The package TopoID and its applications to Higgs physics

Size: px
Start display at page:

Download "The package TopoID and its applications to Higgs physics"

Transcription

1 The package TopoID and its applications to Higgs physics Jens Hoff (DESY, KIT) Theory Seminar, University of Zurich 3rd of November, 2015

2 1 TopoID Polynomial ordering Topology classification Relations among Feynman integrals Topology merging Partial fractioning 2 N 3 LO Higgs production: qq -channel Optical theorem and Cutkosky s rules Calculation Results 3 NLO and NNLO Higgs pair production Differential factorization Soft-virtual approximation Asymptotic expansion Calculation Results 2 / 38

3 TopoID Topology IDentification ---> _ \ >--- \ \ \ + / \ _ \ / \ \ \ \ / /\ \ \ \ / /\ \ / / +--->--- \ \ \/ / _/ / \ \/ / _/ / / \ _ \ / / \ / _ / + \ / \ ---> _ >--- Idea: Generic, process independent Mathematica package Feynman diagrams reduced result (Laporta not included) Topology construction (identification, minimal sets; partial fractioning; factorization,... ) Handle properties (completeness, linear dependence; subtopologies, scalelessness, symmetries; graphs, unitarity cuts,... ) FORM code generator (diagram mapping, topology processing, integral reduction,... ) Master integral identification (base changes, non-trivial relations,... ) 3 / 38

4 TopoID Polynomial ordering Bring the polynomial P with m terms into unique form ˆP by renaming the n variables {x j}: [Pak; 12] 1 Convert P into m (n+1) matrix M (0) (row: term, 1st column: coefficient, remaining columns: powers of {x j }) 2 Start with considering the above M (0) and the 2nd column (k = 1) 3 Compute for all considered matrices M (k),σ all transpositions of columns k and k + 1,... (and collect perputations σ) 4 Sort rows in each matrix lexicographically by the first k columns 5 Extract in columns k the lexicographically largest vector 6 Keep only matrices with this maximal vector; If k < n 1: k k + 1 and goto Step 3 7 Each remaining matrix encodes the same unique ˆP σ and a permutation of variables σ 4 / 38

5 TopoID Polynomial ordering 1 Convert P into m (n+1) matrix M (0) (row: term, 1st column: coefficient, remaining columns: powers of {x j }) 2 Start with considering the above M (0) and the 2nd column (k = 1) P = x x 1x 2 + x2 2 + x3 2 M (0) = (Step 1) S (1) = { M (0)(123) = M (0)}, k = 1 (Step 2) 4 / 38

6 TopoID Polynomial ordering 3 Compute for all considered matrices M (k),σ all transpositions of columns k and k + 1,... (and collect perputations σ) S (1) : M (1)(123) = , M (1)(213) = , M (1)(321) = (Step 3-1) 4 / 38

7 TopoID Polynomial ordering 4 Sort rows in each matrix lexicographically by the first k columns S (1) : M (1)(123) = , M (1)(213) = , M (1)(321) = (Step 4-1) 4 / 38

8 TopoID Polynomial ordering 5 Extract in columns k the lexicographically largest vector 6 Keep only matrices with this maximal vector; If k < n 1: k k + 1 and goto Step 3 0 ˆM (1) 0 = 2 1 (Step 5-1) S (2) = { M (1)(123), M (1)(213)}, k = 2 (Step 6-1) 4 / 38

9 TopoID Polynomial ordering 3 Compute for all considered matrices M (k),σ all transpositions of columns k and k + 1,... (and collect perputations σ) S (2) : M (2)(123) = , M (2)(132) = , M (2)(213) = , M (2)(231) = (Step 3-2) 4 / 38

10 TopoID Polynomial ordering 4 Sort rows in each matrix lexicographically by the first k columns S (2) : M (2)(123) = , M (2)(132) = , M (2)(213) = , M (2)(231) = (Step 4-2) 4 / 38

11 TopoID Polynomial ordering 5 Extract in columns k the lexicographically largest vector 6 Keep only matrices with this maximal vector; If k < n 1: k k + 1 and goto Step 3 0 ˆM (2) 2 = 0 1 (Step 5-2) S (2) = { M (2)(123), M (2)(213)} (Step 6-2) 4 / 38

12 TopoID Polynomial ordering 7 Each remaining matrix encodes the same unique ˆP σ and a permutation of variables σ ˆP = P = x x x x 1x 2, ˆσ = {(123),(213)} (Step 7) 4 / 38

13 TopoID Polynomial ordering ˆP = P = x x x x 1x 2, ˆσ = {(123),(213)} (Step 7) P already in canonical form; two permutations {(123),(213)} (213) denotes (x 1, x 2, x 3) (x 2, x 1, x 3); symmetry of P under x 1 x 2 Application to Feynman integrals Use U + F from the Feynman representation Unique identifier Û + ˆF; independent of momentum space representation Returned permutations: symmetries of Feynman integrals Many useful applications 4 / 38

14 TopoID Topology classification Minimal set for NNLO Higgs production: Note: Sufficient for all diagrams 5 / 38

15 TopoID Relations among Feynman integrals Non-trivial relation for NNLO Higgs production: = + (...) + (...) Cross-topology relations; not from Laporta reduction Simplify calculation Usefull cross-checks 6 / 38

16 TopoID Topology classification Minimal set for NNLO Higgs production: 7 / 38

17 TopoID Topology merging 3-loop massless propagators: q 1 = k 1, q 2 = p k 1, q 3 = k 2, q 4 = p k 1 k 2, q 5 = k 3, q 6 = p k 1 k 2 k 3, q 7 = k 1 + k 2 + k 3, q 8 = k 1 + k 2, q 9 = k 1 + k 3. q 8 q 1 q 7 P 3 (a 1,..., a 8, 0) = p q 3 q p 5 q 2 q 4 q 4 q 6 P 3 (a 1, 0, a 3,..., a 9 ) = p q 5 p q 1 q 8 q9 q 7 q 1 q 7 P 3 (a 1,..., a 7, 0, a 9 ) = p p q 3 q 5 q 3 q 9 q 6 q 2 q 4 q 6 1 external, 3 internal momenta 9 scalar products 3 incomplete topologies with 8 lines Identify greatest common subtopology Find supertopology with these 3 different graphs as subtopologies 8 / 38

18 TopoID Partial fractioning Partial fractioning for NLO Higgs production: p 1 p 2 d2 p 2 d 3 d 4 d 1 p1 d d 2 2 d 3 d 4 d d 3 d 4 4 d 1 d 1 Via Gröbner basis: d 2 d 3 d 1 d 4 m 2 H + s + d 1 + d 2 d 3 d 3 ( ) 1 m 2 H d 4 d + s + d 1 + d 2 d 4 4 d 2 ( ) 1 m 2 H d 3 d 4 d 3 d s d 1 + d 3 + d 4 4 d 1 ( ) 1 m 2 H d 2 d 3 d 4 d 2 d 3 d s d 2 + d 3 + d ) (d 1 + d 2 d 3 d 4 ) d 1 d 2 d 3 d 4 (m 2H s d 1 d 2 d 3 d 4 9 / 38

19 N 3 LO Higgs production: qq -channel Motivation and introduction Higgs production at the LHC dominated by gluon fusion After [Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Mistlberger; 14, 15]: 2.2% corrections, 3% uncertainty at N 3 LO Cross-check Loop-induced process, dominated by top quark mass Effective field theory with top quark integrated out: L Y,eff = H v C1O1 and O1 = 1 4 Ga µνg a,µν M t M t s, mh C 1 s, mh Reduced numbers of scales and loops: single dimensionless variable x = m 2 H/s (soft: x 1) Finite matching coefficient C 1 needed to 4-loop [Chetyrkin, Kniehl, Steinhauser; 98] [Schröder, Steinhauser; 06] [Chetyrkin, Kühn, Sturm; 06] 10 / 38

