L3 Monte-Carlo integration

Size: px
Start display at page:

Download "L3 Monte-Carlo integration"

Transcription

1 RNG MC IS Examination RNG MC IS Examination Monte-Carlo and Empirical Methods for Statistical Inference, FMS091/MASM11 Monte-Carlo integration Generating pseudo-random numbers: Rejection sampling Conditional methods N (0, 1) numbers L3 Monte-Carlo integration Monte-Carlo integration Basic Monte-Carlo integration Law of large numbers & Central limit theorem Importance sampling Examination Computer exercise 1 The first project David Bolin - bolin@maths.lth.se MC Based Statistical Methods, L3 1/22 Inversion and transformation methods We want random numbers X R from a continuous distribution F. Takex = F 1 (u), whereu U (0, 1). If X has a density f, thenthedensityofz = h(x) is f(g(z)) g (z), whereg = h 1. If are X and Y independent random variables with densities f x and f y,thenthedensityofz = X + Y is f z (z) = f x (z t)f y (t) dt. Rejection sampling David Bolin - bolin@maths.lth.se MC Based Statistical Methods, L3 2/22 Algorithm: Given a density g(x) such that Mf(x) Kg(x) do 1. Draw (z 1,...,z d ) from g(x). 2. Draw z d+1 from U (0, Kg(z 1,...,z d )). 3. If z d+1 > Mf(z 1,...,z d ) goto 1 (reject). 4. (z 1,...,z d ) is now a sample from f(x). The efficiency of the algorithm is given by M/K. David Bolin - bolin@maths.lth.se MC Based Statistical Methods, L3 3/22 David Bolin - bolin@maths.lth.se MC Based Statistical Methods, L3 4/22

2 Example: Tail of a N (0, 1) We want samples from the tail of a N (0, 1) distribution, X > Proposal distribution: χ(5). Hasthesametailbehavior as the Normal, exp( x 2 /2), andhasmode 5 1 = Mf(x) = 16 exp( x 2 /2) x 4 exp( x 2 /2) = Kg(x). 3. M = 16 2π(1 Φ(2)) and K = Γ(2.5) gives an acceptance rate of M/K accept=false; while accept==false %sample x from chi(5) x = sqrt(chi2rnd(5)); %sample U from U(0,K*g) u = rand(1).*x. 4.*exp(-x. 2/2); %acceptance threshold Mf = 16*exp(-x. 2/2); Mf(x<2) = 0; %test if point is accepted accept = u<mf; end David Bolin - bolin@maths.lth.se MC Based Statistical Methods, L3 5/22 Conditional methods If we can decompose a multivariate density into conditional parts, the problem of sampling from a multivariate density can be reduce to sampling from several univariate densities. f(x 1,...,x n ) = f(x n x n 1,...,x 1 )f(x n 1 x n 2,...,x 1 ) f(x 2 x 1 )f(x 1 ) The problem is that it may be hard to find the conditional densities, e.g. f(x 1 ) = f(x 1,...,x n ) dx 2 x n Example: Tail of a N (0, 1) N (0, 1) numbers acceptance rate 24.66% David Bolin - bolin@maths.lth.se MC Based Statistical Methods, L3 6/22 There are several ways of generating N (0, 1) numbers. Use CLT, x = ( n i=1 u i n/2) 12/n The Box-Müller transform x 1 = 2lnu 2 cos(2πu 1 ) x 2 = 2lnu 2 sin(2πu 1 ) The polar coordinate method. Draw u 1, u 2 uniform on the circle u u2 2 1 using rejection sampling, and take 2ln(u 2 1 x 1 = u + u2 2 ) 1 u u2 2 2ln(u 2 1 x 2 = u + u2 2 ) 2 u u2 2 George Marsaglia s ziggurat algorithm. David Bolin - bolin@maths.lth.se MC Based Statistical Methods, L3 7/22 David Bolin - bolin@maths.lth.se MC Based Statistical Methods, L3 8/22

3 Monte Carlo integration Many quantities of interest in statistics can be written as expectations Expectations: E(X) = xf(x) dx Probabilities: P(X > 2) = 2 f(x) dx = I(x > 2)f(x) dx = E(I(x > 2)). Standard integrals 2π sin(2π/(x π) 2 ) dx 0 =2π sin(2π/(x π) 2 )I(0 x 2π)/(2π) dx ) = 2πE U(0,2π) (sin(2π/(x π) 2 ). Law of Large Numbers Theorem: Assume X 1,...,X n is a sequence of i.i.d. random variables with mean E(X i ) = τ and variance V(x i ) = σ 2 <. If T n = n 1 n i=1 X i,thent n converges in probability to τ, i.e. for any ε > 0 P( T n τ > ε) 0asn Project 1: Show convergence in the mean squared sense, i.e. show that under the assumptions of the theorem it also holds that E((T n τ) 2 ) = σ2 n 0asn Monte Carlo integration Algorithm: David Bolin - bolin@maths.lth.se MC Based Statistical Methods, L3 9/22 1. Draw N values x 1,...,x N from f. 2. Approximate τ = E(φ(X)) with t N = 1 N N φ(x i ) We have an approximation of the expectation. The next question is: How good is the approximation? The rate of the error is O ( n 1/2),independentofthe dimension d. Example of error rates for deterministic methods are O ( n 2/d) (trapezoidal) and O ( n 4/d) (Simpson). i=1 Central Limit Theorem David Bolin - bolin@maths.lth.se MC Based Statistical Methods, L3 10/22 Monte Carlo integration also provides a simple way of obtaining confidence intervals of the approximation. Theorem: Assume X 1,...,X n is a sequence of i.i.d. random variables with means E(X i ) = τ and variances V(x i ) = σ 2.If T n = n 1 n i=1 X i,then ( ) n(tn τ) P x Φ(x) as n σ Or, for large enough n, T n is approximately Normal with mean E(T n ) = τ and variance V(T n ) = σ 2 /n, wheresigmacan be estimated from X i.thisallowsustoconstructconfidence intervals for the approximation. David Bolin - bolin@maths.lth.se MC Based Statistical Methods, L3 11/22 David Bolin - bolin@maths.lth.se MC Based Statistical Methods, L3 12/22

