Chapter 7: Eligibility Traces. R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 1

Size: px
Start display at page:

Download "Chapter 7: Eligibility Traces. R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 1"

Transcription

1 Chapter 7: Eligibility Traces R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 1

2 Midterm Mean = Median = 82 R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 2

3 N-step TD Prediction Idea: Look farther into the future when you do TD backup (1, 2, 3,, n steps) R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 3

4 Mathematics of N-step TD Prediction Monte Carlo: R t = r " 2 t+ 1 + " rt " rt L+ T! t! 1 r T TD: R! (1) t = rt Vt t+ ( s 1) Use V to estimate remaining return n-step TD: 2 step return: R! (2) t 2 = rt + 1 +! rt Vt t+ ( s 2) n-step return: ( n) 2 n! 1 n R t = rt " rt " rt L+ " rt + n + " Vt ( st+ n ) R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 4

5 Learning with N-step Backups Backup (on-line or off-line):!v t (s t ) = "[ R (n) t # V t (s t )] Error reduction property of n-step returns max s n! n E! { Rt st = s} # V ( s) $ " maxv ( s) # V s! ( s) n step return Maximum error using n-step return Maximum error using V Using this, you can show that n-step methods converge R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 5

6 Random Walk Examples How does 2-step TD work here? How about 3-step TD? R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 6

7 A Larger Example Task: 19 state random walk Do you think there is an optimal n (for everything)? R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 7

8 Averaging N-step Returns n-step methods were introduced to help with TD(λ) understanding Idea: backup an average of several returns e.g. backup half of 2-step and half of 4- step avg 1 (2) R t = Rt R (4) t One backup Called a complex backup Draw each component Label with the weights for that component R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 8

9 Forward View of TD(λ) TD(λ) is a method for averaging all n-step backups weight by λ n-1 (time since visitation) λ-return: R! t = (1"!) $! n "1 (n) R t n=1 Backup using λ-return: #!V t (s t ) = "[ R # t $ V t (s t )] R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 9

10 λ-return Weighting Function R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 10

11 Relation to TD(0) and MC λ-return can be rewritten as: T " t "1 R! t = (1"!) #! n"1 R (n) t +! T "t "1 R t n=1 Until termination If λ = 1, you get MC: After termination T "t "1 R! t = (1"1) # 1 n"1 (n R ) t + 1 T " t "1 R t = R t n=1 If λ = 0, you get TD(0) T "t "1 R! t = (1" 0) # 0 n"1 (n R ) t + 0 T " t "1 (1) R t = R t n=1 R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 11

12 Forward View of TD(λ) II Look forward from each state to determine update from future states and rewards: R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 12

13 λ-return on the Random Walk Same 19 state random walk as before Why do you think intermediate values of λ are best? R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 13

14 Backward View of TD(λ) The forward view was for theory The backward view is for mechanism + New variable called eligibility trace e t (s)"! On each step, decay all traces by γλ and increment the trace for the current state by 1 Accumulating trace %!"e t #1 (s) e t (s) = & '!"e t #1 (s) +1 if s $ s t if s = s t R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 14

15 On-line Tabular TD(λ) Initialize V(s) arbitrarily and e(s) = 0, for all s!s Repeat (for each episode) : Initialize s Repeat (for each step of episode) : a " action given by # for s Take action a, observe reward, r, and next state s $ % " r +&V( s $ ) ' V (s) e(s) " e(s) +1 For all s : s " s $ V(s) " V(s) +(%e(s) e(s) " &)e(s) Until s is terminal R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 15

16 Backward View # t = r t+ 1 + " Vt ( st+ 1)! Vt ( st ) Shout δ t backwards over time The strength of your voice decreases with temporal distance by γλ R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 16

17 Relation of Backwards View to MC & TD(0) Using update rule: As before, if you set λ to 0, you get to TD(0) If you set λ to 1, you get MC but in a better way # V ( s) = e ( s) t!" t Can apply TD(1) to continuing tasks t Works incrementally and on-line (instead of waiting to the end of the episode) R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 17

18 Forward View = Backward View The forward (theoretical) view of TD(λ) is equivalent to the backward (mechanistic) view for off-line updating The book shows: T "1 #!V TD t (s) = #!V $ t (s t ) I sst t = 0 T "1 t = 0 T "1 #!V TD t (s) = # $ I sst #(%&) k " t ' k $!V " t (s t )I sst = $ % I sst $ (&") k # t ' k t = 0 T "1 t = 0 Backward updates Forward updates algebra shown in book T "1 k =t T #1 On-line updating with small α is similar t = 0 T #1 t = 0 T #1 k =t R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 18

19 On-line versus Off-line on Random Walk Same 19 state random walk On-line performs better over a broader range of parameters R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 19

20 Control: Sarsa(λ) Save eligibility for state-action pairs instead of just states $ e t (s, a) =!"e t #1(s, a) +1 % &!"e t #1 (s,a) if s = s t and a = a t otherwise Q t +1 (s, a) = Q t (s, a) +'( t e t (s, a) ( t = r t +1 +!Q t (s t +1,a t +1 ) # Q t (s t, a t ) R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 20

21 Sarsa(λ) Algorithm Initialize Q(s,a) arbitrarily and e(s, a) = 0, for all s, a Repeat (for each episode) : Initialize s, a Repeat (for each step of episode) : Take action a, observe r, s! Choose a! from s! using policy derived from Q (e.g.? - greedy) " # r +$Q( s!, a!) % Q(s, a) e(s,a) # e(s,a) +1 For all s,a : Q(s, a) # Q(s, a) +&"e(s, a) e(s, a) # $'e(s, a) s # s!;a # a! Until s is terminal R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 21

