functions on localized Morrey-Campanato spaces over doubling metric measure spaces

Size: px
Start display at page:

Download "functions on localized Morrey-Campanato spaces over doubling metric measure spaces"

Transcription

1 JOURNAL OF FUNCTION SPACES AND APPLICATIONS Volume 9, Numbe 3 2), c 2, Scienific Hoizon hp:// oundedness of Lusin-aea and gλ funcions on localized Moey-Campanao spaces ove doubling meic measue spaces Haibo Lin, Eiichi Nakai and Dachun Yang Communicaed by Fenando Cobos) 2 Mahemaics Subjec Classificaion. Pimay 4225; Seconday 4235, 463. Keywods and phases. Doubling meic measue space, Popey P ), admissible funcion, Schödinge opeao, localized Moey-Campanao space, Lusin-aea funcion, gλ funcion. Absac. Le X be a doubling meic measue space and ρ an admissible funcion on X. In his pape, he auhos esablish some equivalen chaaceizaions fo he localized Moey-Campanao spaces Eρ X ) and Moey-Campanao-LO spaces Ẽ ρ X ) when α, ) and p, ). If X has he volume egulaiy Popey P ), he auhos hen esablish he boundedness of he Lusin-aea funcion, which is defined via kenels modeled on he semigoup geneaed by he Schödinge opeao, fom Eρ X )oẽ ρ X ) wihou invoking any egulaiy of consideed kenels. The same is ue fo he gλ funcion and, unlike he Lusin-aea funcion, in his case, X is even no necessay o have Popey P ). These esuls ae also new even fo R d wih he d-dimensional Lebesgue measue and have a wide applicaions.. Inoducion The heoy of Moey-Campanao spaces plays an impoan ole in hamonic analysis and paial diffeenial equaions; see, fo example,, 5, 6, 22, 23, 25, 27, 29, 3] and hei efeences. I is well-known ha Coesponding auho

2 246 oundedness of Lusin-aea and g λ funcions he dual space of he Hady space H p R d ) wih p, ) is he Moey- Campanao space E /p, R d ). Noice ha he Moey-Campanao spaces on R d ae essenially elaed o he Laplacian Δ d j= 2. x 2 j On he ohe hand, hee exiss an inceasing inees on he sudy of Schödinge opeaos on R d and he sub-laplace Schödinge opeaos on conneced and simply conneced nilpoen Lie goups wih nonnegaive poenials saisfying he evese Hölde inequaliy; see, fo example, 6, 7, 8, 9, 7, 8, 26, 35, 37]. Le L Δ+V be he Schödinge opeao on R d, whee he poenial V is a nonnegaive locally inegable funcion. Denoe by q R d ) he class of nonnegaive funcions saisfying he evese Hölde inequaliy of ode q. Fo V d/2 R d ) wih d 3, Dziubański e al. 6, 7, 8] sudied he MO-ype space MO L R d ) and he Hady space H p L Rd ) wih p d/d +), ] and, especially, poved ha he dual space of HL Rd )ismo L R d ); moeove, hey obained he boundedness on hese spaces of he Lilewood-Paley g -funcion associaed o L. Le X be a doubling meic measue space, which means ha X is a space of homogeneous ype in he sense of Coifman and Weiss 2, 3], bu X is endowed wih a meic insead of a quasi-meic. Le ρ be a given admissible funcion modeled on he known auxiliay funcion deemined by V d/2 R d ) see 35] o 2.4) below). The localized aomic Hady space Hρ p, q X ) wih p, ] and q, ] p, ], he localized Moey- Campanao space Eρ X ) and localized Moey-Campanao-LO space X ) wih α R and p, ) wee inoduced in 34]. Moeove, he Ẽ ρ boundedness fom Eρ X )oẽα, ρ p X ) of seveal maximal opeaos and he Lilewood-Paley g -funcion, which ae defined via kenels modeled on he semigoup geneaed by he Schödinge opeao, was obained in 34]. Meanwhile, he boundedness fom localized MO-ype space MO ρ X ) o LO-ype space LO ρ X ) of he Lusin-aea and gλ funcions was esablished in 9]. The pupose of his pape is o invesigae behavios of he Lusinaea and gλ funcions on Moey-Campanao spaces ove doubling meic measue spaces. Pecisely, le X be a doubling meic measue space and ρ an admissible funcion on X. In his pape, we fis esablish some equivalen chaaceizaions fo Eρ X )andẽα, ρ p X )whenα, ) and p, ). To obain he boundedness of he Lusin-aea funcion on he Moey-Campanao spaces, we need o assume ha X has he volume egulaiy Popey P ), which was inoduced in 9], moivaed by Colding-Minicozzi II 4] and Tessea 3]. We emak ha he volume egulaiy popey is elaed o he Følne sequence of a compac geneaing se of a compacly geneaed locally compac goup wih polynomial gowh

3 H. Lin, E. Nakai, D. Yang 247 in 3] and used o esablish he genealized Liouville heoems fo hamonic secions of Hemiian veco bundles ove a complee meic space in 4]. In his pape, if X has Popey P ), we hen esablish he boundedness of he Lusin-aea funcion fom Eρ X )oẽρ X ) wihou invoking any egulaiy of consideed kenels. The coesponding boundedness of gλ funcion fom Eρ X )oẽα, ρ p X ) is also esablished in his pape. oh he Lusin-aea funcion and he gλ funcion ae defined via kenels modeled on he semigoup geneaed by he Schödinge opeao. Moeove, an ineesing phenomena is ha unlike he Lusin-aea funcion, he boundedness of he gλ funcion needs neihe he egulaiy of he kenels no Popey P ) of X, which eflecs he specialiy of he sucue of he gλ funcion. These esuls ae new even on Rd wih he d-dimensional Lebesgue measue and he Heisenbeg goup, and apply in a wide ange of seings, fo insance, o he Schödinge opeao o he degeneae Schödinge opeao on R d, o he sub-laplace Schödinge opeao on Heisenbeg goups o conneced and simply conneced nilpoen Lie goups. This pape is oganized as follows. Le X be a doubling meic measue space and ρ an admissible funcion on X. InSecion2,weesablishsome equivalen chaaceizaions fo Eρ X ) and Ẽα, ρ p X ) when p, ) and α, /p) oα /p, ); see Theoems 2. and 2.2 below. Moeove, unde he assumpion ha sup x X μx, ρx))) =, wepove ha he Moey-Campanao-LO space Ẽα, ρ p X ) is a pope subspace of he Moey-Campanao space Eρ X )whenp, ) andα /p, ); see Theoem 2.2iii) below. In Secion 3, assuming ha X has Popey P ) and he Lusin-aea funcion Sf) is bounded on L p X ) wih p, ), we pove ha if f Eρ X ), hen Sf)] 2 p/2 Ẽ2α, ρ X ) wih nom no moe han C f 2 Eρ X ),wheec is a posiive consan independen of f ; see Theoem 3. below. As a coollay, we obain he boundedness of he Lusin-aea funcion fom Eρ X ) o Ẽα, ρ p X ); see Coollay 3. below. If he gλ funcion gλ f) is bounded on Lp X ) wih p, ), he coesponding esuls fo gλ f) ae also esablished, and moeove, in his case, X is no necessay o have Popey P ); see Theoem 3.2 and Coollay 3.2 below. We poin ou ha Theoems 3. and 3.2 and Coollaies 3. and 3.2 ae ue o he Schödinge opeao o he degeneae Schödinge opeao on R d, o he sub-laplace Schödinge opeao on Heisenbeg goups o conneced and simply conneced nilpoen Lie goups; see 34] fo he deailed explanaions. Noice ha Eρ,p X ) = MO ρ X ) and Ẽρ,p X )=LO ρ X ) when p, ). Thus, he esuls in his secion when α = wee aleady obained in 9].

4 248 oundedness of Lusin-aea and g λ funcions We emak ha he esuls obained in Secion 3 ae also new even on R d wih he d-dimensional Lebesgue measue and he Heisenbeg goup, since we do no need any egulaiy of involved kenels. Howeve, o esablish he boundedness of Lusin-aea funcion on a doubling meic measue space X, we need ceain egulaiy of X, namely, he volume egulaiy Popey P ), which eflecs he specialiy of he Lusin-aea funcion, compaing wih he coesponding esuls of he gλ funcion. Moeove, Rd wih he Lebesgue measue and he Heisenbeg goup have he volume egulaiy Popey P ); see 9]. Finally, we make some convenions. Thoughou his pape, we always use C o denoe a posiive consan ha is independen of he main paamees involved bu whose value may diffe fom line o line. Consans wih subscips, such as C and K, do no change in diffeen occuences. If f Cg, wehenwief g o g f ;andiff g f,wehen wie f g. We also use o denoe a ball of X,andfoλ>, λ denoes he ball wih he same cene as, bu adius λ imes he adius of. Moeove, se X\. Also, fo any se E X, χ E denoes is chaaceisic funcion. Fo all f L loc X ) and balls,wealwaysse f μ) fy) dμy). 2. Some chaaceizaions of localized Moey-Campanao spaces Le X beadoublingmeicmeasuespaceandρ an admissible funcion on X. In his secion, we esablish some equivalen chaaceizaions fo Eρ X ) and Ẽα, ρ p X ) when α, ) and p, ). Moeove, unde he assumpion ha sup x X μx, ρx))) =, we pove ha he Moey-Campanao-LO space Ẽα, ρ p X ) is a pope subspace of he Moey-Campanao space Eρ X )whenp, ) andα /p, ). We begin wih ecalling he noion of doubling meic measue spaces 2, 3]. Definiion 2.. Le X,d) be a meic space endowed wih a oel egula measue μ such ha all balls defined by d have finie and posiive measues. Fo any x X and, ), se he ball x, ) {y X : dx, y) <}. The iple X,d,μ) is called a doubling meic measue space if hee exiss a consan C, ) such ha fo all x X and, ), 2.) μx, 2)) C μx, )) doubling popey).

5 H. Lin, E. Nakai, D. Yang 249 Fom Definiion 2., i is easy o see ha hee exis posiive consans C 2 and n such ha fo all x X,, ) andλ, ), 2.2) μx, λ)) C 2 λ n μx, )). Now we ecall he noion of admissible funcions inoduced in 35]. Definiion ]). A posiive funcion ρ on X is called admissible if hee exis posiive consans C and k such ha fo all x, y X, 2.3) ρx) C ρy) + ) k dx, y). ρy) Obviously, if ρ is a consan funcion, hen ρ is admissible. Moeove, le x X be fixed. The funcion ρy) + dx,y)) s fo all y X wih s, ) also saisfies Definiion 2.2 wih k = s/ s) whens, ) and k = s when s, ). Anohe non-ivial class of admissible funcions is given by he well-known evese Hölde class q X,d,μ), which is wien as q X ) fo simpliciy. Recall ha a nonnegaive poenial V is said o be in q X ) wih q, ] if hee exiss a posiive consan C such ha fo all balls of X, ) /q V y)] q dy C V y) dy wih he usual modificaion made when q =. I is known ha if V q X ) fo ceain q, ], hen V is an A X ) weigh in he sense of Muckenhoup, and also V q+ɛ X ) fo ceain ɛ, ); see, fo example, 27] and 28]. Thus q X )= q q, ] q X ). Fo all V q X ) wih q, ] andallx X,se { 2.4) ρx) sup >: 2 } V y) dy ; μx, )) x, ) see, fo example, 26] and also 35]. I was also poved in 35] ha ρ in 2.4) is an admissible funcion if n, ), q max{, n/2}, ] and V q X ). The following localized Moey-Campanao space and localized Moey- Campanao-LO space associaed o he admissible funcion ρ wee fis inoduced in 34]. Definiion 2.3. Le ρ be an admissible funcion on X, D {x, ) : x X, ρx)}, p, ) andα R. Denoeby any ball of X.

6 25 oundedness of Lusin-aea and g λ funcions i) A funcion f L p loc X ) is said o be in he localized Moey- Campanao space Eρ X )if { f E ρ X ) sup / D μ)] +pα +sup D { μ)] +pα } /p fy) f p dμy) fy) p dμy)} /p <. ii) A funcion f L p loc X ) is said o be in he localized Moey- Campanao-LO space Ẽα, ρ p X )if { f Ẽ ρ X ) sup / D μ)] +pα +sup D { μ)] +pα fy) essinf ] } p /p f dμy) fy) p dμy)} /p <. iii) Le α, ). A funcion f on X is said o be in he localized Lipschiz space Lip ρ α; X ) if hee exiss a nonnegaive consan C such ha fo all x, y X and balls conaining x and y wih / D, fx) fy) Cμ)] α, and ha fo all balls D, f L ) Cμ)] α. The minimal nonnegaive consan C as above is called he nom of f in Lip ρ α; X ) and denoed by f Lipρ α; X ). iv) Le α, ). A funcion f L p loc X ) is said o be in he Moey space L X )if { f L X ) sup X μ)] +αp fx) p dμx)} /p <. Remak 2.. i) Fo all α R and p, ), Ẽρ X ) Eρ X ). ii) When α = and p, ), we denoe Eρ,p X )bymo p ρx )and MO ρx )bymo ρ X ). And we also denoe Ẽ,p ρ X )bylo p ρx )and LO ρx )bylo ρ X ). The localized LO space was fis inoduced in 3] in he seing of R d endowed wih a nondoubling measue. iii) If X is he Euclidean space R d and ρ, hen MO ρ X )isjus he localized MO space of Goldbeg ], and Lip ρ α; X ) wih α, ) is jus he inhomogeneous Lipschiz space see also ]). iv) When α, ), equivalen noms; see 34] fo deails. Ẽ ρ X ) = E ρ X ) = Lip ρ α; X ) wih Theoem 2.. Le X be a doubling meic measue space and ρ an admissible funcion on X.Lep, ) and α, /p).