4 Bias Assume that we are interested in a function of the expectation. (e.g. h(e(x)) = E(X) 2 ). Anaturalestimatewouldbeh(E(X)) h(x). This estimate is no longer guaranteed to be unbiased, E(T n ) τ. Let τ = h(e(x)) and let T n = h(x). Theerrorcannowbe decomposed into variance and bias E((T n τ) 2 ) = V(T n ) + (E(T n ) τ) 2. Advantages of Monte Carlo integration More efficient than deterministic methods in high dimensions. If we can sample from a density, we don t need to know the normalizing constant to calculate integrals (rejections sampling). Handles strange integrands that causes problems for deterministic methods. 1 However the squared bias decreases as O ( n 2),while the variance decreases as O ( n 1). It can be shown that if X is asymptotically Normal with variance σ 2 /n then T n still is asymptotically Normal with variance σ 2 h (E(X)) 2 /n. David Bolin - bolin@maths.lth.se MC Based Statistical Methods, L3 13/ David Bolin - bolin@maths.lth.se MC Based Statistical Methods, L3 14/22 Problems with Monte Carlo integration Hard to sample from f(x). If we want to calculate E(φ(x)), whereφ(x) and f(x) are dissimilar, we might end of with a lot of samples where the integrand is small. Importance sampling can often solve these problems. Importance sampling The basis of importance sampling is to rewrite the integral as E f (φ(x)) = φ(x)f(x) dx = φ(x) f(x) g(x) dx g(x) ( ) φ(x)f(x) = E g = E g (ψ(x)) g(x) Construct the estimate T n as before and the variance is V(T n ) = 1 (ψ(x) τ) 2 g(x) dx. n Agoodchoiceforg(x) is one that makes ψ(x) close to constant. David Bolin - bolin@maths.lth.se MC Based Statistical Methods, L3 15/22 David Bolin - bolin@maths.lth.se MC Based Statistical Methods, L3 16/22

5 Example: Let X N(0, 1) and assume that we want to estimate P(X > 2) = f(x) dx = I(x > 2)f(x) dx = E(I(x > 2)) 2 MC integration: x = randn(1,n); phi = x>2; tn = mean(phi); Most of the samples of X are less than 2, whereweknow the integrand is zero! Alternatively we use that for large x, f(x) is similar to the χ(5) distribution. Importance sampling: y = sqrt(chi2rnd(5,1,n)); f = exp(-y. 2/2)/sqrt(2*pi); g = y. 4.*exp(-y. 2/2)/(gamma(2.5)*2 (1.5)); psi = (y>2).*f./g; tn2 = mean(psi); Importance sampling (cont.) David Bolin - bolin@maths.lth.se MC Based Statistical Methods, L3 17/22 An advantage with ordinary MC integration is that we don t need to know the normalizing constant of f(x), butnow both f(x) and g(x) are part of the expectation. Use MC integration to obtain the normalizing constant. E f (φ(x)) ( i φ(y i )Mf(y i ) g(y i ) ) / ( i Mf(x i ) g 2 (x i ) with y i samples from g and x i samples from g 2. ), Example (cont.) MC integration Importance sampling David Bolin - bolin@maths.lth.se MC Based Statistical Methods, L3 18/22 RNG MC IS Examination Computer exercise1 Project 1 Computer exercise 1; Random number generation & Monte Carlo-integration Answers to the following questions should be submitted no later than on the lecture Monday January 31. Note that the answers should be short (a couple of sentences only), and not constitute a complete report. 1. Compare the efficiency of the naïve method and the inversion method for generating from the geometric distribution, comments? 2. In task 2. above, which proposal distribution did you use, and what was the efficiency of the algorithm? 3. In task 2. above, what is the approximate 95% confidence interval for the probability P(X X2 3 2)? David Bolin - bolin@maths.lth.se MC Based Statistical Methods, L3 19/22 David Bolin - bolin@maths.lth.se MC Based Statistical Methods, L3 20/22

6 RNG MC IS Examination Computer exercise1 Project 1 Project 1; Simulation and Monte-Carlo integration The project: Asmallquestionontheory Importance Sampling Submission: AwrittenreportinPDF,PS,OpenOffice,oronPlain paper (No MS Word-files). An containing all your m-files. With a file proj1.m that runs your analysis. David Bolin - bolin@maths.lth.se MC Based Statistical Methods, L3 21/22 RNG MC IS Examination Computer exercise1 Project 1 Writing reports, some comments Introduce and/or explain notation; X =?. Describe/explain the model. The text should be readable without access to the Matlab code; write plain text instead of including the Matlab code in the report. Include your solutions in the text; Do not write calculations of? can be found in the matlab code, or similar. When referring to the lecture notes or the book, be specific (i.e. give Chapter/which lecture). Refer to your figures in the text. Explain colors etc. in the figure captions (A figure caption is almost never to long). Write clear motivations and reasonings, for any choices you have made. David Bolin - bolin@maths.lth.se MC Based Statistical Methods, L3 22/22

