Dynamics of Quasifission in TDHF Theory

Size: px
Start display at page:

Download "Dynamics of Quasifission in TDHF Theory"

Transcription

1 Dynamics of Quasifission in TDHF Theory A.S. Umar Vanderbilt University Nashville, Tennessee, USA Collaborators: Vanderbilt: NSCL/MSU: ANU: V. E. Oberacker Z. Kohley, A. Wakhle, K. Hammerton, K. Stiefel C. Simenel, D. J. Hinde, M. Dasgupta, E. Williams, I. P. Carter, K. J. Cook, D. Y. Jeung, D. H. Luong, S. D. McNeil, C. S. Palshetkar, D. C. Rafferty Topics Covered: Time-dependent DFT theory (TDHF) Quasifission using TDHF - 40,48Ca + 238U - 48Ca + 249Bk (preliminary) - 50,54Cr + 180,186W Dynamical moment of inertia, E*, T Collective dynamics of QF Capture (time permitting) Research supported by: U.S. Department of Energy, Division of Nuclear Physics

2 Nuclear Mean Field or Energy Density Functional (EDF) 3-body DFT 2-body 1-body Mean-field - EDF ab-initio Ψ Φ Slater H H eff Ψ H Ψ = E E = Φ H eff Φ = d 3 r {H(ρ, τ, j, s,t, J μ ν ; r)+hcoulomb (ρ p )} Single-(one-) particle density etc. in terms of s.p. states A ρq ( r )= ϕ *i (r, σ, q)ϕi (r, σ, q) i=1 σ EDF in NP more complicated v=v NN eff DFT ( Hartee Fock ) v v NN eff DFT ( Kohn Sham)

3 Study Structure, Reactions, and Star Matter in Same Framework Structure Oscillations, Fusion, FIssion Neutron Star Crust Time-dependent generalization TDHF or TDDFT (variational or Runge-Gross) t2 δ S=δ dt Φ( t ) H eff i ℏ t Φ (t ) =0 t1 i ϕα =h(ρ, τ, j, s, T, J μ ν ; r)ϕ α t self-consistent TDHF gives the most probable outcome best if x-section dominated by one process

4 Modern TDHF Codes VU-TDHF Code Basis-Spline discretization for high accuracy 3-D Cartesian lattice no geometrical simplification Complete EDF including all terms (time-even, full time-odd) Coded in Fortran-95 and OpenMP 1. Umar, Oberacker, VU-TDHF, Phys. Rev. C 73, (2006) 2. Maruhn, Reinhard, Stevenson, Umar, Sky3D, Comp. Phys. Comm. 85, 2195 (2014)

5 Quasifission in TDHF 40,48Ca + 238U Heavy Systems σ capture =σ QF +σ fusion fission +σ ER - QF dominant part - Important for studying SHE dynamics Final masses: AL = 101, AR = 177 ZL = 41, ZR = 71 Ecm = 209 MeV b=1.103fm (L=20) 40 Ca + 238U V.E. Oberacker, A.S. Umar, C. Simenel, PRC 90, (2014).

6 Quasifission 40,48Ca+238U - Compare 40,48Ca+238U (b=0) - fusion implies contact-time > 35 zs (plus density shows no indication of QF) - 40Ca+238U wider energy range for QF - E* sharing seems different (calculated dynamically using DC-TDHF) Each point takes about a week on a 16 processor workstation 48 Ca+238U Ecm=203 MeV The b=0o orientation of 238U results in much smaller contact-times and mass transfer V.E. Oberacker, A.S. Umar, C. Simenel, PRC 90, (2014).

7 Impact Parameter Depenence Viola Systematics Final fragment TKE's well described by Viola systematics 40 Ca + 238U Narrow range of impact parameters at low energies Wakhle et al., PRL 113, (2014). V.E. Oberacker, A.S. Umar, C. Simenel, PRC 90, (2014).

8 Quasifission in 48Ca+249Bk (ongoing-preliminary) DC-TDHF barriers

9 Quasifission in 50,54Cr+180,186W (Ec.m./VB=1.13) Two deformed nuclei with smaller mass/charge asymmetry than Ca+U tip-side tip-tip Experiment (to be published): MORE DETAILS IN ADITYA WAKHLE's TALK TOMORROW K. Hammerton, Z. Kohley, D. J. Hinde, M. Dasgupta, A. Wakhle, E. Williams,V. E. Oberacker, A. S. Umar, I. P. Carter, K. J. Cook, J. Greene, D. Y. Jeung, D. H. Luong, S. D. McNeil, C. S. Palshetkar, D. C. Rafferty, C. Simenel, and K. Stiefel

10 Mass Angle Distributions (MAD's) TIP-SIDE

11 Contact Time versus Mass/Charge Transfer and Rotation Angle Larger the contact time larger the mass transfer Larger the contact time larger the rot. angle

12 Moment of Inertia Ecm=203 MeV, b=0 Diagonalize the moment of inertia tensor Eigenvalues give the parallel/perpendicular moment of inertia Ecm=218.3 MeV, b=2.7 fm Ratio is not well determined Equivalent sphere Enters into QF angular distribution analysis

13 Moment of Inertia Cont'd Other quantities that may be usefull via TDHF Temperature at the saddle point Pr el im in ar y Can obtain from dynamical E* using DC-TDHF Completes the ingredients of

14 Collective Dynamics with DC-TDHF Obtain collective surface seen by TDHF using dynamical density as a constraint Ca + 238U Ecm=211 MeV, b= months of computing time! Ca + 238U Ecm=203 MeV, b=0 Outgoing valley Incoming valley Incoming valley Outgoing valley 40 Ca + 238U Ecm=211 MeV, b=0

15 DC-TDHF Barriers Capture Angle average 238U alignment Experimental data: 1. M. G. Itkis et al., J. Nucl. Radiochem. Sci. 3, 57 (2002) 2. M. G. Itkis et al., Nucl. Phys. A 734, 136 (2004) 1 - x-section falls rapidly for β>10o - sin(β) multiply small angles - P(β) is in the range σ f ( E c. m. )= d βsin (β) P (β)σ ( E c. m.,β) 0 A.S. Umar, V.E. Oberacker, J.A. Maruhn, and P.-G. Reinhard, PRC 81, (2010).