7 H. Lin, E. Nakai, D. Yang 25 i) If μx )=, henẽα, ρ p X )=Eρ X )=L X )={}. ii) If μx ) <, henẽα, ρ p X )=Ẽ /p, ρ p X ), Eρ X )=Eρ /p, p X ) and L X )=L /p, p X )=L p X ) wih equivalen noms, especively. Poof. i) In his case, since μx ) =, hen, fo all x X, μx, )) as, which ogehe wih α, /p) implies ha if f L X ), hen fo all x, ) X, fy) p dμy) f p L X ) μx, ))]+αp, x, ) when,andiff Eρ X ), hen fo all x, ) X wih ρx), fy) p dμy) f p Eρ X ) μx, ))]+αp, x, ) as. Thus, in boh cases, we have ha X fy) p dμy), which implies ha fy) = fo almos all y X. Theefoe, L X ) = Eρ X ) = {}, which ogehe wih he fac ha Ẽα, ρ p X ) Eρ X ) yields i). ii) Since μx ) <, by 24, Lemmma 5.], hee exiss > such ha X x, ) fo all x X, which ogehe wih ha ρ is admissible and 2.2) implies ha < inf μx, ρx)/2)) = inf μx, )) x X x X,ρx)/2 <ρx) sup μx, )) μx ) <. x X,ρx)/2 <ρx) If <<ρx)/2, by +αp <, we hen have ] p μx, ))] +αp fy) essinf f dμy) x, ) x, ) μx, ρx)/2))] +αp fy) essinf and x, ρx)/2) fy) μx, ))] +αp f x, ) p dμy) x, ) μx, ρx)/2))] +αp 2 p μx, ρx)/2))] +αp x, ρx)/2) x, ρx)/2) x, ρx)/2) f fy) fx, ) p dμy) ] p dμy), fy) fx, ρx)/2) p dμy).

8 252 oundedness of Lusin-aea and g λ funcions Hence, sup x X, <<ρx) and = sup μx, ))] +αp fy) essinf x, ) x X,ρx)/2 <ρx) sup x X,ρx)/2 <ρx) sup x X, <<ρx) sup x X, <<ρx) μx, ))] +αp x, ) x, ) x, ) fy) essinf x, ) f fy) essinf x, ) f ] p f dμy) x, ) fy) essinf ] p dμy) ] p dμy), fy) fx, μx, ))] +αp ) p dμy) x, ) sup x X,ρx)/2 <ρx) sup x X,ρx)/2 <ρx) sup x X, <<ρx) which imply ha Ẽα, ρ p Similaly, μx, ))] +αp x, ) x, ) x, ) fy) fx, ) p dμy) fy) f x, ) p dμy), X )=Ẽ /p, ρ p ] p f dμy) x, ) fy) fx, ) p dμy) X ), and Eρ X )=Eρ /p, p X ). < inf μx, )) sup μx, )) μx ) <, x X,ρx) x X,ρx) and moeove, sup x X,> = sup μx, ))] +αp x X,ρx) sup x X,ρx) x, ) μx, ))] +αp fy) p dμy) x, ) fy) p dμy) x, ) fy) p dμy) sup x X,> x, ) fy) p dμy) f Lp X ), which leads o ha L X )=L /p, p X )=L p X ).

9 H. Lin, E. Nakai, D. Yang 253 Theoem 2.2. Le X be a doubling meic measue space and ρ an admissible funcion on X. Ifp, ) and α /p, ), hen he followings hold. i) Eρ X )=L X ) wih equivalen noms. ii) Fo all f, f Eρ X ) if and only if f Ẽα, ρ p X ) and moeove, f Ẽ ρ X ) f Eρ X ). iii) If M sup x X μx, ρx))) <, hen hee exiss a posiive consan C such ha fo all f saisfying < essinf X f<, ] f E ρ X ) f Ẽ ρ X ) C f E ρ X ) + M α essinf X f). iv) If sup x X μx, ρx))) =, hen hee exiss a funcion f Eρ X ) such ha < essinf X f< and f/ Ẽα, ρ p X ). Remak 2.2. i) I uns ou ha Theoem 2.2i), ii) and iii) hold fo α, ) and p, ) by Theoem 2.. ii) If X is an RD-space, Theoem 2.2i) & ii) ae aleady obained in 34], which ae used o pove Theoem 2.2i) & ii). Also we show Theoem 2.2iii) by fis assuming ha i is ue fo RD-space X,whichis poved in Poposiion 2. below. Recall ha he space X is said o have he evese doubling popey if hee exis consans κ, n]andk, ] such ha fo all x X,, 2diamX )) and λ, 2diamX )/), 2.5) K λ κ μx, )) μx, λ)). If X,d,μ) saisfies he condiions 2.2) and 2.5), hen X,d,μ) is called an RD-space, which was fis inoduced in 2] see also 2, 36] fo some equivalen chaaceizaions of RD-spaces). iii) y an agumen simila o ha used in he poof of Theoem 2.2i) & ii) when X,d,μ) is an RD-space wih d being a meic in 34], i is easy o see ha if X,d,μ) is an RD-space wih d being a quasi-meic, Theoem 2.2i) & ii) ae also ue. Moeove, a sligh modificaion of he poof below shows ha he whole Theoem 2.2 holds fo X wih d being a quasi-meic. iv) I was poved in 9] ha Theoem 2.2ii) is no ue when α =. To pove Theoem 2.2, we need some echnical lemmas. Following Macías and Segovia 2], we call a doubling meic measue space o be nomal if hee exis posiive consans K 2 and K 3 such ha fo all x X and μ{x}) <<μx ), 2.6) K 2 μx, )) K 3.

10 254 oundedness of Lusin-aea and g λ funcions Fo a doubling meic measue space X,d,μ), le { inf{μ) : is a ball conaining x and y} if x y, 2.7) δx, y) if x = y. Macías and Segovia 2] showed ha X,δ,μ) is a nomal space of homogeneous ype, namely, δ is a quasi-meic and μ saisfies 2.) and 2.6). Moeove, he opologies induced on X by d and δ coincide. In his secion, se d x, ) {y X : dx, y) <} and δ x, ) {y X : δx, y) <} fo all x X and >. Fo all x X,le 2.8) x) μ d x, ρx))). Lemma 2.. Le X be a doubling meic measue space and ρ an admissible funcion on X, and le be as in 2.8). If α, ) and p, ), henl X,d,μ)=L X,δ,μ) and Eρ X,d,μ)= X,δ,μ) wih equivalen noms, especively. E Lemma 2.2. Le X be a doubling meic measue space and ρ an admissible funcion on X,andle be as in 2.8). Le α, ) and p, ). If f, hen f Ẽ ρ X,d,μ) and f Ẽρ δ X,δ,μ) ae equivalen wih equivalen consans independen of f. Lemma 2.3. Le X be a doubling meic measue space and ρ an admissible funcion on X. Le be as in 2.8), α, ) and p, ). If M sup x X μ d x, ρx))) < and < essinf X f <, hen f Ẽ ρ X,d,μ) + M α essinf X f) and f Ẽ X,δ,μ) + M α essinf X f) ae equivalen wih equivalen consans independen of f. To pove Lemmas 2., 2.2 and 2.3, we fis sae some basic facs. Fo any d-ball d x, ), le μ d x, )). y he definiion of δ,wehave ha 2.9) d x, ) δ x, ) and μ δ x, )) K 3 μ d x, )). Moeove, 2.) <ρx) x), = ρx) = x), >ρx) x). Convesely, by 22, Lemma 3.9] o 4, Poposiion 2.], fo any δ -ball δ x, ), hee exiss a posiive consan, which may depend on x and

11 H. Lin, E. Nakai, D. Yang 255, such ha 2.) δ x, ) d x, ) and μ d x, )) C 3 μ δ x, )) fo some consan C 3, ), which is independen of x, and.inhis case, if < x)/c 3 K 3 ), hen μ d x, )) C 3 μ δ x, )) C 3 K 3 < x) =μ d x, ρx))). If > x)/k 2,hen μ d x, )) μ δ x, )) K 2 > x) =μ d x, ρx))). Tha is, 2.2) { < x)/c 3 K 3 ) <ρx), > x)/k 2 >ρx). Poof of Lemma 2.. y 2.9) and 2.), i is easy o see L X,d,μ)= L X,δ,μ) wih equivalen noms. Now, we pove ha Eρ X,d,μ) = Eρ δ X,δ,μ) wih equivalen noms. Pa ) Fo any d-ball = d x, ), le 2 = δ x, ), whee = μ d x, )). Fom 2.9), i follows ha μ ) μ 2 ). Case. <ρx). In his case, by 2.), < x) o = x), which ogehe wih 2.9) implies ha 2.3) { } /p μ )] α fy) f p dμy) μ ) { } /p 2 μ )] α fy) f 2 p dμy) μ ) { } /p μ 2 )] α fy) f 2 p dμy) f μ 2 ) E X,δ,μ). 2 Case 2. ρx). In his case, by 2.), x), which ogehe wih 2.9) leads o ha 2.4) { μ )] α μ 2 )] α μ ) { μ 2 ) } /p fy) p dμy) } /p fy) p dμy) f E 2 X,δ,μ).

12 256 oundedness of Lusin-aea and g λ funcions Theefoe, f E ρ X,d,μ) f E X,δ,μ). Pa 2) Fo any δ -ball δ x, ), le 2 d x, ), whee is as in 2.). Fom 2.), i follows ha μ ) μ 2 ). Case. < x)/c 3 K 3 ). In his case, by 2.2), <ρx). y an agumen simila o he esimae of 2.3), we have { } /p μ )] α fy) f p dμy) f μ ) E ρ X,d,μ). Case 2. > x)/k 2. In his case, by 2.2), > ρx). y an agumen simila o he esimae of 2.4), we have { } /p μ )] α fy) p dμy) f μ ) E ρ X,d,μ). Case 3. x)/c 3 K 3 ) x)/k 2. In his case, le δ x, ) and δ x, 2C 3 K 3 /K 2 )). Then μ ) μ ). Hence { } /p μ )] α fy) f p dμy) μ ) { } /p 2 μ )] α fy) f μ ) p dμy) { } /p μ )]α μ ) fy) f p dμy) { /p μ )]α μ ) fy) dμy)} p, and { } { /p μ )] α fy) p dμy) μ ) μ )]α μ ) Since 2C 3 K 3 /K 2 )> x)/k 2, using Case 2, we have { /p μ )]α μ ) fy) dμy)} p f E ρ X,d,μ). fy) p dμy)} /p. Theefoe, f E X,δ,μ) f E ρ X,d,μ) and we ae done.

13 H. Lin, E. Nakai, D. Yang 257 Poof of Lemma 2.2. Pa ) Fo any d-ball d x, ), le 2 δ x, ), whee μ d x, )). Fom 2.9), i follows ha μ ) μ 2 ). Case. <ρx). In his case, by 2.), < x) o = x), which implies ha 2.5) μ )] α { μ ) { μ ) { μ 2 ) μ )] α μ 2 )] α ] p /p fy) essinf f dμy)} 2 fy) essinf f 2 fy) essinf f 2 ] p dμy)} /p ] p } /p dμy) f E X,δ,μ). Case 2. ρx). In his case, by 2.), x). y an agumen simila o he esimae of 2.4), we have { } /p μ )] α fy) p dμy) f μ ) E X,δ,μ). Theefoe, f E ρ X,d,μ) f E X,δ,μ). Pa 2) Fo any δ -ball = δ x, ), le 2 = d x, ), whee is as in 2.). Fom 2.), i follows ha μ ) μ 2 ). Case. < x)/c 3 K 3 ). In his case, by 2.2), <ρx). y an agumen simila o he esimae of 2.5), we have { ] p } /p μ )] α fy) essinf f dμy) f μ ) E ρ X,d,μ). Case 2. > x)/k 2. In his case, by 2.2), > ρx). y an agumen simila o he esimae of 2.4), we have { } /p μ )] α fy) p dμy) f μ ) E ρ X,d,μ). Case 3. x)/c 3 K 3 ) x)/k 2. In his case, le δ x, ) and δ x, 2C 3 K 3 /K 2 )). Then μ ) μ ). Hence, if f,

14 258 oundedness of Lusin-aea and g λ funcions hen { μ )] α μ ) μ )] α μ )]α { μ ) { μ ) ] p /p fy) essinf f dμy)} } /p fy) p dμy) fy) p dμy)} /p, and { } { /p μ )] α fy) p dμy) μ ) μ )]α μ ) Since 2C 3 K 3 /K 2 )> x)/k 2, using Case 2, we have { /p μ )]α μ ) fy) dμy)} p f E ρ X,d,μ). fy) p dμy)} /p. Theefoe, if f, hen f E X,δ,μ) f E ρ X,d,μ). PoofofLemma2.3. Le M sup x X μ d x, ρx))) = sup x X x) <. y he same way as in he poof of Lemma 2.2, we divide he poof ino Pa ) and Pa 2). Then we have he same conclusions as in Case 2 of Pa ) and in Cases and 2 of Pa 2) of he poof of Lemma 2.2. So we only need o conside Case of Pa ) and Case 3 of Pa 2) heein. Pa ) Fo any d-ball d x, ), le 2 δ x, ), whee μ d x, )). Fom 2.9), i follows ha μ ) μ 2 ). Case. <ρx). In his case, by 2.), < x) o = x). If < x), hen we have he same inequaliy as 2.5). If = x), hen μ 2 ) x). Hence, if < essinf X f<, hen 2.6) { μ )] α μ ) μ 2 )] α μ 2 )] α { μ 2 ) { μ 2 ) ] p /p fy) essinf f dμy)} ] p /p fy) essinf f dμy)} 2 2 f Ẽ X,δ,μ) + M α essinf f X } /p fy) p dμy) + essinf X f 2 x)] α ).

15 Theefoe, if < essinf X f<, hen f Ẽ ρ H. Lin, E. Nakai, D. Yang 259 X,d,μ) f Ẽρ δ X,δ,μ) + M α essinf f X Pa 2) Fo any δ -ball δ x, ), le 2 d x, ), whee is as in 2.). Fom 2.), i follows ha μ ) μ 2 ). Case 3. x)/c 3 K 3 ) x)/k 2. In his case, le δ x, ) and δ x, 2C 3 K 3 /K 2 )). Then μ ) μ ) x). Hence, if < essinf X f<, hen μ )] α { μ ) { μ )]α { μ )]α μ )]α μ ) μ ) { μ ) ] p /p fy) essinf f dμy)} } p /p fy) essinf f] dμy) } /p fy) p dμy) + essinf X f x)] α ). fy) p dμy)} /p + M α essinf X and { } { /p μ )] α fy) p dμy) μ ) μ )]α μ ) ) f, fy) p dμy)} /p. Since 2C 3 K 3 /K 2 )> x)/k 2, using Case 2, we have { /p μ )]α μ ) fy) dμy)} ) p f Ẽ ρ X,d,μ) +M α essinf f. X Theefoe, if < essinf X f<, hen f Ẽ X,δ,μ) f Ẽρ X,d,μ) + M α essinf f X ). Lemma 2.4 c.f. 2, Lemma 3.3]). Le α /p, ). Then fo all X, χ L X ) =μ)] α.