22 Sarsa(λ) Gridworld Example With one trial, the agent has much more information about how to get to the goal not necessarily the best way Can considerably accelerate learning R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 22

23 Three Approaches to Q(λ) How can we extend this to Q- learning? If you mark every state action pair as eligible, you backup over non-greedy policy Watkins: Zero out eligibility trace after a nongreedy action. Do max when backing up at first non-greedy choice. e t (s, a) = % 1 +!"e t #1 (s, a) ' & 0 ( '!"e t #1 (s,a) if s = s t, a = a t,q t #1 (s t,a t ) = max a Q t #1 (s t, a) if Q t #1 (s t,a t ) $ max a Q t #1 (s t,a) otherwise Q t +1 (s, a) = Q t (s, a) +)* t e t (s, a) * t = r t +1 +! max a + Q t (s t +1, a + ) # Q t (s t,a t ) R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 23

24 Watkins s Q(λ) Initialize Q(s,a) arbitrarily and e(s, a) = 0, for all s, a Repeat (for each episode) : Initialize s, a Repeat (for each step of episode) : Take action a, observe r, s! Choose a! from s! using policy derived from Q (e.g.? - greedy) a * " arg max b Q( s!, b) (if a ties for the max, then a * " a!) # " r +$Q( s!, a!) % Q(s, a * ) e(s,a) " e(s,a) +1 For all s,a : Q(s, a) " Q(s, a) +&#e(s, a) If a! = a *, then e(s, a) "$'e(s,a) s " s!;a " a! Until s is terminal else e(s, a) " 0 R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 24

25 Peng s Q(λ) Disadvantage to Watkins s method: Peng: Early in learning, the eligibility trace will be cut (zeroed out) frequently resulting in little advantage to traces Backup max action except at end Never cut traces Disadvantage: Complicated to implement R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 25

26 Naïve Q(λ) Idea: is it really a problem to backup exploratory actions? Never zero traces Always backup max at current action (unlike Peng or Watkins s) Is this truly naïve? Works well is preliminary empirical studies What is the backup diagram? R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 26

27 Comparison Task Compared Watkins s, Peng s, and Naïve (called McGovern s here) Q(λ) on several tasks. See McGovern and Sutton (1997). Towards a Better Q( λ) for other tasks and results (stochastic tasks, continuing tasks, etc) Deterministic gridworld with obstacles 10x10 gridworld 25 randomly generated obstacles 30 runs α = 0.05, γ = 0.9, λ = 0.9, ε = 0.05, accumulating traces From McGovern and Sutton (1997). Towards a better Q(λ) R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 27

28 Comparison Results From McGovern and Sutton (1997). Towards a better Q(λ) R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 28

29 Convergence of the Q(λ) s None of the methods are proven to converge. Much extra credit if you can prove any of them. Watkins s is thought to converge to Q * Peng s is thought to converge to a mixture of Q π and Q * Naïve - Q *? R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 29

30 Eligibility Traces for Actor-Critic Methods Critic: On-policy learning of V π. Use TD(λ) as described before. Actor: Needs eligibility traces for each state-action pair. We change the update equation: # p t +1 (s, a) = p t(s,a) +!" t if a = a t and s = s t $ % p t (s, a) otherwise Can change the other actor-critic update: to pt + 1( s, a) = pt ( s, a) +!" tet ( s, a) [ ] if a = a t and s = s t % p t +1 (s, a) = p t(s,a) +!" t 1# $(s, a) & ' p t (s,a) otherwise to pt + 1( s, a) = pt ( s, a) +!" tet ( s, a) where % e t (s, a) =!"e (s, a) +1 # $ (s,a ) t #1 t t t & '!"e t #1 (s, a) if s = s and a = a t t otherwise R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 30

31 Replacing Traces Using accumulating traces, frequently visited states can have eligibilities greater than 1 This can be a problem for convergence Replacing traces: Instead of adding 1 when you visit a state, set that trace to 1 % e t (s) =!"e t #1(s) if s $ s t & ' 1 if s = s t R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 31

32 Replacing Traces Example Same 19 state random walk task as before Replacing traces perform better than accumulating traces over more values of λ R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 32

33 Why Replacing Traces? Replacing traces can significantly speed learning They can make the system perform well for a broader set of parameters Accumulating traces can do poorly on certain types of tasks Why is this task particularly onerous for accumulating traces? R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 33

34 More Replacing Traces Off-line replacing trace TD(1) is identical to first-visit MC Extension to action-values: When you revisit a state, what should you do with the traces for the other actions? Singh and Sutton say to set them to zero: e t (s, a) = $ & 1 if s = s t and a = a t % 0 if s = s t and a ( a t & '!"e t #1 (s, a) if s ( s t R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 34

35 Implementation Issues Could require much more computation But most eligibility traces are VERY close to zero If you implement it in Matlab, backup is only one line of code and is very fast (Matlab is optimized for matrices) R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 35

36 Variable λ Can generalize to variable λ e t (s) = %!" t e t #1 (s) if s $ s t & '!" t e t #1 (s) +1 if s = s t Here λ is a function of time Could define " t = "( s t ) or " t = " t! R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 36

37 Conclusions Provides efficient, incremental way to combine MC and TD Includes advantages of MC (can deal with lack of Markov property) Includes advantages of TD (using TD error, bootstrapping) Can significantly speed learning Does have a cost in computation R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 37