16 Summary TDDFT have a strong place among the theories needed for future challenges of low-energy nuclear physics Numerical issues are resolved limitations only due to theoretical approximations (effective interactions, mean-field theory, etc.) Quasifission and deep-inelastic reactions are well suited for TDDFT We now have a reasonable handle on above- and sub-barrier fusion employing the DC-TDHF approach One major and difficult area that needs attention is the dynamics of fission

TDHF Basic Facts. Advantages. Shortcomings

TDHF Basic Facts. Advantages. Shortcomings TDHF Basic Facts Advantages! Fully microscopic, parameter-free description of nuclear collisions! Use same microscopic interaction used in static calculations! Successful in describing low-energy fusion,

More information

Fusion and other applications of density-constrained TDDFT

Fusion and other applications of density-constrained TDDFT Fusion and other applications of density-constrained TDDFT Volker E. Oberacker and A. Sait Umar Vanderbilt University Nashville, Tennessee, USA Collaborators: J.A. Maruhn, P.-G. Reinhard, C. Horowitz,

More information

Measuring Fusion with RIBs and Dependence of Quasifission on Neutron Richness

Measuring Fusion with RIBs and Dependence of Quasifission on Neutron Richness Measuring Fusion with RIBs and Dependence of Quasifission on Neutron Richness Aditya Wakhle National Superconducting Cyclotron Laboratory Michigan State University, E. Lansing, MI A. Wakhle, 4/15/15, Slide

More information

Time-dependent mean-field investigations of the quasifission process

Time-dependent mean-field investigations of the quasifission process Time-dependent mean-field investigations of the quasifission process A.S. Umar 1,, C. Simenel 2,, and S. Ayik 3, 1 Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA 2

More information

Microscopic Fusion Dynamics Based on TDHF

Microscopic Fusion Dynamics Based on TDHF Dynamical Approach Microscopic Fusion Dynamics Based on TDHF FISSION FUSION Calculate PES as a function of nuclear shape Microscopic HF, HFB, RMF + constraints e.g. Q20, Q30, Q40 as H + lql0 Macroscopic-Microscopic

More information

Microscopic (TDHF and DC-TDHF) study of heavy-ion fusion and capture reactions with neutron-rich nuclei

Microscopic (TDHF and DC-TDHF) study of heavy-ion fusion and capture reactions with neutron-rich nuclei Microscopic (TDHF and DC-TDHF) study of heavy-ion fusion and capture reactions with neutron-rich nuclei INT Program INT- 11-2d Interfaces between structure and reactions for rare isotopes and nuclear astrophysics

More information

Mean-Field Dynamics of Nuclear Collisions

Mean-Field Dynamics of Nuclear Collisions Mean-Field Dynamics of Nuclear Collisions A. Sait Umar Vanderbilt University Nashville, Tennessee, USA Research supported by: US Department of Energy, Division of Nuclear Physics Feza Gürsey Institute,

More information

Microscopic DC-TDHF study of heavy-ion potentials and fusion cross sections

Microscopic DC-TDHF study of heavy-ion potentials and fusion cross sections Journal of Physics: Conference Series Microscopic DC-TDHF study of heavy-ion potentials and fusion cross sections To cite this article: V E Oberacker et al 213 J. Phys.: Conf. Ser. 42 12132 View the article

More information

Macroscopic properties in low-energy nuclear reactions by microscopic TDDFT

Macroscopic properties in low-energy nuclear reactions by microscopic TDDFT Macroscopic properties in low-energy nuclear reactions by microscopic TDDFT Kouhei Washiyama (RIKEN, Nishina Center, Japan) Collaboration with Denis Lacroix (GANIL), Sakir Ayik (Tennesse Tech.) Key word:

More information

Fusion probability and survivability in estimates of heaviest nuclei production R.N. Sagaidak Flerov Laboratory of Nuclear Reactions, JINR, Dubna, RF

Fusion probability and survivability in estimates of heaviest nuclei production R.N. Sagaidak Flerov Laboratory of Nuclear Reactions, JINR, Dubna, RF Fusion probability and survivability in estimates of heaviest nuclei production R.N. Sagaidak Flerov Laboratory of Nuclear Reactions, JINR, Dubna, RF 1. Fusion probability and survivability as main values

More information

Introduc7on: heavy- ion poten7al model for sub- barrier fusion calcula7ons

Introduc7on: heavy- ion poten7al model for sub- barrier fusion calcula7ons Introduc7on: heavy- ion poten7al model for sub- barrier fusion calcula7ons 200 160 Phenomenological heavy-ion potential 60 Ni + 89 Y point Coulomb potential V (MeV) 120 80 40 total heavy-ion potential

More information

时间相关密度泛函理论的发展 及其在重离子碰撞中的应用

时间相关密度泛函理论的发展 及其在重离子碰撞中的应用 时间相关密度泛函理论的发展 及其在重离子碰撞中的应用 郭璐 中国科学院大学 第十七届全国核结构大会, 辽宁师范大学,2018 年 7 月 9 日 1 Contents I. Introduction of TDHF approach II. Development of theoretical approach spin-orbit force tensor force density-constraint