16 26 oundedness of Lusin-aea and g λ funcions Poof. Fom he equaliy { /p μ)] α χ x) dμx)} p =μ)] α, μ) i follows ha χ L X ) μ)] α. Fo any balls z, ), if μz, )) <μ), hen { μz, ))] α μz, )) /p χ x) dμx)} p μz, )) α μ)] α. z, ) If μz, )) μ), hen { } /p μz, ))] α χ x) p dμx) μz, )) z, ) { } /p μ z, )) = μz, ))] α μz, )) ) α+/p μ z, )) = μ z, ))] α μ)] α. μz, )) Theefoe, χ L X ) μ)] α, which implies ha χ L X ) = μ)] α. Poof of Theoem 2.2. Since X,δ,μ) is nomal, X,δ,μ) is also an RD-space. i) y Lemma 2. and Remak 2.2iii), we have E ρ X,d,μ)=E X,δ,μ)=L X,δ,μ)=L X,d,μ). ii) If f, hen, by Remak 2.2iii), we obain ha f E, which ogehe wih Lemmas 2. and 2.2 yields ha f Ẽ X,δ,μ) f E ρ f E X,d,μ) f E X,δ,μ) f Ẽ X,δ,μ) X,δ,μ) f Ẽ X,δ,μ) f Ẽρ X,d,μ). iii) In he case M sup x X μx, ρx))) <, if < essinf X f<, hen, by Poposiion 2. below, we obain ha ), X,δ,μ) f Eρ δ X,δ,μ) + M α essinf f X

17 H. Lin, E. Nakai, D. Yang 26 which ogehe wih Lemmas 2. and 2.3 yields ha f E ρ X,d,μ) f Ẽ ρ X,d,μ) f Ẽρ δ X,δ,μ) + M α essinf X ) f ). f E X,δ,μ) + M α essinf X f E ρ X,d,μ) + M α essinf f X ) f iv) Since sup x X μx, ρx))) =, wechoose j z j,ρz j )/2), j N, sohaμ j ) as j. Then, we have wo siuaions ha I) fo all j, j i= i) j+ =, o II) hee exiss j N such ha j j2 = fo j <j 2 j, and ha j i= i) j fo all j>j. Le b>. Case I). Fo each j, choose j > so ha j < ρz j )/2 and μz j, j ))] α < /2 j. In his case, μz j, j )) < /2 j ) /α <. Le f b j f j and f j χ zj, j). Then essinf X f = b and by Lemma 2.4, we have f E ρ X ) 2 f L X ) 2b f j L X ) =2b μz j, j ))] α 2b. j= On he ohe hand, μ j )] α μ j ) j = μ j )] α μ j ) j b μ j )] α μ j ) j= ] p /p fx) essinf f dμx)) j bf j x) b)] p dμx) ) /p as j. ) /p Case II). Le f b j j= f j and f j x) χ j x). Then essinf X f = b and by Lemma 2.4, we have f E ρ X ) 2 f L X ) 2b j j= f j L X ) =2b j j= μ j )] α <.

18 262 oundedness of Lusin-aea and g λ funcions On he ohe hand, fo j>j, μ j )] α μ j ) = = μ j )] α b μ j )] α b μ j )] α j μ j ) μ j ) ] p /p fx) essinf f dμx)) j j j b j i= μ j ) μ i= μ i) μ j ) f i x) b)] p dμx) ) /p j ) ) ] ) /p i j i= ) /p as j. Combining he esimaes fo Cases I) and II) yields vi), which complees he poof of Theoem 2.2. In he poof of Theoem 2.2iii) above, we used he following poposiion. Poposiion 2.. Theoem 2.2 iii) holds if X is an RD-space. To pove Poposiion 2., we begin wih some echnical lemmas. A saighfowad compuaion via 2.5) leads o he following echnical lemma. Lemma 2.5. Le X be an RD-space and θ, ). Then,heeexiss a posiive consan C such ha fo all z X and <<s<, s d μz, ))] θ C μz, ))] θ. Le MOf,) fy) f dμy). μ) Then, by Lemma 2.4 in 24], hee exiss a posiive consan C such ha fo all z X and <<s<, 2.7) fz, ) f z, s) C 2s MOf,z, )) d. Lemma 2.6. Le X be an RD-space and α /p, ). Then hee exiss a posiive consan C such ha fo all f Eρ X ), z X and <<ρz), fz, ) f z, ρz)) C f E ρ X )μz, ))] α.

19 H. Lin, E. Nakai, D. Yang 263 Poof. Case. ρz)/2 <ρz). y 2.) and he Hölde inequaliy, we have fz, ) f z, ρz)) fx) dμx)+ fz, ρz)) μz, )) z, ) C +) fx) dμx) μz, ρz))) z, ρz)) ) /p C +) fx) p dμx) μz, ρz))) z, ρz)) C +) f E ρ X )μz, ))] α. Case 2. <<ρz)/2. Using 2.7) and Lemma 2.5, we have ρz) MOf,z, )) f z, ) f z,ρz)/2) d ρz) μz, ))] α f E ρ X ) d f E ρ X )μz, ))] α. Combining he esimaes fo Case and Case 2 complees he poof of Lemma 2.6. Poof of Poposiion 2.. Le M sup x X μx, ρx))) <. y Lemma 2.6, we have ha if <<ρz), hen fz, ) f z, ρz)) f E ρ X )μz, ))] α. Now, fo z, ), if <<ρz), hen μ)] α μ) μ)] α μ)] α μ) μ) p ) /p fx) essinf f] dμx) ] p /p fx) essinf dμx)) z, ρz)) f + μ)] α f z, ) f z, ρz)) + f E ρ X ) + μ)] α f z, ρz)) ) /p fx) f p dμx) μ)] α f z, ρz)) essinf f z, ρz)) essinf. z, ρz)) f

20 264 oundedness of Lusin-aea and g λ funcions If < essinf X f<, hen μ)] α f z, ρz)) essinf f z, ρz)) fz, μ)] α ρz)) + essinf μ)] α f X μz, ρz)))]α μz, ρz)))]α essinf X f μ)] α f E ρ X ) + μ)] α μz, ρz)))] α f E ρ X ) + M α essinf X f. Theefoe, if < essinf X f<, hen f E ρ X ) f Ẽ ρ X ) f Eρ X ) + M α essinf X f), which complees he poof of Poposiion oundedness of Lusin-aea and g λ funcions Le X be a doubling meic measue space and ρ an admissible funcion. In his secion, we conside he boundedness of ceain vaians of Lusinaea and gλ p funcions fom Eα, ρ X )oẽα, ρ p X ). The boundedness fom MO ρ X )olo ρ X ) of hese opeaos wee obained in 9]. We emak ha unlike he boundedness of he gλ funcion, o obain he boundedness of he Lusin-aea funcion, we need o assume ha X has he following volume egulaiy Popey P ), which was inoduced in 9]; see also 4, 3]. Definiion 3. 9]). A doubling meic measue space X,d,μ)issaid o have Popey P ), if hee exis posiive consans δ and C such ha fo all x X, s, ) and s, ), s ) δ 3.) μx, + s)) μx, )) C μx, )). Remak 3.. Thee ae many examples of doubling meic measue spaces having Popey P ), such as R d,,dx), he d-dimensional Euclidean space endowed wih he Euclidean nom and he Lebesgue measue dx; R d,, wx)dx), he d-dimensional Euclidean space endowed wih he Euclidean nom and he measue wx)dx, wheew is an A 2 R d )weighanddx is he Lebesgue measue; H n,d,dx), he 2n +)- dimensional Heisenbeg goup H n wih a lef-invaian meic d and he

21 H. Lin, E. Nakai, D. Yang 265 Lebesgue measue dx; G, d,μ), he nilpoen Lie goup G wih a Cano- Caahéodoy conol) disance d and a lef invaian Haa measue μ and so on; see 9] fo moe deails. In wha follows, we always se V x) μx, )) and V x, y) μx, dx, y))) fo all x, y X and, ). Le ρ be an admissible funcion on X and {Q } > a family of opeaos bounded on L 2 X ) wih inegal kenels {Q x, y)} > saisfying ha hee exis consans C, δ, ), δ 2, ) and γ, ) such ha fo all, ) andx, y X, Q) i Q x, y) C V x)+v x, y) +dx, y) )γ ρx) +ρx) )δ ; Q) ii X Q x, z) dμz) C +ρx) )δ2. Fo all f L loc X )andx X, define he Lilewood-Paley g -funcion by seing { 3.2) gf)x) Q f)x) 2 d } /2, and Lusin-aea and g λ funcions, especively, by seing { 3.3) Sf)x) and 3.4) g λf)x) whee λ, ). { X, ) dx, y)< Q f)y) 2 dμy) V y) + dx, y) } /2 d, ) λ Q f)y) 2 dμy) V y) } /2 d, Theoem 3.. Le X be a doubling meic measue space having Popey P ). Le p, ), ρ be an admissible funcion on X, he Lusin-aea funcion Sf) as in 3.3) and α, min{γ/n, δ / + k )n], δ 2 /n, δ/2n)}). If Sf) is bounded on L p X ), hen hee exiss a posiive consan C such ha fo all f Eρ X ), Sf)] 2 p/2 Ẽ2α, ρ X ) and Sf)] 2 Ẽ 2/2 ρ X ) C f 2 Eρ X ). To pove Theoem 3., we begin wih he following wo echnical lemmas, which wee obained in 34]. Lemma 3. 34, Lemma 2.4]). Le α R, p, ), ρ be an admissible funcion on X and D as in Definiion 2.3. Then hee exiss a posiive consan C such ha fo all f E ρ X ),

22 266 oundedness of Lusin-aea and g λ funcions i) fo all balls x,) D, ) αn C ρx) μ)] α f E ρ X ), α >, fz) dμz) ) μ) C μ)] α f E ρ X ), α ; +log ρx) ii) fo all x X and < < 2, C f x, ) f x, 2) C 2 ) αn μx, )] α f E ρ X ), α >, ) +log 2 μx, )] α f E ρ X ), α. Lemma , Lemma 4.]). Le α, min{γ/n, δ 2 /n}), p, ) and ρ be an admissible funcion on X. Then hee exiss a posiive consan C such ha fo all f Eρ X ), x X and >, ) δ ρx) Q f)x) C μx, ))] α f + ρx) E ρ X ). PoofofTheoem3.. y similaiy, we only pove he case when α>. Le f Eρ X ). y he homogeneiy of E ρ X ) and Ẽ ρ X ),we may assume ha f E ρ X ) =. Le x,). We pove Theoem 3. by consideing he following wo cases. Case I. x,) D.Inhiscase, ρx ). We need o pove ha 3.5) Sf)x)] p dμx) μ)] +αp. Fo all x X,wie 8 Sf)x)] 2 = Q f)y) 2 dμy) d dx, y)< V y) + S f)x)] 2 +S 2 f)x)] 2. 8 dx, y)< y he L p X )-boundedness of Sf) and 2.), we have 3.6) S fχ 2 )x)] p dμx) fx) p dμx) μ)] +αp. Fix x. Noice ha if dx, y) <, hen fo all z X, 3.7) + dy, z) + dx, z) and V y)+v y, z) V x)+v x, z). 2

23 H. Lin, E. Nakai, D. Yang 267 Fom Q) i, 3.7), 2.2), he Hölde inequaliy and γ>αn, i follows ha fo all <8 and y X wih dx, y) <,wehave 3.8) ) γ fz) Q fχ 2) )y) dμz) 2) V y)+vy, z) + dy, z) ) γ fz) dμz) 2) V x)+vx, z) + dx, z) ) γ 2 jγ μ2 j+ fz) dμz) ) j= 2 j+ ) γμ)] α ) γμ)] 2 jγ αn) α. j= Noice ha fo all x, y X saisfying dx, y) <,wehave 3.9) V x) V y). I hen follows fom 3.8) and 3.9) ogehe wih γ, ) ha 3.) 8 ) ]p/2 2γ d S fχ 2) )x)] p dμx) μ)] +αp μ)] +αp, which ogehe wih 3.6) ells us ha 3.) S f)x)] p dμx) μ)] +αp. Obseve ha fo all y X wih dx, y) <, by 2.3), we have 3.2) ρy) + ρy) ρx) ) +k, and ha fo all x wih ρx ), by 2.3), we also have ha ρx). Combining hese wo obsevaions yields ha fo all x and y X wih dx, y) <, 3.3) ρy) ) + ρy) +k. I hen follows fom Lemma 3.2, 3.3) and 2.2) ha fo all x, 8 and y X wih dx, y) <,

24 268 oundedness of Lusin-aea and g λ funcions 3.4) ρy) ) δμy, Q f)y) ))] α + ρy) ) δ +k μx, ))] α ) δ +k αn μ)] α, which ogehe wih he assumpion ha δ > + k )αn implies ha ] ) p/2 2δ S 2 f)x)] p dμx) μ)] +αp +k 2αn d μ)] +αp. 8 y his and 3.), we obain 3.5). Moeove, i follows fom 3.5) ha Sf)x) < fo almos evey x X. Case II. x,) D.Inhiscase,<ρx ). We need o pove ha { 3.5) Sf)x)] 2 essinf Sf)]2} p/2 dμx) μ)] +αp. To his end, fo all x X,wie 8 Sf)x)] 2 = Q f)y) 2 dμy) d dx, y)< V y) + 8 S f)x)] 2 +S, x f)x)] 2 +S f)x)] 2. 8ρx) + 8ρx ) Then { Sf)x)] 2 essinf Sf)]2} p/2 dμx) { S f)x)] p dμx)+ S, x f)x)] 2 essinf S, x f)] 2} p/2 dμx) { + S f)x)] 2 essinf S f)] 2} p/2 dμx) S f)x)] p dμx)+μ) sup S, x f)x)] 2 S, x f)x )] 2 p/2 x, x +μ) sup S f)x)] 2 S f)x )] 2 p/2 I +I 2 +I 3. x, x Wie f f +f 2 +f, whee f f f )χ 2 and f 2 f f )χ 2). y he L p X )-boundedness of Sf) and 2.2), we have