38 Something Here is Not Like the Other R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 38

The Book: Where we are and where we re going. CSE 190: Reinforcement Learning: An Introduction. Chapter 7: Eligibility Traces. Simple Monte Carlo

The Book: Where we are and where we re going. CSE 190: Reinforcement Learning: An Introduction. Chapter 7: Eligibility Traces. Simple Monte Carlo CSE 190: Reinforcement Learning: An Introduction Chapter 7: Eligibility races Acknowledgment: A good number of these slides are cribbed from Rich Sutton he Book: Where we are and where we re going Part

More information

RL Lecture 7: Eligibility Traces. R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 1

RL Lecture 7: Eligibility Traces. R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 1 RL Lecure 7: Eligibiliy Traces R. S. Suon and A. G. Baro: Reinforcemen Learning: An Inroducion 1 N-sep TD Predicion Idea: Look farher ino he fuure when you do TD backup (1, 2, 3,, n seps) R. S. Suon and

More information

Temporal difference learning

Temporal difference learning Temporal difference learning AI & Agents for IET Lecturer: S Luz http://www.scss.tcd.ie/~luzs/t/cs7032/ February 4, 2014 Recall background & assumptions Environment is a finite MDP (i.e. A and S are finite).

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Temporal Difference Learning Temporal difference learning, TD prediction, Q-learning, elibigility traces. (many slides from Marc Toussaint) Vien Ngo MLR, University of Stuttgart

More information

Reinforcement Learning II

Reinforcement Learning II Reinforcement Learning II Andrea Bonarini Artificial Intelligence and Robotics Lab Department of Electronics and Information Politecnico di Milano E-mail: bonarini@elet.polimi.it URL:http://www.dei.polimi.it/people/bonarini

More information

Temporal Difference. Learning KENNETH TRAN. Principal Research Engineer, MSR AI

Temporal Difference. Learning KENNETH TRAN. Principal Research Engineer, MSR AI Temporal Difference Learning KENNETH TRAN Principal Research Engineer, MSR AI Temporal Difference Learning Policy Evaluation Intro to model-free learning Monte Carlo Learning Temporal Difference Learning

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Temporal Difference Learning Temporal difference learning, TD prediction, Q-learning, elibigility traces. (many slides from Marc Toussaint) Vien Ngo Marc Toussaint University of

More information

arxiv: v1 [cs.ai] 5 Nov 2017

arxiv: v1 [cs.ai] 5 Nov 2017 arxiv:1711.01569v1 [cs.ai] 5 Nov 2017 Markus Dumke Department of Statistics Ludwig-Maximilians-Universität München markus.dumke@campus.lmu.de Abstract Temporal-difference (TD) learning is an important

More information

Machine Learning I Reinforcement Learning

Machine Learning I Reinforcement Learning Machine Learning I Reinforcement Learning Thomas Rückstieß Technische Universität München December 17/18, 2009 Literature Book: Reinforcement Learning: An Introduction Sutton & Barto (free online version:

More information

https://www.youtube.com/watch?v=ymvi1l746us Eligibility traces Chapter 12, plus some extra stuff! Like n-step methods, but better! Eligibility traces A mechanism that allow TD, Sarsa and Q-learning to

More information

Reinforcement Learning. George Konidaris

Reinforcement Learning. George Konidaris Reinforcement Learning George Konidaris gdk@cs.brown.edu Fall 2017 Machine Learning Subfield of AI concerned with learning from data. Broadly, using: Experience To Improve Performance On Some Task (Tom

More information

Week 6, Lecture 1. Reinforcement Learning (part 3) Announcements: HW 3 due on 11/5 at NOON Midterm Exam 11/8 Project draft due 11/15

Week 6, Lecture 1. Reinforcement Learning (part 3) Announcements: HW 3 due on 11/5 at NOON Midterm Exam 11/8 Project draft due 11/15 ME 537: Learning Based Control Week 6, Lecture 1 Reinforcement Learning (part 3 Announcements: HW 3 due on 11/5 at NOON Midterm Exam 11/8 Project draft due 11/15 Suggested reading : Chapters 7-8 in Reinforcement

More information

ROB 537: Learning-Based Control. Announcements: Project background due Today. HW 3 Due on 10/30 Midterm Exam on 11/6.

ROB 537: Learning-Based Control. Announcements: Project background due Today. HW 3 Due on 10/30 Midterm Exam on 11/6. ROB 537: Learning-Based Control Week 5, Lecture 1 Policy Gradient, Eligibility Traces, Transfer Learning (MaC Taylor Announcements: Project background due Today HW 3 Due on 10/30 Midterm Exam on 11/6 Reading:

More information

Chapter 6: Temporal Difference Learning

Chapter 6: Temporal Difference Learning Chapter 6: emporal Difference Learning Objectives of this chapter: Introduce emporal Difference (D) learning Focus first on policy evaluation, or prediction, methods Compare efficiency of D learning with

More information

Introduction to Reinforcement Learning. CMPT 882 Mar. 18

Introduction to Reinforcement Learning. CMPT 882 Mar. 18 Introduction to Reinforcement Learning CMPT 882 Mar. 18 Outline for the week Basic ideas in RL Value functions and value iteration Policy evaluation and policy improvement Model-free RL Monte-Carlo and

More information

PART A and ONE question from PART B; or ONE question from PART A and TWO questions from PART B.