More information

Quasifission and dynamical extra-push in heavy and superheavy elements synthesis

Quasifission and dynamical extra-push in heavy and superheavy elements synthesis Humboldt Kolleg entitled "Interacting Structure and Reaction Dynamics in the Synthesis of the Heaviest Nuclei" Quasifission and dynamical extra-push in heavy and superheavy elements synthesis Lu Guo University

More information

Nuclear Fission and Fusion Reactions within Superfluid TDDFT

Nuclear Fission and Fusion Reactions within Superfluid TDDFT Nuclear Fission and Fusion Reactions within Superfluid TDDFT Piotr Magierski (Warsaw University of Technology) Collaborators: Aurel Bulgac (Univ. of Washington) Kenneth J. Roche (PNNL) Ionel Stetcu (LANL)

More information

PAUL STEVENSON UNIVERSITY OF SURREY, UK SOFIA, OCTOBER 2015 SHAPES & DYNAMICS FROM SKYRME- TDDFT

PAUL STEVENSON UNIVERSITY OF SURREY, UK SOFIA, OCTOBER 2015 SHAPES & DYNAMICS FROM SKYRME- TDDFT PAUL STEVENSON UNIVERSITY OF SURREY, UK SOFIA, OCTOBER 2015 SHAPES & DYNAMICS FROM SKYRME- TDDFT 1 TIME- DEPENDENT HARTREE- FOCK Static HF Time-dependent HF EXPERIMENTAL THEORETICAL PHYSICS b=2fm 45 MeV

More information

Observables predicted by HF theory

Observables predicted by HF theory Observables predicted by HF theory Total binding energy of the nucleus in its ground state separation energies for p / n (= BE differences) Ground state density distribution of protons and neutrons mean

More information

Opportunities to study the SHE production mechanism with rare isotopes at the ReA3 facility

Opportunities to study the SHE production mechanism with rare isotopes at the ReA3 facility Opportunities to study the SHE production mechanism with rare isotopes at the ReA3 facility Zach Kohley National Superconducting Cyclotron Laboratory Department of Chemistry Michigan State University,

More information

X-ray superburst ~10 42 ergs Annual solar output ~10 41 ergs. Cumming et al., Astrophys. J. Lett. 559, L127 (2001) (2)

X-ray superburst ~10 42 ergs Annual solar output ~10 41 ergs. Cumming et al., Astrophys. J. Lett. 559, L127 (2001) (2) Neutron stars, remnant cores following supernova explosions, are highly interesting astrophysical environments In particular, accreting neutron stars presents a unique environment for nuclear reactions

More information

Heavy-ion fusion reactions and superheavy elements. Kouichi Hagino

Heavy-ion fusion reactions and superheavy elements. Kouichi Hagino Heavy-ion fusion reactions and superheavy elements Kouichi Hagino Tohoku University, Sendai, Japan 1. H.I. fusion reactions: why are they interesting? 2. Coupled-channels approach 3. Future perspectives:

More information

Fusion probability in heavy ion induced reac4ons. G.N. Knyazheva FLNR, JINR Interna5onal Symposium Superheavy Nuclei 2015 Texas, USA, March 2015

Fusion probability in heavy ion induced reac4ons. G.N. Knyazheva FLNR, JINR Interna5onal Symposium Superheavy Nuclei 2015 Texas, USA, March 2015 Fusion probability in heavy ion induced reac4ons G.N. Knyazheva FLNR, JINR Interna5onal Symposium Superheavy Nuclei 215 Texas, USA, March 215 Fusion probability σ ER = σ cap P CN W sur SHE215 2 Fusion

More information

Equilibration dynamics in heavy-ion reactions. Yoritaka Iwata (GSI, Darmstadt)

Equilibration dynamics in heavy-ion reactions. Yoritaka Iwata (GSI, Darmstadt) Equilibration dynamics in heavy-ion reactions Yoritaka Iwata (GSI, Darmstadt) Contents Dynamics via nucleus-nucleus potential [1] Dynamics at the early stage dynamics governed by charge equilibration [2]

More information

Towards a microscopic theory for low-energy heavy-ion reactions

Towards a microscopic theory for low-energy heavy-ion reactions Towards a microscopic theory for low-energy heavy-ion reactions Role of internal degrees of freedom in low-energy nuclear reactions Kouichi Hagino (Tohoku University) 1. Introduction: Environmental Degrees

More information

Igor Gontchar, Maria Chushnyakova Omsk, Russia Nucleus 2015

Igor Gontchar, Maria Chushnyakova Omsk, Russia Nucleus 2015 SYSTEMATIC COMPARISON OF HEAVY-ION FUSION BARRIERS CALCULATED WITHIN THE FRAMEWORK OF THE DOUBLE FOLDING MODEL USING TWO VERSIONS OF NUCLEON-NUCLEON INTERACTION Igor Gontchar, Maria Chushnyakova Omsk,

More information

Heavy-ion sub-barrier fusion reactions: a sensitive tool to probe nuclear structure

Heavy-ion sub-barrier fusion reactions: a sensitive tool to probe nuclear structure Heavy-ion sub-barrier fusion reactions: a sensitive tool to probe nuclear structure Kouichi Hagino Tohoku University, Sendai, Japan 1. Introduction: heavy-ion fusion reactions 2. Fusion and Quasi-elastic

More information

Strong interaction in the nuclear medium: new trends Effective interactions and energy functionals: applications to nuclear systems I