25 H. Lin, E. Nakai, D. Yang ) S f )x)] p dμx) f f p dμx) μ)] +αp. 2 I follows fom Q) i, 3.7), 2.2), he Hölde inequaliy, Lemma 3.ii) and γ>αnha fo all x and y X wih dx, y) < 8, ) γ Q f 2 )y) fz) f dμz) 2) V y)+vy, z) + dy, z) ) γ fz) f dμz) V x)+vx, z) + dx, z) 2) ) γ 2 jγ μ2 j+ ) j= ) γ μ)] α 2 jγ αn) j= which ogehe wih 3.9) leads o ha 3.7) S f 2 )x)] p dμx) μ)] +αp 8 2 j+ fz) f 2 j+ + f 2 j+ f ] dμz) ) γ μ)] α, ) ] 2γ p/2 d μ)] +αp. Obseve ha by 2.3), fo any a, ), hee exiss a consan C a, ) such ha fo all x, y X wih dx, y) aρx), 3.8) ρy)/ C a ρx) C a ρy). y his, we obain ha fo all x and y X saisfying dx, y) < wih, 8) and<ρx ), ρy) ρx ). Hence, by Q) ii and Lemma 3.i), we have ) δ2 ) δ2 ) αn ρx ) Q f )y) f μ)] α, ρy) ρx ) which ogehe wih δ 2 >αn, <ρx ) and 3.9) implies ha S f )x)] p dμx) μ)] +αp ρx ) μ)] +αp. ) αpn 8 Combining his, 3.6) and 3.7) yields I μ)] +αp. ) 2δ2 ] p/2 d ρx )

26 27 oundedness of Lusin-aea and g λ funcions Now we un ou aenion o pove ha fo all x, x, S, x f)x)] 2 S, x f)x )] 2 μ)] 2α. Wie S, x f)x)] 2 S, x f)x )] 2 = 8ρx) 8 8ρx) + dx, y)< 8 x, ) x,) 8ρx) 8 x, ) x,) Q f)y) 2 dμy) d V y) 8ρx) 8 Q f f )y) 2 dμy) d V y) dx,y)< Q f )y) 2 dμy) d V y) J +J 2, whee x, ) x,) x, ) \ x,)] x,)\ x, )]. y he facs ha x, x and 8, we have x, 2) x, ) x,)]. Since X has he volume egulaiy Popey P ), we obain ) δμx, μx, ) \ x,)) μx, )) μx, 2)) )). y symmey, we also have μx,)\ x, )) ) δμx,)), which ogehe wih 2.) implies ha ) δμx, 3.9) μx, ) x,)) )). y Q) i, 3.7), 3.9), 3.9), 2.2), he Hölde inequaliy and Lemma 3.ii), we obain J 8ρx) 8 8ρx) 8 + j= 8ρx) 8 ) δ ) δ X μ2) V x)+vx, z) fz) f dμz) 2 γ +2 j ) γ μ2 j+ ) ) δ + j= 2 j+ γ 2 jαn +2 j ) γ + dx, z) ) γ ] 2 d fz) f dμz) ] 2 d fz) f dμz) ] 2 d μ)]2α.

27 H. Lin, E. Nakai, D. Yang 27 Noice ha γ > αn and δ > 2αn. Choosing ɛ αn, min{γ,δ/2}), we have J + { + 8ρx) 8 8 ) δ ) δ 2ɛ d j= γ 2 jαn ] 2 d γ ɛ 2 j ) ɛ μ)]2α } μ)] 2α μ)] 2α. Thus, J μ)] 2α. Noice ha <ρx )and 8, 8ρx )). y 3.8), we have ha fo any x and y X wih dx, y) <, ρx ) ρx) ρy). Choosing η, ) such ha ηδ 2 = αn, hen by Lemma 3.i), Q) ii and 3.9), we have J 2 8ρx) 8 8 ) δ + ρx ) ) δ2 ρx ) ) αn μ)] α ] 2 d 8ρx) ) ) δ ηδ2 ) ] αn 2 ρx ) d μ)] α 8 ρx ) ) δ 2αn d μ)] 2α μ)]2α. Combining he esimaes fo J and J 2 yields I 2 μ)] +αp. To pove Theoem 3., i emains o esimae he em I 3. Fo all x, x,wie S f)x)] 2 S f)x )] 2 = Q f)y) 2 dμy) d 8ρx ) dx, y)< V y) 8ρx ) dx,y)< Q f)y) 2 dμy) d V y). 8ρx ) x, ) x,) Noice ha <ρx ). Hence, fo 8ρx ), ), 3.9) sill holds. On he ohe hand, fo all x and y X wih dx, y) <, by 3.2), Lemma 3.2, 2.2) and he fac ha ρx ) ρx), we obain ha Q f)y) ) δ ρy) μy, ))] α + ρy) ρx ) ) δ ) +k αn μ)] α.

28 272 oundedness of Lusin-aea and g λ funcions I follows fom his, 3.9), 3.9) and δ>2αn ha fo all x, x, S f)x)] 2 S f)x )] 2 8ρx ) μ)] 2α, ρx ) ) 2δ +k ) δ 2αn μ)] 2α d so ha I 3 μ)] +αp. This finishes he poof of Theoem 3.. As a consequence of Theoem 3., we have he following conclusion, which can be poved by an agumen simila o ha used in he poof of 34, Coollay 4.]. We omi he deails. Coollay 3.. Wih he assumpions same as in Theoem 3., hen hee exiss a posiive consan C such ha fo all f Eρ X ), Sf) Ẽα, ρ p X ) and Sf) Ẽ ρ X ) C f Eρ X ). Remak 3.2. i) If α =, Theoem 3. and Coollay 3. wee aleady obained in 9]. p/2 ii) If α >, hen by Remak 2.iv), he space Ẽ2α, ρ X ) in Theoem 3. and he space Ẽα, ρ p X ) in Coollay 3. ae exacly he spaces 2/2 Eρ X )andeρ X ), especively. iii) If α<, hen by Theoem 2.2 and he fac ha he Lusin-aea p/2 funcion is nonnegaive, we know ha if he space Ẽ2α, ρ X )intheoem 3. and he space Ẽα, ρ p X ) in Coollay 3. ae eplaced, especively, by 2/2 he spaces Eρ X )andeρ X ), we obain he same esuls. Now we sudy he boundedness of gλ funcion in localized Moey- Campanao spaces. In his case, X is no necessay o have Popey P ). Theoem 3.2. Le X be a doubling meic measue space. Le p, ), ρ be an admissible funcion on X,hegλ funcion g λ f) as in 3.4) wih λ 3n, ) and α, min{γ/n, δ / + k )n], δ 2 /n, λ 3n)/2 + k )n], /2n)}). If gλ f) is bounded on Lp X ), hen hee exiss a posiive consan C such ha fo all f Eρ X ), gλ f)]2 p/2 Ẽ2α, ρ X ) and gλ f)]2 Ẽ 2/2 ρ X ) C f 2 Eρ X ). Poof. y similaiy, we only pove he case when α >. Le f Eρ X ), by he homogeneiy of E ρ X ) and Ẽ 2/2 ρ X ),we may assume ha f E ρ X ) =. Le x,). Fo any nonnegaive inege k,le Jk) {y, ) X, ) : dy, x ) < 2 k+ and <<2 k+ }.

29 Fo any f Eρ X )andx X,wie gλ f)x)]2 = J) H. Lin, E. Nakai, D. Yang 273 ) λ Q f)y) 2 dμy) d + dx, y) V y) + X, )]\J) g λ, f)x)] 2 +g λ, f)x)] 2. We now conside he following wo cases. Case I. x,) D. Hee, ρx ). We fis pove ha 3.2) gλ, f)x)]p dμx) μ)] +αp. Fo any x,wie gλ, f)x)] J) dx, y)< J) dx, y) J) dx, y) I x)+i 2 x)+i 3 x). ) λ Q f)y) 2 dμy) d + dx, y) V y) ) λ Q fχ 8)y) 2 dμy) + dx, y) V y) ) λ Q fχ + dx, y) d 8) )y) 2 dμy) V y) Noe ha fo all x,i x) Sf)x)] 2 and hen 3.5) gives 3.2) I x)] p/2 dμx) μ)] +αp. We emak ha in he poof of 3.5), we did no use Popey P )ofx. y he L p X )-boundedness of gλ f) and 2.), we have 3.22) I 2 x)] p/2 dμx) fx) p dμx) μ)] +αp. dy, x )<2 dx, y) 8 To deal wih I 3 x), noicing ha fo all z 8) and y X wih dy, x ) < 2,wehavehady, z) dx,z) and V y, z) V x,z). Hence, fom he assumpions ha λ>n and γ>αn, i follows 2 ) λ I 3 x) + dx, y) 8) V y)+v y, z) d ) ] γ fz) 2 dμy) d dμz) + dy, z) V y)

30 274 oundedness of Lusin-aea and g λ funcions 2 dy, x )<2 dx, y) dμy) V y) 2 d dy, x )<2 dx, y) j=3 ) λ ) ] γ fz) 2 dμz) + dx, y) 8) V x,z) dx,z) + dx, y) ) λ ) γ 2 j μ2 j+ ) 2 j+ fz) dμz) 2 dμy) d V y) 2 λ ) γ 2 dy, x )<2 + dx, y)) jγ αn) μ)] α dx, y) j=3 2 ) 2γ μ)] 2α k= 2 k dx, y)<2 k+ 2 dμy) d V y) 2 kλ kn dμy) d 2 V 2 k+ x) μ)]2α, which implies ha I 3x)] p/2 dμx) μ)] +αp. Combining his, 3.2) and 3.22) poves 3.2). Now we pove ha 3.23) gλ, f)x)]p dμx) μ)] +αp. Noice ha fo y, ) Jk) \ Jk ) wih k N and x, + dx, y) 2 k.thus, gλ, f)x)]2 k= 2 k+4 + k= Jk)\Jk ) ) λ 2 k V y)+v y, z) Jk)\Jk ) ) γ ρy) + dy, z) + ρy) ) λ 2 k dμz) 2 k+4 ) ) ] δ fz) 2 dμy) d dμz) V y) ] 2 dμy) d V y) E x)+e 2 x).

31 H. Lin, E. Nakai, D. Yang 275 The fac ha ρx ) and 2.3) imply ha fo all y X dy, x ) < 2 k+, wih +k 3.24) ρy) ρx )] 2 k ) k +k. y he assumpions ha λ 3n, ), δ > + k )αn and λ 3n) > 2 + k )αn, wechooseη, δ ) + k )αn, λ 3n)/2)]. Theefoe, λ 2η 3n >. I hen follows fom 3.24) ha E x) k= 2 k+ dy, x )<2 k+ 2 2kαn 2α dμy) μ)] V y) μ)] 2α μ)] 2α k= k= 2 2kαn 2 d ) λ 2 k ) 2n ρx +k )] 2 k ) k 2 k k+ +k ) 2η ) λ 2 k ) 3n ρx +k )] 2 k ) k 2 k 2 2kαn ρx ) ] 2η +k μ)] 2α 2 k. Choosing η 2, δ ) +k )αn, λ 3n)/2)], hen λ+2γ 2η 2 n>. Noice ha fo z 2 k+4 ) and y X wih dy, x ) < 2 k+, dy, z) dx,z) and V y, z) V x,z). This ogehe wih 3.24) and γ>αnimplies ha E 2 x) k= 2 k+ j= μ)] 2α μ)] 2α 2 j+k+ k= k= dy, x )<2 k+ ) γ μ2 j+k+4 ) 2 2kαn 2 ) λ ρx +k )] 2 k ) k +k ) η2 2 k ] 2 dμy) fz) dμz) V y) k+ 2 j+k+4 ) λ+2γ n ρx +k )] 2 k ) k 2 k 2 2kαn ρx ) ] 2η 2 +k μ)] 2α 2 k, which ogehe wih he esimae of E x) yields 3.23). Combining 3.2) and 3.23) yields ha 3.25) gλf)x)] p dμx) μ)] +αp. d +k +k ) 2η d ) 2η2 d

32 276 oundedness of Lusin-aea and g λ funcions Moeove, fom 3.25), i follows ha gλ f)x) < fo almos evey x X. Case II. x,) D.Inhiscase,<ρx ). We need o pove ha { gλ f)x)]2 essinf g λ f)]2} p/2 dμx) μ)] +αp. To his end, fo all x X,wie { gλ f)x)]2 essinf g λ f)]2} p/2 dμx) { gλ, f)x)]p dμx)+ gλ, f)x)]p dμx)+μ) sup x, x g λ, f)x)]2 essinf Now we pove ha 3.26) gλ, f)x)] p dμx) μ)] +αp. g λ, f)]2} p/2 dμx) g λ, f)x)] 2 g λ, f)x )] 2 p/2. To his end, wie f f + f 2 + f, whee f f f )χ 8 and f 2 f f )χ 8). y he L p X )-boundedness of gλ f), 2.2) and Lemma 3.ii), we have 3.27) gλ, f )x)] p dμx) f f p dμx) μ)] +αp. 8 Noice ha fo z 8) and y X wih dy, x ) < 2, dy, z) dx,z) and V y, z) V x,z). This ogehe wih Q) i, 2.2), he Hölde inequaliy, Lemma 3.ii) and γ>αnyields ha ) γ Q f 2 )y) fz) f dμz) 8) V y)+vy, z) + dy, z) ) γ fz) f dμz) 8) V x,z) dx,z) ) γ ] 2 k μ2 k+3 fz) f ) 2 dμz)+ f k+3 2 k+3 f k= 2 k+3 ) γ ) γ μ)] α 2 kγ αn) μ)] α. k= y an agumen simila o he esimaes of 3.) and I 3 x), we obain