PART A and ONE question from PART B; or ONE question from PART A and TWO questions from PART B. Advanced Topics in Machine Learning, GI13, 2010/11 Advanced Topics in Machine Learning, GI13, 2010/11 Answer any THREE questions. Each question is worth 20 marks. Use separate answer books Answer any THREE

More information

Open Theoretical Questions in Reinforcement Learning

Open Theoretical Questions in Reinforcement Learning Open Theoretical Questions in Reinforcement Learning Richard S. Sutton AT&T Labs, Florham Park, NJ 07932, USA, sutton@research.att.com, www.cs.umass.edu/~rich Reinforcement learning (RL) concerns the problem

More information

Review: TD-Learning. TD (SARSA) Learning for Q-values. Bellman Equations for Q-values. P (s, a, s )[R(s, a, s )+ Q (s, (s ))]

Review: TD-Learning. TD (SARSA) Learning for Q-values. Bellman Equations for Q-values. P (s, a, s )[R(s, a, s )+ Q (s, (s ))] Review: TD-Learning function TD-Learning(mdp) returns a policy Class #: Reinforcement Learning, II 8s S, U(s) =0 set start-state s s 0 choose action a, using -greedy policy based on U(s) U(s) U(s)+ [r

More information

CS599 Lecture 1 Introduction To RL

CS599 Lecture 1 Introduction To RL CS599 Lecture 1 Introduction To RL Reinforcement Learning Introduction Learning from rewards Policies Value Functions Rewards Models of the Environment Exploitation vs. Exploration Dynamic Programming

More information

Reinforcement Learning. Summer 2017 Defining MDPs, Planning

Reinforcement Learning. Summer 2017 Defining MDPs, Planning Reinforcement Learning Summer 2017 Defining MDPs, Planning understandability 0 Slide 10 time You are here Markov Process Where you will go depends only on where you are Markov Process: Information state

More information

Lecture 23: Reinforcement Learning

Lecture 23: Reinforcement Learning Lecture 23: Reinforcement Learning MDPs revisited Model-based learning Monte Carlo value function estimation Temporal-difference (TD) learning Exploration November 23, 2006 1 COMP-424 Lecture 23 Recall:

More information

Reinforcement Learning. Value Function Updates

Reinforcement Learning. Value Function Updates Reinforcement Learning Value Function Updates Manfred Huber 2014 1 Value Function Updates Different methods for updating the value function Dynamic programming Simple Monte Carlo Temporal differencing

More information

Reinforcement Learning. Spring 2018 Defining MDPs, Planning

Reinforcement Learning. Spring 2018 Defining MDPs, Planning Reinforcement Learning Spring 2018 Defining MDPs, Planning understandability 0 Slide 10 time You are here Markov Process Where you will go depends only on where you are Markov Process: Information state

More information

Balancing and Control of a Freely-Swinging Pendulum Using a Model-Free Reinforcement Learning Algorithm

Balancing and Control of a Freely-Swinging Pendulum Using a Model-Free Reinforcement Learning Algorithm Balancing and Control of a Freely-Swinging Pendulum Using a Model-Free Reinforcement Learning Algorithm Michail G. Lagoudakis Department of Computer Science Duke University Durham, NC 2778 mgl@cs.duke.edu

More information

Chapter 6: Temporal Difference Learning

Chapter 6: Temporal Difference Learning Chapter 6: emporal Difference Learning Objectives of this chapter: Introduce emporal Difference (D) learning Focus first on policy evaluation, or prediction, methods hen extend to control methods R. S.

More information

Chapter 3: The Reinforcement Learning Problem

Chapter 3: The Reinforcement Learning Problem Chapter 3: The Reinforcement Learning Problem Objectives of this chapter: describe the RL problem we will be studying for the remainder of the course present idealized form of the RL problem for which

More information

Basics of reinforcement learning

Basics of reinforcement learning Basics of reinforcement learning Lucian Buşoniu TMLSS, 20 July 2018 Main idea of reinforcement learning (RL) Learn a sequential decision policy to optimize the cumulative performance of an unknown system

More information

CMU Lecture 12: Reinforcement Learning. Teacher: Gianni A. Di Caro

CMU Lecture 12: Reinforcement Learning. Teacher: Gianni A. Di Caro CMU 15-781 Lecture 12: Reinforcement Learning Teacher: Gianni A. Di Caro REINFORCEMENT LEARNING Transition Model? State Action Reward model? Agent Goal: Maximize expected sum of future rewards 2 MDP PLANNING

More information

Introduction to Reinforcement Learning. Part 5: Temporal-Difference Learning

Introduction to Reinforcement Learning. Part 5: Temporal-Difference Learning Introduction to Reinforcement Learning Part 5: emporal-difference Learning What everybody should know about emporal-difference (D) learning Used to learn value functions without human input Learns a guess

More information

PART A and ONE question from PART B; or ONE question from PART A and TWO questions from PART B.

PART A and ONE question from PART B; or ONE question from PART A and TWO questions from PART B. Advanced Topics in Machine Learning, GI13, 2010/11 Advanced Topics in Machine Learning, GI13, 2010/11 Answer any THREE questions. Each question is worth 20 marks. Use separate answer books Answer any THREE

More information

Reinforcement learning an introduction

Reinforcement learning an introduction Reinforcement learning an introduction Prof. Dr. Ann Nowé Computational Modeling Group AIlab ai.vub.ac.be November 2013 Reinforcement Learning What is it? Learning from interaction Learning about, from,

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Function approximation Daniel Hennes 19.06.2017 University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Eligibility traces n-step TD returns Forward and backward view Function

More information

Lecture 3: The Reinforcement Learning Problem

Lecture 3: The Reinforcement Learning Problem Lecture 3: The Reinforcement Learning Problem Objectives of this lecture: describe the RL problem we will be studying for the remainder of the course present idealized form of the RL problem for which

