler Global Velocimetry James F. Meyers Joseph W. Lee NASA - Langley Research Center Hampton, Virginia 23681 Angelo A. Cavone ViGYAN, Inc. Hampton,

More information

FLOW CONTROL USING DBD PLASMA ON BACKWARD-FACING STEP

FLOW CONTROL USING DBD PLASMA ON BACKWARD-FACING STEP 28 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES FLOW CONTROL USING DBD PLASMA ON BACKWARD-FACING STEP Jiwoon Song* * Department of Mechanical Engineering, Yonsei University, 120-749, Korea dolguard@yonsei.ac.kr

More information

Flow Structure Investigations in a "Tornado" Combustor

Flow Structure Investigations in a Tornado Combustor Flow Structure Investigations in a "Tornado" Combustor Igor Matveev Applied Plasma Technologies, Falls Church, Virginia, 46 Serhiy Serbin National University of Shipbuilding, Mikolayiv, Ukraine, 545 Thomas

More information

Flow Characteristics around an Inclined Circular Cylinder with Fin

Flow Characteristics around an Inclined Circular Cylinder with Fin Lisbon, Portugal, 7- July, 28 Flow Characteristics around an Inclined Circular Cylinder with Fin Tsuneaki ISHIMA, Takeshi SASAKI 2, Yoshitsugu GOKAN 3 Yasushi TAKAHASHI 4, Tomio OBOKATA 5 : Department

More information

White Paper FINAL REPORT AN EVALUATION OF THE HYDRODYNAMICS MECHANISMS WHICH DRIVE THE PERFORMANCE OF THE WESTFALL STATIC MIXER.

White Paper FINAL REPORT AN EVALUATION OF THE HYDRODYNAMICS MECHANISMS WHICH DRIVE THE PERFORMANCE OF THE WESTFALL STATIC MIXER. White Paper FINAL REPORT AN EVALUATION OF THE HYDRODYNAMICS MECHANISMS WHICH DRIVE THE PERFORMANCE OF THE WESTFALL STATIC MIXER Prepared by: Dr. Thomas J. Gieseke NUWCDIVNPT - Code 8233 March 29, 1999

More information

Intensely swirling turbulent pipe flow downstream of an orifice: the influence of an outlet contraction

Intensely swirling turbulent pipe flow downstream of an orifice: the influence of an outlet contraction 13 th Int. Symp. on Appl. Laser Techniques to Fluid Mechanics, Lisbon, Portugal, June 26-29, 26 Intensely swirling turbulent pipe flow downstream of an orifice: the influence of an outlet contraction Marcel

More information

Introduction to Turbulence AEEM Why study turbulent flows?

Introduction to Turbulence AEEM Why study turbulent flows? Introduction to Turbulence AEEM 7063-003 Dr. Peter J. Disimile UC-FEST Department of Aerospace Engineering Peter.disimile@uc.edu Intro to Turbulence: C1A Why 1 Most flows encountered in engineering and

More information

Journal of Fluid Science and Technology

Journal of Fluid Science and Technology Science and Technology LDV and PIV Measurements of the Organized Oscillations of Turbulent Flow over a Rectangular Cavity* Takayuki MORI ** and Kenji NAGANUMA ** **Naval Systems Research Center, TRDI/Ministry

More information

Chapter 4. Experimental Results - Statistics

Chapter 4. Experimental Results - Statistics Chapter 4 Experimental Results - Statistics 13 4.1 Overview The present chapter includes a presentation and discussion of the results for two major geometries. For the first geometry, the swirler center

More information

THE EFFECT OF SAMPLE SIZE, TURBULENCE INTENSITY AND THE VELOCITY FIELD ON THE EXPERIMENTAL ACCURACY OF ENSEMBLE AVERAGED PIV MEASUREMENTS

THE EFFECT OF SAMPLE SIZE, TURBULENCE INTENSITY AND THE VELOCITY FIELD ON THE EXPERIMENTAL ACCURACY OF ENSEMBLE AVERAGED PIV MEASUREMENTS 4th International Symposium on Particle Image Velocimetry Göttingen, Germany, September 7-9, 00 PIV 0 Paper 096 THE EFFECT OF SAMPLE SIZE, TURBULECE ITESITY AD THE VELOCITY FIELD O THE EXPERIMETAL ACCURACY

More information

Evolution of the pdf of a high Schmidt number passive scalar in a plane wake

Evolution of the pdf of a high Schmidt number passive scalar in a plane wake Evolution of the pdf of a high Schmidt number passive scalar in a plane wake ABSTRACT H. Rehab, L. Djenidi and R. A. Antonia Department of Mechanical Engineering University of Newcastle, N.S.W. 2308 Australia