33 H. Lin, E. Nakai, D. Yang ) gλ, f 2)x)] p dμx) 2 2 dx, y)< 2 + μ)] +αp. dx,y)<2 dx,y)<2 dx, y) + dx, y) ) 2γ μ)] + dx, y) ) λ ) 2γ μ)] 2α dμy) V y) 2α dμy) V y) ] p/2 d dμx) ) λ ) 2γ μ)] 2α dμy) V y) ] p/2 d dμx) ] p/2 d dμx) Fo y X wih dx,y) < 2 < 2ρx ), by 3.8), we have ha ρx ) ρy), which ogehe wih Q) ii, Lemma 3.i) and δ 2 >αn leads o ha ) δ2 ) δ2 ) αn ρx ) ) δ2μ)] Q f )y) f μ)] α α. ρy) ρx ) Then, similaly o he esimae of 3.28), we obain gλ, f )x)] p dμx) μ)] +αp, which ogehe wih 3.27) and 3.28) yields 3.26). The poof of Theoem 3.2 is educed o show ha fo all x, x, 3.29) gλ, f)x)]2 gλ, f)x )] 2 μ)] 2α. Wie g λ, f)x)] 2 gλ, f)x )] 2 k= + X, )\J) k= Jk)\Jk ) Jk)\Jk ) + dx, y) ) λ + dx,y) λ 2 k ) λ+ Q f f )y) 2 dμy) V y) λ 2 k ) λ+ Q f )y) 2 dμy) V y) ) λ d Q f)y) 2 dμy) V y) d G +G 2. d

34 278 oundedness of Lusin-aea and g λ funcions The assumpions ha λ 3n, ) andγ>αn, ogehe wih Q) i and Lemma 3.ii), imply ha G k= + Jk)\Jk ) 2 k+4 k= Jk)\Jk ) 2 k+ k= + k= λ 2 k ) λ+ ) γ fz) f dμz) V y)+vy, z) + dy, z) ] 2 λ dμy) 2 k ) λ+ dμz) 2 k+4 ) V y) λ 2 k ) 2n2 2kαn 2 k ) λ+ μ)] dy, x )<2 k+ 2 k+ μ)] 2α +μ)] 2α μ)] 2α k= k= k= dy, x )<2 k+ 2 k+ 2 2kαn 2 k+ 2 2kαn 2 2kαn 2 k μ)] 2α, λ ) 2γ2 2kαn 2 k ) λ+ 2 k μ)] λ 2 k ) 3n d 2 k ) λ+ λ 2 k ) n 2γ d 2 k ) λ+ ] 2 dμy) V y) d 2α dμy) V y) d 2α dμy) V y) whee in he las inequaliy, we used he assumpion ha 2αn <. Noice ha < ρx ), hee exiss a posiive inege k such ha 2 k <ρx ) 2 k.ifk {,,k },henfoy X wih dy, x ) < 2 k+, by 3.8), we have ha ρx ) ρy); if k {k +,k +2, }, hen by 2.3), fo, 2 k+ )andy X wih dy, x ) < 2 k+,wehave + ρy) ρy) + dy, x ) k ) k ) 2k + 2k 2 k ) +k. ρx ) ρx ) ρx ) ρx ) ρx ) Fom Q) ii, Lemma 3.i), δ 2 >αn, λ n, ) and 2αn <, i hen follows ha G 2 k= 2 k+ + ρy) dy, x )<2 k+ ) 2δ2 dμy) d V y) λ 2 k ) λ+ ) 2αn ρx ) μ)] 2α d d

35 H. Lin, E. Nakai, D. Yang 279 { k μ)] 2α + k=k + μ)] 2α k= 2 k+ k= 2 k+ λ 2 k ) λ+ ) 2αn ρx ) ) 2αn 2 k ) n d ρx ) ) 2αn ρx ) 2 k ) 2αn 2 k ) } n d ρx ) λ 2 k ) λ+ 2 k 2αn) μ)] 2α. Combining he esimaes fo G and G 2 yields 3.29), which complees he poof of Theoem 3.2. As a consequence of Theoem 3.2, we have he following conclusion. Coollay 3.2. Wih he assumpions same as in Theoem 3.2, hen hee exiss a posiive consan C such ha fo all f Eρ X ), gλ p f) Ẽα, ρ X ) and gλ f) Ẽρ X ) C f Eρ X ). We poin ou ha Remak 3.2 is also suiable o Theoem 3.2 and Coollay 3.2. The following is a simple coollay of Theoems 3. and 3.2, and Coollaies 3. and 3.2. We omi he deails hee; see 34, Secion 5]. Poposiion 3.. Theoems 3. and 3.2, and Coollaies 3. and 3.2 ae ue if Q 2 de sl ds s= 2, whee L = Δ +V is he Schödinge opeao o he degeneae Schödinge opeao on R d, o he sub-laplace Schödinge opeao on Heisenbeg goups o conneced and simply conneced nilpoen Lie goups, and V is a nonnegaive funcion saisfying ceain evese Hölde inequaliy; see he deails in 34, Secion 5]. Acknowledgemen. The fis auho was suppoed by Chinese Univesiies Scienific Funf Gan No. 2JS43) and he Mahemaical Tianyuan Youh Fund Gan No. 262) of Naional Naual Science Foundaion of China, he second auho was suppoed by Gan-in-Aid fo Scienific Reseach C), No , Japan Sociey fo he Pomoion of Science, and he hid auho was suppoed by he Naional Naual Science Foundaion Gan No. 8725) of China.

36 28 oundedness of Lusin-aea and g λ funcions Refeences ] S. Campanao, Popieà dihöldeianià di alcune classi di funzioni, Ann. Scuola Nom. Sup. Pisa, 3) 7 963), ] R. R. Coifman and G. Weiss, Analyse Hamonique Non-commuaive su Ceains Espaces Homogènes, Lecue Noes in Mah., 242, Spinge, elin, 97. 3] R. R. Coifman and G. Weiss, Exensions of Hady spaces and hei use in analysis, ull. Ame. Mah. Soc., ), ] T. H. Colding and W. P. Minicozzi II, Liouville heoems fo hamonic secions and applicaions, Comm. Pue Appl. Mah., 5 998), ] X. T. Duong, J. Xiao and L. Yan, Old and new Moey spaces wih hea kenel bounds, J. Fouie Anal. Appl., 3 27), 87. 6] J. Dziubański, Noe on H spaces elaed o degeneae Schödinge opeaos, Illinois J. Mah., 49 25), ] J. Dziubański, G. Gaigós, T. Maínez, J. L. Toea and J. Zienkiewicz, MO spaces elaed o Schödinge opeaos wih poenials saisfying a evese Hölde inequaliy, Mah. Z., ), ] J. Dziubański and J. Zienkiewicz, Hady space H associaed o Schödinge opeao wih poenial saisfying evese Hölde inequaliy, Rev. Ma. Ibeo., 5 999), ] C. Feffeman, The unceainy pinciple, ull. Ame. Mah. Soc., N. S.) 9 983), ] D. Goldbeg, A local vesion of eal Hady spaces, Duke Mah. J., ), ] L. Gafakos, Moden Fouie Analysis, Second Ediion, Gaduae Texs in Mah., No. 25, Spinge, New Yok, 28. 2] Y. Han, D. Mülle and D. Yang, A heoy of esov and Tiebel-Lizokin spaces on meic measue spaces modeled on Cano-Caahéodoy spaces, Abs. Appl. Anal., 28, A. ID 89349, 25 pp. 3] G. Hu, Da. Yang and Do. Yang, h, bmo, blo and Lilewood-Paley g -funcions wih non-doubling measues, Rev. Ma. Ibeo., 25 29), ] G. Hu, D. Yang and Y. Zhou, oundedness of singula inegals in Hady spaces on spaces of homogeneous ype, Taiwanese J. Mah., 3 29), 9 35.

37 H. Lin, E. Nakai, D. Yang 28 5] P. G. Lemaié, Algèbes d opeaeus e semi-goupes de Poisson su un espace de naue homogène, Publ. Mah. d Osay, ] P. G. Lemaié-Rieusse, The Navie-Sokes equaions in he ciical Moey-Campa-nao space, Rev. Mah. Ibeo., 23 27), ] H. Li, Esimaions L p des opéaeus de Schödinge su les goupes nilpoens, J. Func. Anal., 6 999), ] C. Lin and H. Liu, MO L H n ) spaces and caleson measues fo Schödinge opeaos, Adv.Mah.,oappea. 9] H. Lin, E. Nakai and D. Yang, oundedness of Lusin-aea and gλ funcions on localized MO spaces ove doubling meic measue spaces, ull. Sci. Mah., 35 2), ] R. A. Macías and C. Segovia, Lipschiz funcions on spaces of homogeneous ype, Adv. Mah., ), ] E. Nakai, A chaaceizaion of poinwise muliplies on he Moey spaces, Sci. Mah., 3 2), ] E. Nakai, The Campanao, Moey and Hölde spaces on spaces of homogeneous ype, Sudia Mah., 76 26), 9. 23] E. Nakai, Olicz-Moey spaces and he Hady-Lilewood maximal funcion, Sudia Mah., 88 28), ] E. Nakai and K. Yabua, Poinwise muliplies fo funcions of weighed bounded mean oscillaion on spaces of homogeneous ype, Mah. Japon., ), ] J. Peee, On he heoy of L p, λ spaces, J. Func. Anal., 4 969), ] Z. Shen, L p esimaes fo Schödinge opeaos wih ceain poenials, Ann. Ins. Fouie Genoble), ), ] E. M. Sein, Hamonic Analysis: Real-vaiable Mehods, Ohogonaliy, and Oscillaoy Inegals, Pinceon Univesiy Pess, Pinceon, N. J., ] J.-O. Sömbeg and A. Tochinsky, Weighed Hady Spaces, Lecue Noes in Mahemaics, 38, Spinge-Velag, elin, ] M. H. Taibleson and G. Weiss, The molecula chaaceizaion of ceain Hady spaces. Repesenaion heoems fo Hady spaces, pp , Aséisque, 77, Soc. Mah. Fance, Pais, 98. 3] R. Tessea, Volume of sphees in doubling meic measued spaces and in goups of polynomial gowh, ull. Soc. Mah. Fance 35 27),

38 282 oundedness of Lusin-aea and g λ funcions 3] H. Tiebel, Theoy of Funcion Spaces. II, ikhäuse Velag, asel, ] N. Th. Vaopoulos, L. Saloff-Cose and T. Coulhon, Analysis and Geomey on Goups, Cambidge Univesiy Pess, Cambidge, ] Da. Yang, Do. Yang and Y. Zhou, Localized MO and LO spaces on RD-spaces and applicaions o Schödinge opeaos, Commun. Pue Appl. Anal., 9 2), ] Da. Yang, Do. Yang and Y. Zhou, Localized Moey-Campanao spaces on meic measue spaces and applicaions o Schödinge opeaos, Nagoya Mah. J., 98 2), ] D. Yang and Y. Zhou, Localized Hady spaces H elaedoadmissible funcions on RD-spaces and applicaions o Schödinge opeaos, Tans. Ame. Mah. Soc., 363 2), ] D. Yang and Y. Zhou, New popeies of esov and Tiebel-Lizokin spaces on RD-spaces, Manuscipa Mah., 34 2), ] J. Zhong, The Sobolev esimaes fo some Schödinge ype opeaos, Mah. Sci. Res. Ho-Line 3:8 999), 48. College of Science, China Agiculual Univesiy eijing 83 People s Republic of China and School of Mahemaical Sciences, eijing Nomal Univesiy Laboaoy of Mahemaics and Complex Sysems Minisy of Educaion, eijing 875 People s Republic of China linhaibo@mail.bnu.edu.cn) Depamen of Mahemaics, Osaka Kyoiku Univesiy Kashiwaa, Osaka Japan enakai@cc.osaka-kyoiku.ac.jp) Cuen Addess : Depamen of Mahemaics, Ibaaki Univesiy Mio Ibaaki 3 582, Japan, enakai@mx.ibaaki.ac.jp) School of Mahemaical Sciences, eijing Nomal Univesiy Laboaoy of Mahemaics and Complex Sysems Minisy of Educaion, eijing 875 People s Republic of China dcyang@bnu.edu.cn) Received : June 29 )

39 Advances in Opeaions Reseach Hindawi Publishing Copoaion hp:// Volume 24 Advances in Decision Sciences Hindawi Publishing Copoaion hp:// Volume 24 Jounal of Applied Mahemaics Algeba Hindawi Publishing Copoaion hp:// Hindawi Publishing Copoaion hp:// Volume 24 Jounal of Pobabiliy and Saisics Volume 24 The Scienific Wold Jounal Hindawi Publishing Copoaion hp:// Hindawi Publishing Copoaion hp:// Volume 24 Inenaional Jounal of Diffeenial Equaions Hindawi Publishing Copoaion hp:// Volume 24 Volume 24 Submi you manuscips a hp:// Inenaional Jounal of Advances in Combinaoics Hindawi Publishing Copoaion hp:// Mahemaical Physics Hindawi Publishing Copoaion hp:// Volume 24 Jounal of Complex Analysis Hindawi Publishing Copoaion hp:// Volume 24 Inenaional Jounal of Mahemaics and Mahemaical Sciences Mahemaical Poblems in Engineeing Jounal of Mahemaics Hindawi Publishing Copoaion hp:// Volume 24 Hindawi Publishing Copoaion hp:// Volume 24 Volume 24 Hindawi Publishing Copoaion hp:// Volume 24 Discee Mahemaics Jounal of Volume 24 Hindawi Publishing Copoaion hp:// Discee Dynamics in Naue and Sociey Jounal of Funcion Spaces Hindawi Publishing Copoaion hp:// Absac and Applied Analysis Volume 24 Hindawi Publishing Copoaion hp:// Volume 24 Hindawi Publishing Copoaion hp:// Volume 24 Inenaional Jounal of Jounal of Sochasic Analysis Opimizaion Hindawi Publishing Copoaion hp:// Hindawi Publishing Copoaion hp:// Volume 24 Volume 24

336 ERIDANI kfk Lp = sup jf(y) ; f () jj j p p whee he supemum is aken ove all open balls = (a ) inr n, jj is he Lebesgue measue of in R n, () =(), f

336 ERIDANI kfk Lp = sup jf(y) ; f () jj j p p whee he supemum is aken ove all open balls = (a ) inr n, jj is he Lebesgue measue of in R n, () =(), f TAMKANG JOURNAL OF MATHEMATIS Volume 33, Numbe 4, Wine 2002 ON THE OUNDEDNESS OF A GENERALIED FRATIONAL INTEGRAL ON GENERALIED MORREY SPAES ERIDANI Absac. In his pape we exend Nakai's esul on he boundedness