More information

15-889e Policy Search: Gradient Methods Emma Brunskill. All slides from David Silver (with EB adding minor modificafons), unless otherwise noted

15-889e Policy Search: Gradient Methods Emma Brunskill. All slides from David Silver (with EB adding minor modificafons), unless otherwise noted 15-889e Policy Search: Gradient Methods Emma Brunskill All slides from David Silver (with EB adding minor modificafons), unless otherwise noted Outline 1 Introduction 2 Finite Difference Policy Gradient

More information

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz Reinforcement learning II Daniel Hennes 11.12.2017 (WS 2017/18) University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Eligibility traces n-step TD returns

More information

Reinforcement Learning: An Introduction

Reinforcement Learning: An Introduction Introduction Betreuer: Freek Stulp Hauptseminar Intelligente Autonome Systeme (WiSe 04/05) Forschungs- und Lehreinheit Informatik IX Technische Universität München November 24, 2004 Introduction What is

More information

Prof. Dr. Ann Nowé. Artificial Intelligence Lab ai.vub.ac.be

Prof. Dr. Ann Nowé. Artificial Intelligence Lab ai.vub.ac.be REINFORCEMENT LEARNING AN INTRODUCTION Prof. Dr. Ann Nowé Artificial Intelligence Lab ai.vub.ac.be REINFORCEMENT LEARNING WHAT IS IT? What is it? Learning from interaction Learning about, from, and while

More information

Lecture 3: Policy Evaluation Without Knowing How the World Works / Model Free Policy Evaluation

Lecture 3: Policy Evaluation Without Knowing How the World Works / Model Free Policy Evaluation Lecture 3: Policy Evaluation Without Knowing How the World Works / Model Free Policy Evaluation CS234: RL Emma Brunskill Winter 2018 Material builds on structure from David SIlver s Lecture 4: Model-Free

More information

Machine Learning. Reinforcement learning. Hamid Beigy. Sharif University of Technology. Fall 1396

Machine Learning. Reinforcement learning. Hamid Beigy. Sharif University of Technology. Fall 1396 Machine Learning Reinforcement learning Hamid Beigy Sharif University of Technology Fall 1396 Hamid Beigy (Sharif University of Technology) Machine Learning Fall 1396 1 / 32 Table of contents 1 Introduction

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Function approximation Mario Martin CS-UPC May 18, 2018 Mario Martin (CS-UPC) Reinforcement Learning May 18, 2018 / 65 Recap Algorithms: MonteCarlo methods for Policy Evaluation

More information

Off-Policy Actor-Critic

Off-Policy Actor-Critic Off-Policy Actor-Critic Ludovic Trottier Laval University July 25 2012 Ludovic Trottier (DAMAS Laboratory) Off-Policy Actor-Critic July 25 2012 1 / 34 Table of Contents 1 Reinforcement Learning Theory

More information

Monte Carlo is important in practice. CSE 190: Reinforcement Learning: An Introduction. Chapter 6: Temporal Difference Learning.

Monte Carlo is important in practice. CSE 190: Reinforcement Learning: An Introduction. Chapter 6: Temporal Difference Learning. Monte Carlo is important in practice CSE 190: Reinforcement Learning: An Introduction Chapter 6: emporal Difference Learning When there are just a few possibilitieo value, out of a large state space, Monte

More information

Lecture 25: Learning 4. Victor R. Lesser. CMPSCI 683 Fall 2010

Lecture 25: Learning 4. Victor R. Lesser. CMPSCI 683 Fall 2010 Lecture 25: Learning 4 Victor R. Lesser CMPSCI 683 Fall 2010 Final Exam Information Final EXAM on Th 12/16 at 4:00pm in Lederle Grad Res Ctr Rm A301 2 Hours but obviously you can leave early! Open Book

More information

Lecture 8: Policy Gradient

Lecture 8: Policy Gradient Lecture 8: Policy Gradient Hado van Hasselt Outline 1 Introduction 2 Finite Difference Policy Gradient 3 Monte-Carlo Policy Gradient 4 Actor-Critic Policy Gradient Introduction Vapnik s rule Never solve

More information

This question has three parts, each of which can be answered concisely, but be prepared to explain and justify your concise answer.

This question has three parts, each of which can be answered concisely, but be prepared to explain and justify your concise answer. This question has three parts, each of which can be answered concisely, but be prepared to explain and justify your concise answer. 1. Suppose you have a policy and its action-value function, q, then you

More information

Reinforcement Learning. Machine Learning, Fall 2010

Reinforcement Learning. Machine Learning, Fall 2010 Reinforcement Learning Machine Learning, Fall 2010 1 Administrativia This week: finish RL, most likely start graphical models LA2: due on Thursday LA3: comes out on Thursday TA Office hours: Today 1:30-2:30

More information

Reinforcement Learning Part 2

Reinforcement Learning Part 2 Reinforcement Learning Part 2 Dipendra Misra Cornell University dkm@cs.cornell.edu https://dipendramisra.wordpress.com/ From previous tutorial Reinforcement Learning Exploration No supervision Agent-Reward-Environment

More information

Reinforcement Learning with Function Approximation. Joseph Christian G. Noel

Reinforcement Learning with Function Approximation. Joseph Christian G. Noel Reinforcement Learning with Function Approximation Joseph Christian G. Noel November 2011 Abstract Reinforcement learning (RL) is a key problem in the field of Artificial Intelligence. The main goal is

More information

Introduction. Reinforcement Learning

Introduction. Reinforcement Learning Introduction Reinforcement Learning Learn Act Sense Scott Sanner NICTA / ANU First.Last@nicta.com.au Lecture Goals 1) To understand formal models for decisionmaking under uncertainty and their properties

More information

Notes on Reinforcement Learning

Notes on Reinforcement Learning 1 Introduction Notes on Reinforcement Learning Paulo Eduardo Rauber 2014 Reinforcement learning is the study of agents that act in an environment with the goal of maximizing cumulative reward signals.