More information

Effect of blowing rate on the film cooling coverage on a multi-holed plate: application on combustor walls

Effect of blowing rate on the film cooling coverage on a multi-holed plate: application on combustor walls Effect of blowing rate on the film cooling coverage on a multi-holed plate: application on combustor walls P. Miron 1,2, C. Berat 1 & V. Sabelnikov 3 1 TURBOMECA-Bordes, France 2 LaTEP, Université de Pau

More information

Design and Aerodynamic Characterization of a Synthetic Jet for Boundary Layer Control

Design and Aerodynamic Characterization of a Synthetic Jet for Boundary Layer Control Design and Aerodynamic Characterization of a Synthetic Jet for Boundary Layer Control FRANCESCA SATTA, DANIELE SIMONI, MARINA UBALDI, PIETRO ZUNINO Department of Fluid Machines, Energy Systems, and Transportation

More information

PDA Measurements of Single Point Injection in Cross-flow

PDA Measurements of Single Point Injection in Cross-flow PDA Measurements of Single Point Injection in Cross-flow by M.J. Melo, J.M.M. Sousa and M. Costa Instituto Superior Técnico, Mechanical Engineering Department Av. Rovisco Pais, 1049-001 Lisboa, Portugal

More information

Investigation of the flow in a flat bottom cyclone

Investigation of the flow in a flat bottom cyclone Investigation of the flow in a flat bottom cyclone by B. Chiné (1) and F. Concha (2) (1) Catholic University of Concepción, Faculty of Engineering Campus San Andrés, Paicavi 000, Concepción, Chile E-mail:

More information

AEROACOUSTIC INVESTIGATION OF THE EFFECT OF A DETACHED FLAT PLATE ON THE NOISE FROM A SQUARE CYLINDER

AEROACOUSTIC INVESTIGATION OF THE EFFECT OF A DETACHED FLAT PLATE ON THE NOISE FROM A SQUARE CYLINDER Abstract AEROACOUSTIC INVESTIGATION OF THE EFFECT OF A DETACHED FLAT PLATE ON THE NOISE FROM A SQUARE CYLINDER Aniket D. Jagtap 1, Ric Porteous 1, Akhilesh Mimani 1 and Con Doolan 2 1 School of Mechanical

More information

Turbulent flow through a plane sudden expansion

Turbulent flow through a plane sudden expansion Turbulent flow through a plane sudden expansion M. P. Escudier a, P. J. Oliveira b and R. J. Poole a a University of Liverpool, Department of Engineering, Mechanical Engineering, Brownlow Hill, Liverpool,

More information

EXCITATION OF GÖRTLER-INSTABILITY MODES IN CONCAVE-WALL BOUNDARY LAYER BY LONGITUDINAL FREESTREAM VORTICES

EXCITATION OF GÖRTLER-INSTABILITY MODES IN CONCAVE-WALL BOUNDARY LAYER BY LONGITUDINAL FREESTREAM VORTICES ICMAR 2014 EXCITATION OF GÖRTLER-INSTABILITY MODES IN CONCAVE-WALL BOUNDARY LAYER BY LONGITUDINAL FREESTREAM VORTICES Introduction A.V. Ivanov, Y.S. Kachanov, D.A. Mischenko Khristianovich Institute of

More information

Numerical Studies of Supersonic Jet Impingement on a Flat Plate

Numerical Studies of Supersonic Jet Impingement on a Flat Plate Numerical Studies of Supersonic Jet Impingement on a Flat Plate Overset Grid Symposium Dayton, OH Michael R. Brown Principal Engineer, Kratos/Digital Fusion Solutions Inc., Huntsville, AL. October 18,

More information

86400 Batu Pahat, Johor, Malaysia. Iwate University, Japan

86400 Batu Pahat, Johor, Malaysia. Iwate University, Japan Applied Mechanics and Materials Vols. 229-231 (2012) pp 2094-2099 (2012) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/amm.229-231.2094 Experimental and Numerical Investigation on

More information

Experimental Verification of CFD Modeling of Turbulent Flow over Circular Cavities using FLUENT

Experimental Verification of CFD Modeling of Turbulent Flow over Circular Cavities using FLUENT Experimental Verification of CFD Modeling of Turbulent Flow over Circular Cavities using FLUENT T Hering, J Dybenko, E Savory Mech. & Material Engineering Dept., University of Western Ontario, London,

More information

INFLUENCE OF ACOUSTIC EXCITATION ON AIRFOIL PERFORMANCE AT LOW REYNOLDS NUMBERS

INFLUENCE OF ACOUSTIC EXCITATION ON AIRFOIL PERFORMANCE AT LOW REYNOLDS NUMBERS ICAS 2002 CONGRESS INFLUENCE OF ACOUSTIC EXCITATION ON AIRFOIL PERFORMANCE AT LOW REYNOLDS NUMBERS S. Yarusevych*, J.G. Kawall** and P. Sullivan* *Department of Mechanical and Industrial Engineering, University