S6880 #7. Generate Non-uniform Random Number #1

S6880 #7. Generate Non-uniform Random Number #1 S6880 #7 Generate Non-uniform Random Number #1 Outline 1 Inversion Method Inversion Method Examples Application to Discrete Distributions Using Inversion Method 2 Composition Method Composition Method

More information

Stat 451 Lecture Notes Monte Carlo Integration

Stat 451 Lecture Notes Monte Carlo Integration Stat 451 Lecture Notes 06 12 Monte Carlo Integration Ryan Martin UIC www.math.uic.edu/~rgmartin 1 Based on Chapter 6 in Givens & Hoeting, Chapter 23 in Lange, and Chapters 3 4 in Robert & Casella 2 Updated:

More information

Hochdimensionale Integration

Hochdimensionale Integration Oliver Ernst Institut für Numerische Mathematik und Optimierung Hochdimensionale Integration 14-tägige Vorlesung im Wintersemester 2010/11 im Rahmen des Moduls Ausgewählte Kapitel der Numerik Contents

More information

Computer Intensive Methods in Mathematical Statistics

Computer Intensive Methods in Mathematical Statistics Computer Intensive Methods in Mathematical Statistics Department of mathematics KTH Royal Institute of Technology jimmyol@kth.se Lecture 2 Random number generation 27 March 2014 Computer Intensive Methods

More information

Qualifying Exam CS 661: System Simulation Summer 2013 Prof. Marvin K. Nakayama

Qualifying Exam CS 661: System Simulation Summer 2013 Prof. Marvin K. Nakayama Qualifying Exam CS 661: System Simulation Summer 2013 Prof. Marvin K. Nakayama Instructions This exam has 7 pages in total, numbered 1 to 7. Make sure your exam has all the pages. This exam will be 2 hours

More information

Generating pseudo- random numbers

Generating pseudo- random numbers Generating pseudo- random numbers What are pseudo-random numbers? Numbers exhibiting statistical randomness while being generated by a deterministic process. Easier to generate than true random numbers?

More information

Lecture 7 and 8: Markov Chain Monte Carlo

Lecture 7 and 8: Markov Chain Monte Carlo Lecture 7 and 8: Markov Chain Monte Carlo 4F13: Machine Learning Zoubin Ghahramani and Carl Edward Rasmussen Department of Engineering University of Cambridge http://mlg.eng.cam.ac.uk/teaching/4f13/ Ghahramani

More information

2 Random Variable Generation

2 Random Variable Generation 2 Random Variable Generation Most Monte Carlo computations require, as a starting point, a sequence of i.i.d. random variables with given marginal distribution. We describe here some of the basic methods

More information

L11 Hypothesis testing

L11 Hypothesis testing Hypothesis Simple Composite Hypothesis Simple Composite Monte-Carlo and Empirical Methods for Statistical Inference, FMS091/MASM11 L11 Hypothesis testing Hypothesis testing Statistical hypothesises Testing

More information

Monte Carlo-based statistical methods (MASM11/FMS091)

Monte Carlo-based statistical methods (MASM11/FMS091) Monte Carlo-based statistical methods (MASM11/FMS091) Jimmy Olsson Centre for Mathematical Sciences Lund University, Sweden Lecture 4 Variance reduction for MC methods February 1, 2013 J. Olsson Monte

More information

Computer Intensive Methods in Mathematical Statistics

Computer Intensive Methods in Mathematical Statistics Computer Intensive Methods in Mathematical Statistics Department of mathematics johawes@kth.se Lecture 5 Sequential Monte Carlo methods I 31 March 2017 Computer Intensive Methods (1) Plan of today s lecture

More information

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMS091)

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMS091) Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMS091) Magnus Wiktorsson Centre for Mathematical Sciences Lund University, Sweden Lecture 4 Variance reduction for MC methods January

More information

Generating the Sample

Generating the Sample STAT 80: Mathematical Statistics Monte Carlo Suppose you are given random variables X,..., X n whose joint density f (or distribution) is specified and a statistic T (X,..., X n ) whose distribution you

More information

19 : Slice Sampling and HMC

19 : Slice Sampling and HMC 10-708: Probabilistic Graphical Models 10-708, Spring 2018 19 : Slice Sampling and HMC Lecturer: Kayhan Batmanghelich Scribes: Boxiang Lyu 1 MCMC (Auxiliary Variables Methods) In inference, we are often

More information

Multivariate Simulations

Multivariate Simulations Multivariate Simulations Katarína Starinská starinskak@gmail.com Charles University Faculty of Mathematics and Physics Prague, Czech Republic 21.11.2011 Katarína Starinská Multivariate Simulations 1 /

More information

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( )

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( ) Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio (2014-2015) Etienne Tanré - Olivier Faugeras INRIA - Team Tosca October 22nd, 2014 E. Tanré (INRIA - Team Tosca) Mathematical

More information

Intelligent Systems I

Intelligent Systems I 1, Intelligent Systems I 12 SAMPLING METHODS THE LAST THING YOU SHOULD EVER TRY Philipp Hennig & Stefan Harmeling Max Planck Institute for Intelligent Systems 23. January 2014 Dptmt. of Empirical Inference