Strong interaction in the nuclear medium: new trends Effective interactions and energy functionals: applications to nuclear systems I École Joliot-Curie 27 September - 3 October 2009 Lacanau - France Strong interaction in the nuclear medium: new trends Effective interactions and energy functionals: applications to nuclear systems I Marcella

More information

Probing quasifission in reactions forming Rn nucleus

Probing quasifission in reactions forming Rn nucleus Probing quasifission in reactions forming Rn nucleus Shamlath A. Research Scholar Central University of Kerala Outline Introduction Our goals Experimental details Results & Discussion Conclusion Heavy-ion

More information

arxiv: v1 [nucl-th] 31 Oct 2018

arxiv: v1 [nucl-th] 31 Oct 2018 Isotopic trends of quasifission and fusion-fission in the reactions 8 Ca+ 239,2 Pu Lu Guo 1,2, Caiwan Shen 3, Chong Yu, and Zhenji Wu 1 School of Nuclear Science and Technology, University of Chinese Academy

More information

Collective aspects of microscopic mean-field evolution along the fission path

Collective aspects of microscopic mean-field evolution along the fission path Collective aspects of microscopic mean-field evolution along the fission path Yusuke Tanimura 1, Denis Lacroix 1 and Guillaume Scamps 2 1 IPN Orsay, 2 Tohoku University Y. Tanimura, D. Lacroix, and G.

More information

The tensor-kinetic field in nuclear collisions

The tensor-kinetic field in nuclear collisions The tensor-kinetic field in nuclear collisions P D Stevenson 1, Sara Fracasso 1 and E B Suckling 1,2 1 Department of Physics, University of Surrey, Guildford, GU2 7XH 2 Centre for the Analysis of Time

More information

capture touching point M.G. Itkis, Perspectives in Nuclear fission Tokai, Japan, March

capture touching point M.G. Itkis, Perspectives in Nuclear fission Tokai, Japan, March Nuclear Reaction Mechanism Induced by Heavy Ions MG M.G. Itkis Joint Institute for Nuclear Research, Dubna 5 th ASCR International Workshop Perspectives in Nuclear fission Tokai, Japan, 14 16 16March 212

More information

arxiv: v1 [nucl-th] 5 Apr 2019

arxiv: v1 [nucl-th] 5 Apr 2019 Density-constraint Time-dependent Hartree-Fock-Bogoliubov method arxiv:19.95v1 [nucl-th] 5 Apr 19 Guillaume Scamps 1,, and Yukio Hashimoto 1, 1 Center for Computational Sciences, University of Tsukuba,

More information

Microscopic description of fission in the neutron-deficient Pb region

Microscopic description of fission in the neutron-deficient Pb region Microscopic description of fission in the neutron-deficient Pb region Micha l Warda Maria Curie-Sk lodowska University, Lublin, Poland INT Seattle, 1-1-213 Fr 87 At 85 Rn 86 Po 84 Bi 83 Pb 82 Tl 81 Pb

More information

Single particle degrees of freedom in fission

Single particle degrees of freedom in fission Single particle degrees of freedom in fission Heloise Goutte SPhN division CEA Saclay CEA-Saclay/DSM/Irfu Service de Physique Nucléaire PND2 PAGE 1 Non exhaustive Focused on: - Fission fragment yields

More information

arxiv:nucl-th/ v1 11 Jan 2007

arxiv:nucl-th/ v1 11 Jan 2007 SKYRME-HFB CALCULATIONS IN COORDINATE SPACE FOR THE KRYPTON ISOTOPES UP TO THE TWO-NEUTRON DRIPLINE V.E. OBERACKER 1, A. BLAZKIEWICZ 2, A.S. UMAR 3 arxiv:nucl-th/0701030v1 11 Jan 2007 1 Department of Physics

More information

Low-energy heavy-ion physics: glimpses of the future

Low-energy heavy-ion physics: glimpses of the future Low-energy heavy-ion physics: glimpses of the future There are two frontiers for low-energy heavy-ion physics: explore terra incognita of thousands of new neutron-rich isotopes, investigate physics of

More information

Density functional theory of spontaneous fission life-times

Density functional theory of spontaneous fission life-times Density functional theory of spontaneous fission life-times Jhilam Sadhukhan University of Tennessee, Knoxville & Oak Ridge National Laboratory Fission N,Z Microscopic understanding elongation necking

More information

Nuclear structure: spectroscopic factors; correlations (short and long-range); high momentum components Nuclear structure: a wide angle view

Nuclear structure: spectroscopic factors; correlations (short and long-range); high momentum components Nuclear structure: a wide angle view Washington DC 10-16-06 Nuclear structure: spectroscopic factors; correlations (short and long-range); high momentum components Nuclear structure: a wide angle view Other physical systems Status for stable

More information

Physics Letters B 710 (2012) Contents lists available at SciVerse ScienceDirect. Physics Letters B.