More information

DYNAMICS OF CONTROLLED BOUNDARY LAYER SEPARATION

DYNAMICS OF CONTROLLED BOUNDARY LAYER SEPARATION p.1 DYNAMICS OF CONTROLLED BOUNDARY LAYER SEPARATION Václav Uruba, Martin Knob Institute of Thermomechanics, AS CR, v. v. i., Praha Abstract: The results of experimental study on a boundary layer separation

More information

EXPERIMENTS OF CLOSED-LOOP FLOW CONTROL FOR LAMINAR BOUNDARY LAYERS

EXPERIMENTS OF CLOSED-LOOP FLOW CONTROL FOR LAMINAR BOUNDARY LAYERS Fourth International Symposium on Physics of Fluids (ISPF4) International Journal of Modern Physics: Conference Series Vol. 19 (212) 242 249 World Scientific Publishing Company DOI: 1.1142/S211945128811

More information

VORTICITY FIELD EVOLUTION IN A FORCED WAKE. Richard K. Cohn Air Force Research Laboratory Edwards Air Force Base, CA 92524

VORTICITY FIELD EVOLUTION IN A FORCED WAKE. Richard K. Cohn Air Force Research Laboratory Edwards Air Force Base, CA 92524 Proceedings of the st International Symposium on Turbulence and Shear Flow Phenomena, Santa Barbara, CA, Sep. 5, 999, Eds. Banerjee, S. and Eaton, J. K., pp. 9-96. VORTICITY FIELD EVOLUTION IN A FORCED

More information

Experimental Analysis on Incompressible circular and noncircular Fluid Jet through Passive Control Method

Experimental Analysis on Incompressible circular and noncircular Fluid Jet through Passive Control Method IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684, p-issn : 2320 334X PP 15-21 www.iosrjournals.org Experimental Analysis on Incompressible circular and noncircular Fluid Jet

More information

FLOW VISUALIZATION AND PIV MEASUREMENTS OF LAMINAR SEPARATION BUBBLE OSCILLATING AT LOW FREQUENCY ON AN AIRFOIL NEAR STALL

FLOW VISUALIZATION AND PIV MEASUREMENTS OF LAMINAR SEPARATION BUBBLE OSCILLATING AT LOW FREQUENCY ON AN AIRFOIL NEAR STALL 4 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES FLOW VISUALIZATION AND PIV MEASUREMENTS OF LAMINAR SEPARATION BUBBLE OSCILLATING AT LOW FREQUENCY ON AN AIRFOIL NEAR STALL Hiroyuki Tanaka Department

More information

PIV STUDY OF LONGITUDINAL VORTICES IN A TURBULENT BOUNDARY LAYER FLOW

PIV STUDY OF LONGITUDINAL VORTICES IN A TURBULENT BOUNDARY LAYER FLOW ICAS CONGRESS PIV STUDY OF LONGITUDINAL VORTICES IN A TURBULENT BOUNDARY LAYER FLOW G. M. Di Cicca Department of Aerospace Engineering, Politecnico di Torino C.so Duca degli Abruzzi, 4 - I 19 Torino, ITALY

More information

Estimation of Particle Sample Bias in Shear Layers using Velocity-Data Rate Correlation Coefficient

Estimation of Particle Sample Bias in Shear Layers using Velocity-Data Rate Correlation Coefficient Estimation of Particle Sample Bias in Shear Layers using Velocity-Data Rate Correlation Coefficient Kartik V. Bulusu 1,*, James F. Meyers 2, Michael W. Plesniak 1 1: Department of Mechanical and Aerospace

More information

PIV study for the analysis of planar jets in cross-flow at low Reynolds number

PIV study for the analysis of planar jets in cross-flow at low Reynolds number PIV study for the analysis of planar jets in cross-flow at low Reynolds number Vincenti I., Guj G., Camussi R., Giulietti E. University Roma TRE, Department of Ingegneria Meccanica e Industriale (DIMI),

More information

Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015

Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015 Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015 I. Introduction (Chapters 1 and 2) A. What is Fluid Mechanics? 1. What is a fluid? 2. What is mechanics? B. Classification of Fluid Flows 1. Viscous

More information

Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 17 Laminar and Turbulent flows

Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 17 Laminar and Turbulent flows Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay Lecture - 17 Laminar and Turbulent flows Welcome back to the video course on fluid mechanics. In