More information

Reinforcement learning

Reinforcement learning Reinforcement learning Based on [Kaelbling et al., 1996, Bertsekas, 2000] Bert Kappen Reinforcement learning Reinforcement learning is the problem faced by an agent that must learn behavior through trial-and-error

More information

Reinforcement Learning: the basics

Reinforcement Learning: the basics Reinforcement Learning: the basics Olivier Sigaud Université Pierre et Marie Curie, PARIS 6 http://people.isir.upmc.fr/sigaud August 6, 2012 1 / 46 Introduction Action selection/planning Learning by trial-and-error

More information

ilstd: Eligibility Traces and Convergence Analysis

ilstd: Eligibility Traces and Convergence Analysis ilstd: Eligibility Traces and Convergence Analysis Alborz Geramifard Michael Bowling Martin Zinkevich Richard S. Sutton Department of Computing Science University of Alberta Edmonton, Alberta {alborz,bowling,maz,sutton}@cs.ualberta.ca

More information

Course basics. CSE 190: Reinforcement Learning: An Introduction. Last Time. Course goals. The website for the class is linked off my homepage.

Course basics. CSE 190: Reinforcement Learning: An Introduction. Last Time. Course goals. The website for the class is linked off my homepage. Course basics CSE 190: Reinforcement Learning: An Introduction The website for the class is linked off my homepage. Grades will be based on programming assignments, homeworks, and class participation.

More information

ARTIFICIAL INTELLIGENCE. Reinforcement learning

ARTIFICIAL INTELLIGENCE. Reinforcement learning INFOB2KI 2018-2019 Utrecht University The Netherlands ARTIFICIAL INTELLIGENCE Reinforcement learning Lecturer: Silja Renooij These slides are part of the INFOB2KI Course Notes available from www.cs.uu.nl/docs/vakken/b2ki/schema.html

More information

Replacing eligibility trace for action-value learning with function approximation

Replacing eligibility trace for action-value learning with function approximation Replacing eligibility trace for action-value learning with function approximation Kary FRÄMLING Helsinki University of Technology PL 5500, FI-02015 TKK - Finland Abstract. The eligibility trace is one

More information

Christopher Watkins and Peter Dayan. Noga Zaslavsky. The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (67679) November 1, 2015

Christopher Watkins and Peter Dayan. Noga Zaslavsky. The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (67679) November 1, 2015 Q-Learning Christopher Watkins and Peter Dayan Noga Zaslavsky The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (67679) November 1, 2015 Noga Zaslavsky Q-Learning (Watkins & Dayan, 1992)

More information

MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti

MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti 1 MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti Historical background 2 Original motivation: animal learning Early

More information

CS599 Lecture 2 Function Approximation in RL

CS599 Lecture 2 Function Approximation in RL CS599 Lecture 2 Function Approximation in RL Look at how experience with a limited part of the state set be used to produce good behavior over a much larger part. Overview of function approximation (FA)

More information

Chapter 3: The Reinforcement Learning Problem

Chapter 3: The Reinforcement Learning Problem Chapter 3: The Reinforcement Learning Problem Objectives of this chapter: describe the RL problem we will be studying for the remainder of the course present idealized form of the RL problem for which

More information

Reading Response: Due Wednesday. R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 1

Reading Response: Due Wednesday. R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 1 Reading Response: Due Wednesday R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 1 Another Example Get to the top of the hill as quickly as possible. reward = 1 for each step where

More information

CSE 190: Reinforcement Learning: An Introduction. Chapter 8: Generalization and Function Approximation. Pop Quiz: What Function Are We Approximating?

CSE 190: Reinforcement Learning: An Introduction. Chapter 8: Generalization and Function Approximation. Pop Quiz: What Function Are We Approximating? CSE 190: Reinforcement Learning: An Introduction Chapter 8: Generalization and Function Approximation Objectives of this chapter: Look at how experience with a limited part of the state set be used to

More information

6 Reinforcement Learning

6 Reinforcement Learning 6 Reinforcement Learning As discussed above, a basic form of supervised learning is function approximation, relating input vectors to output vectors, or, more generally, finding density functions p(y,

More information

Introduction to Reinforcement Learning. Part 6: Core Theory II: Bellman Equations and Dynamic Programming

Introduction to Reinforcement Learning. Part 6: Core Theory II: Bellman Equations and Dynamic Programming Introduction to Reinforcement Learning Part 6: Core Theory II: Bellman Equations and Dynamic Programming Bellman Equations Recursive relationships among values that can be used to compute values The tree

More information

ECE276B: Planning & Learning in Robotics Lecture 16: Model-free Control

ECE276B: Planning & Learning in Robotics Lecture 16: Model-free Control ECE276B: Planning & Learning in Robotics Lecture 16: Model-free Control Lecturer: Nikolay Atanasov: natanasov@ucsd.edu Teaching Assistants: Tianyu Wang: tiw161@eng.ucsd.edu Yongxi Lu: yol070@eng.ucsd.edu