More information

Stat 451 Lecture Notes Simulating Random Variables

Stat 451 Lecture Notes Simulating Random Variables Stat 451 Lecture Notes 05 12 Simulating Random Variables Ryan Martin UIC www.math.uic.edu/~rgmartin 1 Based on Chapter 6 in Givens & Hoeting, Chapter 22 in Lange, and Chapter 2 in Robert & Casella 2 Updated:

More information

Computer Intensive Methods in Mathematical Statistics

Computer Intensive Methods in Mathematical Statistics Computer Intensive Methods in Mathematical Statistics Department of mathematics johawes@kth.se Lecture 7 Sequential Monte Carlo methods III 7 April 2017 Computer Intensive Methods (1) Plan of today s lecture

More information

Stochastic Simulation Variance reduction methods Bo Friis Nielsen

Stochastic Simulation Variance reduction methods Bo Friis Nielsen Stochastic Simulation Variance reduction methods Bo Friis Nielsen Applied Mathematics and Computer Science Technical University of Denmark 2800 Kgs. Lyngby Denmark Email: bfni@dtu.dk Variance reduction

More information

Uses of Asymptotic Distributions: In order to get distribution theory, we need to norm the random variable; we usually look at n 1=2 ( X n ).

Uses of Asymptotic Distributions: In order to get distribution theory, we need to norm the random variable; we usually look at n 1=2 ( X n ). 1 Economics 620, Lecture 8a: Asymptotics II Uses of Asymptotic Distributions: Suppose X n! 0 in probability. (What can be said about the distribution of X n?) In order to get distribution theory, we need

More information

Monte Carlo and cold gases. Lode Pollet.

Monte Carlo and cold gases. Lode Pollet. Monte Carlo and cold gases Lode Pollet lpollet@physics.harvard.edu 1 Outline Classical Monte Carlo The Monte Carlo trick Markov chains Metropolis algorithm Ising model critical slowing down Quantum Monte

More information

Notes on the Multivariate Normal and Related Topics

Notes on the Multivariate Normal and Related Topics Version: July 10, 2013 Notes on the Multivariate Normal and Related Topics Let me refresh your memory about the distinctions between population and sample; parameters and statistics; population distributions

More information

Numerical Methods I Monte Carlo Methods

Numerical Methods I Monte Carlo Methods Numerical Methods I Monte Carlo Methods Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course G63.2010.001 / G22.2420-001, Fall 2010 Dec. 9th, 2010 A. Donev (Courant Institute) Lecture

More information

Practice Problems Section Problems

Practice Problems Section Problems Practice Problems Section 4-4-3 4-4 4-5 4-6 4-7 4-8 4-10 Supplemental Problems 4-1 to 4-9 4-13, 14, 15, 17, 19, 0 4-3, 34, 36, 38 4-47, 49, 5, 54, 55 4-59, 60, 63 4-66, 68, 69, 70, 74 4-79, 81, 84 4-85,

More information

Bayesian Methods with Monte Carlo Markov Chains II

Bayesian Methods with Monte Carlo Markov Chains II Bayesian Methods with Monte Carlo Markov Chains II Henry Horng-Shing Lu Institute of Statistics National Chiao Tung University hslu@stat.nctu.edu.tw http://tigpbp.iis.sinica.edu.tw/courses.htm 1 Part 3

More information

S6880 #13. Variance Reduction Methods

S6880 #13. Variance Reduction Methods S6880 #13 Variance Reduction Methods 1 Variance Reduction Methods Variance Reduction Methods 2 Importance Sampling Importance Sampling 3 Control Variates Control Variates Cauchy Example Revisited 4 Antithetic

More information

Winter 2019 Math 106 Topics in Applied Mathematics. Lecture 8: Importance Sampling

Winter 2019 Math 106 Topics in Applied Mathematics. Lecture 8: Importance Sampling Winter 2019 Math 106 Topics in Applied Mathematics Data-driven Uncertainty Quantification Yoonsang Lee (yoonsang.lee@dartmouth.edu) Lecture 8: Importance Sampling 8.1 Importance Sampling Importance sampling

More information

MAS223 Statistical Inference and Modelling Exercises

MAS223 Statistical Inference and Modelling Exercises MAS223 Statistical Inference and Modelling Exercises The exercises are grouped into sections, corresponding to chapters of the lecture notes Within each section exercises are divided into warm-up questions,

More information

Math 475. Jimin Ding. August 29, Department of Mathematics Washington University in St. Louis jmding/math475/index.

Math 475. Jimin Ding. August 29, Department of Mathematics Washington University in St. Louis   jmding/math475/index. istical A istic istics : istical Department of Mathematics Washington University in St. Louis www.math.wustl.edu/ jmding/math475/index.html August 29, 2013 istical August 29, 2013 1 / 18 istical A istic

More information

Monte Carlo Simulations

Monte Carlo Simulations Monte Carlo Simulations What are Monte Carlo Simulations and why ones them? Pseudo Random Number generators Creating a realization of a general PDF The Bootstrap approach A real life example: LOFAR simulations

More information

Scientific Computing: Monte Carlo

Scientific Computing: Monte Carlo Scientific Computing: Monte Carlo Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course MATH-GA.2043 or CSCI-GA.2112, Spring 2012 April 5th and 12th, 2012 A. Donev (Courant Institute)

More information

Monte Carlo Integration I [RC] Chapter 3

Monte Carlo Integration I [RC] Chapter 3 Aula 3. Monte Carlo Integration I 0 Monte Carlo Integration I [RC] Chapter 3 Anatoli Iambartsev IME-USP Aula 3. Monte Carlo Integration I 1 There is no exact definition of the Monte Carlo methods. In the

More information

Monte Carlo Studies. The response in a Monte Carlo study is a random variable.