Physics Letters B 710 (2012) Contents lists available at SciVerse ScienceDirect. Physics Letters B. Physics Letters B 710 (2012) 607 611 Contents lists available at SciVerse ScienceDirect Physics Letters B www.elsevier.com/locate/physletb Influence of entrance-channel magicity and isospin on quasi-fission

More information

arxiv: v1 [nucl-th] 28 Aug 2012

arxiv: v1 [nucl-th] 28 Aug 2012 Single-particle dissipation in TDHF studied from a phase-space perspective N. Loebl, A. S. Umar, J.A. Maruhn, P.-G. Reinhard, P.D. Stevenson, and V. E., Oberacer Institut fuer Theoretische Physi, Universitaet

More information

Pre-scission shapes of fissioning nuclei

Pre-scission shapes of fissioning nuclei Pre-scission shapes of fissioning nuclei Micha l Warda Uniwersytet Marii Curie-Sk lodowskiej Lublin, Poland SSNET Workshop Gif-sur-Yvette, 6-11.11.216 Collaboration: J.L. Egido, UAM, Madrid W. Nazarewicz,

More information

Mean-field concept. (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1

Mean-field concept. (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1 Mean-field concept (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1 Static Hartree-Fock (HF) theory Fundamental puzzle: The

More information

Production of Super Heavy Nuclei at FLNR. Present status and future

Production of Super Heavy Nuclei at FLNR. Present status and future ECOS 2012,Loveno di Menaggio, 18-21 June 2012 Production of Super Heavy Nuclei at FLNR. Present status and future M. ITKIS Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research BASIC

More information

Pygmy dipole resonances in stable and unstable nuclei

Pygmy dipole resonances in stable and unstable nuclei Pygmy dipole resonances in stable and unstable nuclei Xavier Roca-Maza INFN, Sezione di Milano, Via Celoria 16, I-2133, Milano (Italy) Collaborators: Giacomo Pozzi, Marco Brenna, Kazhuito Mizuyama and

More information

(Multi-)nucleon transfer in the reactions 16 O, 3 32 S Pb

(Multi-)nucleon transfer in the reactions 16 O, 3 32 S Pb Journal of Physics: Conference Series Related content (Multi-)nucleon transfer in the reactions 16 O, 3 32 S + 208 Pb To cite this article: M Evers et al 2013 J. Phys.: Conf. Ser. 420 012129 - Quantum

More information

Subbarrier fusion reactions with dissipative couplings

Subbarrier fusion reactions with dissipative couplings Subbarrier fusion reactions with dissipative couplings Role of internal degrees of freedom in low-energy nuclear reactions Kouichi Hagino (Tohoku University) 1. Introduction: Environmental Degrees of Freedom

More information

Mapping quasifission characteristics in heavy element formation reactions

Mapping quasifission characteristics in heavy element formation reactions EPJ Web of Conferences 86, 00015 (2015) DOI: 10.1051/ epjconf/ 20158600015 C Owned by the authors, published by EDP Sciences, 2015 Mapping quasifission characteristics in heavy element formation reactions

More information

Adiabatic TDDFT + discussion

Adiabatic TDDFT + discussion Adiabatic TDDFT + discussion University of Warsaw & University of Jyväskylä INT Program INT-13-3 Quantitative Large Amplitude Shape Dynamics: fission and heavy ion fusion Seattle, September 23 - November

More information

Nuclear Fission: from more phenomenology and adjusted parameters to more fundamental theory and increased predictive power

Nuclear Fission: from more phenomenology and adjusted parameters to more fundamental theory and increased predictive power Nuclear Fission: from more phenomenology and adjusted parameters to more fundamental theory and increased predictive power Piotr Magierski (Warsaw University of Technology) Collaborators: Aurel Bulgac

More information

Relativistic versus Non Relativistic Mean Field Models in Comparison

Relativistic versus Non Relativistic Mean Field Models in Comparison Relativistic versus Non Relativistic Mean Field Models in Comparison 1) Sampling Importance Formal structure of nuclear energy density functionals local density approximation and gradient terms, overall

More information

Microscopic description of 258 Fm fission dynamic with pairing

Microscopic description of 258 Fm fission dynamic with pairing Microscopic description of 258 Fm fission dynamic with pairing Guillaume Scamps 1,Cédric Simenel 2 and Denis Lacroix 3 1 Department of Physics, Tohoku University, Sendai 980-8578, Japan 2 Department of

More information

in covariant density functional theory.

in covariant density functional theory. Nuclear Particle ISTANBUL-06 Density vibrational Functional coupling Theory for Excited States. in covariant density functional theory. Beijing, Sept. 8, 2011 Beijing, May 9, 2011 Peter Peter Ring Ring

More information

Heavy-ion fusion reactions for superheavy elements Kouichi Hagino

Heavy-ion fusion reactions for superheavy elements Kouichi Hagino Heavy-ion fusion reactions for superheavy elements Kouichi Hagino Tohoku University, Sendai, Japan 1. H.I. sub-barrier fusion reactions 2. Coupled-channels approach and barrier distributions 3. Application

More information

Time dependent coupled-cluster method

Time dependent coupled-cluster method Time dependent coupled-cluster method Thomas Papenbrock and G. Hagen & H. A. Nam (ORNL), David Pigg (Vanderbilt) 7 th ANL/INT/JINA/MSU annual FRIB workshop August 8-12, 2011 Interfaces Between Nuclear

More information

Spin Cut-off Parameter of Nuclear Level Density and Effective Moment of Inertia

Spin Cut-off Parameter of Nuclear Level Density and Effective Moment of Inertia Commun. Theor. Phys. (Beijing, China) 43 (005) pp. 709 718 c International Academic Publishers Vol. 43, No. 4, April 15, 005 Spin Cut-off Parameter of Nuclear Level Density and Effective Moment of Inertia

More information

Solitonic Excitations In Collisions Of Superfluid Nuclei

Solitonic Excitations In Collisions Of Superfluid Nuclei Solitonic Excitations In Collisions Of Superfluid Nuclei, a Piotr Magierski a,b and Gabriel Wlazłowski a,b a Faculty of Physics, Warsaw University of Technology ulica Koszykowa 75, 00-662 Warsaw, Poland