More information

Reinforcement Learning and Control

Reinforcement Learning and Control CS9 Lecture notes Andrew Ng Part XIII Reinforcement Learning and Control We now begin our study of reinforcement learning and adaptive control. In supervised learning, we saw algorithms that tried to make

More information

The Reinforcement Learning Problem

The Reinforcement Learning Problem The Reinforcement Learning Problem Slides based on the book Reinforcement Learning by Sutton and Barto Formalizing Reinforcement Learning Formally, the agent and environment interact at each of a sequence

More information

Reinforcement Learning: An Introduction. ****Draft****

Reinforcement Learning: An Introduction. ****Draft**** i Reinforcement Learning: An Introduction Second edition, in progress ****Draft**** Richard S. Sutton and Andrew G. Barto c 2014, 2015 A Bradford Book The MIT Press Cambridge, Massachusetts London, England

More information

Least squares temporal difference learning

Least squares temporal difference learning Least squares temporal difference learning TD(λ) Good properties of TD Easy to implement, traces achieve the forward view Linear complexity = fast Combines easily with linear function approximation Outperforms

More information

arxiv: v1 [cs.ai] 1 Jul 2015

arxiv: v1 [cs.ai] 1 Jul 2015 arxiv:507.00353v [cs.ai] Jul 205 Harm van Seijen harm.vanseijen@ualberta.ca A. Rupam Mahmood ashique@ualberta.ca Patrick M. Pilarski patrick.pilarski@ualberta.ca Richard S. Sutton sutton@cs.ualberta.ca

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning 1 Reinforcement Learning Mainly based on Reinforcement Learning An Introduction by Richard Sutton and Andrew Barto Slides are mainly based on the course material provided by the

More information

On the Convergence of Optimistic Policy Iteration

On the Convergence of Optimistic Policy Iteration Journal of Machine Learning Research 3 (2002) 59 72 Submitted 10/01; Published 7/02 On the Convergence of Optimistic Policy Iteration John N. Tsitsiklis LIDS, Room 35-209 Massachusetts Institute of Technology

More information

, and rewards and transition matrices as shown below:

, and rewards and transition matrices as shown below: CSE 50a. Assignment 7 Out: Tue Nov Due: Thu Dec Reading: Sutton & Barto, Chapters -. 7. Policy improvement Consider the Markov decision process (MDP) with two states s {0, }, two actions a {0, }, discount

More information

Off-Policy Temporal-Difference Learning with Function Approximation

Off-Policy Temporal-Difference Learning with Function Approximation This is a digitally remastered version of a paper published in the Proceedings of the 18th International Conference on Machine Learning (2001, pp. 417 424. This version should be crisper but otherwise

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Dipendra Misra Cornell University dkm@cs.cornell.edu https://dipendramisra.wordpress.com/ Task Grasp the green cup. Output: Sequence of controller actions Setup from Lenz et. al.

More information

Reinforcement Learning. Yishay Mansour Tel-Aviv University

Reinforcement Learning. Yishay Mansour Tel-Aviv University Reinforcement Learning Yishay Mansour Tel-Aviv University 1 Reinforcement Learning: Course Information Classes: Wednesday Lecture 10-13 Yishay Mansour Recitations:14-15/15-16 Eliya Nachmani Adam Polyak

More information

Introduction to Reinforcement Learning

Introduction to Reinforcement Learning CSCI-699: Advanced Topics in Deep Learning 01/16/2019 Nitin Kamra Spring 2019 Introduction to Reinforcement Learning 1 What is Reinforcement Learning? So far we have seen unsupervised and supervised learning.

More information

Reinforcement Learning Active Learning

Reinforcement Learning Active Learning Reinforcement Learning Active Learning Alan Fern * Based in part on slides by Daniel Weld 1 Active Reinforcement Learning So far, we ve assumed agent has a policy We just learned how good it is Now, suppose

More information

RL 3: Reinforcement Learning

RL 3: Reinforcement Learning RL 3: Reinforcement Learning Q-Learning Michael Herrmann University of Edinburgh, School of Informatics 20/01/2015 Last time: Multi-Armed Bandits (10 Points to remember) MAB applications do exist (e.g.

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning RL in continuous MDPs March April, 2015 Large/Continuous MDPs Large/Continuous state space Tabular representation cannot be used Large/Continuous action space Maximization over action

More information

Lecture 7: Value Function Approximation

Lecture 7: Value Function Approximation Lecture 7: Value Function Approximation Joseph Modayil Outline 1 Introduction 2 3 Batch Methods Introduction Large-Scale Reinforcement Learning Reinforcement learning can be used to solve large problems,

More information

CSE 190: Reinforcement Learning: An Introduction. Chapter 8: Generalization and Function Approximation. Pop Quiz: What Function Are We Approximating?

CSE 190: Reinforcement Learning: An Introduction. Chapter 8: Generalization and Function Approximation. Pop Quiz: What Function Are We Approximating? CSE 190: Reinforcement Learning: An Introduction Chapter 8: Generalization and Function Approximation Objectives of this chapter: Look at how experience with a limited part of the state set be used to

More information

Reinforcement Learning In Continuous Time and Space

Reinforcement Learning In Continuous Time and Space Reinforcement Learning In Continuous Time and Space presentation of paper by Kenji Doya Leszek Rybicki lrybicki@mat.umk.pl 18.07.2008 Leszek Rybicki lrybicki@mat.umk.pl Reinforcement Learning In Continuous

More information

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz Reinforcement learning Daniel Hennes 4.12.2017 (WS 2017/18) University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Reinforcement learning Model based and

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Ron Parr CompSci 7 Department of Computer Science Duke University With thanks to Kris Hauser for some content RL Highlights Everybody likes to learn from experience Use ML techniques