Monte Carlo Studies. The response in a Monte Carlo study is a random variable. Monte Carlo Studies The response in a Monte Carlo study is a random variable. The response in a Monte Carlo study has a variance that comes from the variance of the stochastic elements in the data-generating

More information

Computer Intensive Methods in Mathematical Statistics

Computer Intensive Methods in Mathematical Statistics Computer Intensive Methods in Mathematical Statistics Department of mathematics johawes@kth.se Lecture 4 Variance reduction for MC methods 30 March 2017 Computer Intensive Methods (1) What do we need to

More information

Stat 710: Mathematical Statistics Lecture 31

Stat 710: Mathematical Statistics Lecture 31 Stat 710: Mathematical Statistics Lecture 31 Jun Shao Department of Statistics University of Wisconsin Madison, WI 53706, USA Jun Shao (UW-Madison) Stat 710, Lecture 31 April 13, 2009 1 / 13 Lecture 31:

More information

Uniform Random Number Generators

Uniform Random Number Generators JHU 553.633/433: Monte Carlo Methods J. C. Spall 25 September 2017 CHAPTER 2 RANDOM NUMBER GENERATION Motivation and criteria for generators Linear generators (e.g., linear congruential generators) Multiple

More information

Lecture 5: GPs and Streaming regression

Lecture 5: GPs and Streaming regression Lecture 5: GPs and Streaming regression Gaussian Processes Information gain Confidence intervals COMP-652 and ECSE-608, Lecture 5 - September 19, 2017 1 Recall: Non-parametric regression Input space X

More information

Simulation. Where real stuff starts

Simulation. Where real stuff starts Simulation Where real stuff starts March 2019 1 ToC 1. What is a simulation? 2. Accuracy of output 3. Random Number Generators 4. How to sample 5. Monte Carlo 6. Bootstrap 2 1. What is a simulation? 3

More information

Simulation. Where real stuff starts

Simulation. Where real stuff starts 1 Simulation Where real stuff starts ToC 1. What is a simulation? 2. Accuracy of output 3. Random Number Generators 4. How to sample 5. Monte Carlo 6. Bootstrap 2 1. What is a simulation? 3 What is a simulation?

More information

Composite Hypotheses and Generalized Likelihood Ratio Tests

Composite Hypotheses and Generalized Likelihood Ratio Tests Composite Hypotheses and Generalized Likelihood Ratio Tests Rebecca Willett, 06 In many real world problems, it is difficult to precisely specify probability distributions. Our models for data may involve

More information

MATH5835 Statistical Computing. Jochen Voss

MATH5835 Statistical Computing. Jochen Voss MATH5835 Statistical Computing Jochen Voss September 27, 2011 Copyright c 2011 Jochen Voss J.Voss@leeds.ac.uk This text is work in progress and may still contain typographical and factual mistakes. Reports

More information

ik () uk () Today s menu Last lecture Some definitions Repeatability of sensing elements

ik () uk () Today s menu Last lecture Some definitions Repeatability of sensing elements Last lecture Overview of the elements of measurement systems. Sensing elements. Signal conditioning elements. Signal processing elements. Data presentation elements. Static characteristics of measurement

More information

Chapter 2: Resampling Maarten Jansen

Chapter 2: Resampling Maarten Jansen Chapter 2: Resampling Maarten Jansen Randomization tests Randomized experiment random assignment of sample subjects to groups Example: medical experiment with control group n 1 subjects for true medicine,

More information

Generating Random Variables

Generating Random Variables Generating Random Variables Christian Robert Université Paris Dauphine and CREST, INSEE George Casella University of Florida Keywords and Phrases: Random Number Generator, Probability Integral Transform,

More information

STA205 Probability: Week 8 R. Wolpert

STA205 Probability: Week 8 R. Wolpert INFINITE COIN-TOSS AND THE LAWS OF LARGE NUMBERS The traditional interpretation of the probability of an event E is its asymptotic frequency: the limit as n of the fraction of n repeated, similar, and

More information

Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo (MCMC) School of Computer Science 10-708 Probabilistic Graphical Models Markov Chain Monte Carlo (MCMC) Readings: MacKay Ch. 29 Jordan Ch. 21 Matt Gormley Lecture 16 March 14, 2016 1 Homework 2 Housekeeping Due

More information

ESUP Accept/Reject Sampling

ESUP Accept/Reject Sampling ESUP Accept/Reject Sampling Brian Caffo Department of Biostatistics Johns Hopkins Bloomberg School of Public Health January 20, 2003 Page 1 of 32 Monte Carlo in general Page 2 of 32 Use of simulated random

More information

Nonlife Actuarial Models. Chapter 14 Basic Monte Carlo Methods

Nonlife Actuarial Models. Chapter 14 Basic Monte Carlo Methods Nonlife Actuarial Models Chapter 14 Basic Monte Carlo Methods Learning Objectives 1. Generation of uniform random numbers, mixed congruential method 2. Low discrepancy sequence 3. Inversion transformation

More information

Monte Carlo Integration

Monte Carlo Integration Monte Carlo Integration SCX5005 Simulação de Sistemas Complexos II Marcelo S. Lauretto www.each.usp.br/lauretto Reference: Robert CP, Casella G. Introducing Monte Carlo Methods with R. Springer, 2010.

