Homogenization of a 1D pursuit law with delay

Size: px
Start display at page:

Download "Homogenization of a 1D pursuit law with delay"

Transcription

1 Homogenization of a 1D pursuit law with delay Jeremy Firozaly (Joint work with R. Monneau) Paris-Est University June 2, 2016 J. Firozaly (Paris-Est University) Homogenization of a delay equation June 2, / 23

2 Traffic flow modelling: microscopic scale Figure : View of the microsopic scale considered in our study. J. Firozaly (Paris-Est University) Homogenization of a delay equation June 2, / 23

3 Traffic flow modelling: macroscopic scale Figure : Schematic view of the global traffic flow around Paris from sytadin.fr. J. Firozaly (Paris-Est University) Homogenization of a delay equation June 2, / 23

4 Homogenization process: micro-macro passage Figure : Schematic description of the homogenization process. Huge reaction times accordion effect (see video) J. Firozaly (Paris-Est University) Homogenization of a delay equation June 2, / 23

5 Pursuit law Microscopic dynamics (DDE): dx i dt (t) = F (X i+1(t τ) X i (t τ)) with initial condition: (i, t) Z (0, + ) X i (t) = x 0 i (t) t [ 2τ, 0] J. Firozaly (Paris-Est University) Homogenization of a delay equation June 2, / 23

6 Rescaled equation and expected limit Hyperbolic rescaling: Microscopic model embedded into: { t u ε (x, t) = F u ε (x, t) := εx x ε ( t ε ) ( u ε (x+ε,t ετ) u ε (x,t ετ) ε ) (x, t) R (0, + ) u ε (x, s) = u 0 (x, s) (x, s) R [ 2ετ, 0] Expected macroscopic model for vanishing ε: { t u 0 (x, t) = F ( x u 0 (x, t)) (x, t) R (0, + ) u 0 (x, 0) = u 0 (x, 0) x R J. Firozaly (Paris-Est University) Homogenization of a delay equation June 2, / 23

7 Outline 1 Introduction 2 Convergence theorem 3 Strict comparison principle 4 Convergence proof J. Firozaly (Paris-Est University) Homogenization of a delay equation June 2, / 23

8 Introduction Some references Microscopic traffic flow models [Chandler, Hermann, Montroll; (1958)] [Gipps; (1981)] [Costeseque; (2014)] Macroscopic traffic flow models [Lighthill, Whitham; (1955)] [Richards; (1956)] Periodic homogenization for system of ODEs [Forcadel, Imbert, Monneau; (2007)] [Forcadel, Imbert, Monneau; (2008)] Homogenization with a junction condition [Forcadel, Salazar; (2014)] Homogenization of second order models [Forcadel, Salazar; (2015)] J. Firozaly (Paris-Est University) Homogenization of a delay equation June 2, / 23

9 Introduction Existence and Uniqueness of solutions Assumptions (B0) F is: non-decreasing bounded C F Lipschitz (B1) u 0 is L Lipschitz Microscopic model (ε singular DDE): Incremental construction Macroscopic model (HJ equation): Perron method and comparison principle J. Firozaly (Paris-Est University) Homogenization of a delay equation June 2, / 23

10 Convergence theorem Convergence theorem Theorem [F-Monneau] For τ ( ) 1 0; ec F and under assumptions (B0)-(B1), u ε converges locally uniformly towards u 0. The proof relies on a strict comparison principle stated on: { t u(x, t) = F (u(x + 1, t τ) u(x, t τ)) (x, t) R (0, + ) u(x, s) = u 0 (x, s) (x, s) R [ 2τ; 0] J. Firozaly (Paris-Est University) Homogenization of a delay equation June 2, / 23

11 Strict comparison principle Strict comparison principle Theorem [F-Monneau] Under (B0)-(B1), let v be a supersolution and u a subsolution. If: 0 < δ (v u)(x, t τ ) ρ(τ )(v u)(x, t) τ [0, τ], (x, t) R [ τ, 0] where ρ is non decreasing and such that: Then we have: τ 1 + C F ρ(τ) ρ(s)ds < ρ(τ ) τ [0, τ] 0 0 < δe C F ρ(τ)t v(x, t) u(x, t) (x, t) R [0, + ) J. Firozaly (Paris-Est University) Homogenization of a delay equation June 2, / 23