20 N 3 LO Higgs production: qq -channel Status LO calculation (exact) [Ellis et al.; 76] [Wilczek et at.; 77] [Georgi et al.; 78] [Rizzo; 80] NLO (exact) [Dawson; 91] [Djouadi, Spira, Zerwas; 91] NNLO (EFT) soft expansion to 3rd order valid to O(1%) [Harlander, Kilgore; 02] [Anastasiou, Melnikov; 02] [Ravindran, Smith, van Neerven; 03] NNLO O ( 1/M 2 t ) corrections NNLO +1% [Pak, Rogal, Steinhauser; 09-11] [Harlander, Mantler, Marzani, Ozeren; 09-10] N 3 LO IR counterterms 3-loop splitting functions [Moch, Vermaseren, Vogt; 02] NNLO master integrals to higher orders in ǫ [Pak, Rogal, Steinhauser; 11] [Anastasiou, Bühler, Duhr, Herzog; 12] Cross sections and convolution integrals [Höschele, JH, Pak, Steinhauser, Ueda; 12, 13] [Bühler, Lazopoulos; 13] N 3 LO scale variation O(2% 8%) [Bühler, Lazopoulos; 13] 11 / 38

21 N 3 LO Higgs production: qq -channel Status N 3 LO corrections VV 2 and V 3 3-loop gluon form factor [Baikov, Chetyrkin, Smirnov 2, Steinhauser; 09] [Gehrmann, Glover, Huber, Ikizlerli, Studerus; 09] VRV exact in x [Anastasiou, Duhr, Dulat, Herzog, Mistlberger; 13] [Kilgore; 14] V 2 R exact in x [Dulat, Mistlberger; 14] [Duhr, Gehrmann, Jaquier; 14] VR 2 expansion in x 1 [Anastasiou, Duhr, Dulat, Furlan, Gehrmann; 14] [Li, von Manteuffel, Schabinger, Zhu; 14], [Anastasiou, Duhr, Dulat, Furlan, Herzog, Mistlberger; 15] R 3 expansion in x 1 [Anastasiou, Duhr, Dulat, Mistlberger; 13] 37 terms in the x 1 expansion [Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Mistlberger; 14, 15] Sufficient for phenomenology VV 2 V 3 qq -channel exact in x (VR 2, R 3 ) [Höschele, JH, Ueda; 14] [Anzai, Hasselhuhn, Höschele, JH, Kilgore, Steinhauser, Ueda; 15] Independent cross-check Many different resummations [Catani et al.] [Moch et al.] [Ahrens et al.] [de Florian et al.] [Ball et al.] [... ] 12 / 38

22 N 3 LO Higgs production: qq -channel Status N 3 LO corrections VV 2 and V 3 3-loop gluon form factor [Baikov, Chetyrkin, Smirnov 2, Steinhauser; 09] [Gehrmann, Glover, Huber, Ikizlerli, Studerus; 09] VRV exact in x [Anastasiou, Duhr, Dulat, Herzog, Mistlberger; 13] [Kilgore; 14] V 2 R exact in x [Dulat, Mistlberger; 14] [Duhr, Gehrmann, Jaquier; 14] VR 2 expansion in x 1 [Anastasiou, Duhr, Dulat, Furlan, Gehrmann; 14] [Li, von Manteuffel, Schabinger, Zhu; 14], [Anastasiou, Duhr, Dulat, Furlan, Herzog, Mistlberger; 15] R 3 expansion in x 1 [Anastasiou, Duhr, Dulat, Mistlberger; 13] 37 terms in the x 1 expansion [Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Mistlberger; 14, 15] Sufficient for phenomenology qq -channel exact in x (VR 2, R 3 ) [Höschele, JH, Ueda; 14] [Anzai, Hasselhuhn, Höschele, JH, Kilgore, Steinhauser, Ueda; 15] Independent cross-check Many different resummations [Catani et al.] [Moch et al.] [Ahrens et al.] [de Florian et al.] [Ball et al.] [... ] VRV V 2 R 12 / 38

23 N 3 LO Higgs production: qq -channel Status N 3 LO corrections VV 2 and V 3 3-loop gluon form factor [Baikov, Chetyrkin, Smirnov 2, Steinhauser; 09] [Gehrmann, Glover, Huber, Ikizlerli, Studerus; 09] VRV exact in x [Anastasiou, Duhr, Dulat, Herzog, Mistlberger; 13] [Kilgore; 14] V 2 R exact in x [Dulat, Mistlberger; 14] [Duhr, Gehrmann, Jaquier; 14] VR 2 expansion in x 1 [Anastasiou, Duhr, Dulat, Furlan, Gehrmann; 14] [Li, von Manteuffel, Schabinger, Zhu; 14], [Anastasiou, Duhr, Dulat, Furlan, Herzog, Mistlberger; 15] R 3 expansion in x 1 [Anastasiou, Duhr, Dulat, Mistlberger; 13] 37 terms in the x 1 expansion [Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Mistlberger; 14, 15] Sufficient for phenomenology qq -channel exact in x (VR 2, R 3 ) [Höschele, JH, Ueda; 14] [Anzai, Hasselhuhn, Höschele, JH, Kilgore, Steinhauser, Ueda; 15] Independent cross-check Many different resummations [Catani et al.] [Moch et al.] [Ahrens et al.] [de Florian et al.] [Ball et al.] [... ] VR 2 R 3 12 / 38

24 N 3 LO Higgs production: qq -channel Generalities 1 Reduction of integrals with full x-dependence Only contributing cuts 2 Construct differential equations for master integrals Canonical basis (in general: coupled system) 3 Soft limit x 1 as boundary condition Leading term using Mellin-Barnes representation Canonical differential equations: d dx mi(x, ǫ) = ǫ Aij(x) mj(x, ǫ) with d = 4 2 ǫ [Henn et al.; ] ǫ- and x-dependence factorize Solve order-by-order in ǫ A ij: alphabet of appearing functions E.g. Harmonic Polylogarithms (HPLs): H w (x) = x 0 dx f w1 ( x ) H wn 1 ( x ) and f 0 (x) = 1 x, f ±1(x) = 1 1 x 13 / 38

25 Optical theorem and Cutkosky s rules Higher-order corrections: Virtual More loop integrations Real Additional final state particles (different phase spaces) Optical theorem: σ(i f) f dπ f M(i f) 2 Disc M(i i) Cutkosky s rules: Consider only valid diagrammatic cuts for Disc Two connectivity components Separate in- and outgoing momenta (s-channel) Contribute to the process (1 or 2 Higgs, 0 to 3 parton lines) 14 / 38

26 Optical theorem and Cutkosky s rules E.g. to NNLO: dπ dπ dπ = / 38

27 Optical theorem and Cutkosky s rules Optical theorem: σ(i f) f dπ f M(i f) 2 Disc M(i i) Pros Cons Forward scattering simplified kinematics Common treatment of loop and phase space integrals Calculation of Disc only for master integrals More loops and diagrams Only total cross section (naively) Approach first used in [Anastasiou, Melnikov; 02] 16 / 38

28 Optical theorem and Cutkosky s rules Handling cut-diagrams: Filter diagrams Fast graph-based algorithm build into Perl script to process QGRAF output N 3 LO Higgs: NNLO Higgs pair (SV): Assist reduction 1 2 Build also into TopoID pass to Laporta reduction Typically: only O(10%) of subtopologies (or relations) 17 / 38

29 N 3 LO Higgs production: qq -channel Calculation: toolchain Reduction 1 Generate Feynman diagrams QGRAF [Nogueira; 93] 2 Select diagrams with specific cuts filter [JH, Pak; (unpublished)] 3 Map diagrams to topologies ( graph information) exp [Harlander, Seidensticker, Steinhauser; 98] reg [Pak; (unpublished)] 4 Reduction to scalar integrals ( generic topologies) FORM [Kuipers, Ueda, Vermaseren, Vollinga; 13] 5 Reduction to master integrals ( basic topologies) rows [JH, Pak; (unpublished)] FIRE [Smirnov] 6 Minimal basis of master integrals TopoID [JH, Pak; (unpublished)] 220 diagrams, e.g. 18 / 38