More information

Semi-Parametric Importance Sampling for Rare-event probability Estimation

Semi-Parametric Importance Sampling for Rare-event probability Estimation Semi-Parametric Importance Sampling for Rare-event probability Estimation Z. I. Botev and P. L Ecuyer IMACS Seminar 2011 Borovets, Bulgaria Semi-Parametric Importance Sampling for Rare-event probability

More information

Asymptotic Statistics-III. Changliang Zou

Asymptotic Statistics-III. Changliang Zou Asymptotic Statistics-III Changliang Zou The multivariate central limit theorem Theorem (Multivariate CLT for iid case) Let X i be iid random p-vectors with mean µ and and covariance matrix Σ. Then n (

More information

Numerical integration - I. M. Peressi - UniTS - Laurea Magistrale in Physics Laboratory of Computational Physics - Unit V

Numerical integration - I. M. Peressi - UniTS - Laurea Magistrale in Physics Laboratory of Computational Physics - Unit V Numerical integration - I M. Peressi - UniTS - Laurea Magistrale in Physics Laboratory of Computational Physics - Unit V deterministic methods in 1D equispaced points (trapezoidal, Simpson...), others...

More information

Robert Collins CSE586, PSU Intro to Sampling Methods

Robert Collins CSE586, PSU Intro to Sampling Methods Intro to Sampling Methods CSE586 Computer Vision II Penn State Univ Topics to be Covered Monte Carlo Integration Sampling and Expected Values Inverse Transform Sampling (CDF) Ancestral Sampling Rejection

More information

Chapter 4: Monte-Carlo Methods

Chapter 4: Monte-Carlo Methods Chapter 4: Monte-Carlo Methods A Monte-Carlo method is a technique for the numerical realization of a stochastic process by means of normally distributed random variables. In financial mathematics, it

More information

Random Numbers and Simulation

Random Numbers and Simulation Random Numbers and Simulation Generating random numbers: Typically impossible/unfeasible to obtain truly random numbers Programs have been developed to generate pseudo-random numbers: Values generated

More information

Drawing Inferences from Statistics Based on Multiyear Asset Returns

Drawing Inferences from Statistics Based on Multiyear Asset Returns Drawing Inferences from Statistics Based on Multiyear Asset Returns Matthew Richardson ames H. Stock FE 1989 1 Motivation Fama and French (1988, Poterba and Summer (1988 document significant negative correlations

More information

L09. PARTICLE FILTERING. NA568 Mobile Robotics: Methods & Algorithms

L09. PARTICLE FILTERING. NA568 Mobile Robotics: Methods & Algorithms L09. PARTICLE FILTERING NA568 Mobile Robotics: Methods & Algorithms Particle Filters Different approach to state estimation Instead of parametric description of state (and uncertainty), use a set of state

More information

Evaluating Classifiers. Lecture 2 Instructor: Max Welling

Evaluating Classifiers. Lecture 2 Instructor: Max Welling Evaluating Classifiers Lecture 2 Instructor: Max Welling Evaluation of Results How do you report classification error? How certain are you about the error you claim? How do you compare two algorithms?

More information

If we want to analyze experimental or simulated data we might encounter the following tasks:

If we want to analyze experimental or simulated data we might encounter the following tasks: Chapter 1 Introduction If we want to analyze experimental or simulated data we might encounter the following tasks: Characterization of the source of the signal and diagnosis Studying dependencies Prediction

More information

Contents. 1 Probability review Introduction Random variables and distributions Convergence of random variables...

Contents. 1 Probability review Introduction Random variables and distributions Convergence of random variables... Contents Probability review. Introduction..............................2 Random variables and distributions................ 3.3 Convergence of random variables................. 6 2 Monte Carlo methods

More information

Better Bootstrap Confidence Intervals

Better Bootstrap Confidence Intervals by Bradley Efron University of Washington, Department of Statistics April 12, 2012 An example Suppose we wish to make inference on some parameter θ T (F ) (e.g. θ = E F X ), based on data We might suppose

More information

Chapter 5 continued. Chapter 5 sections

Chapter 5 continued. Chapter 5 sections Chapter 5 sections Discrete univariate distributions: 5.2 Bernoulli and Binomial distributions Just skim 5.3 Hypergeometric distributions 5.4 Poisson distributions Just skim 5.5 Negative Binomial distributions

More information

Basic Data Analysis. Stephen Turnbull Business Administration and Public Policy Lecture 5: May 9, Abstract

Basic Data Analysis. Stephen Turnbull Business Administration and Public Policy Lecture 5: May 9, Abstract Basic Data Analysis Stephen Turnbull Business Administration and Public Policy Lecture 5: May 9, 2013 Abstract We discuss random variables and probability distributions. We introduce statistical inference,

More information

Lecture Quantitative Finance Spring Term 2015

Lecture Quantitative Finance Spring Term 2015 on bivariate Lecture Quantitative Finance Spring Term 2015 Prof. Dr. Erich Walter Farkas Lecture 07: April 2, 2015 1 / 54 Outline on bivariate 1 2 bivariate 3 Distribution 4 5 6 7 8 Comments and conclusions

More information

ISyE 6644 Fall 2014 Test 3 Solutions

ISyE 6644 Fall 2014 Test 3 Solutions 1 NAME ISyE 6644 Fall 14 Test 3 Solutions revised 8/4/18 You have 1 minutes for this test. You are allowed three cheat sheets. Circle all final answers. Good luck! 1. [4 points] Suppose that the joint

More information

Midterm Examination. STA 215: Statistical Inference. Due Wednesday, 2006 Mar 8, 1:15 pm