12 Strict comparison principle Restriction on τ Lemma There exist non decreasing ρ such that: if and only if τ < 1 ec F. τ 1 + C F ρ(τ) ρ(s)ds < ρ(τ ) τ [0, τ] 0 The proof uses comparison principles on affine differential inequalities. The restriction on τ is not sufficient for the strict comparison principle to hold. Vehicles must be suitably spaced out. J. Firozaly (Paris-Est University) Homogenization of a delay equation June 2, / 23

13 Strict comparison principle Proof of strict comparison principle (sketch) We want to prove that: 0 < δe C F ρ(τ)t d(x, t) := v(x, t) u(x, t) (x, t) R [0, + ) T := sup{s 0/d(x, t τ ) ρ(τ )d(x, t), τ [0, τ], x R, t [ τ, S]} We show by contradiction that T = +. By definition of d, as F is C F Lipschitz and T = + : t d(x, t) C F d(x, t τ) C F ρ(τ)d(x, t) J. Firozaly (Paris-Est University) Homogenization of a delay equation June 2, / 23

14 Strict comparison principle Let us show that T = + : By contradiction, if not: Preliminary result: β (0, 1), τ β [0, τ], (x β, t β ) R (T, T + β] : d(x β, t β τ β ) > ρ(τ β )d(x β, t β ) d(x, t τ ) ρ(τ )d(x, t) τ [0, τ], (x, t) R [0, T ] with ρ given by: τ ρ(τ ) = 1 + C F ρ(τ) ρ(s)ds (< ρ(τ )) 0 Proof based on classical comparison principle for the ODE: τ W = C F ρ(τ)ρ(τ )W J. Firozaly (Paris-Est University) Homogenization of a delay equation June 2, / 23

15 Strict comparison principle Case 1: t β τ β T. d(x β, t β τ β ) = d(x β, T τ β ) with τ β := T t β + τ β [0, τ] Use of preliminary result: d(x β, t β τ β ) ρ(τ β )d(x β, T ) Moreover, d satisfies: d(x, t) d(x, s) 2 F (t s) (x, t) R [0, + ), s [0, t] Hence: d(x β, t β τ β ) ρ(τ β )(d(x β, t β ) + 2 F β) J. Firozaly (Paris-Est University) Homogenization of a delay equation June 2, / 23

16 Strict comparison principle Then, β < β 1 := δ 2 F +1 e C F ρ(τ)t > 0 implies: d(x β, t β ) d(x β, T ) 2 F β δe C F ρ(τ)t 2 F β 1 = β 1 By considering β < β 2 := β 1 2 F inf [0,τ] ( ρ ρ 1), we conclude that: d(x β, t β τ β ) ρ(τ β )d(x β, t β ) and using the fact that ρ is non decreasing and τ β τ β this contradicts d(x β, t β τ β ) > ρ(τ β )d(x β, t β ) J. Firozaly (Paris-Est University) Homogenization of a delay equation June 2, / 23

17 Strict comparison principle Case 2: t β τ β > T. This implies that τ β [0, β]. By using the fact that d is semi-lipschitz and we get: d(x β, t β τ β ) > ρ(τ β )d(x β, t β ), (ρ(τ β ) 1)d(x β, T ) < 2 F ρ(τ β )β By using the result that came from Gronwall s lemma, we finally get: 0 < δe C F ρ(τ)t < ρ(τ β) ρ(τ β ) 1 2 F β which implies δ = 0 for vanishing β. J. Firozaly (Paris-Est University) Homogenization of a delay equation June 2, / 23

18 Strict comparison principle Counter-example Here we choose F such that F = Id in [0, 1]. Let n 0 N such that τ > 2 n 0. Given two sets of drivers (X i ) i Z and (Y i ) i Z such that there exists j Z such that for t [ τ, 0]: y 0 j (t) = j 1 + n 0 n 0 +1 en 0t < x 0 j (t) = j y 0 j+1 (t) = j + n 0 n 0 +1 en 0t < x 0 j+1 (t) = y 0 j+1 (t) + 1 n 0 +1 By direct integration, we find: (Y j X j )(τ) = n 0 n τ 1 n e n0τ n > 0 J. Firozaly (Paris-Est University) Homogenization of a delay equation June 2, / 23

19 Strict comparison principle Figure : Initial dynamics for the counter-example. J. Firozaly (Paris-Est University) Homogenization of a delay equation June 2, / 23

20 Convergence proof Convergence proof (sketch) 1 Lipschitz estimates and barriers: u ε is F Lipschitz in time. Strict comparison principle: u ε is 2L Lipschitz in space. Barriers: u ε (x, t) u 0 (x, t) ( F + L)t. 2 (Classical) use of relaxed semi-limits ū and u: If ū is a subsolution of the HJ equation (and u is a supersolution) then by comparison principle: ū u 0 u = convergence J. Firozaly (Paris-Est University) Homogenization of a delay equation June 2, / 23