More information

Department of Mechanical Engineering

Department of Mechanical Engineering Department of Mechanical Engineering AMEE401 / AUTO400 Aerodynamics Instructor: Marios M. Fyrillas Email: eng.fm@fit.ac.cy HOMEWORK ASSIGNMENT #2 QUESTION 1 Clearly there are two mechanisms responsible

More information

Journal of Fluid Science and Technology

Journal of Fluid Science and Technology Bulletin of the JSME Vol.9, No.3, 24 Journal of Fluid Science and Technology Re-evaluating wake width in turbulent shear flow behind an axisymmetric cylinder by means of higher order turbulence statistics

More information

Analysis of Shock Motion in STBLI Induced by a Compression Ramp Configuration Using DNS Data

Analysis of Shock Motion in STBLI Induced by a Compression Ramp Configuration Using DNS Data 45th AIAA Aerospace Science Meeting and Exhibit, January 8 11, 25/Reno, Nevada Analysis of Shock Motion in STBLI Induced by a Compression Ramp Configuration Using DNS Data M. Wu and M.P. Martin Mechanical

More information

HORSEHOE VORTICES IN UNIFORMLY SHEARED TURBULENCE

HORSEHOE VORTICES IN UNIFORMLY SHEARED TURBULENCE HORSEHOE VORTICES IN UNIFORMLY SHEARED TURBULENCE Christina Vanderwel Department of Mechanical Engineering University of Ottawa Ottawa, Ontario, Canada cvand072@uottawa.ca Stavros Tavoularis Department

More information

NUMERICAL INVESTIGATION OF THE FLOW OVER A GOLF BALL IN THE SUBCRITICAL AND SUPERCRITICAL REGIMES

NUMERICAL INVESTIGATION OF THE FLOW OVER A GOLF BALL IN THE SUBCRITICAL AND SUPERCRITICAL REGIMES NUMERICAL INVESTIGATION OF THE FLOW OVER A GOLF BALL IN THE SUBCRITICAL AND SUPERCRITICAL REGIMES Clinton Smith 1, Nikolaos Beratlis 2, Elias Balaras 2, Kyle Squires 1, and Masaya Tsunoda 3 ABSTRACT Direct

More information

Synthetic Jet Design Criteria and Application for Boundary Layer Separation Control

Synthetic Jet Design Criteria and Application for Boundary Layer Separation Control Synthetic Jet Design Criteria and Application for Boundary Layer Separation Control FRANCESCA SATTA, DANIELE SIMONI, MARINA UBALDI, PIETRO ZUNINO Department of Fluid Machines, Energy Systems, and Transportation

More information

On the influence of bed permeability on flow in the leeside of coarse-grained bedforms

On the influence of bed permeability on flow in the leeside of coarse-grained bedforms On the influence of bed permeability on flow in the leeside of coarse-grained bedforms G. Blois (1), J. L. Best (1), G. H. Sambrook Smith (2), R. J. Hardy (3) 1 University of Illinois, Urbana-Champaign,

More information

Flow control on a 3D backward facing ramp by pulsed jets

Flow control on a 3D backward facing ramp by pulsed jets Acknowledgements: This work was carried out in the framework of the FOSCO project, supported by ic ARTS Flow control on a 3D backward facing ramp by pulsed jets 3 rd GDR Symposium P. Joseph a, D. Bortolus

More information

Boundary Layer Transition on the Suction Side of a Turbine Blade

Boundary Layer Transition on the Suction Side of a Turbine Blade Proceedings of the 2nd WSEAS Int. Conference on Applied and Theoretical Mechanics, Venice, Italy, November 2-22, 26 97 Boundary Layer Transition on the Suction Side of a Turbine Blade MARINA UBALDI, PIETRO

More information

Experimental characterization of flow field around a square prism with a small triangular prism

Experimental characterization of flow field around a square prism with a small triangular prism Journal of Mechanical Science and Technology 29 (4) (2015) 1649~1656 www.springerlink.com/content/1738-494x OI 10.1007/s12206-015-0336-2 Experimental characterization of flow field around a square prism

More information

Effects of Free-Stream Vorticity on the Blasius Boundary Layer

Effects of Free-Stream Vorticity on the Blasius Boundary Layer 17 th Australasian Fluid Mechanics Conference Auckland, New Zealand 5-9 December 2010 Effects of Free-Stream Vorticity on the Boundary Layer D.A. Pook, J.H. Watmuff School of Aerospace, Mechanical & Manufacturing

More information

Visualization of a locally-forced separated flow over a backward-facing step

Visualization of a locally-forced separated flow over a backward-facing step Experiments in Fluids 25 (1998) 133 142 Springer-Verlag 1998 Visualization of a locally-forced separated flow over a backward-facing step K. B. Chun, H. J. Sung 133 Abstract A laboratory water channel