Midterm Examination. STA 215: Statistical Inference. Due Wednesday, 2006 Mar 8, 1:15 pm Midterm Examination STA 215: Statistical Inference Due Wednesday, 2006 Mar 8, 1:15 pm This is an open-book take-home examination. You may work on it during any consecutive 24-hour period you like; please

More information

Exercises and Answers to Chapter 1

Exercises and Answers to Chapter 1 Exercises and Answers to Chapter The continuous type of random variable X has the following density function: a x, if < x < a, f (x), otherwise. Answer the following questions. () Find a. () Obtain mean

More information

2008 Winton. Statistical Testing of RNGs

2008 Winton. Statistical Testing of RNGs 1 Statistical Testing of RNGs Criteria for Randomness For a sequence of numbers to be considered a sequence of randomly acquired numbers, it must have two basic statistical properties: Uniformly distributed

More information

Economics 520. Lecture Note 19: Hypothesis Testing via the Neyman-Pearson Lemma CB 8.1,

Economics 520. Lecture Note 19: Hypothesis Testing via the Neyman-Pearson Lemma CB 8.1, Economics 520 Lecture Note 9: Hypothesis Testing via the Neyman-Pearson Lemma CB 8., 8.3.-8.3.3 Uniformly Most Powerful Tests and the Neyman-Pearson Lemma Let s return to the hypothesis testing problem

More information

Sequential Monte Carlo Methods for Bayesian Computation

Sequential Monte Carlo Methods for Bayesian Computation Sequential Monte Carlo Methods for Bayesian Computation A. Doucet Kyoto Sept. 2012 A. Doucet (MLSS Sept. 2012) Sept. 2012 1 / 136 Motivating Example 1: Generic Bayesian Model Let X be a vector parameter

More information

Floyd Bullard January 2008

Floyd Bullard January 2008 Teaching Contemporary Mathematics, NCSSM 25 26 January 2008 A Simple Integral Consider the following definite integral I 1 1 f(x)dx, where f(x) = 1 x 2. 1 0.8 y=f(x) 0.6 0.4 0.2 0 1 0.5 0 0.5 1 x Figure:

More information

SYSM 6303: Quantitative Introduction to Risk and Uncertainty in Business Lecture 4: Fitting Data to Distributions

SYSM 6303: Quantitative Introduction to Risk and Uncertainty in Business Lecture 4: Fitting Data to Distributions SYSM 6303: Quantitative Introduction to Risk and Uncertainty in Business Lecture 4: Fitting Data to Distributions M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas Email: M.Vidyasagar@utdallas.edu

More information

Stephen Scott.

Stephen Scott. 1 / 35 (Adapted from Ethem Alpaydin and Tom Mitchell) sscott@cse.unl.edu In Homework 1, you are (supposedly) 1 Choosing a data set 2 Extracting a test set of size > 30 3 Building a tree on the training

More information

Reduction of Variance. Importance Sampling

Reduction of Variance. Importance Sampling Reduction of Variance As we discussed earlier, the statistical error goes as: error = sqrt(variance/computer time). DEFINE: Efficiency = = 1/vT v = error of mean and T = total CPU time How can you make

More information

If g is also continuous and strictly increasing on J, we may apply the strictly increasing inverse function g 1 to this inequality to get

If g is also continuous and strictly increasing on J, we may apply the strictly increasing inverse function g 1 to this inequality to get 18:2 1/24/2 TOPIC. Inequalities; measures of spread. This lecture explores the implications of Jensen s inequality for g-means in general, and for harmonic, geometric, arithmetic, and related means in

More information

MATH Solutions to Probability Exercises

MATH Solutions to Probability Exercises MATH 5 9 MATH 5 9 Problem. Suppose we flip a fair coin once and observe either T for tails or H for heads. Let X denote the random variable that equals when we observe tails and equals when we observe

More information

Lecture 1: August 28

Lecture 1: August 28 36-705: Intermediate Statistics Fall 2017 Lecturer: Siva Balakrishnan Lecture 1: August 28 Our broad goal for the first few lectures is to try to understand the behaviour of sums of independent random

More information

Monte Carlo Simulations and the PcNaive Software

Monte Carlo Simulations and the PcNaive Software Econometrics 2 Monte Carlo Simulations and the PcNaive Software Heino Bohn Nielsen 1of21 Monte Carlo Simulations MC simulations were introduced in Econometrics 1. Formalizing the thought experiment underlying

More information

ISyE 3044 Fall 2017 Test #1a Solutions

ISyE 3044 Fall 2017 Test #1a Solutions 1 NAME ISyE 344 Fall 217 Test #1a Solutions This test is 75 minutes. You re allowed one cheat sheet. Good luck! 1. Suppose X has p.d.f. f(x) = 4x 3, < x < 1. Find E[ 2 X 2 3]. Solution: By LOTUS, we have

More information

Modern Methods of Data Analysis - WS 07/08

Modern Methods of Data Analysis - WS 07/08 Modern Methods of Data Analysis Lecture VII (26.11.07) Contents: Maximum Likelihood (II) Exercise: Quality of Estimators Assume hight of students is Gaussian distributed. You measure the size of N students.