More information

arxiv: v1 [math.ca] 25 Sep 2013

arxiv: v1 [math.ca] 25 Sep 2013 OUNDEDNESS OF INTRINSIC LITTLEWOOD-PALEY FUNCTIONS ON MUSIELAK-ORLICZ MORREY AND CAMPANATO SPACES axiv:39.652v [mah.ca] 25 Sep 23 YIYU LIANG, EIICHI NAKAI 2, DACHUN YANG AND JUNQIANG ZHANG Absac. Le ϕ

More information

Boundedness for Marcinkiewicz integrals associated with Schrödinger operators

Boundedness for Marcinkiewicz integrals associated with Schrödinger operators Poc. Indian Acad. Sci. (Math. Sci. Vol. 24, No. 2, May 24, pp. 93 23. c Indian Academy of Sciences oundedness fo Macinkiewicz integals associated with Schödinge opeatos WENHUA GAO and LIN TANG 2 School

More information

7 Wave Equation in Higher Dimensions

7 Wave Equation in Higher Dimensions 7 Wave Equaion in Highe Dimensions We now conside he iniial-value poblem fo he wave equaion in n dimensions, u c u x R n u(x, φ(x u (x, ψ(x whee u n i u x i x i. (7. 7. Mehod of Spheical Means Ref: Evans,

More information

On Control Problem Described by Infinite System of First-Order Differential Equations

On Control Problem Described by Infinite System of First-Order Differential Equations Ausalian Jounal of Basic and Applied Sciences 5(): 736-74 ISS 99-878 On Conol Poblem Descibed by Infinie Sysem of Fis-Ode Diffeenial Equaions Gafujan Ibagimov and Abbas Badaaya J'afau Insiue fo Mahemaical

More information

BMOA estimates and radial growth of B φ functions

BMOA estimates and radial growth of B φ functions c Jounal of echnical Univesiy a Plovdiv Fundamenal Sciences and Applicaions, Vol., 995 Seies A-Pue and Applied Mahemaics Bulgaia, ISSN 3-827 axiv:87.53v [mah.cv] 3 Jul 28 BMOA esimaes and adial gowh of

More information

Research Article A Note on Multiplication and Composition Operators in Lorentz Spaces

Research Article A Note on Multiplication and Composition Operators in Lorentz Spaces Hindawi Publishing Copoaion Jounal of Funcion Spaces and Applicaions Volume 22, Aicle ID 29363, pages doi:.55/22/29363 Reseach Aicle A Noe on Muliplicaion and Composiion Opeaos in Loenz Spaces Eddy Kwessi,

More information

@FMI c Kyung Moon Sa Co.

@FMI c Kyung Moon Sa Co. Annals of Fuzzy Mahemaics Infomaics Volume, No. 2, (Apil 20), pp. 9-3 ISSN 2093 930 hp://www.afmi.o.k @FMI c Kyung Moon Sa Co. hp://www.kyungmoon.com On lacunay saisical convegence in inuiionisic fuzzy

More information

THE MODULAR INEQUALITIES FOR A CLASS OF CONVOLUTION OPERATORS ON MONOTONE FUNCTIONS

THE MODULAR INEQUALITIES FOR A CLASS OF CONVOLUTION OPERATORS ON MONOTONE FUNCTIONS PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 5, Numbe 8, Augus 997, Pages 93 35 S -9939(973867-7 THE MODULAR INEQUALITIES FOR A CLASS OF CONVOLUTION OPERATORS ON MONOTONE FUNCTIONS JIM QILE

More information

GRADIENT ESTIMATES, POINCARÉ INEQUALITIES, DE GIORGI PROPERTY AND THEIR CONSEQUENCES

GRADIENT ESTIMATES, POINCARÉ INEQUALITIES, DE GIORGI PROPERTY AND THEIR CONSEQUENCES GRADIENT ESTIMATES, POINCARÉ INEQUALITIES, DE GIORGI PROPERTY AND THEIR CONSEQUENCES FRÉDÉRIC ERNICOT, THIERRY COULHON, DOROTHEE FREY Absac. On a doubling meic measue space endowed wih a caé du champ,

More information

ON 3-DIMENSIONAL CONTACT METRIC MANIFOLDS

ON 3-DIMENSIONAL CONTACT METRIC MANIFOLDS Mem. Fac. Inegaed As and Sci., Hioshima Univ., Se. IV, Vol. 8 9-33, Dec. 00 ON 3-DIMENSIONAL CONTACT METRIC MANIFOLDS YOSHIO AGAOKA *, BYUNG HAK KIM ** AND JIN HYUK CHOI ** *Depamen of Mahemaics, Faculy

More information

POSITIVE SOLUTIONS WITH SPECIFIC ASYMPTOTIC BEHAVIOR FOR A POLYHARMONIC PROBLEM ON R n. Abdelwaheb Dhifli

POSITIVE SOLUTIONS WITH SPECIFIC ASYMPTOTIC BEHAVIOR FOR A POLYHARMONIC PROBLEM ON R n. Abdelwaheb Dhifli Opuscula Mah. 35, no. (205), 5 9 hp://dx.doi.og/0.7494/opmah.205.35..5 Opuscula Mahemaica POSITIVE SOLUTIONS WITH SPECIFIC ASYMPTOTIC BEHAVIOR FOR A POLYHARMONIC PROBLEM ON R n Abdelwaheb Dhifli Communicaed

More information

Research Article Weak Type Inequalities for Some Integral Operators on Generalized Nonhomogeneous Morrey Spaces

Research Article Weak Type Inequalities for Some Integral Operators on Generalized Nonhomogeneous Morrey Spaces Hindawi Publishing Copoaion Jounal of Funcion Spaces and Applicaions Volume 23, Aicle ID 8974, 2 pages hp://dx.doi.og/.55/23/8974 Reseach Aicle Weak Type Inequaliies fo Some Inegal Opeaos on Genealized

More information

The shortest path between two truths in the real domain passes through the complex domain. J. Hadamard

The shortest path between two truths in the real domain passes through the complex domain. J. Hadamard Complex Analysis R.G. Halbud R.Halbud@ucl.ac.uk Depamen of Mahemaics Univesiy College London 202 The shoes pah beween wo uhs in he eal domain passes hough he complex domain. J. Hadamad Chape The fis fundamenal

More information

Hardy spaces for semigroups with Gaussian bounds

Hardy spaces for semigroups with Gaussian bounds Annali di Maemaica 218 197:965 987 hps://doi.og/1.17/s1231-17-711-y Hady spaces fo semigoups wih Gaussian bounds Jacek Dziubański 1 Macin Peisne 1 Received: 3 July 217 / Acceped: 16 Ocobe 217 / Published

More information

arxiv: v1 [math.ca] 15 Jan 2019

arxiv: v1 [math.ca] 15 Jan 2019 DORRONSORO S THEOREM IN HEISENBERG GROUPS KATRIN FÄSSLER AND TUOMAS ORPONEN axiv:9.4767v [mah.ca] 5 Jan 29 ABSTRACT. A heoem of Doonsoo fom he 98s quanifies he fac ha eal-valued Sobolev funcions on Euclidean

More information

Deviation probability bounds for fractional martingales and related remarks

Deviation probability bounds for fractional martingales and related remarks Deviaion pobabiliy bounds fo facional maingales and elaed emaks Buno Sausseeau Laboaoie de Mahémaiques de Besançon CNRS, UMR 6623 16 Roue de Gay 253 Besançon cedex, Fance Absac In his pape we pove exponenial

More information

Extremal problems for t-partite and t-colorable hypergraphs

Extremal problems for t-partite and t-colorable hypergraphs Exemal poblems fo -paie and -coloable hypegaphs Dhuv Mubayi John Talbo June, 007 Absac Fix ineges and an -unifom hypegaph F. We pove ha he maximum numbe of edges in a -paie -unifom hypegaph on n veices

More information

STUDY OF THE STRESS-STRENGTH RELIABILITY AMONG THE PARAMETERS OF GENERALIZED INVERSE WEIBULL DISTRIBUTION

STUDY OF THE STRESS-STRENGTH RELIABILITY AMONG THE PARAMETERS OF GENERALIZED INVERSE WEIBULL DISTRIBUTION Inenaional Jounal of Science, Technology & Managemen Volume No 04, Special Issue No. 0, Mach 205 ISSN (online): 2394-537 STUDY OF THE STRESS-STRENGTH RELIABILITY AMONG THE PARAMETERS OF GENERALIZED INVERSE

More information

Research Article Weighted Hardy Operators in Complementary Morrey Spaces

Research Article Weighted Hardy Operators in Complementary Morrey Spaces Hindawi Publishing Copoaion Jounal of Funcion Spaces and Applicaions Volume 212, Aicle ID 283285, 19 pages doi:1.1155/212/283285 Reseach Aicle Weighed Hady Opeaos in Complemenay Moey Spaces Dag Lukkassen,

More information

K. G. Malyutin, T. I. Malyutina, I. I. Kozlova ON SUBHARMONIC FUNCTIONS IN THE HALF-PLANE OF INFINITE ORDER WITH RADIALLY DISTRIBUTED MEASURE

K. G. Malyutin, T. I. Malyutina, I. I. Kozlova ON SUBHARMONIC FUNCTIONS IN THE HALF-PLANE OF INFINITE ORDER WITH RADIALLY DISTRIBUTED MEASURE Математичнi Студiї. Т.4, 2 Maemaychni Sudii. V.4, No.2 УДК 57.5 K. G. Malyuin, T. I. Malyuina, I. I. Kozlova ON SUBHARMONIC FUNCTIONS IN THE HALF-PLANE OF INFINITE ORDER WITH RADIALLY DISTRIBUTED MEASURE

More information

Lecture 18: Kinetics of Phase Growth in a Two-component System: general kinetics analysis based on the dilute-solution approximation

Lecture 18: Kinetics of Phase Growth in a Two-component System: general kinetics analysis based on the dilute-solution approximation Lecue 8: Kineics of Phase Gowh in a Two-componen Sysem: geneal kineics analysis based on he dilue-soluion appoximaion Today s opics: In he las Lecues, we leaned hee diffeen ways o descibe he diffusion

More information

Fuzzy Hv-submodules in Γ-Hv-modules Arvind Kumar Sinha 1, Manoj Kumar Dewangan 2 Department of Mathematics NIT Raipur, Chhattisgarh, India

Fuzzy Hv-submodules in Γ-Hv-modules Arvind Kumar Sinha 1, Manoj Kumar Dewangan 2 Department of Mathematics NIT Raipur, Chhattisgarh, India Inenaional Jounal of Engineeing Reseach (IJOER) [Vol-1, Issue-1, Apil.- 2015] Fuzz v-submodules in Γ-v-modules Avind Kuma Sinha 1, Manoj Kuma Dewangan 2 Depamen of Mahemaics NIT Raipu, Chhaisgah, India

More information

Combinatorial Approach to M/M/1 Queues. Using Hypergeometric Functions

Combinatorial Approach to M/M/1 Queues. Using Hypergeometric Functions Inenaional Mahemaical Foum, Vol 8, 03, no 0, 463-47 HIKARI Ld, wwwm-hikaicom Combinaoial Appoach o M/M/ Queues Using Hypegeomeic Funcions Jagdish Saan and Kamal Nain Depamen of Saisics, Univesiy of Delhi,

More information

BOUNDEDNESS OF MAXIMAL FUNCTIONS ON NON-DOUBLING MANIFOLDS WITH ENDS

BOUNDEDNESS OF MAXIMAL FUNCTIONS ON NON-DOUBLING MANIFOLDS WITH ENDS BOUNDEDNESS OF MAXIMAL FUNCTIONS ON NON-DOUBLING MANIFOLDS WITH ENDS XUAN THINH DUONG, JI LI, AND ADAM SIKORA Absrac Le M be a manifold wih ends consruced in [2] and be he Laplace-Belrami operaor on M

More information

Variance and Covariance Processes

Variance and Covariance Processes Vaiance and Covaiance Pocesses Pakash Balachandan Depamen of Mahemaics Duke Univesiy May 26, 2008 These noes ae based on Due s Sochasic Calculus, Revuz and Yo s Coninuous Maingales and Bownian Moion, Kaazas

More information

A note on characterization related to distributional properties of random translation, contraction and dilation of generalized order statistics

A note on characterization related to distributional properties of random translation, contraction and dilation of generalized order statistics PobSa Foum, Volume 6, July 213, Pages 35 41 ISSN 974-3235 PobSa Foum is an e-jounal. Fo eails please visi www.pobsa.og.in A noe on chaaceizaion elae o isibuional popeies of anom anslaion, conacion an ilaion

More information

General Non-Arbitrage Model. I. Partial Differential Equation for Pricing A. Traded Underlying Security

General Non-Arbitrage Model. I. Partial Differential Equation for Pricing A. Traded Underlying Security 1 Geneal Non-Abiage Model I. Paial Diffeenial Equaion fo Picing A. aded Undelying Secuiy 1. Dynamics of he Asse Given by: a. ds = µ (S, )d + σ (S, )dz b. he asse can be eihe a sock, o a cuency, an index,

More information

Lecture-V Stochastic Processes and the Basic Term-Structure Equation 1 Stochastic Processes Any variable whose value changes over time in an uncertain

Lecture-V Stochastic Processes and the Basic Term-Structure Equation 1 Stochastic Processes Any variable whose value changes over time in an uncertain Lecue-V Sochasic Pocesses and he Basic Tem-Sucue Equaion 1 Sochasic Pocesses Any vaiable whose value changes ove ime in an unceain way is called a Sochasic Pocess. Sochasic Pocesses can be classied as

More information

Heat kernel and Harnack inequality on Riemannian manifolds

Heat kernel and Harnack inequality on Riemannian manifolds Hea kernel and Harnack inequaliy on Riemannian manifolds Alexander Grigor yan UHK 11/02/2014 onens 1 Laplace operaor and hea kernel 1 2 Uniform Faber-Krahn inequaliy 3 3 Gaussian upper bounds 4 4 ean-value

More information

Reichenbach and f-generated implications in fuzzy database relations

Reichenbach and f-generated implications in fuzzy database relations INTERNATIONAL JOURNAL O CIRCUITS SYSTEMS AND SIGNAL PROCESSING Volume 08 Reichenbach and f-geneaed implicaions in fuzzy daabase elaions Nedžad Dukić Dženan Gušić and Nemana Kajmoić Absac Applying a definiion