More information

Numerical Simulation of Unsteady Flow with Vortex Shedding Around Circular Cylinder

Numerical Simulation of Unsteady Flow with Vortex Shedding Around Circular Cylinder Numerical Simulation of Unsteady Flow with Vortex Shedding Around Circular Cylinder Ali Kianifar, Edris Yousefi Rad Abstract In many applications the flow that past bluff bodies have frequency nature (oscillated)

More information

PROPERTIES OF THE FLOW AROUND TWO ROTATING CIRCULAR CYLINDERS IN SIDE-BY-SIDE ARRANGEMENT WITH DIFFERENT ROTATION TYPES

PROPERTIES OF THE FLOW AROUND TWO ROTATING CIRCULAR CYLINDERS IN SIDE-BY-SIDE ARRANGEMENT WITH DIFFERENT ROTATION TYPES THERMAL SCIENCE, Year, Vol. 8, No. 5, pp. 87-9 87 PROPERTIES OF THE FLOW AROUND TWO ROTATING CIRCULAR CYLINDERS IN SIDE-BY-SIDE ARRANGEMENT WITH DIFFERENT ROTATION TYPES by Cheng-Xu TU, a,b Fu-Bin BAO

More information

Simultaneous Velocity and Concentration Measurements of a Turbulent Jet Mixing Flow

Simultaneous Velocity and Concentration Measurements of a Turbulent Jet Mixing Flow Simultaneous Velocity and Concentration Measurements of a Turbulent Jet Mixing Flow HUI HU, a TETSUO SAGA, b TOSHIO KOBAYASHI, b AND NOBUYUKI TANIGUCHI b a Department of Mechanical Engineering, Michigan

More information

SIMULATION OF THREE-DIMENSIONAL INCOMPRESSIBLE CAVITY FLOWS

SIMULATION OF THREE-DIMENSIONAL INCOMPRESSIBLE CAVITY FLOWS ICAS 2000 CONGRESS SIMULATION OF THREE-DIMENSIONAL INCOMPRESSIBLE CAVITY FLOWS H Yao, R K Cooper, and S Raghunathan School of Aeronautical Engineering The Queen s University of Belfast, Belfast BT7 1NN,

More information

Numerical simulations of the edge tone

Numerical simulations of the edge tone Numerical simulations of the edge tone I. Vaik, G. Paál Department of Hydrodynamic Systems, Budapest University of Technology and Economics, P.O. Box 91., 1521 Budapest, Hungary, {vaik, paal}@vizgep.bme.hu

More information

Studies on the Transition of the Flow Oscillations over an Axisymmetric Open Cavity Model

Studies on the Transition of the Flow Oscillations over an Axisymmetric Open Cavity Model Advances in Aerospace Science and Applications. ISSN 2277-3223 Volume 3, Number 2 (2013), pp. 83-90 Research India Publications http://www.ripublication.com/aasa.htm Studies on the Transition of the Flow

More information

COMPUTATIONAL SIMULATION OF THE FLOW PAST AN AIRFOIL FOR AN UNMANNED AERIAL VEHICLE

COMPUTATIONAL SIMULATION OF THE FLOW PAST AN AIRFOIL FOR AN UNMANNED AERIAL VEHICLE COMPUTATIONAL SIMULATION OF THE FLOW PAST AN AIRFOIL FOR AN UNMANNED AERIAL VEHICLE L. Velázquez-Araque 1 and J. Nožička 2 1 Division of Thermal fluids, Department of Mechanical Engineering, National University

More information

Active drag reduction in a turbulent boundary layer based on plasma-actuatorgenerated streamwise vortices

Active drag reduction in a turbulent boundary layer based on plasma-actuatorgenerated streamwise vortices June 30 - July 3, 015 Melbourne, Australia 9 9A-5 Active drag reduction in a turbulent boundary layer based on plasma-actuatorgenerated streamwise vortices Chi Wai Wong, Yu Zhou, Yinzhe Li and Yupeng Li

More information

Empirical study of the tonal noise radiated by a sharpedged flat plate at low-to-moderate Reynolds number

Empirical study of the tonal noise radiated by a sharpedged flat plate at low-to-moderate Reynolds number Paper Number 44, Proceedings of ACOUSTICS 2011 Empirical study of the tonal noise radiated by a sharpedged flat plate at low-to-moderate Reynolds number Danielle J. Moreau, Laura A. Brooks and Con J. Doolan

More information

Direct Numerical Simulation of Jet Actuators for Boundary Layer Control

Direct Numerical Simulation of Jet Actuators for Boundary Layer Control Direct Numerical Simulation of Jet Actuators for Boundary Layer Control Björn Selent and Ulrich Rist Universität Stuttgart, Institut für Aero- & Gasdynamik, Pfaffenwaldring 21, 70569 Stuttgart, Germany,

More information

Plasma spectroscopy when there is magnetic reconnection associated with Rayleigh-Taylor instability in the Caltech spheromak jet experiment

Plasma spectroscopy when there is magnetic reconnection associated with Rayleigh-Taylor instability in the Caltech spheromak jet experiment Plasma spectroscopy when there is magnetic reconnection associated with Rayleigh-Taylor instability in the Caltech spheromak jet experiment KB Chai Korea Atomic Energy Research Institute/Caltech Paul M.