30 N 3 LO Higgs production: qq -channel Calculation: 17 topologies with 3- and 4-particle cuts 19 / 38

31 N 3 LO Higgs production: qq -channel Calculation: e.g. sea snake topology = { 1} 20 / 38

32 N 3 LO Higgs production: qq -channel Results: functions beyond HPLs Laporta: 332 master integrals; TopoID: 108 and cancellation of ξ Some Feynman integrals generate functions with alphabet beyond HPLs: { } 1, 1, 1, 1, 1 x 1 x 1+x 1+4 x x 1+4 x Traced back to common subtopology: Numerical implementation in Mathematica: { ( )} 1 Change alphabet to x, 1 1 x, 1 1+x, x, 1 1 x 1+4 x 1 Use series expansions x 0 and x 1 10 digits in 1 second Note: x (1 x) /x 2 Cyclotomic Polylogarithms Representation as Goncharov Polylogarithms (linear denominators) { } Letters of 6th roots of unity; here only: 1 x, 1 1 x, 1 ( 1) 1 3 x 21 / 38

33 NLO and NNLO Higgs pair production Motivation Higgs Potential in the Standard Model: V(H) = 1 2 m2 HH 2 + λvh λh4, λ SM = m2 H 2v , v: Higgs vev. Verify mechanism of spontaneous symmetry breaking in the SM Measure the Higgs self-coupling sensitive process Σ LO gg HH fb a b c s GeV 2 (a) (b) + (c) / 38

34 NLO and NNLO Higgs pair production Theory status Prospects for the 14 TeV: b bγγ-channel, 600 fb 1 : λ 0 [Baur, Plehn, Rainwater; 04] b bγγ-, b bτ + τ -channels: promising ; b bw + W -channel: not promising [Baglio, Djouadi, Gröber, Mühlleitner, Quevillon, Spira; 13] 600 fb 1 : λ > 0; 3000 fb 1 : λ +30% 20% (ratio with Higgs cross section) [Goertz, Papaefstathiou, Yang, Zurita; 13] And many others, e.g.: [Dolan, Englert, Spannowsky; 12] [Papaefstathiou, Yang, Zurita; 13] [Barr, Dolan, Englert, Spannowsky; 13] [Barger, Everett, Jackson, Shaughnessy; 14] [Englert, Krauss, Spannowsky, Thompson; 15] [... ] Until now: Higgs pair production not observed in b bb b- and b bγγ-channels (as expected in the SM) [ATLAS; 15] [CMS; 15] Wait for HL-LHC 23 / 38

35 NLO and NNLO Higgs pair production Theory status Known since long: LO result with exact M t dependence [Glover, van der Bij; 88] [Plehn, Spira, Zerwas; 98] NLO result in M t limit [Dawson, Dittmaier, Spira; 98] σ H 20 LO fb+ 20 NLO,Mt fb for s H = 14 TeV, µ = 2m H More recently: NLO + NNLL (M t ) NLO +20% [Shao, Li, Li, Wang; 13] NNLO w/ or w/o soft-virtual approx. (M t ) NLO +20% [de Florian, Mazzitelli; 13] O ( 1/M 8 t ) corrections at NLO NLO +10% [Grigo, JH, Melnikov, Steinhauser; 13] NLO real exact in M t, NLO virt. for M t NLO 10% [Maltoni, Vryonidou, Zaro; 14] Cross-check of virtual NNLO corrs.; NNLO matching coefficient for gghh-coupling NNLO +1% [Grigo, Melnikov, Steinhauser; 14] Improved O ( ) ( ) 1/Mt 12 NLO, O 1/M 4 t NNLO soft-virt. corrections [Grigo, JH, Steinhauser; 15 ] 24 / 38

36 NLO and NNLO Higgs pair production Generalities Operate on full-theory diagrams at NLO and NNLO Virt. corrs. in two independent calculations: amplitude (differential; 2-/3-loop) forward scattering (total; 4-/5-loop) Real corrs.: only via forward scattering at NLO Perform expansion for M t ; improve upon effective theory results for NLO [Dawson, Dittmaier, Spira; 98], NNLO [de Florian, Mazzitelli; 13] Laporta reduction to master integrals for the soft subdiagrams Remaining hard massive tadpoles via MATAD Master integrals as series around s = 2m H (not in this talk) 25 / 38

37 Differential factorization Factorization of the LO result exact in M t for: Total cross section σ (i) = (i) σ (0) with Differential cross section σ (i) = s exact = σ(0) exact σ exp (0) 4m 2 H (i) = σ(i) exp s 4m 2 H dq 2 σ (0) exp, σ (i) exp = ( dσ (0) exact dq 2 ) ( (0) ) dσ exp dq 2 dq 2 dσ (i) exp dq 2 N n=0 dσ (i) exp dq 2 c (i) n ρ n, ρ = m2 H M 2 t Cure the invalidity of the M t expansion for the large-q 2 region Virt. corrs. via amplitude: access to Q 2 -dependence δ ( s Q 2) Real corrs. via optical theorem (naively): only total cross section Use the soft-virtual approximation [de Florian, Mazzitelli; 12] 26 / 38

38 Soft-virtual approximation Split σ into its contributions (works also for dσ/dq 2 ): σ = σ virt+ren + σ real+split = finite = Σ div +Σ fin + Σ }{{ soft +Σ }}{{} hard =Σ SV =finite =Σ H =finite Σ div universal for color-less final state [de Florian, Mazzitelli; 12] Compute σ virt+ren as ρ-expansion Solve σ virt+ren = Σ div +Σ fin for Σ fin Σ div and Σ soft (soft coll. counterterms + soft real corrs.) exact σ LO (include M t effects) Q 2 dσ dq = 2 σlo zg(z) with σ (SV) = 1 z = Q2 s, dzσ LO (zs) G (SV) (z) with 1 δ G(z) = G SV(z)+G H (z) δ = 1 4m2 H s G (i) SV (z) constructed from σ(i) [de Florian, Mazzitelli; 12] [Grigo, JH, Steinhauser; 15] fin and σlo only 27 / 38

39 Asymptotic expansion Expand at integrand level for all contributing regions series expansion in analytic result Hierarchy: Mt 2 s, mh 2 series in ρ = mh/m 2 t 2 Effectively reduce number of loops and scales Here: regions correspond to subgraphs (in general more than one) Hard mass expansion: subgraphs must contain all heavy lines Example: NLO real with one region { M 2 t, m 2 H, s } { M 2 t } { m 2 H, s } { M 2 t } 28 / 38

40 Asymptotic expansion Expand at integrand level for all contributing regions series expansion in analytic result Hierarchy: Mt 2 s, mh 2 series in ρ = mh/m 2 t 2 Effectively reduce number of loops and scales Here: regions correspond to subgraphs (in general more than one) Hard mass expansion: subgraphs must contain all heavy lines Example: NLO virt. with two regions { M 2 t, m 2 H, s } { M 2 t } { m 2 H, s } { M 2 t } + { M 2 t } { m 2 H, s } { M 2 t } 28 / 38

41 NLO and NNLO Higgs pair production Calculation (via optical theorem) LO topology: Virt. NLO topologies: Real NLO topologies: 29 / 38

42 NLO and NNLO Higgs pair production Calculation (via optical theorem) Virt. NNLO topologies: Note: Different regions in asymptotic expansion different loop-orders Here: multiplied with 1- to 3-loop massive tadpoles 30 / 38

43 NLO and NNLO Higgs pair production Calculation (via optical theorem) Virt. and real LO-NLO master integrals: Virt. NNLO master integrals (in addition): 31 / 38

44 NLO and NNLO Higgs pair production Splitting in soft-virtual and real contributions at NLO Partonic NLO correction; total factorization δσ NLO [fb] SV+H SV H ρ 0 ρ 1 ρ 2 ρ 3 ρ 4 ρ 5 ρ s [GeV] Using µ = 2m H (also in the following) Different behavior for higher orders in ρ expansion: SV increasing H descreasing (flat for s 400 GeV) SV numerically dominant 32 / 38

45 NLO and NNLO Higgs pair production Total vs. differential factorization (DF) at NLO DF applied only to SV part; H treated via total factorization (i.e. identical) δσ NLO [fb] SV+H SV(DF)+H ρ 0 ρ 1 ρ 2 ρ 3 ρ 4 ρ 5 ρ s [GeV] Maxima of DF curves at lower s; smaller cross sections Improvement of convergence: difference of ρ 0 and corrections to ρ 6 (for s = 400 GeV): 0.25 fb vs fb (Partonic K-factor: behavior at top quark pair threshold not washed out) 33 / 38