More information

Stability of heavy elements against alpha and cluster radioactivity

Stability of heavy elements against alpha and cluster radioactivity CHAPTER III Stability of heavy elements against alpha and cluster radioactivity The stability of heavy and super heavy elements via alpha and cluster decay for the isotopes in the heavy region is discussed

More information

Oklahoma State University. Solar Neutrinos and their Detection Techniques. S.A.Saad. Department of Physics

Oklahoma State University. Solar Neutrinos and their Detection Techniques. S.A.Saad. Department of Physics Oklahoma State University Solar Neutrinos and their Detection Techniques S.A.Saad Department of Physics Topics to be covered Solar Neutrinos Solar Neutrino Detection Techniques Solar Neutrino Puzzle and

More information

A new theoretical approach to low-energy fission based on general laws of quantum and statistical mechanics

A new theoretical approach to low-energy fission based on general laws of quantum and statistical mechanics A new theoretical approach to low-energy fission based on general laws of quantum and statistical mechanics Karl-Heinz Schmidt Beatriz Jurado Contribution to the meeting of the WPEG subgroup Improved Fission

More information

What is available? HFB codes HFB schemes/basis selection

What is available? HFB codes HFB schemes/basis selection What is available? HFB codes HFB schemes/basis selection Brussels-Saclay HFB code Heenen, Bonche, Flocard, Terasaki: NPA 600, 371 (1996); based on earlier HF+BCS code ev8, Krieger et al., NPA542, 43 (1992)

More information

Accreting neutron stars provide a unique environment for nuclear reactions

Accreting neutron stars provide a unique environment for nuclear reactions , Tracy Steinbach, Jon Schmidt, Varinderjit Singh, Sylvie Hudan, Romualdo de Souza, Lagy Baby, Sean Kuvin, Ingo Wiedenhover Accreting neutron stars provide a unique environment for nuclear reactions High

More information

[SPY: a microscopic statistical scission point model] model to predict fission fragment distributions

[SPY: a microscopic statistical scission point model] model to predict fission fragment distributions SPY: a microscopic statistical scission-point model to predict fission fragment distributions S. Panebianco 1, N. Dubray 2, H. Goutte 1, S. Heinrich 2*, S. Hilaire 2, J.-F. Lemaître, J.-L. Sida 1 1 CEA

More information

Striking observations in low-energy fission and what they tell us

Striking observations in low-energy fission and what they tell us Striking observations in low-energy fission and what they tell us Karl-Heinz Schmidt Program INT 13-3 Quantitative Large Amplitude Shape Dynamics: fission and heavy-ion fusion September 23 November 15,

More information

The Nuclear Many-Body Problem

The Nuclear Many-Body Problem The Nuclear Many-Body Problem relativistic heavy ions vacuum electron scattering quarks gluons radioactive beams heavy few nuclei body quark-gluon soup QCD nucleon QCD few body systems many body systems

More information

The shell model Monte Carlo approach to level densities: recent developments and perspectives

The shell model Monte Carlo approach to level densities: recent developments and perspectives The shell model Monte Carlo approach to level densities: recent developments and perspectives Yoram Alhassid (Yale University) Introduction: the shell model Monte Carlo (SMMC) approach Level density in

More information

Nuclear Binding Energy

Nuclear Binding Energy Nuclear Energy Nuclei contain Z number of protons and (A - Z) number of neutrons, with A the number of nucleons (mass number) Isotopes have a common Z and different A The masses of the nucleons and the

More information

Nuclear Structure III: What to Do in Heavy Nuclei

Nuclear Structure III: What to Do in Heavy Nuclei Nuclear Structure III: What to Do in Heavy Nuclei J. Engel University of North Carolina June 15, 2005 Outline 1 Hartree-Fock 2 History 3 Results 4 Collective Excitations Outline 1 Hartree-Fock 2 History

More information

Correlating the density dependence of the symmetry y energy to neutron skins and neutron-star properties

Correlating the density dependence of the symmetry y energy to neutron skins and neutron-star properties Correlating the density dependence of the symmetry y energy to neutron skins and neutron-star properties Farrukh J Fattoyev Texas A&M University-Commerce i My TAMUC collaborators: B.-A. Li, W. G. Newton

More information

Fission fragment mass distributions via prompt γ -ray spectroscopy

Fission fragment mass distributions via prompt γ -ray spectroscopy PRAMANA c Indian Academy of Sciences Vol. 85, No. 3 journal of September 2015 physics pp. 379 384 Fission fragment mass distributions via prompt γ -ray spectroscopy L S DANU, D C BISWAS, B K NAYAK and

More information

Self-Consistent Equation of State for Hot Dense Matter: A Work in Progress

Self-Consistent Equation of State for Hot Dense Matter: A Work in Progress Self-Consistent Equation of State for Hot Dense Matter: A Work in Progress W.G.Newton 1, J.R.Stone 1,2 1 University of Oxford, UK 2 Physics Division, ORNL, Oak Ridge, TN Outline Aim Self-consistent EOS

More information

Fission research at JAEA and opportunity with J-PARC for fission and nuclear data

Fission research at JAEA and opportunity with J-PARC for fission and nuclear data Fission research at JAEA and opportunity with J-PARC for fission and nuclear data Katsuhisa Nishio Advanced Science Research Center Japan Atomic Energy Agency Tokai, JAPAN INT 13-3, Workshop, Seattle,

More information

Pairing dynamics in low energy nuclear reactions.