More information

SIMULTANEOUS VELOCITY AND CONCENTRATION MEASUREMENTS OF A TURBULENT JET MIXING FLOW

SIMULTANEOUS VELOCITY AND CONCENTRATION MEASUREMENTS OF A TURBULENT JET MIXING FLOW Proceedings of International Symposium on Visualization and Image in Transport Phenomena, Turkey, -9 Oct. SIMULTANEOUS VELOCITY AND CONCENTRATION MEASUREMENTS OF A TURBULENT JET MIXING FLOW Hui HU a, Tetsuo

More information

Validation 3. Laminar Flow Around a Circular Cylinder

Validation 3. Laminar Flow Around a Circular Cylinder Validation 3. Laminar Flow Around a Circular Cylinder 3.1 Introduction Steady and unsteady laminar flow behind a circular cylinder, representing flow around bluff bodies, has been subjected to numerous

More information

Fluctuating Pressure Inside/Outside the Flow Separation Region in High Speed Flowfield

Fluctuating Pressure Inside/Outside the Flow Separation Region in High Speed Flowfield Journal of Aerospace Science and Technology 1 (2015) 18-26 doi: 10.17265/2332-8258/2015.01.003 D DAVID PUBLISHING Fluctuating Pressure Inside/Outside the Flow Separation Region in High Speed Flowfield

More information

EXPERIMENTAL INVESTIGATION ON THE NONCIRCULAR INCOMPRESSIBLE JET CHARACTERISTICS

EXPERIMENTAL INVESTIGATION ON THE NONCIRCULAR INCOMPRESSIBLE JET CHARACTERISTICS EXPERIMENTAL INVESTIGATION ON THE NONCIRCULAR INCOMPRESSIBLE JET CHARACTERISTICS S. Venkata Sai Sudheer 1, Chandra Sekhar K 2, Peram Laxmi Reddy 3 1,2 Assistant Professor, Mechanical Engineering, CVR College

More information

Numerical Investigation of the Transonic Base Flow of A Generic Rocket Configuration

Numerical Investigation of the Transonic Base Flow of A Generic Rocket Configuration 1 Numerical Investigation of the Transonic Base Flow of A Generic Rocket Configuration A. Henze, C. Glatzer, M. Meinke, W. Schröder Institute of Aerodynamics, RWTH Aachen University, Germany March 21,

More information

STUDY OF THREE-DIMENSIONAL SYNTHETIC JET FLOWFIELDS USING DIRECT NUMERICAL SIMULATION.

STUDY OF THREE-DIMENSIONAL SYNTHETIC JET FLOWFIELDS USING DIRECT NUMERICAL SIMULATION. 42 nd AIAA Aerospace Sciences Meeting and Exhibit 5-8 January 2004/Reno, NV STUDY OF THREE-DIMENSIONAL SYNTHETIC JET FLOWFIELDS USING DIRECT NUMERICAL SIMULATION. B.R.Ravi * and R. Mittal, Department of

More information

PIV measurements and convective heat transfer of an impinging air jet

PIV measurements and convective heat transfer of an impinging air jet PIV measurements and convective heat transfer of an impinging air jet by T. S. O Donovan (), D. B. Murray () and A.A. Torrance (3) Department of Mechanical & Manufacturing Engineering, Trinity College

More information

25 years of PIV development for application in aeronautical test facilities

25 years of PIV development for application in aeronautical test facilities 25 years of PIV development for application in aeronautical test facilities Jürgen Kompenhans and team Department Experimental Methods Institute of Aerodynamics and Flow Technology German Aerospace Center

More information

Laser Doppler Anemometry. Introduction to principles and applications

Laser Doppler Anemometry. Introduction to principles and applications Laser Doppler Anemometry Introduction to principles and applications Characteristics of LDA Invented by Yeh and Cummins in 1964 Velocity measurements in Fluid Dynamics (gas, liquid) Up to 3 velocity components