46 NLO and NNLO Higgs pair production Hadronic cross section and K-factor Technical upper cut on s (good proxy to Q 2 ): σ H (s H, s cut) = 1 4m 2 H /s H dτ scut : total cross section for 14 TeV ( ) dlgg (τ) σ(τs H ) θ(s cut τs H ) dτ σ NLO H [fb] K NLO ρ 0 ρ 1 ρ 2 ρ 3 ρ 4 ρ 5 ρ scut [GeV] Spread of ρ-orders ±10% uncertainty of EFT at NLO due to M t 34 / 38

47 NLO and NNLO Higgs pair production Revisiting NLO Lessons from NLO for NNLO: SV approximation contructed for z 1; G SV (z) can be replaced by f(z) G SV (z) Splitting into SV and H not unique Tune f(z) at NLO such that σ Σ SV f(z) = z accurate to 2% Replace RGE logarithms ( s Q 2 in the soft limit): log ( µ 2 /s ) log ( µ 2 /Q 2) Discrepancy to [Maltoni, Vryonidou, Zaro; 14]: Real corrs.: treated exactly; Virt. corrs.: EFT result Claim: 10% correction at NLO But: Dominant positive shift from virtual 1/M t-corrections (c.f. backup slide) 35 / 38

48 NLO and NNLO Higgs pair production NNLO SV corrections δσ [fb] LO exact NLO z NNLO-SV ρ 0 ρ 1 ρ 2 EFT result plus ρ- and ρ 2 -terms Peaks at smaller s Same pattern of ρ-corrections s [GeV] 40 Conv. up to s cut 400 GeV σh [fb] LO NLO ρ 0 10 z NNLO-SV ρ 0 z NNLO-SV ρ 1 z NNLO-SV ρ scut [GeV] ρ- and ρ 2 -corrections: ±2.5% M t-uncertainty at NNLO: 5% (NNLO corrs. 20%) 36 / 38

49 NLO and NNLO Higgs pair production NNLO SV K-factor 5 NLO ρ 0 4 z NNLO-SV ρ 0 z NNLO-SV ρ 1 z NNLO-SV ρ 2 KH [fb] scut [GeV] Strong raise close to threshold steeper NNLO correction For total cross section: K NNLO H / 38

50 Conclusion TopoID: Generic, process independent Mathematica package for multiloop calculations; especially for many topologies Until now: two successful applications Works also for 5-loop propagators Publication planned for ACAT 2016 qq -channel in N 3 LO Higgs production: New iterated integrals beyond HPLs appear Agreement of leading logarithms with [Anastasiou, Duhr, Dulat, Furlan, Herzog, Mistlberger; 15] Full calculation underway... Higgs pair production: Real corrections at NLO via opt. theorem; employ SV approx. at NNLO Computed expansion to O ( ) ( ) 1/Mt 12 at NLO, O 1/M 4 t at NNLO Uncertainty of EFT results due to M t: 10% at NLO, 5% at NNLO Small- s behavior as benchmark for exact calculations 38 / 38

51 Backup: NLO and NNLO Higgs pair production Partonic NLO K-factor K NLO SV(DF)+H SV+H ρ 0 ρ 1 ρ 2 ρ 3 ρ 4 ρ 5 ρ s [GeV] Note: Behavior around top quark pair threshold not washed out 39 / 38

52 Backup: NLO and NNLO Higgs pair production Splitting into real and virtual corrections at NLO δσ NLO [fb] s [GeV] V+R R V ρ 0 ρ 1 ρ 2 ρ 3 ρ 4 ρ 5 ρ 6 Note: R and V separately divergent; only finite contributions shown 40 / 38

53 Backup: NLO and NNLO Higgs pair production Total vs. differential factorization without hard contributions at NLO δσ NLO [fb] SV SV (df) ρ 0 ρ 1 ρ 2 ρ 3 ρ 4 ρ 5 ρ s [GeV] 41 / 38

54 Backup: NLO and NNLO Higgs pair production Partonic NNLO cross section for different scales choices and f(z) δσ NNLO [fb] µ = 2m H µ = Q 2 NNLO-SV z NNLO-SV s [GeV] Note: f(z) = z (better proxy) leads to higher values 42 / 38

arxiv: v2 [hep-ph] 20 Jul 2014

arxiv: v2 [hep-ph] 20 Jul 2014 arxiv:407.67v [hep-ph] 0 Jul 04 Mass-corrections to double-higgs production & TopoID Jonathan Grigo and Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT) E-mail: jonathan.grigo@kit.edu,

More information

Precision Higgs physics. at hadron colliders

Precision Higgs physics. at hadron colliders Precision Higgs physics at hadron colliders Claude Duhr in collaboration with C. Anastasiou, F. Dulat, E. Furlan, T. Gehrmann, F. Herzog, A. Lazopoulos, B. Mistlberger RadCor/LoopFest 2015 UCLA, 16/06/2015

More information

ggf Theory Overview For Highest Precision

ggf Theory Overview For Highest Precision ggf Theory Overview For Highest Precision Lumley Castle Franz Herzog Nikhef LHC Higgs Production in the Standard Model 2 LHC Higgs Data 3 Theoretical Formalism To compute cross sections we use the Factorisation

More information

gg! hh in the high energy limit

gg! hh in the high energy limit gg! hh in the high energy limit Go Mishima Karlsruhe Institute of Technology (KIT), TTP in collaboration with Matthias Steinhauser, Joshua Davies, David Wellmann work in progress gg! hh : previous works

More information

PSEUDO SCALAR FORM FACTORS AT 3-LOOP QCD. Taushif Ahmed Institute of Mathematical Sciences, India March 22, 2016

PSEUDO SCALAR FORM FACTORS AT 3-LOOP QCD. Taushif Ahmed Institute of Mathematical Sciences, India March 22, 2016 PSEUDO SCALAR FORM FACTORS AT 3-LOOP QCD Taushif Ahmed Institute of Mathematical Sciences, India March, 016 PROLOGUE: SM & MSSM SM Complex scalar doublet (4 DOF) 3 DOF transform into longitudinal modes

More information

Effects of Beyond Standard Model physics in Effective Field Theory approach on Higgs' pt spectrum

Effects of Beyond Standard Model physics in Effective Field Theory approach on Higgs' pt spectrum PhD Seminar 2015, PSI Effects of Beyond Standard Model physics in Effective Field Theory approach on Higgs' pt spectrum Agnieszka Ilnicka in collaboration with: M. Grazzini M. Spira M. Wiesemann Motivation

More information

Higgs boson production at the LHC: NNLO partonic cross sections through order ǫ and convolutions with splitting functions to N 3 LO

Higgs boson production at the LHC: NNLO partonic cross sections through order ǫ and convolutions with splitting functions to N 3 LO SFB/CPP-12-93 TTP12-45 LPN12-127 Higgs boson production at the LHC: NNLO partonic cross sections through order ǫ and convolutions with splitting functions to N 3 LO Maik Höschele, Jens Hoff, Aleey Pak,

More information

Threshold cross sections for Drell-Yan & Higgs productions in N 3 LO QCD

Threshold cross sections for Drell-Yan & Higgs productions in N 3 LO QCD Narayan Rana 20/10/2016 1/46 Threshold cross sections for Drell-Yan & Higgs productions in N 3 LO QCD Narayan Rana 20/10/2016 in collaboration with T. Ahmed, M. C. Kumar, M. Mahakhud, M. K. Mandal, P.