More information

An Adaptive Clustering Method for Model-free Reinforcement Learning

An Adaptive Clustering Method for Model-free Reinforcement Learning An Adaptive Clustering Method for Model-free Reinforcement Learning Andreas Matt and Georg Regensburger Institute of Mathematics University of Innsbruck, Austria {andreas.matt, georg.regensburger}@uibk.ac.at

More information

Forward Actor-Critic for Nonlinear Function Approximation in Reinforcement Learning

Forward Actor-Critic for Nonlinear Function Approximation in Reinforcement Learning Forward Actor-Critic for Nonlinear Function Approximation in Reinforcement Learning Vivek Veeriah Dept. of Computing Science University of Alberta Edmonton, Canada vivekveeriah@ualberta.ca Harm van Seijen

More information

Reinforcement Learning for Continuous. Action using Stochastic Gradient Ascent. Hajime KIMURA, Shigenobu KOBAYASHI JAPAN

Reinforcement Learning for Continuous. Action using Stochastic Gradient Ascent. Hajime KIMURA, Shigenobu KOBAYASHI JAPAN Reinforcement Learning for Continuous Action using Stochastic Gradient Ascent Hajime KIMURA, Shigenobu KOBAYASHI Tokyo Institute of Technology, 4259 Nagatsuda, Midori-ku Yokohama 226-852 JAPAN Abstract:

More information

Internet Monetization

Internet Monetization Internet Monetization March May, 2013 Discrete time Finite A decision process (MDP) is reward process with decisions. It models an environment in which all states are and time is divided into stages. Definition

More information

The Nature of Learning - A study of Reinforcement Learning Methodology

The Nature of Learning - A study of Reinforcement Learning Methodology The Nature of Learning - A study of Reinforcement Learning Methodology Anders Christian Kølle 1 Department of Computer Science University of Copenhagen November 21, 23 1 andersk@diku.dk One needs to explore

More information

Machine Learning. Machine Learning: Jordan Boyd-Graber University of Maryland REINFORCEMENT LEARNING. Slides adapted from Tom Mitchell and Peter Abeel

Machine Learning. Machine Learning: Jordan Boyd-Graber University of Maryland REINFORCEMENT LEARNING. Slides adapted from Tom Mitchell and Peter Abeel Machine Learning Machine Learning: Jordan Boyd-Graber University of Maryland REINFORCEMENT LEARNING Slides adapted from Tom Mitchell and Peter Abeel Machine Learning: Jordan Boyd-Graber UMD Machine Learning

More information

Today s s Lecture. Applicability of Neural Networks. Back-propagation. Review of Neural Networks. Lecture 20: Learning -4. Markov-Decision Processes

Today s s Lecture. Applicability of Neural Networks. Back-propagation. Review of Neural Networks. Lecture 20: Learning -4. Markov-Decision Processes Today s s Lecture Lecture 20: Learning -4 Review of Neural Networks Markov-Decision Processes Victor Lesser CMPSCI 683 Fall 2004 Reinforcement learning 2 Back-propagation Applicability of Neural Networks

More information

15-780: ReinforcementLearning

15-780: ReinforcementLearning 15-780: ReinforcementLearning J. Zico Kolter March 2, 2016 1 Outline Challenge of RL Model-based methods Model-free methods Exploration and exploitation 2 Outline Challenge of RL Model-based methods Model-free

More information

CS 7180: Behavioral Modeling and Decisionmaking

CS 7180: Behavioral Modeling and Decisionmaking CS 7180: Behavioral Modeling and Decisionmaking in AI Markov Decision Processes for Complex Decisionmaking Prof. Amy Sliva October 17, 2012 Decisions are nondeterministic In many situations, behavior and

More information

Computational Reinforcement Learning: An Introduction

Computational Reinforcement Learning: An Introduction Computational Reinforcement Learning: An Introduction Andrew Barto Autonomous Learning Laboratory School of Computer Science University of Massachusetts Amherst barto@cs.umass.edu 1 Artificial Intelligence

More information

REINFORCE Framework for Stochastic Policy Optimization and its use in Deep Learning

REINFORCE Framework for Stochastic Policy Optimization and its use in Deep Learning REINFORCE Framework for Stochastic Policy Optimization and its use in Deep Learning Ronen Tamari The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (#67679) February 28, 2016 Ronen Tamari

More information

Q-learning. Tambet Matiisen

Q-learning. Tambet Matiisen Q-learning Tambet Matiisen (based on chapter 11.3 of online book Artificial Intelligence, foundations of computational agents by David Poole and Alan Mackworth) Stochastic gradient descent Experience

More information

Lecture 1: March 7, 2018

Lecture 1: March 7, 2018 Reinforcement Learning Spring Semester, 2017/8 Lecture 1: March 7, 2018 Lecturer: Yishay Mansour Scribe: ym DISCLAIMER: Based on Learning and Planning in Dynamical Systems by Shie Mannor c, all rights

More information

Generalization and Function Approximation

Generalization and Function Approximation Generalization and Function Approximation 0 Generalization and Function Approximation Suggested reading: Chapter 8 in R. S. Sutton, A. G. Barto: Reinforcement Learning: An Introduction MIT Press, 1998.

More information

Planning in Markov Decision Processes

Planning in Markov Decision Processes Carnegie Mellon School of Computer Science Deep Reinforcement Learning and Control Planning in Markov Decision Processes Lecture 3, CMU 10703 Katerina Fragkiadaki Markov Decision Process (MDP) A Markov

More information