More information

BEHAVIOUR OF TRAILING VORTICES IN THE VICINITY OF THE GROUND

BEHAVIOUR OF TRAILING VORTICES IN THE VICINITY OF THE GROUND BEHAVIOUR OF TRAILING VORTICES IN THE VICINITY OF THE GROUND G. Pailhas, X. de Saint Victor, Y. Touvet ONERA/DMAE, Department of Modelling for Aerodynamics and Energetics, Toulouse, FRANCE ABSTRACT The

More information

SHEAR LAYER REATTACHMENT ON A SQUARE CYLINDER WITH INCIDENCE ANGLE VARIATION

SHEAR LAYER REATTACHMENT ON A SQUARE CYLINDER WITH INCIDENCE ANGLE VARIATION Seventh International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia 9- December 9 SHEAR LAYER REATTACHMENT ON A SQUARE CYLINDER WITH INCIDENCE ANGLE VARIATION Priyanka

More information

ESTIMATING THE FRICTION VELOCITY IN A TURBULENT PLANE WALL JET OVER A TRANSITIONALLY ROUGH SURFACE

ESTIMATING THE FRICTION VELOCITY IN A TURBULENT PLANE WALL JET OVER A TRANSITIONALLY ROUGH SURFACE ESTIMATING THE FRICTION VELOCITY IN A TRBLENT PLANE WALL JET OVER A TRANSITIONALLY ROGH SRFACE Noorallah Rostamy niversity of Saskatchewan nori.rostamy@usask.ca Donald J. Bergstrom niversity of Saskatchewan

More information

Experimental investigation of the aerodynamic characteristics of generic fan-in-wing configurations

Experimental investigation of the aerodynamic characteristics of generic fan-in-wing configurations THE AERONAUTICAL JOURNAL JANUARY 2009 VOLUME 113 NO 1139 9 Experimental investigation of the aerodynamic characteristics of generic fan-in-wing configurations N. Thouault, C. Breitsamter and N. A. Adams

More information

UNIT II CONVECTION HEAT TRANSFER

UNIT II CONVECTION HEAT TRANSFER UNIT II CONVECTION HEAT TRANSFER Convection is the mode of heat transfer between a surface and a fluid moving over it. The energy transfer in convection is predominately due to the bulk motion of the fluid

More information

PIV measurements of flow structures in a spray dryer

PIV measurements of flow structures in a spray dryer Downloaded from orbit.dtu.dk on: Nov 19, 218 PIV measurements of flow structures in a spray dryer Meyer, Knud Erik; Velte, Clara Marika; Ullum, Thorvald Published in: Proceedings of PIV'11 Publication

More information

ACTIVE SEPARATION CONTROL PROCESS OVER A SHARP EDGE RAMP

ACTIVE SEPARATION CONTROL PROCESS OVER A SHARP EDGE RAMP June 30 - July 3, 2015 Melbourne, Australia 9 3D-1 ACTIVE SEPARATION CONTROL PROCESS OVER A SHARP EDGE RAMP Antoine Debien 8 rue Léonard de Vinci antoine.debien@univ-orleans.fr Sandrine Aubrun sandrine.aubrun@univ-orleans.fr

More information

Experimental evidence of the connection between flow fluctuations and dynamics of vorticity structures in the wake of a triangular prism.

Experimental evidence of the connection between flow fluctuations and dynamics of vorticity structures in the wake of a triangular prism. Experimental evidence of the connection between flow fluctuations and dynamics of vorticity structures in the wake of a triangular prism. Guido Buresti, Giacomo Valerio Iungo Department of Aerospace Engineering,

More information

Correlations between turbulent wall pressure and velocity field fluctuations in backward-facing step

Correlations between turbulent wall pressure and velocity field fluctuations in backward-facing step DocumentID: 450038 Correlations between turbulent wall pressure and velocity field fluctuations in backward-facing step flows Istvan Bolgar, Sven Scharnowski, and Christian J. Kähler Bundeswehr University

More information

LASER APPLICATIONS XII. QPR No Academic Research Staff. Ezekiel. Prof. S. Graduate Students

LASER APPLICATIONS XII. QPR No Academic Research Staff. Ezekiel. Prof. S. Graduate Students XII. LASER APPLICATIONS Academic Research Staff Prof. S. Ezekiel Graduate Students L. A. Hackel J. A. Monjes J. P. Sullivan P. D. Henshaw T. J. Ryan D. G. Youmans J. W. Stafurik RESEARCH OBJECTIVES Our