More information

Calculating four-loop massless propagators with Forcer

Calculating four-loop massless propagators with Forcer Calculating four-loop massless propagators with Forcer Takahiro Ueda Nikhef, The Netherlands Collaboration with: Ben Ruijl and Jos Vermaseren 18 Jan. 2016 ACAT2016, UTFSM, Valparaíso 1 / 30 Contents Introduction

More information

Threshold Corrections To DY and Higgs at N 3 LO QCD

Threshold Corrections To DY and Higgs at N 3 LO QCD Threshold Corrections To DY and Higgs at N 3 LO QCD Taushif Ahmed Institute of Mathematical Sciences, India July 2, 2015 Threshold Corrections To DY and Higgs at N 3 LO QCD INFN Sezione Di Torino 1 Prologue

More information

Threshold Corrections To DY and Higgs at N 3 LO QCD

Threshold Corrections To DY and Higgs at N 3 LO QCD Threshold Corrections To DY and Higgs at N 3 LO QCD Taushif Ahmed Institute of Mathematical Sciences, India April 12, 2016 Threshold Corrections To DY and Higgs at N 3 LO QCD Bergische Universitat Wuppertal

More information

NLO QCD corrections to Higgs boson pair production via gluon fusion

NLO QCD corrections to Higgs boson pair production via gluon fusion Wir schaffen Wissen heute für morgen NLO QCD corrections to Higgs boson pair production via gluon fusion Seraina Glaus Theory Group LTP, Paul Scherrer Institute & University Zurich In collaboration with

More information

SM Predictions for Gluon- Fusion Higgs Production

SM Predictions for Gluon- Fusion Higgs Production SM Predictions for Gluon- Fusion Higgs Production Massimiliano Grazzini, Frank Petriello, Jianming Qian, Fabian Stoeckli Higgs Workshop, CERN, June 5, 2010 Outline Introduction: status of ggh Three updates:

More information

THE STRONG COUPLING AND LHC CROSS SECTIONS

THE STRONG COUPLING AND LHC CROSS SECTIONS THE STRONG COUPLING AND LHC CROSS SECTIONS Frank Petriello Argonne National Laboratory and Northwestern University Workshop on Precision Measurements of α S February 11, 2011 Outline Focus of talk: customer

More information

Precision calculations for collider processes Gudrun Heinrich Max Planck Institute for Physics, Munich

Precision calculations for collider processes Gudrun Heinrich Max Planck Institute for Physics, Munich Precision calculations for collider processes Gudrun Heinrich Max Planck Institute for Physics, Munich Scientific Board Meeting July 27, 2016 Overview tools FeynArts/FormCalc, Cuba GoSam SecDec NLO phenomenology

More information

New physics effects in Higgs cross sections

New physics effects in Higgs cross sections New physics effects in Higgs cross sections Robert Harlander Bergische Universität Wuppertal ERC Workshop Nov 2014, Mainz supported by rescaled couplings new Higgs bosons BSM particle effects new processes

More information

Universality of transverse-momentum and threshold resummations,

Universality of transverse-momentum and threshold resummations, Universality of transverse-momentum and threshold resummations, 3 3 and results up to N LO and N LL Leandro Cieri La Sapienza - Università di Roma High Precision for Hard Processes Firenze, Italia September

More information

Precision Calculations for Collider Physics

Precision Calculations for Collider Physics SFB Arbeitstreffen März 2005 Precision Calculations for Collider Physics Michael Krämer (RWTH Aachen) Radiative corrections to Higgs and gauge boson production Combining NLO calculations with parton showers

More information

arxiv:hep-ph/ v1 25 Sep 2002

arxiv:hep-ph/ v1 25 Sep 2002 hep-ph/0209302 Direct Higgs production at hadron colliders arxiv:hep-ph/0209302v1 25 Sep 2002 Massimiliano Grazzini (a,b) (a) Dipartimento di Fisica, Università di Firenze, I-50019 Sesto Fiorentino, Florence,

More information

From Tensor Integral to IBP

From Tensor Integral to IBP From Tensor Integral to IBP Mohammad Assadsolimani, in collaboration with P. Kant, B. Tausk and P. Uwer 11. Sep. 2012 Mohammad Assadsolimani From Tensor Integral to IBP 1 Contents Motivation NNLO Tensor

More information

Higgs theory. Achilleas Lazopoulos (ETH Zurich) ATLAS HSG2 meeting Athens, 7 Sep Friday, December 30, 11

Higgs theory. Achilleas Lazopoulos (ETH Zurich) ATLAS HSG2 meeting Athens, 7 Sep Friday, December 30, 11 Higgs theory Achilleas Lazopoulos (ETH Zurich) ATLAS HSG2 meeting Athens, 7 Sep. 2011 Why is Higgs production different In the dominant channel, gluon fusion, it starts already at second order in as, so

More information

H + jet(s) (fixed order)

H + jet(s) (fixed order) Mass effects in gg H + jet(s) (fixed order) Gudrun Heinrich Max Planck Institute for Physics, Munich Higgs+jets workshop, IPPP Durham December 9, 2014 Higgs Effective Theory (HEFT) m t L eff = c 1 G µν,a

More information

Recent theoretical issues in Higgs production

Recent theoretical issues in Higgs production Recent theoretical issues in Higgs production Frank Petriello MCTP Spring Symposium on Higgs Physics April 16, 2012 The Higgs search from LEP to the LHC In early 2000: MH

More information

Multiloop integrals in dimensional regularization made simple

Multiloop integrals in dimensional regularization made simple Multiloop integrals in dimensional regularization made simple Johannes M. Henn Institute for Advanced Study based on PRL 110 (2013) [arxiv:1304.1806], JHEP 1307 (2013) 128 [arxiv:1306.2799] with A. V.

More information

Top mass effects in gluon fusion processes

Top mass effects in gluon fusion processes Top mass effects in gluon fusion processes Thomas Rauh AEC, University of Bern Ramona Gröber, Andreas Maier, TR arxiv:1709.07799 JHEP 1803 (2018) 020 Outline 2 Gluon fusion processes Validity of approximations

More information

Fully exclusive NNLO QCD computations

Fully exclusive NNLO QCD computations Fully exclusive NNLO QCD computations Kirill Melnikov University of Hawaii Loopfest V, SLAC, June 2006 Fully exclusive NNLO QCD computations p. 1/20 Outline Introduction Technology Higgs boson production

More information

PoS(DIS2017)295. Hadronic Higgs boson decay at order α 4 s and α 5 s

PoS(DIS2017)295. Hadronic Higgs boson decay at order α 4 s and α 5 s Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT) 7618 Karlsruhe, Germany E-mail: joshua.davies@kit.edu Matthias Steinhauser Institut für Theoretische Teilchenphysik, Karlsruhe

More information

The rare decay H Zγ in perturbative QCD

The rare decay H Zγ in perturbative QCD The rare decay H Zγ in perturbative QCD [arxiv: hep-ph/1505.00561] Thomas Gehrmann, Sam Guns & Dominik Kara June 15, 2015 RADCOR 2015 AND LOOPFEST XIV - UNIVERSITY OF CALIFORNIA, LOS ANGELES Z Z H g q

More information

Physics at LHC. lecture seven. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden

Physics at LHC. lecture seven. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden Physics at LHC lecture seven Sven-Olaf Moch Sven-Olaf.Moch@desy.de DESY, Zeuthen in collaboration with Martin zur Nedden Humboldt-Universität, December 03, 2007, Berlin Sven-Olaf Moch Physics at LHC p.1

More information

HIGH ENERGY BEHAVIOUR OF FORM FACTORS

HIGH ENERGY BEHAVIOUR OF FORM FACTORS HIGH ENERGY BEHAVIOUR OF FORM FACTORS Taushif Ahmed Johannes Gutenberg University Mainz Germany Skype Seminar IIT Hyderabad May 10, 018 With Johannes Henn & Matthias Steinhauser Ref: JHEP 1706 (017) 15

More information

Higgs + Jet angular and p T distributions : MSSM versus SM

Higgs + Jet angular and p T distributions : MSSM versus SM Higgs + Jet angular and p T distributions : MSSM versus SM Oliver Brein ( Institute for Particle Physics Phenomenology, Durham, UK ) in collaboration with Wolfgang Hollik e-mail: oliver.brein@durham.ac.uk

More information

The Higgs pt distribution

The Higgs pt distribution The Higgs pt distribution Chris Wever (TUM) In collaboration with: F. Caola, K. Kudashkin, J. Lindert, K. Melnikov, P. Monni, L. Tancredi GGI: Amplitudes in the LHC era, Florence 16 Oktober, 2018 Outline