Pairing dynamics in low energy nuclear reactions. Pairing dynamics in low energy nuclear reactions. Collaborators: Warsaw Univ. of Technology Janina Grineviciute Kazuyuki Sekizawa Gabriel Wlazłowski Piotr Magierski (Warsaw University of Technology) Bugra

More information

Nuclear Energy Density Functional

Nuclear Energy Density Functional UNEDF Project: Towards a Universal Nuclear Energy Density Functional Atomic nucleus Piotr Magierski Warsaw University of Technology/University of Washington Nuclear Landscape 126 superheavy nuclei protons

More information

Nuclear matter inspired Energy density functional for finite nuc

Nuclear matter inspired Energy density functional for finite nuc Nuclear matter inspired Energy density functional for finite nuclei: the BCP EDF M. Baldo a, L.M. Robledo b, P. Schuck c, X. Vinyes d a Instituto Nazionale di Fisica Nucleare, Sezione di Catania, Catania,

More information

Shell model description of dipole strength at low energy

Shell model description of dipole strength at low energy Shell model description of dipole strength at low energy Kamila Sieja Institut Pluridisciplinaire Hubert Curien, Strasbourg 8-12.5.217 Kamila Sieja (IPHC) 8-12.5.217 1 / 18 Overview & Motivation Low energy

More information

A Predictive Theory for Fission. A. J. Sierk Peter Möller John Lestone

A Predictive Theory for Fission. A. J. Sierk Peter Möller John Lestone A Predictive Theory for Fission A. J. Sierk Peter Möller John Lestone Support This research is supported by the LDRD Office at LANL as part of LDRD-DR project 20120077DR: Advancing the Fundamental Understanding

More information

Bardeen Bardeen, Cooper Cooper and Schrieffer and Schrieffer 1957

Bardeen Bardeen, Cooper Cooper and Schrieffer and Schrieffer 1957 Unexpected aspects of large amplitude nuclear collective motion Aurel Bulgac University of Washington Collaborators: Sukjin YOON (UW) Kenneth J. ROCHE (ORNL) Yongle YU (now at Wuhan Institute of Physics

More information

Ab initio rotational bands in medium and heavy nuclei

Ab initio rotational bands in medium and heavy nuclei Ab initio rotational bands in medium and heavy nuclei Calvin W. Johnson This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under

More information

Moment (and Fermi gas) methods for modeling nuclear state densities

Moment (and Fermi gas) methods for modeling nuclear state densities Moment (and Fermi gas) methods for modeling nuclear state densities Calvin W. Johnson (PI) Edgar Teran (former postdoc) San Diego State University supported by grants US DOE-NNSA SNP 2008 1 We all know

More information

CHEM 312 Lecture 7: Fission

CHEM 312 Lecture 7: Fission CHEM 312 Lecture 7: Fission Readings: Modern Nuclear Chemistry, Chapter 11; Nuclear and Radiochemistry, Chapter 3 General Overview of Fission Energetics The Probability of Fission Fission Product Distributions

More information

Isospin influence on Fragments production in. G. Politi for NEWCHIM/ISODEC collaboration

Isospin influence on Fragments production in. G. Politi for NEWCHIM/ISODEC collaboration Isospin influence on Fragments production in 78 Kr + 40 Ca and 86 Kr + 48 Ca collisions at 10 MeV/nucleon G. Politi for NEWCHIM/ISODEC collaboration Dipartimento di Fisica e Astronomia Sezione INFN - Catania,

More information

Direct reactions methodologies for use at fragmentation beam energies

Direct reactions methodologies for use at fragmentation beam energies 1 Direct reactions methodologies for use at fragmentation beam energies TU Munich, February 14 th 2008 Jeff Tostevin, Department of Physics Faculty of Engineering and Physical Sciences University of Surrey,

More information

Mean field studies of odd mass nuclei and quasiparticle excitations. Luis M. Robledo Universidad Autónoma de Madrid Spain

Mean field studies of odd mass nuclei and quasiparticle excitations. Luis M. Robledo Universidad Autónoma de Madrid Spain Mean field studies of odd mass nuclei and quasiparticle excitations Luis M. Robledo Universidad Autónoma de Madrid Spain Odd nuclei and multiquasiparticle excitations(motivation) Nuclei with odd number

More information

Repulsive aspects of pairing correlation in nuclear fusion reaction

Repulsive aspects of pairing correlation in nuclear fusion reaction 4C EOS and Heavy Nuclei, ARIS2014 2014.6.6 (Fri.) @ Univ. of Tokyo Repulsive aspects of pairing correlation in nuclear fusion reaction Shuichiro Ebata Meme Media Laboratory, Hokkaido Univ. Nuclear Reaction

More information

Cluster Models for Light Nuclei

Cluster Models for Light Nuclei Cluster Models for Light Nuclei N. Itagaki, T. Otsuka, University of Tokyo S. Aoyama, Niigata University K. Ikeda, RIKEN S. Okabe, Hokkaido University Purpose of the present study Cluster model explore

More information

Nuclear Spectroscopy I

Nuclear Spectroscopy I Nuclear Spectroscopy I Augusto O. Macchiavelli Nuclear Science Division Lawrence Berkeley National Laboratory Many thanks to Rod Clark, I.Y. Lee, and Dirk Weisshaar Work supported under contract number

More information

New Trends in the Nuclear Shell Structure O. Sorlin GANIL Caen

New Trends in the Nuclear Shell Structure O. Sorlin GANIL Caen New Trends in the Nuclear Shell Structure O. Sorlin GANIL Caen I. General introduction to the atomic nucleus Charge density, shell gaps, shell occupancies, Nuclear forces, empirical monopoles, additivity,

More information

Nuclear Fission Fission discovered by Otto Hahn and Fritz Strassman, Lisa Meitner in 1938

Nuclear Fission Fission discovered by Otto Hahn and Fritz Strassman, Lisa Meitner in 1938 Fission Readings: Modern Nuclear Chemistry, Chapter 11; Nuclear and Radiochemistry, Chapter 3 General Overview of Fission Energetics The Probability of Fission Fission Product Distributions Total Kinetic

More information

Impact of fission on r-process nucleosynthesis within the energy density functional theory

Impact of fission on r-process nucleosynthesis within the energy density functional theory Impact of fission on r-process nucleosynthesis within the energy density functional theory Samuel A. Giuliani, G. Martínez Pinedo, L. M. Robledo, M.-R. Wu Technische Universität Darmstadt, Darmstadt, Germany

More information

Nuclear Reactions. Shape, interaction, and excitation structures of nuclei scattering expt. cf. Experiment by Rutherford (a scatt.