More information

Regression and Statistical Inference

Regression and Statistical Inference Regression and Statistical Inference Walid Mnif wmnif@uwo.ca Department of Applied Mathematics The University of Western Ontario, London, Canada 1 Elements of Probability 2 Elements of Probability CDF&PDF

More information

Brandon C. Kelly (Harvard Smithsonian Center for Astrophysics)

Brandon C. Kelly (Harvard Smithsonian Center for Astrophysics) Brandon C. Kelly (Harvard Smithsonian Center for Astrophysics) Probability quantifies randomness and uncertainty How do I estimate the normalization and logarithmic slope of a X ray continuum, assuming

More information

In manycomputationaleconomicapplications, one must compute thede nite n

In manycomputationaleconomicapplications, one must compute thede nite n Chapter 6 Numerical Integration In manycomputationaleconomicapplications, one must compute thede nite n integral of a real-valued function f de ned on some interval I of

More information

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220) Week 14: Monday, May 2

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220) Week 14: Monday, May 2 Logistics Week 14: Monday, May 2 Welcome to the last week of classes! Project 3 is due Friday, May 6. Final is Friday, May 13. Lecture Wednesday will be a review, and section this week will be devoted

More information

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued Chapter 3 sections Chapter 3 - continued 3.1 Random Variables and Discrete Distributions 3.2 Continuous Distributions 3.3 The Cumulative Distribution Function 3.4 Bivariate Distributions 3.5 Marginal Distributions

More information

Random Variables and Their Distributions

Random Variables and Their Distributions Chapter 3 Random Variables and Their Distributions A random variable (r.v.) is a function that assigns one and only one numerical value to each simple event in an experiment. We will denote r.vs by capital

More information

These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop

These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop Music and Machine Learning (IFT68 Winter 8) Prof. Douglas Eck, Université de Montréal These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop

More information

Markov Chain Monte Carlo Lecture 1

Markov Chain Monte Carlo Lecture 1 What are Monte Carlo Methods? The subject of Monte Carlo methods can be viewed as a branch of experimental mathematics in which one uses random numbers to conduct experiments. Typically the experiments

More information

Discrete Probability distribution Discrete Probability distribution

Discrete Probability distribution Discrete Probability distribution 438//9.4.. Discrete Probability distribution.4.. Binomial P.D. The outcomes belong to either of two relevant categories. A binomial experiment requirements: o There is a fixed number of trials (n). o On

More information

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679 APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 1 Table I Summary of Common Probability Distributions 2 Table II Cumulative Standard Normal Distribution Table III Percentage Points, 2 of the Chi-Squared

More information

Statistics 135 Fall 2007 Midterm Exam

Statistics 135 Fall 2007 Midterm Exam Name: Student ID Number: Statistics 135 Fall 007 Midterm Exam Ignore the finite population correction in all relevant problems. The exam is closed book, but some possibly useful facts about probability

More information

Data Uncertainty, MCML and Sampling Density

Data Uncertainty, MCML and Sampling Density Data Uncertainty, MCML and Sampling Density Graham Byrnes International Agency for Research on Cancer 27 October 2015 Outline... Correlated Measurement Error Maximal Marginal Likelihood Monte Carlo Maximum

More information

Introduction to MCMC. DB Breakfast 09/30/2011 Guozhang Wang

Introduction to MCMC. DB Breakfast 09/30/2011 Guozhang Wang Introduction to MCMC DB Breakfast 09/30/2011 Guozhang Wang Motivation: Statistical Inference Joint Distribution Sleeps Well Playground Sunny Bike Ride Pleasant dinner Productive day Posterior Estimation

More information

Extreme Value Analysis and Spatial Extremes

Extreme Value Analysis and Spatial Extremes Extreme Value Analysis and Department of Statistics Purdue University 11/07/2013 Outline Motivation 1 Motivation 2 Extreme Value Theorem and 3 Bayesian Hierarchical Models Copula Models Max-stable Models

More information

MA 320 Introductory Probability, Section 1 Spring 2017 Final Exam Practice May. 1, Exam Scores. Question Score Total. Name:

MA 320 Introductory Probability, Section 1 Spring 2017 Final Exam Practice May. 1, Exam Scores. Question Score Total. Name: MA 320 Introductory Probability, Section 1 Spring 2017 Final Exam Practice May. 1, 2017 Exam Scores Question Score Total 1 10 Name: Last 4 digits of student ID #: No books or notes may be used. Turn off

More information

Winter 2019 Math 106 Topics in Applied Mathematics. Lecture 9: Markov Chain Monte Carlo

Winter 2019 Math 106 Topics in Applied Mathematics. Lecture 9: Markov Chain Monte Carlo Winter 2019 Math 106 Topics in Applied Mathematics Data-driven Uncertainty Quantification Yoonsang Lee (yoonsang.lee@dartmouth.edu) Lecture 9: Markov Chain Monte Carlo 9.1 Markov Chain A Markov Chain Monte

More information

Monte-Carlo MMD-MA, Université Paris-Dauphine. Xiaolu Tan

Monte-Carlo MMD-MA, Université Paris-Dauphine. Xiaolu Tan Monte-Carlo MMD-MA, Université Paris-Dauphine Xiaolu Tan tan@ceremade.dauphine.fr Septembre 2015 Contents 1 Introduction 1 1.1 The principle.................................. 1 1.2 The error analysis

More information

Introduction to statistics. Laurent Eyer Maria Suveges, Marie Heim-Vögtlin SNSF grant

Introduction to statistics. Laurent Eyer Maria Suveges, Marie Heim-Vögtlin SNSF grant Introduction to statistics Laurent Eyer Maria Suveges, Marie Heim-Vögtlin SNSF grant Recent history at the Observatory Request of something on statistics from PhD students, because of an impression of

More information