More information

Precision QCD at the LHC

Precision QCD at the LHC Precision QCD at the LHC Prakash Mathews Saha Institute of Nuclear Physics, Kolkata March 8, 2018 Sangam@HRI 2018 1/62 Outline Motivation Essential ingredients of pqcd NNLO top pair production NNNLO inclusive

More information

Heavy Quark Production at High Energies

Heavy Quark Production at High Energies Heavy Quark Production at High Energies Andrea Ferroglia Johannes Gutenberg Universität Mainz OpenCharm@PANDA Mainz, 19 November 29 Outline 1 Heavy Quarks, High Energies, and Perturbative QCD 2 Heavy Quark

More information

A. Mitov 3-loop time-like splitting functions in Mellin space and NNLO fragmentation

A. Mitov 3-loop time-like splitting functions in Mellin space and NNLO fragmentation Three-loop time-like splitting functions in Mellin space and NNLO fragmentation Alexander Mitov DESY Work in progress with: M. Cacciari; Lance Dixon; S-O. Moch Also based on: hep-ph/0604160 (with Sven

More information

Reduction to Master Integrals. V.A. Smirnov Atrani, September 30 October 05, 2013 p.1

Reduction to Master Integrals. V.A. Smirnov Atrani, September 30 October 05, 2013 p.1 Reduction to Master Integrals V.A. Smirnov Atrani, September 30 October 05, 2013 p.1 Reduction to Master Integrals IBP (integration by parts) V.A. Smirnov Atrani, September 30 October 05, 2013 p.1 Reduction

More information

The forward-backward asymmetry in electron-positron annihilation. Stefan Weinzierl

The forward-backward asymmetry in electron-positron annihilation. Stefan Weinzierl The forward-backward asymmetry in electron-positron annihilation Stefan Weinzierl Universität Mainz Introduction: I.: II: III: IV.: Electroweak precision physics Higher order corrections Infrared-safe

More information

arxiv: v1 [hep-ph] 4 Aug 2014

arxiv: v1 [hep-ph] 4 Aug 2014 Prepared for sumission to JHEP HRI-RECAPP-014-018 Higgs oson production through annihilation at threshold in N LO QCD arxiv:1408.0787v1 [hep-ph] 4 Aug 014 Taushif Ahmed, a Narayan Rana a and V. Ravindran

More information

NLO for Higgs signals

NLO for Higgs signals NLO for Higgs signals Gudrun Heinrich Max Planck Institute for Physics, Munich P.Meridiani, EPS 2017 P.Meridiani, EPS 2017 we need to be sure about the systematic uncertainties to see something like this

More information

Self coupling. Tilman Plehn. why? how? required? when? An Introduction. Tilman Plehn. Universität Heidelberg. Mainz, April 2015

Self coupling. Tilman Plehn. why? how? required? when? An Introduction. Tilman Plehn. Universität Heidelberg. Mainz, April 2015 An Introduction Universität eidelber Mainz, April 2015 is self couplin Link to fundamental questions Standard Model possibly consistent to Planck scale renormalizable theory tool to probe fundamental physics

More information

Numerical evaluation of multi-scale integrals with SecDec 3

Numerical evaluation of multi-scale integrals with SecDec 3 Numerical evaluation of multi-scale integrals with SecDec 3 Sophia Borowka University of Zurich Project in collaboration with G. Heinrich, S. Jones, M. Kerner, J. Schlenk, T. Zirke 152.6595 [hep-ph] (CPC,

More information

Top pair production near threshold at LHC (NLO/NLL analysis in NRQCD)

Top pair production near threshold at LHC (NLO/NLL analysis in NRQCD) Top@LHC LHC TTbar-Threshold Threshold@ILC/LHC Green Functions Top pair production near threshold at LHC (NLO/NLL analysis in NRQCD) Yuichiro Kiyo TTP, Universität Karlsruhe Collaboration with: J. H. Kühn(KA),

More information

MT: a Mathematica package to compute convolutions

MT: a Mathematica package to compute convolutions SFB/CPP-13-50 TTP13-27 LPN13-052 MT: a Mathematica package to compute convolutions Maik Höschele a, Jens Hoff a, Alexey Pak a, Matthias Steinhauser a,, Takahiro Ueda a a Institut für Theoretische Teilchenphysik,

More information

QCD threshold corrections for gluino pair production at NNLL

QCD threshold corrections for gluino pair production at NNLL Introduction: Gluino pair production at fixed order QCD threshold corrections for gluino pair production at NNLL in collaboration with Ulrich Langenfeld and Sven-Olaf Moch, based on arxiv:1208.4281 Munich,

More information

Towards Jet Cross Sections at NNLO

Towards Jet Cross Sections at NNLO Towards Jet Cross Sections at HP.4, September, MPI Munich Expectations at LHC Large production rates for Standard Model processes single jet inclusive and differential di-jet cross section will be measured

More information

Cross sections for SM Higgs boson production

Cross sections for SM Higgs boson production Cross sections for SM Higgs boson production Massimiliano Grazzini (INFN & ETH Zurich) Higgs MiniWorkshop, Torino, november 24, 2009 Outline Introduction Total cross section: - The NNLL+NNLO calculation

More information

Reduction of Feynman integrals to master integrals

Reduction of Feynman integrals to master integrals Reduction of Feynman integrals to master integrals A.V. Smirnov Scientific Research Computing Center of Moscow State University A.V. Smirnov ACAT 2007 p.1 Reduction problem for Feynman integrals A review

More information

arxiv: v1 [hep-ph] 18 May 2016

arxiv: v1 [hep-ph] 18 May 2016 Preprint typeset in JHEP style - PAPER VERION CP3-16-12, ZU-TH-11/16, NIKHEF 2016-013, CERN-TH-2016-085, NF-KITP-16-039 CP-even scalar boson production via gluon fusion at the LHC arxiv:1605.05761v1 [hep-ph]

More information

Higher Order QCD Lecture 2

Higher Order QCD Lecture 2 Higher Order QCD Lecture 2 Lance Dixon, SLAC SLAC Summer Institute The Next Frontier: Exploring with the LHC July 21, 2006 Lecture 2 Outline NLO NNLO L. Dixon, 7/21/06 Higher Order QCD: Lect. 2 2 What

More information

THE TRANSVERSE MOMENTUM DISTRIBUTION OF THE HIGGS BOSON AT THE LHC

THE TRANSVERSE MOMENTUM DISTRIBUTION OF THE HIGGS BOSON AT THE LHC THE TRANSVERSE MOMENTUM DISTRIBUTION OF THE HIGGS BOSON AT THE LHC Massimiliano Grazzini (INFN, Firenze) Les Houches, may 2005 Outline Introduction The Higgs spectrum The program HqT NLL+LO and NNLL+NLO

More information

Two-loop QCD Corrections to the Heavy Quark Form Factors p.1

Two-loop QCD Corrections to the Heavy Quark Form Factors p.1 Two-loop QCD Corrections to the Heavy Quark Form Factors Thomas Gehrmann Universität Zürich UNIVERSITAS TURICENSIS MDCCC XXXIII Snowmass Linear Collider Worksho005 Two-loop QCD Corrections to the Heavy

More information

Higher Order Corrections to the Drell-Yan Cross Section in the Mellin Space

Higher Order Corrections to the Drell-Yan Cross Section in the Mellin Space Higher Order Corrections to the Drell-Yan Cross Section in the Mellin Space Petra Kovačíková (DESY, Zeuthen) petra.kovacikova@desy.de Corfu Summer School 4 th September 21 Higher Order Corrections to the

More information

Higgs production: theory overview

Higgs production: theory overview Higgs production: theory overview Massimiliano Grazzini* University of Zurich Higgs Hunting 2011, Paris *On leave of absence from INFN, Sezione di Firenze Where we were... Tevatron combination of Winter

More information

Simplified differential equations approach for the calculation of multi-loop integrals

Simplified differential equations approach for the calculation of multi-loop integrals Simplified differential equations approach for the calculation of multi-loop integrals Chris Wever (N.C.S.R. Demokritos) 1 C. Papadopoulos [arxiv: 1401.6057 [hep-ph]] C. Papadopoulos, D. Tommasini, C.