Nuclear Reactions. Shape, interaction, and excitation structures of nuclei scattering expt. cf. Experiment by Rutherford (a scatt. Nuclear Reactions Shape, interaction, and excitation structures of nuclei scattering expt. cf. Experiment by Rutherford (a scatt.) scattered particles detector solid angle projectile target transmitted

More information

Journal of Nuclear and Radiochemical Sciences, Vol. 5, No.1, pp. 1-5, Dynamical Calculation of Multi-Modal Nuclear Fission of Fermium Nuclei

Journal of Nuclear and Radiochemical Sciences, Vol. 5, No.1, pp. 1-5, Dynamical Calculation of Multi-Modal Nuclear Fission of Fermium Nuclei Journal of Nuclear and Radiochemical Sciences, Vol. 5, No.1, pp. 1-5, 2004 Dynamical Calculation of Multi-Modal Nuclear Fission of Fermium Nuclei Articles T. Asano,*,a T. Wada, a M. Ohta, a T. Ichikawa,

More information

How to do C.C. calculations if there is only limited experimental information on intrinsic degrees of freedom?

How to do C.C. calculations if there is only limited experimental information on intrinsic degrees of freedom? New approach to coupled-channels calculations for heavy-ion fusion reactions around the Coulomb barrier Kouichi Hagino Tohoku University, Sendai, Japan 1. Introduction - H.I. sub-barrier fusion reactions

More information

Asymmetry dependence of Gogny-based optical potential

Asymmetry dependence of Gogny-based optical potential Asymmetry dependence of Gogny-based optical potential G. Blanchon, R. Bernard, M. Dupuis, H. F. Arellano CEA,DAM,DIF F-9297 Arpajon, France March 3-6 27, INT, Seattle, USA / 32 Microscopic ingredients

More information

Mechanism of fusion reactions for superheavy elements Kouichi Hagino

Mechanism of fusion reactions for superheavy elements Kouichi Hagino Mechanism of fusion reactions for superheavy elements Kouichi Hagino Tohoku University, Sendai, Japan 1. Heavy-ion fusion reactions for superheavy elements 2. Towards Z=119 and 120: role of a target deformation

More information

Calculating β Decay for the r Process

Calculating β Decay for the r Process Calculating β Decay for the r Process J. Engel with M. Mustonen, T. Shafer C. Fröhlich, G. McLaughlin, M. Mumpower, R. Surman D. Gambacurta, M. Grasso June 3, 26 Nuclear Landscape To convincingly locate

More information

Sloppy Nuclear Energy Density Functionals: effective model optimisation. T. Nikšić and D. Vretenar

Sloppy Nuclear Energy Density Functionals: effective model optimisation. T. Nikšić and D. Vretenar Sloppy Nuclear Energy Density Functionals: effective model optimisation T. Nikšić and D. Vretenar Energy Density Functionals the nuclear many-body problem is effectively mapped onto a one-body problem

More information

Sub-barrier fusion enhancement due to neutron transfer

Sub-barrier fusion enhancement due to neutron transfer Sub-barrier fusion enhancement due to neutron transfer V. I. Zagrebaev Flerov Laboratory of Nuclear Reaction, JINR, Dubna, Moscow Region, Russia Received 6 March 2003; published 25 June 2003 From the analysis

More information

Radioactivity at the limits of nuclear existence

Radioactivity at the limits of nuclear existence Radioactivity at the limits of nuclear existence Zenon Janas Institute of Experimental Physics University of Warsaw Chart of nuclei - stable - β + - β - - α - fission - p p and 2p radioactivty proton radioactivity

More information

Short-Ranged Central and Tensor Correlations. Nuclear Many-Body Systems. Reaction Theory for Nuclei far from INT Seattle

Short-Ranged Central and Tensor Correlations. Nuclear Many-Body Systems. Reaction Theory for Nuclei far from INT Seattle Short-Ranged Central and Tensor Correlations in Nuclear Many-Body Systems Reaction Theory for Nuclei far from Stability @ INT Seattle September 6-, Hans Feldmeier, Thomas Neff, Robert Roth Contents Motivation

More information

Some new developments in relativistic point-coupling models

Some new developments in relativistic point-coupling models Some new developments in relativistic point-coupling models T. J. Buervenich 1, D. G. Madland 1, J. A. Maruhn 2, and P.-G. Reinhard 3 1 Los Alamos National Laboratory 2 University of Frankfurt 3 University

More information

Neutron Halo in Deformed Nuclei

Neutron Halo in Deformed Nuclei Advances in Nuclear Many-Body Theory June 7-1, 211, Primosten, Croatia Neutron Halo in Deformed Nuclei Ó Li, Lulu Ò School of Physics, Peking University June 8, 211 Collaborators: Jie Meng (PKU) Peter

More information