More information

arxiv: v1 [math.co] 4 Apr 2019

arxiv: v1 [math.co] 4 Apr 2019 Dieced dominaion in oiened hypegaphs axiv:1904.02351v1 [mah.co] 4 Ap 2019 Yai Cao Dep. of Mahemaics Univesiy of Haifa-Oanim Tivon 36006, Isael yacao@kvgeva.og.il This pape is dedicaed o Luz Volkmann on

More information

Order statistics and concentration of l r norms for log-concave vectors

Order statistics and concentration of l r norms for log-concave vectors Jounal of Funcional Analysis 61 011 681 696 www.elsevie.com/locae/jfa Ode saisics and concenaion of l noms fo log-concave vecos Rafał Laała a,b, a Insiue of Mahemaics, Univesiy of Wasaw, Banacha, 0-097

More information

Lecture 17: Kinetics of Phase Growth in a Two-component System:

Lecture 17: Kinetics of Phase Growth in a Two-component System: Lecue 17: Kineics of Phase Gowh in a Two-componen Sysem: descipion of diffusion flux acoss he α/ ineface Today s opics Majo asks of oday s Lecue: how o deive he diffusion flux of aoms. Once an incipien

More information

Representing Knowledge. CS 188: Artificial Intelligence Fall Properties of BNs. Independence? Reachability (the Bayes Ball) Example

Representing Knowledge. CS 188: Artificial Intelligence Fall Properties of BNs. Independence? Reachability (the Bayes Ball) Example C 188: Aificial Inelligence Fall 2007 epesening Knowledge ecue 17: ayes Nes III 10/25/2007 an Klein UC ekeley Popeies of Ns Independence? ayes nes: pecify complex join disibuions using simple local condiional

More information

Computer Propagation Analysis Tools

Computer Propagation Analysis Tools Compue Popagaion Analysis Tools. Compue Popagaion Analysis Tools Inoducion By now you ae pobably geing he idea ha pedicing eceived signal sengh is a eally impoan as in he design of a wieless communicaion

More information

MEEN 617 Handout #11 MODAL ANALYSIS OF MDOF Systems with VISCOUS DAMPING

MEEN 617 Handout #11 MODAL ANALYSIS OF MDOF Systems with VISCOUS DAMPING MEEN 67 Handou # MODAL ANALYSIS OF MDOF Sysems wih VISCOS DAMPING ^ Symmeic Moion of a n-dof linea sysem is descibed by he second ode diffeenial equaions M+C+K=F whee () and F () ae n ows vecos of displacemens

More information

Intrinsic Square Function Characterizations of Hardy Spaces with Variable Exponents

Intrinsic Square Function Characterizations of Hardy Spaces with Variable Exponents Inrinsic Square Funcion Characerizaions of Hardy Spaces wih Variable Exponens Ciqiang Zhuo, Dachun Yang and Yiyu Liang School of Mahemaical Sciences, Beijing Normal Universiy, Laboraory of Mahemaics and

More information

Lecture 22 Electromagnetic Waves

Lecture 22 Electromagnetic Waves Lecue Elecomagneic Waves Pogam: 1. Enegy caied by he wave (Poyning veco).. Maxwell s equaions and Bounday condiions a inefaces. 3. Maeials boundaies: eflecion and efacion. Snell s Law. Quesions you should

More information

Degree of Approximation of a Class of Function by (C, 1) (E, q) Means of Fourier Series

Degree of Approximation of a Class of Function by (C, 1) (E, q) Means of Fourier Series IAENG Inenaional Jounal of Applied Mahemaic, 4:, IJAM_4 7 Degee of Appoximaion of a Cla of Funcion by C, E, q Mean of Fouie Seie Hae Kihna Nigam and Kuum Shama Abac In hi pape, fo he fi ime, we inoduce

More information

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales Advances in Dynamical Sysems and Applicaions. ISSN 0973-5321 Volume 1 Number 1 (2006, pp. 103 112 c Research India Publicaions hp://www.ripublicaion.com/adsa.hm The Asympoic Behavior of Nonoscillaory Soluions

More information

4 Sequences of measurable functions

4 Sequences of measurable functions 4 Sequences of measurable funcions 1. Le (Ω, A, µ) be a measure space (complee, afer a possible applicaion of he compleion heorem). In his chaper we invesigae relaions beween various (nonequivalen) convergences

More information

A STOCHASTIC MODELING FOR THE UNSTABLE FINANCIAL MARKETS

A STOCHASTIC MODELING FOR THE UNSTABLE FINANCIAL MARKETS A STOCHASTIC MODELING FOR THE UNSTABLE FINANCIAL MARKETS Assoc. Pof. Romeo Negea Ph. D Poliehnica Univesiy of Timisoaa Depamen of Mahemaics Timisoaa, Romania Assoc. Pof. Cipian Peda Ph. D Wes Univesiy

More information

Lecture 10: The Poincaré Inequality in Euclidean space

Lecture 10: The Poincaré Inequality in Euclidean space Deparmens of Mahemaics Monana Sae Universiy Fall 215 Prof. Kevin Wildrick n inroducion o non-smooh analysis and geomery Lecure 1: The Poincaré Inequaliy in Euclidean space 1. Wha is he Poincaré inequaliy?

More information

On the local convexity of the implied volatility curve in uncorrelated stochastic volatility models

On the local convexity of the implied volatility curve in uncorrelated stochastic volatility models On he local conexiy of he implied olailiy cue in uncoelaed sochasic olailiy models Elisa Alòs Dp. d Economia i Empesa and Bacelona Gaduae School of Economics Uniesia Pompeu Faba c/ramon Tias Fagas, 5-7

More information

Dual Hierarchies of a Multi-Component Camassa Holm System

Dual Hierarchies of a Multi-Component Camassa Holm System Commun. heo. Phys. 64 05 37 378 Vol. 64, No. 4, Ocobe, 05 Dual Hieachies of a Muli-Componen Camassa Holm Sysem LI Hong-Min, LI Yu-Qi, and CHEN Yong Shanghai Key Laboaoy of uswohy Compuing, Eas China Nomal

More information

GRADIENT ESTIMATES FOR A SIMPLE PARABOLIC LICHNEROWICZ EQUATION. Osaka Journal of Mathematics. 51(1) P.245-P.256

GRADIENT ESTIMATES FOR A SIMPLE PARABOLIC LICHNEROWICZ EQUATION. Osaka Journal of Mathematics. 51(1) P.245-P.256 Tile Auhor(s) GRADIENT ESTIMATES FOR A SIMPLE PARABOLIC LICHNEROWICZ EQUATION Zhao, Liang Ciaion Osaka Journal of Mahemaics. 51(1) P.45-P.56 Issue Dae 014-01 Tex Version publisher URL hps://doi.org/10.18910/9195

More information

Sections 3.1 and 3.4 Exponential Functions (Growth and Decay)

Sections 3.1 and 3.4 Exponential Functions (Growth and Decay) Secions 3.1 and 3.4 Eponenial Funcions (Gowh and Decay) Chape 3. Secions 1 and 4 Page 1 of 5 Wha Would You Rahe Have... $1million, o double you money evey day fo 31 days saing wih 1cen? Day Cens Day Cens

More information

Sobolev-type Inequality for Spaces L p(x) (R N )

Sobolev-type Inequality for Spaces L p(x) (R N ) In. J. Conemp. Mah. Sciences, Vol. 2, 27, no. 9, 423-429 Sobolev-ype Inequaliy for Spaces L p(x ( R. Mashiyev and B. Çekiç Universiy of Dicle, Faculy of Sciences and Ars Deparmen of Mahemaics, 228-Diyarbakir,

More information

MATHEMATICAL FOUNDATIONS FOR APPROXIMATING PARTICLE BEHAVIOUR AT RADIUS OF THE PLANCK LENGTH

MATHEMATICAL FOUNDATIONS FOR APPROXIMATING PARTICLE BEHAVIOUR AT RADIUS OF THE PLANCK LENGTH Fundamenal Jounal of Mahemaical Phsics Vol 3 Issue 013 Pages 55-6 Published online a hp://wwwfdincom/ MATHEMATICAL FOUNDATIONS FOR APPROXIMATING PARTICLE BEHAVIOUR AT RADIUS OF THE PLANCK LENGTH Univesias

More information

arxiv: v1 [math.fa] 20 Dec 2018

arxiv: v1 [math.fa] 20 Dec 2018 Diffeeniabiliy of he Evoluion Map and Mackey Coninuiy Maximilian Hanusch axiv:1812.08777v1 mah.fa] 20 Dec 2018 Insiu fü Mahemaik Univesiä Padebon Wabuge Saße 100 33098 Padebon Gemany Decembe 20, 2018 Absac

More information

, on the power of the transmitter P t fed to it, and on the distance R between the antenna and the observation point as. r r t

, on the power of the transmitter P t fed to it, and on the distance R between the antenna and the observation point as. r r t Lecue 6: Fiis Tansmission Equaion and Rada Range Equaion (Fiis equaion. Maximum ange of a wieless link. Rada coss secion. Rada equaion. Maximum ange of a ada. 1. Fiis ansmission equaion Fiis ansmission

More information

2017Ψ9 ADVANCES IN MATHEMATICS (CHINA) Sep., 2017

2017Ψ9 ADVANCES IN MATHEMATICS (CHINA) Sep., 2017 Λ46 Λ5Ω ff fl Π Vol. 46, No. 5 2017Ψ9 ADVANCES IN MATHEMATICS CHINA) Sep., 2017 doi: 10.11845/sxjz.2015219b Boundedness of Commutatos Geneated by Factional Integal Opeatos With Vaiable Kenel and Local

More information

Measure Estimates of Nodal Sets of Polyharmonic Functions

Measure Estimates of Nodal Sets of Polyharmonic Functions Chin. Ann. Math. Se. B 39(5), 08, 97 93 DOI: 0.007/s40-08-004-6 Chinese Annals of Mathematics, Seies B c The Editoial Office of CAM and Spinge-Velag Belin Heidelbeg 08 Measue Estimates of Nodal Sets of

More information

[ ] 0. = (2) = a q dimensional vector of observable instrumental variables that are in the information set m constituents of u

[ ] 0. = (2) = a q dimensional vector of observable instrumental variables that are in the information set m constituents of u Genealized Mehods of Momens he genealized mehod momens (GMM) appoach of Hansen (98) can be hough of a geneal pocedue fo esing economics and financial models. he GMM is especially appopiae fo models ha

More information

On the Semi-Discrete Davey-Stewartson System with Self-Consistent Sources

On the Semi-Discrete Davey-Stewartson System with Self-Consistent Sources Jounal of Applied Mahemaics and Physics 25 3 478-487 Published Online May 25 in SciRes. hp://www.scip.og/jounal/jamp hp://dx.doi.og/.4236/jamp.25.356 On he Semi-Discee Davey-Sewason Sysem wih Self-Consisen

More information

Research Article Littlewood-Paley Operators on Morrey Spaces with Variable Exponent

Research Article Littlewood-Paley Operators on Morrey Spaces with Variable Exponent Hindawi Publising opoaion e Scienific Wold Jounal, Aicle ID 79067, 0 pages p://dx.doi.og/0.55/204/79067 Reseac Aicle Lilewood-Paley Opeaos on Moey Spaces wi Vaiable Exponen Suangping Tao and Lijuan Wang

More information

BEST CONSTANTS FOR UNCENTERED MAXIMAL FUNCTIONS. Loukas Grafakos and Stephen Montgomery-Smith University of Missouri, Columbia

BEST CONSTANTS FOR UNCENTERED MAXIMAL FUNCTIONS. Loukas Grafakos and Stephen Montgomery-Smith University of Missouri, Columbia BEST CONSTANTS FOR UNCENTERED MAXIMAL FUNCTIONS Loukas Gafakos and Stehen Montgomey-Smith Univesity of Missoui, Columbia Abstact. We ecisely evaluate the oeato nom of the uncenteed Hady-Littlewood maximal

More information

Oscillation of an Euler Cauchy Dynamic Equation S. Huff, G. Olumolode, N. Pennington, and A. Peterson

Oscillation of an Euler Cauchy Dynamic Equation S. Huff, G. Olumolode, N. Pennington, and A. Peterson PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS May 4 7, 00, Wilmingon, NC, USA pp 0 Oscillaion of an Euler Cauchy Dynamic Equaion S Huff, G Olumolode,

More information

Essential Maps and Coincidence Principles for General Classes of Maps

Essential Maps and Coincidence Principles for General Classes of Maps Filoma 31:11 (2017), 3553 3558 hps://doi.org/10.2298/fil1711553o Published by Faculy of Sciences Mahemaics, Universiy of Niš, Serbia Available a: hp://www.pmf.ni.ac.rs/filoma Essenial Maps Coincidence

More information

CHARACTERIZATION OF REARRANGEMENT INVARIANT SPACES WITH FIXED POINTS FOR THE HARDY LITTLEWOOD MAXIMAL OPERATOR

CHARACTERIZATION OF REARRANGEMENT INVARIANT SPACES WITH FIXED POINTS FOR THE HARDY LITTLEWOOD MAXIMAL OPERATOR Annales Academiæ Scieniarum Fennicæ Mahemaica Volumen 31, 2006, 39 46 CHARACTERIZATION OF REARRANGEMENT INVARIANT SPACES WITH FIXED POINTS FOR THE HARDY LITTLEWOOD MAXIMAL OPERATOR Joaquim Marín and Javier

More information

On The Estimation of Two Missing Values in Randomized Complete Block Designs

On The Estimation of Two Missing Values in Randomized Complete Block Designs Mahemaical Theoy and Modeling ISSN 45804 (Pape ISSN 505 (Online Vol.6, No.7, 06 www.iise.og On The Esimaion of Two Missing Values in Randomized Complee Bloc Designs EFFANGA, EFFANGA OKON AND BASSE, E.