More information

Numerical Evaluation of Multi-loop Integrals

Numerical Evaluation of Multi-loop Integrals Numerical Evaluation of Multi-loop Integrals Sophia Borowka MPI for Physics, Munich In collaboration with: J. Carter and G. Heinrich Based on arxiv:124.4152 [hep-ph] http://secdec.hepforge.org DESY-HU

More information

QCD resummation for jet and hadron production

QCD resummation for jet and hadron production QCD resummation for jet and hadron production Werner Vogelsang Univ. Tübingen UCL, 14 Feb 2014 Outline: Introduction: QCD threshold resummation Drell-Yan process Resummation in QCD hard-scattering Hadron

More information

AN INTRODUCTION TO QCD

AN INTRODUCTION TO QCD AN INTRODUCTION TO QCD Frank Petriello Northwestern U. & ANL TASI 2013: The Higgs Boson and Beyond June 3-7, 2013 1 Outline We ll begin with motivation for the continued study of QCD, especially in the

More information

N-jettiness as a subtraction scheme for NNLO

N-jettiness as a subtraction scheme for NNLO N-jettiness as a subtraction scheme for NNLO! Xiaohui Liu based on:! arxiv:1504.02131, Boughezal, Focke, XL and Petriello arxiv:1505.03893, Boughezal, Focke, Giele, XL and Petriello arxiv:1504.02540, Boughezal,

More information

Status of Higgs plus one jet at NNLO

Status of Higgs plus one jet at NNLO Status of Higgs plus one jet at NNLO Matthieu Jaquier Physics Institute University of Zürich Radcor-Loopfest UCLA 7 th June 205 Based on work with X. Chen, T. Gehrmann and E.W.N. Glover Matthieu Jaquier

More information

TF 2 -Contributions to 3-Loop Deep-Inelastic Wilson Coefficients and the Asymptotic Representation of Charged Current DIS

TF 2 -Contributions to 3-Loop Deep-Inelastic Wilson Coefficients and the Asymptotic Representation of Charged Current DIS 1/30 TF 2 -Contributions to 3-Loop Deep-Inelastic Wilson Coefficients and the Asymptotic Representation of Charged Current DIS Alexander Hasselhuhn RISC (LHCPhenonet) 26.9.2013 in collaboration with: J.

More information

Towards improved predictions for electroweak vector boson pair production at the LHC

Towards improved predictions for electroweak vector boson pair production at the LHC Towards improved predictions for electroweak vector boson pair production at the LHC Kirill Melnikov TTP KIT Based on collaboration with M. Dowling, F. Caola, J. Henn, A. Smirnov, V. Smirnov Outline 1)

More information

Two-Loop Corrections to Top-Quark Pair Production

Two-Loop Corrections to Top-Quark Pair Production Two-Loop Corrections to Top-Quark Pair Production Andrea Ferroglia Johannes Gutenberg Universität Mainz Padova, June 2, 29 Outline 1 Top-Quark Pair Production at Hadron Colliders 2 NNLO Virtual Corrections

More information

NNLO antenna subtraction with one hadronic initial state

NNLO antenna subtraction with one hadronic initial state antenna subtraction with one hadronic initial state Alejandro Daleo, Aude Gehrmann-De Ridder Institute for Theoretical Physics, ETH Zürich E-mail: adaleo@phys.ethz.ch, gehra@phys.ethz.ch Thomas Gehrmann,

More information

Theoretical description of Higgs production and decay

Theoretical description of Higgs production and decay Theoretical description of Higgs production and decay Kirill Melnikov TTP KIT PITT -PACC Workshop ``Higgs and beyond, Pittsburgh, December 3-5, 2015 N Y X X Introduction The number of Higgs-related events

More information

arxiv:hep-ph/ v1 29 Aug 2006

arxiv:hep-ph/ v1 29 Aug 2006 IPPP/6/59 August 26 arxiv:hep-ph/6837v1 29 Aug 26 Third-order QCD results on form factors and coefficient functions A. Vogt a, S. Moch b and J.A.M. Vermaseren c a IPPP, Physics Department, Durham University,

More information

The Two-Loop Five-Point Amplitude in N=4 Super-Yang-Mills Theory and N=8 Supergravity

The Two-Loop Five-Point Amplitude in N=4 Super-Yang-Mills Theory and N=8 Supergravity The Two-Loop Five-Point Amplitude in N=4 Super-Yang-Mills Theory and N=8 Supergravity Lance Dixon (SLAC) S. Abreu, LD, E. Herrmann, B. Page and M. Zeng 1812.08941, 1901.nnnnn DESY Zeuthen, 24 January 2019

More information

Top-Antitop Production at Hadron Colliders

Top-Antitop Production at Hadron Colliders Top-Antitop Production at Hadron Colliders Roberto BONCIANI Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier/CNRS-INP3/INPG, F-3806 Grenoble, France HP.3rd GGI-Florence,

More information

δm W = 15 MeV δm top = 1 GeV

δm W = 15 MeV δm top = 1 GeV Precision SM physics at the LHC... what we hope to see (Bentvelsen, Grünewald) Repeat the electroweak fit changing the uncertainties δm W = 15 MeV δm top = 1 GeV same central values Michael Krämer Page

More information

Searching for Supersymmetric Higgs Bosons at the LHC

Searching for Supersymmetric Higgs Bosons at the LHC Searching for Supersymmetric Higgs Bosons at the LHC Tilman Plehn CERN Light neutral Higgs: no-lose-theorem Charged Higgs: bottom induced processes Heavy neutral Higgs: decay to two light Higgses MSSM

More information

Single Higgs production at LHC as a probe for an anomalous Higgs self coupling

Single Higgs production at LHC as a probe for an anomalous Higgs self coupling Single Higgs production at LHC as a probe for an anomalous Higgs self coupling Brookhaven National Laboratory E-mail: pgiardino@bnl.gov We explore the possibility of probing the trilinear Higgs self coupling

More information

Anomalous dimensions and splitting functions beyond the next-to-next-to-leading order

Anomalous dimensions and splitting functions beyond the next-to-next-to-leading order Anomalous dimensions and splitting functions beyond the next-to-next-to-leading order Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX, UK E-mail: Andreas.Vogt@liverpool.ac.uk

More information

Higgs Pair Production: NLO Matching Uncertainties

Higgs Pair Production: NLO Matching Uncertainties Higgs Pair Production: NLO Matching Uncertainties Silvan Kuttimalai in collaboration with Stephen Jones November 7th, 2017 Higgs Couplings Workshop, Heidelberg Introduction Motivation: the Higgs Potential

More information

MadGolem: Automated NLO predictions for SUSY and beyond

MadGolem: Automated NLO predictions for SUSY and beyond David López-Val D. Gonçalves Netto (MPI, Munich), T. Plehn (Heidelberg U.), I. Wigmore (Edinburgh U.), K. Mawatari (Vrije U.) together with ITP - Universität Heidelberg SUSY 2013, Trieste (Italy) - August

More information

m H tanβ 30 LHC(40fb -1 ): LEP2: e + e Zh m A (GeV)

m H tanβ 30 LHC(40fb -1 ): LEP2: e + e Zh m A (GeV) Charged Higgs Bosons Production in Bottom-Gluon Fusion Tilman Plehn, Madison MSSM Higgs Bosons at the LHC Why Bottom Parton Description? QCD Corrections -QCD Corrections MSSM Higgs Bosons at the LHC MSSM

More information

Associated Higgs Production with Bottom Quarks at Hadron Colliders

Associated Higgs Production with Bottom Quarks at Hadron Colliders Associated Higgs Production with Bottom Quarks at Hadron Colliders Michael Krämer (RWTH Aachen) Kickoff Meeting of the working group on Higgs and heavy quarks Wuppertal 1.-2.3. 2010 1 /25 Higgs production

More information

NNLO antenna subtraction with two hadronic initial states

NNLO antenna subtraction with two hadronic initial states NNLO antenna subtraction with two hadronic initial states Institut für Theoretische Physik, Universität Zürich, Winterthurerstr. 190, 8057 Zürich, Switzerland E-mail: radja@physik.uzh.ch Aude Gehrmann-De