More information

EFFECT OF REYNOLDS NUMBER ON THE UNSTEADY FLOW AND ACOUSTIC FIELDS OF SUPERSONIC CAVITY

EFFECT OF REYNOLDS NUMBER ON THE UNSTEADY FLOW AND ACOUSTIC FIELDS OF SUPERSONIC CAVITY Proceedings of FEDSM 03 4TH ASME_JSME Joint Fluids Engineering Conference Honolulu, Hawaii, USA, July 6 11, 2003 FEDSM2003-45473 EFFECT OF REYNOLDS NUMBER ON THE UNSTEADY FLOW AND ACOUSTIC FIELDS OF SUPERSONIC

More information

4' DTIC. ,.94 jl _ AD-A I ELEC -, ANNUAL REPORT 1 OCT 92 THROUGH 30 SEPT 93 C OFFICE OF NAVAL RESEARCH OCEAN TECHNOLOGY PROGRAM

4' DTIC. ,.94 jl _ AD-A I ELEC -, ANNUAL REPORT 1 OCT 92 THROUGH 30 SEPT 93 C OFFICE OF NAVAL RESEARCH OCEAN TECHNOLOGY PROGRAM AD-A274 845 ANNUAL REPORT DTIC I ELEC -, 0T 1 OCT 92 THROUGH 30 SEPT 93 C OFFICE OF NAVAL RESEARCH OCEAN TECHNOLOGY PROGRAM GRANT NUMBER: N00014-90J.4083 THE EFFECTS OF THREE-DIMENSIONAL IMPOSED DISTURBANCES

More information

Three-dimensional span effects of highaspect ratio synthetic jet forcing for separation control on a low-reynolds number airfoil

Three-dimensional span effects of highaspect ratio synthetic jet forcing for separation control on a low-reynolds number airfoil TSpace Research Repository tspace.library.utoronto.ca Three-dimensional span effects of highaspect ratio synthetic jet forcing for separation control on a low-reynolds number airfoil Mark Feero, Philippe

More information

EXPERIMENTAL INVESTIGATION OF THREE DIMENSIONAL SEPARATED FLOW OVER A BODY OF REVOLUTION AT HIGH ANGLES OF ATTACK

EXPERIMENTAL INVESTIGATION OF THREE DIMENSIONAL SEPARATED FLOW OVER A BODY OF REVOLUTION AT HIGH ANGLES OF ATTACK ICAS CONGRESS EXPERIMENTAL INVESTIGATION OF THREE DIMENSIONAL SEPARATED FLOW OVER A BODY OF Tadateru Ishide 1), Nobuhide Nishikawa ) and Fumihiko Mikami ) 1)Kisarazu National College of Technology, -11-1,kiyomidai-higashi,

More information

ACTUAL PROBLEMS OF THE SUBSONIC AERODYNAMICS (prospect of shear flows control)

ACTUAL PROBLEMS OF THE SUBSONIC AERODYNAMICS (prospect of shear flows control) ACTUAL PROBLEMS OF THE SUBSONIC AERODYNAMICS (prospect of shear flows control) Viktor Kozlov 1 ABSTRACT Scientific problems related to modern aeronautical engineering and dealing with basic properties

More information

Wind Tunnel at LABINTHAP (Updated)

Wind Tunnel at LABINTHAP (Updated) Energy and Power Engineering, 2, 3, 6-73 doi:.4236/epe.2.347 Published Online September 2 (http://www.scirp.org/journal/epe) Wind Tunnel at LABINTHAP (Updated) Abstract Rosas Quiterio Pedro, Toledo Velázquez

More information

LASER DOPPLER VELOCIMETRY AND CONFINED FLOWS

LASER DOPPLER VELOCIMETRY AND CONFINED FLOWS S825 LASER DOPPLER VELOCIMETRY AND CONFINED FLOWS by Jelena T. ILIĆ a*, Slavica S. RISTIĆ b, and Milesa Ž. SREĆKOVIĆ c a Faculty of Mechanical Engineering, University of Belgrade, Belgrade, Serbia b Institute

More information

of Shock Wave Turbulent Boundary

of Shock Wave Turbulent Boundary I AlAA 91-0651 Visualization of the Structure of Shock Wave Turbulent Boundary Layer Interactions using Rayleigh Scattering D. R. Smith, J. Poggie, W. Konrad and A. J. Smits Princeton University Princeton,

More information

Transactions on Engineering Sciences vol 9, 1996 WIT Press, ISSN

Transactions on Engineering Sciences vol 9, 1996 WIT Press,   ISSN A study of turbulence characteristics in open channel transitions as a function of Froude and Reynolds numbers using Laser technique M.I.A. El-shewey, S.G. Joshi Department of Civil Engineering, Indian

More information

Lecture-4. Flow Past Immersed Bodies

Lecture-4. Flow Past Immersed Bodies Lecture-4 Flow Past Immersed Bodies Learning objectives After completing this lecture, you should be able to: Identify and discuss the features of external flow Explain the fundamental characteristics

More information