More information

An Automatic Door Sensor Using Image Processing

An Automatic Door Sensor Using Image Processing An Auomaic Doo Senso Using Image Pocessing Depamen o Elecical and Eleconic Engineeing Faculy o Engineeing Tooi Univesiy MENDEL 2004 -Insiue o Auomaion and Compue Science- in BRNO CZECH REPUBLIC 1. Inoducion

More information

Lecture 20: Riccati Equations and Least Squares Feedback Control

Lecture 20: Riccati Equations and Least Squares Feedback Control 34-5 LINEAR SYSTEMS Lecure : Riccai Equaions and Leas Squares Feedback Conrol 5.6.4 Sae Feedback via Riccai Equaions A recursive approach in generaing he marix-valued funcion W ( ) equaion for i for he

More information

GLOBAL REGULARITY IN ORLICZ-MORREY SPACES OF SOLUTIONS TO NONDIVERGENCE ELLIPTIC EQUATIONS WITH VMO COEFFICIENTS

GLOBAL REGULARITY IN ORLICZ-MORREY SPACES OF SOLUTIONS TO NONDIVERGENCE ELLIPTIC EQUATIONS WITH VMO COEFFICIENTS Eleconic Jounal of Diffeenial Equaions, Vol. 208 (208, No. 0, pp. 24. ISSN: 072-669. URL: hp://ejde.mah.xsae.edu o hp://ejde.mah.un.edu GLOBAL REGULARITY IN ORLICZ-MORREY SPACES OF SOLUTIONS TO NONDIVERGENCE

More information

Triebel Lizorkin space estimates for multilinear operators of sublinear operators

Triebel Lizorkin space estimates for multilinear operators of sublinear operators Proc. Indian Acad. Sci. Mah. Sci. Vol. 3, No. 4, November 2003, pp. 379 393. Prined in India Triebel Lizorkin space esimaes for mulilinear operaors of sublinear operaors LIU LANZHE Deparmen of Applied

More information

CONTRIBUTION TO IMPULSIVE EQUATIONS

CONTRIBUTION TO IMPULSIVE EQUATIONS European Scienific Journal Sepember 214 /SPECIAL/ ediion Vol.3 ISSN: 1857 7881 (Prin) e - ISSN 1857-7431 CONTRIBUTION TO IMPULSIVE EQUATIONS Berrabah Faima Zohra, MA Universiy of sidi bel abbes/ Algeria

More information

arxiv: v2 [math.pr] 19 Feb 2016

arxiv: v2 [math.pr] 19 Feb 2016 Global Diichle Hea Kenel Esimaes fo Symmeic Lévy Pocesses in Half-space Zhen-Qing Chen and Panki Kim axiv:54.4673v2 [mah.pr] 9 Feb 26 Mach 5, 28 Absac In his pape, we deive explici shap wo-sided esimaes

More information

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation:

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation: M ah 5 7 Fall 9 L ecure O c. 4, 9 ) Hamilon- J acobi Equaion: Weak S oluion We coninue he sudy of he Hamilon-Jacobi equaion: We have shown ha u + H D u) = R n, ) ; u = g R n { = }. ). In general we canno

More information

A Necessary and Sufficient Condition for the Solutions of a Functional Differential Equation to Be Oscillatory or Tend to Zero

A Necessary and Sufficient Condition for the Solutions of a Functional Differential Equation to Be Oscillatory or Tend to Zero JOURNAL OF MAEMAICAL ANALYSIS AND APPLICAIONS 24, 7887 1997 ARICLE NO. AY965143 A Necessary and Sufficien Condiion for he Soluions of a Funcional Differenial Equaion o Be Oscillaory or end o Zero Piambar

More information

Monochromatic Wave over One and Two Bars

Monochromatic Wave over One and Two Bars Applied Mahemaical Sciences, Vol. 8, 204, no. 6, 307-3025 HIKARI Ld, www.m-hikai.com hp://dx.doi.og/0.2988/ams.204.44245 Monochomaic Wave ove One and Two Bas L.H. Wiyano Faculy of Mahemaics and Naual Sciences,

More information

Secure Frameproof Codes Through Biclique Covers

Secure Frameproof Codes Through Biclique Covers Discee Mahemaics and Theoeical Compue Science DMTCS vol. 4:2, 202, 26 270 Secue Famepoof Codes Though Biclique Coves Hossein Hajiabolhassan,2 and Faokhlagha Moazami 3 Depamen of Mahemaical Sciences, Shahid

More information

On Functions of Integrable Mean Oscillation

On Functions of Integrable Mean Oscillation On Funcions of negrable Mean Oscillaion Oscar BLASCO * and M. Amparo PÉREZ Deparameno de Análisis Maemáico Universidad de Valencia 46 Burjasso Valencia Spain oblasco@uv.es Recibido: de diciembre de 24

More information

Properties of the interface of the symbiotic branching model

Properties of the interface of the symbiotic branching model Popeies of he ineface of he symbioic banching model Jochen Blah 1 and Macel Ogiese 1 (Vesion of 4 Mach 1) Absac The symbioic banching model descibes he evoluion of wo ineacing populaions and if saed wih

More information

Convergence of the Neumann series in higher norms

Convergence of the Neumann series in higher norms Convergence of he Neumann series in higher norms Charles L. Epsein Deparmen of Mahemaics, Universiy of Pennsylvania Version 1.0 Augus 1, 003 Absrac Naural condiions on an operaor A are given so ha he Neumann

More information

CS 188: Artificial Intelligence Fall Probabilistic Models

CS 188: Artificial Intelligence Fall Probabilistic Models CS 188: Aificial Inelligence Fall 2007 Lecue 15: Bayes Nes 10/18/2007 Dan Klein UC Bekeley Pobabilisic Models A pobabilisic model is a join disibuion ove a se of vaiables Given a join disibuion, we can

More information

LOGARITHMIC ORDER AND TYPE OF INDETERMINATE MOMENT PROBLEMS

LOGARITHMIC ORDER AND TYPE OF INDETERMINATE MOMENT PROBLEMS LOGARITHMIC ORDER AND TYPE OF INDETERMINATE MOMENT PROBLEMS CHRISTIAN BERG AND HENRIK L. PEDERSEN WITH AN APPENDIX BY WALTER HAYMAN We invesigae a efined gowh scale, logaihmic gowh, fo indeeminae momen

More information

Monotonic Solutions of a Class of Quadratic Singular Integral Equations of Volterra type

Monotonic Solutions of a Class of Quadratic Singular Integral Equations of Volterra type In. J. Conemp. Mah. Sci., Vol. 2, 27, no. 2, 89-2 Monoonic Soluions of a Class of Quadraic Singular Inegral Equaions of Volerra ype Mahmoud M. El Borai Deparmen of Mahemaics, Faculy of Science, Alexandria

More information

On Oscillation of a Generalized Logistic Equation with Several Delays

On Oscillation of a Generalized Logistic Equation with Several Delays Journal of Mahemaical Analysis and Applicaions 253, 389 45 (21) doi:1.16/jmaa.2.714, available online a hp://www.idealibrary.com on On Oscillaion of a Generalized Logisic Equaion wih Several Delays Leonid

More information

Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL:

Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL: Ann. Func. Anal. 2 2011, no. 2, 34 41 A nnals of F uncional A nalysis ISSN: 2008-8752 elecronic URL: www.emis.de/journals/afa/ CLASSIFICAION OF POSIIVE SOLUIONS OF NONLINEAR SYSEMS OF VOLERRA INEGRAL EQUAIONS

More information

On Two Integrability Methods of Improper Integrals

On Two Integrability Methods of Improper Integrals Inernaional Journal of Mahemaics and Compuer Science, 13(218), no. 1, 45 5 M CS On Two Inegrabiliy Mehods of Improper Inegrals H. N. ÖZGEN Mahemaics Deparmen Faculy of Educaion Mersin Universiy, TR-33169

More information

An Introduction to Malliavin calculus and its applications

An Introduction to Malliavin calculus and its applications An Inroducion o Malliavin calculus and is applicaions Lecure 5: Smoohness of he densiy and Hörmander s heorem David Nualar Deparmen of Mahemaics Kansas Universiy Universiy of Wyoming Summer School 214

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

On a Fractional Stochastic Landau-Ginzburg Equation

On a Fractional Stochastic Landau-Ginzburg Equation Applied Mahemaical Sciences, Vol. 4, 1, no. 7, 317-35 On a Fracional Sochasic Landau-Ginzburg Equaion Nguyen Tien Dung Deparmen of Mahemaics, FPT Universiy 15B Pham Hung Sree, Hanoi, Vienam dungn@fp.edu.vn

More information

Journal of Inequalities in Pure and Applied Mathematics

Journal of Inequalities in Pure and Applied Mathematics Jounal of Inequalities in Pue and Applied Mathematics COEFFICIENT INEQUALITY FOR A FUNCTION WHOSE DERIVATIVE HAS A POSITIVE REAL PART S. ABRAMOVICH, M. KLARIČIĆ BAKULA AND S. BANIĆ Depatment of Mathematics

More information

Math-Net.Ru All Russian mathematical portal

Math-Net.Ru All Russian mathematical portal Mah-NeRu All Russian mahemaical poral Roman Popovych, On elemens of high order in general finie fields, Algebra Discree Mah, 204, Volume 8, Issue 2, 295 300 Use of he all-russian mahemaical poral Mah-NeRu

More information

SOME SOLVABILITY THEOREMS FOR NONLINEAR EQUATIONS

SOME SOLVABILITY THEOREMS FOR NONLINEAR EQUATIONS Fixed Point Theoy, Volume 5, No. 1, 2004, 71-80 http://www.math.ubbcluj.o/ nodeacj/sfptcj.htm SOME SOLVABILITY THEOREMS FOR NONLINEAR EQUATIONS G. ISAC 1 AND C. AVRAMESCU 2 1 Depatment of Mathematics Royal

More information

( ) exp i ω b ( ) [ III-1 ] exp( i ω ab. exp( i ω ba

( ) exp i ω b ( ) [ III-1 ] exp( i ω ab. exp( i ω ba THE INTEACTION OF ADIATION AND MATTE: SEMICLASSICAL THEOY PAGE 26 III. EVIEW OF BASIC QUANTUM MECHANICS : TWO -LEVEL QUANTUM SYSTEMS : The lieaue of quanum opics and lase specoscop abounds wih discussions

More information

Existence of positive solution for a third-order three-point BVP with sign-changing Green s function

Existence of positive solution for a third-order three-point BVP with sign-changing Green s function Elecronic Journal of Qualiaive Theory of Differenial Equaions 13, No. 3, 1-11; hp://www.mah.u-szeged.hu/ejqde/ Exisence of posiive soluion for a hird-order hree-poin BVP wih sign-changing Green s funcion

More information

On Ternary Quadratic Forms

On Ternary Quadratic Forms On Ternary Quadraic Forms W. Duke Deparmen of Mahemaics, Universiy of California, Los Angeles, CA 98888. Inroducion. Dedicaed o he memory of Arnold E. Ross Le q(x) = q(x, x, x ) be a posiive definie ernary

More information

The sudden release of a large amount of energy E into a background fluid of density

The sudden release of a large amount of energy E into a background fluid of density 10 Poin explosion The sudden elease of a lage amoun of enegy E ino a backgound fluid of densiy ceaes a song explosion, chaaceized by a song shock wave (a blas wave ) emanaing fom he poin whee he enegy

More information

arxiv: v1 [math.pr] 19 Feb 2011

arxiv: v1 [math.pr] 19 Feb 2011 A NOTE ON FELLER SEMIGROUPS AND RESOLVENTS VADIM KOSTRYKIN, JÜRGEN POTTHOFF, AND ROBERT SCHRADER ABSTRACT. Various equivalen condiions for a semigroup or a resolven generaed by a Markov process o be of

More information

arxiv:math/ v1 [math.nt] 3 Nov 2005

arxiv:math/ v1 [math.nt] 3 Nov 2005 arxiv:mah/0511092v1 [mah.nt] 3 Nov 2005 A NOTE ON S AND THE ZEROS OF THE RIEMANN ZETA-FUNCTION D. A. GOLDSTON AND S. M. GONEK Absrac. Le πs denoe he argumen of he Riemann zea-funcion a he poin 1 + i. Assuming

More information

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t...

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t... Mah 228- Fri Mar 24 5.6 Marix exponenials and linear sysems: The analogy beween firs order sysems of linear differenial equaions (Chaper 5) and scalar linear differenial equaions (Chaper ) is much sronger

More information

Low-complexity Algorithms for MIMO Multiplexing Systems

Low-complexity Algorithms for MIMO Multiplexing Systems Low-complexiy Algoihms fo MIMO Muliplexing Sysems Ouline Inoducion QRD-M M algoihm Algoihm I: : o educe he numbe of suviving pahs. Algoihm II: : o educe he numbe of candidaes fo each ansmied signal. :

More information

Finish reading Chapter 2 of Spivak, rereading earlier sections as necessary. handout and fill in some missing details!

Finish reading Chapter 2 of Spivak, rereading earlier sections as necessary. handout and fill in some missing details! MAT 257, Handou 6: Ocober 7-2, 20. I. Assignmen. Finish reading Chaper 2 of Spiva, rereading earlier secions as necessary. handou and fill in some missing deails! II. Higher derivaives. Also, read his

More information

Orthotropic Materials

Orthotropic Materials Kapiel 2 Ohoopic Maeials 2. Elasic Sain maix Elasic sains ae elaed o sesses by Hooke's law, as saed below. The sesssain elaionship is in each maeial poin fomulaed in he local caesian coodinae sysem. ε

More information

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 9 Solutions [Theorems of Gauss and Stokes]

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 9 Solutions [Theorems of Gauss and Stokes] ENGI 44 Avance alculus fo Engineeing Faculy of Engineeing an Applie cience Poblem e 9 oluions [Theoems of Gauss an okes]. A fla aea A is boune by he iangle whose veices ae he poins P(,, ), Q(,, ) an R(,,

More information

SOME GENERAL NUMERICAL RADIUS INEQUALITIES FOR THE OFF-DIAGONAL PARTS OF 2 2 OPERATOR MATRICES

SOME GENERAL NUMERICAL RADIUS INEQUALITIES FOR THE OFF-DIAGONAL PARTS OF 2 2 OPERATOR MATRICES italian jounal of pue and applied mathematics n. 35 015 (433 44) 433 SOME GENERAL NUMERICAL RADIUS INEQUALITIES FOR THE OFF-DIAGONAL PARTS OF OPERATOR MATRICES Watheq Bani-Domi Depatment of Mathematics

More information

Existence of multiple positive periodic solutions for functional differential equations

Existence of multiple positive periodic solutions for functional differential equations J. Mah. Anal. Appl. 325 (27) 1378 1389 www.elsevier.com/locae/jmaa Exisence of muliple posiive periodic soluions for funcional differenial equaions Zhijun Zeng a,b,,libi a, Meng Fan a a School of Mahemaics

More information