More information

arxiv: v1 [hep-ph] 1 Feb 2016

arxiv: v1 [hep-ph] 1 Feb 2016 Preprint typeset in JHEP style - PAPER VERSION CP3-16-01, ZU-TH 27/15, NIKHEF 2016-004, CERN-TH-2016-006 High precision determination of the gluon fusion Higgs boson cross-section at the LHC arxiv:1602.00695v1

More information

Higgs Production at LHC

Higgs Production at LHC Higgs Production at LHC Vittorio Del Duca INFN Torino Havana 3 April 2006 1 In proton collisions at 14 TeV, and for the Higgs is produced mostly via M H > 100 GeV gluon fusion gg H largest rate for all

More information

Weak boson scattering at the LHC

Weak boson scattering at the LHC Weak boson scattering at the LHC RADCOR 2009 Barbara Jäger University of Würzburg outline weak boson fusion at the LHC: Higgs production at high precision V V jj production @ NLO QCD strongly interacting

More information

Multiloop scattering amplitudes in the LHC Era

Multiloop scattering amplitudes in the LHC Era Multiloop scattering amplitudes in the LHC Era Francesco Moriello Based on arxiv:1609.06685 In collaboration with: R. Bonciani, V. Del Duca, H. Frellesvig, J.M. Henn, V. Smirnov October 26, 2016 Outline

More information

NNLO Phenomenology Using Jettiness Subtraction

NNLO Phenomenology Using Jettiness Subtraction NNLO Phenomenology Using Jettiness Subtraction Radja Boughezal Radcor/Loopfest 2015, June 15-19, UCLA 1 Outline Motivation IR subtraction schemes at NNLO (local and non-local subtractions) The N-jettiness

More information

The Pentabox Master Integrals with the Simplified Differential Equations approach

The Pentabox Master Integrals with the Simplified Differential Equations approach The Pentabox Master Integrals with the Simplified Differential Equations approach Costas G. Papadopoulos INPP, NCSR Demokritos Zurich, August 25, 2016 C.G.Papadopoulos (INPP) 5box QCD@LHC 2016 1 / 36 Introduction

More information

Phenomenology for Higgs Searches at the LHC

Phenomenology for Higgs Searches at the LHC Phenomenology for Higgs Searches at the LHC in Composite Higgs Models Margherita Ghezzi Supervisor: dott. Roberto Contino Roma, 21/02/2012 Introduction Standard Model: SU(2) L U(1) Y U(1) Q Higgs mechanism

More information

Analytic 2-loop Form factor in N=4 SYM

Analytic 2-loop Form factor in N=4 SYM Analytic 2-loop Form factor in N=4 SYM Gang Yang University of Hamburg Nordic String Theory Meeting Feb 20-21, 2012, NBI Based on the work Brandhuber, Travaglini, GY 1201.4170 [hep-th] Brandhuber, Gurdogan,

More information

HIGGS BOSONS AT THE LHC

HIGGS BOSONS AT THE LHC IGGS BOSONS AT TE LC Dieter Zeppenfeld Universität Karlsruhe, Germany SUSY06 UC Irvine, June 12-17, 2006 Goals of iggs Physics SM Channels MSSM: /A and ± Coupling measurements QCD Corrections VV vertex

More information

Higher-order QCD corrections to the Higgs-boson qt distribution

Higher-order QCD corrections to the Higgs-boson qt distribution Higher-order QCD corrections to the Higgs-boson qt distribution Jun Gao Argonne National Laboratory June 5, 05 In collaboration with Radja Boughezal and Frank Petriello Radcor/Loopfest, UCLA 05 qq Motivation

More information

Discontinuities of Feynman Integrals

Discontinuities of Feynman Integrals CEA Saclay Brown University, Twelfth Workshop on Non-Perturbative Quantum Chromodynamics June 10, 2013 Outline Landau and Cutkosky Classic unitarity cuts I I I Dispersion relations Modern unitarity method,

More information

Automation of NLO computations using the FKS subtraction method

Automation of NLO computations using the FKS subtraction method Automation of NLO computations using the FKS subtraction method Institute for Theoretical Physics, Universität Zürich E-mail: frederix@physik.uzh.ch In this talk the FKS subtraction method for next-to-leading

More information

Computing of Charged Current DIS at three loops

Computing of Charged Current DIS at three loops Computing of Charged Current DIS at three loops Mikhail Rogal Mikhail.Rogal@desy.de DESY, Zeuthen, Germany ACAT 2007, Amsterdam, Netherlands, April 23-28, 2007 Computing of Charged CurrentDIS at three

More information

Towards a more accurate prediction of W +b jets with an automatized approach to one-loop calculations

Towards a more accurate prediction of W +b jets with an automatized approach to one-loop calculations Towards a more accurate prediction of W +b jets with an automatized approach to one-loop calculations Laura Reina Loops and Legs in Quantum Field Theory Wernigerode, April 2012 Outline Motivations: W +b-jet

More information

Introduction to perturbative QCD and factorization

Introduction to perturbative QCD and factorization Introduction to perturbative QCD and factorization Part 1 M. Diehl Deutsches Elektronen-Synchroton DESY Ecole Joliot Curie 2018 DESY Plan of lectures 0. Brief introduction 1. Renormalisation, running coupling,

More information

Alessandro Vicini University of Milano, INFN Milano

Alessandro Vicini University of Milano, INFN Milano Higgs production via gluon fusion in the POWHEG approach in the SM and in the MSSM Alessandro Vicini University of Milano, INFN Milano Padova, 15 febbraio 12 in collaboration with: E. Bagnaschi, G. Degrassi,

More information

Physics at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden

Physics at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden Physics at LHC lecture one Sven-Olaf Moch Sven-Olaf.Moch@desy.de DESY, Zeuthen in collaboration with Martin zur Nedden Humboldt-Universität, October 22, 2007, Berlin Sven-Olaf Moch Physics at LHC p.1 LHC

More information

arxiv: v1 [hep-ph] 26 Nov 2017

arxiv: v1 [hep-ph] 26 Nov 2017 Recent Developments in Higher-Order Calculations: Hard Functions at NLO with GoSam arxiv:1711.09462v1 [hep-ph] 26 Nov 2017 Alessandro Broggio a alessandro.broggio@tum.de Andrea Ferroglia b,c aferroglia@citytech.cuny.edu

More information

Summary and Outlook. Davison E. Soper University of Oregon. LoopFest V, June 2006

Summary and Outlook. Davison E. Soper University of Oregon. LoopFest V, June 2006 Summary and Outlook Davison E. Soper University of Oregon LoopFest V, June 2006 Parton Showers & jet matching R. Erbacher emphasized how important this issue is for CDF analyses. CDF has been using a somewhat

More information

SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS

SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS Germán F. R. Sborlini Departamento de Física, FCEyN, UBA (Argentina) 10/12/2012 - IFIC CONTENT Introduction Collinear limits Splitting functions Computing splitting

More information

Understanding Parton Showers

Understanding Parton Showers Understanding Parton Showers Zoltán Nagy DESY in collaboration with Dave Soper Introduction Pile-up events 7 vertices 2009 single vertex reconstructed! 2011 2010 4 vertices 25 vertices 2012 Introduction

More information

W/Z production with 2b at NLO

W/Z production with 2b at NLO W/Z production with b at NLO Laura Reina Eugene, September 9 Motivations: main background to W H/ZH associated production; single-top production; H/A + b b and other signals of new physics; t t production;

More information

Non-planar two-loop Feynman integrals contributing to Higgs plus jet production

Non-planar two-loop Feynman integrals contributing to Higgs plus jet production Non-planar two-loop Feynman integrals contributing to Higgs plus jet production Institute for Theoretical Particle Physics (TTP), Karlsruhe Institute of Technology Engesserstraße 7, D-76128 Karlsruhe,

More information

BACKGROUND EXPERIENCE AND THEORY INNOVATION FOR LHC

BACKGROUND EXPERIENCE AND THEORY INNOVATION FOR LHC BACKGROUND EXPERIENCE AND THEORY INNOVATION FOR LHC Babis Anastasiou ETH Zurich PADOVA 20-01-2010 A theory revolution Deeper understanding of the structure of gauge theories Sharp theoretical predictions

More information