21 Convergence proof ū is a subsolution: By contradiction, if not, there exist ( x, t), ϕ C 1 x,t, (r, θ, η) (0, + ) 3 such that: and, ū < ϕ in B 2r ( x, t) \ {( x, t)} ū( x, t) = ϕ( x, t) ū ϕ 2η in B 2r ( x, t) \ B r ( x, t) t ϕ( x, t) = 2θ + F ( x ϕ( x, t)) with B r (y, s) := (y r, y + r) (s r, s + r) J. Firozaly (Paris-Est University) Homogenization of a delay equation June 2, / 23

22 Convergence proof We define: For ε small enough: M ε := max B 2r ( x, t) (uε ϕ) := (u ε ϕ)(x ε, t ε ) (x ε, t ε ) B r ( x, t) For ϕ ε := ϕ + M ε, we have (for ε small enough): ϕ ε (x ε t ε ) = u ε (x ε, t ε ) ( t ϕ ε (x, t) F ϕ ε (x+ε,t ετ) ϕ ε (x,t ετ) ε ) + θ 2 in B r ( x, t) Use of localised strict comparison principle: ϕ ε > u ε in B r ( x, t) Contradiction with ϕ ε (x ε, t ε ) = u ε (x ε, t ε ) J. Firozaly (Paris-Est University) Homogenization of a delay equation June 2, / 23

23 Convergence proof Thank you for your attention J. Firozaly (Paris-Est University) Homogenization of a delay equation June 2, / 23

A junction condition by specified homogenization

A junction condition by specified homogenization A junction condition by specified homogenization G. Galise, C. Imbert, R. Monneau June 19, 2014 Abstract Given a coercive Hamiltonian which is quasi-convex with respect to the gradient variable and periodic

More information

On the infinity Laplace operator

On the infinity Laplace operator On the infinity Laplace operator Petri Juutinen Köln, July 2008 The infinity Laplace equation Gunnar Aronsson (1960 s): variational problems of the form S(u, Ω) = ess sup H (x, u(x), Du(x)). (1) x Ω The

More information

Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks

Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks C. Imbert and R. Monneau June 24, 2014 Abstract We study Hamilton-Jacobi equations on networks in the case where Hamiltonians

More information

Some lecture notes for Math 6050E: PDEs, Fall 2016

Some lecture notes for Math 6050E: PDEs, Fall 2016 Some lecture notes for Math 65E: PDEs, Fall 216 Tianling Jin December 1, 216 1 Variational methods We discuss an example of the use of variational methods in obtaining existence of solutions. Theorem 1.1.

More information

Traffic Flow Problems

Traffic Flow Problems Traffic Flow Problems Nicodemus Banagaaya Supervisor : Dr. J.H.M. ten Thije Boonkkamp October 15, 2009 Outline Introduction Mathematical model derivation Godunov Scheme for the Greenberg Traffic model.

More information

Level-set convex Hamilton-Jacobi equations on networks

Level-set convex Hamilton-Jacobi equations on networks Level-set convex Hamilton-Jacobi equations on networks C. Imbert and R. Monneau January 17, 2014 Abstract The paper deals with Hamilton-Jacobi equations on networks with level-set convex (in the gradient

More information

Homogenization of a Hele-Shaw-type problem in periodic time-dependent med

Homogenization of a Hele-Shaw-type problem in periodic time-dependent med Homogenization of a Hele-Shaw-type problem in periodic time-dependent media University of Tokyo npozar@ms.u-tokyo.ac.jp KIAS, Seoul, November 30, 2012 Hele-Shaw problem Model of the pressure-driven }{{}

More information

MINIMAL GRAPHS PART I: EXISTENCE OF LIPSCHITZ WEAK SOLUTIONS TO THE DIRICHLET PROBLEM WITH C 2 BOUNDARY DATA

MINIMAL GRAPHS PART I: EXISTENCE OF LIPSCHITZ WEAK SOLUTIONS TO THE DIRICHLET PROBLEM WITH C 2 BOUNDARY DATA MINIMAL GRAPHS PART I: EXISTENCE OF LIPSCHITZ WEAK SOLUTIONS TO THE DIRICHLET PROBLEM WITH C 2 BOUNDARY DATA SPENCER HUGHES In these notes we prove that for any given smooth function on the boundary of

More information

Propagation d interfaces avec termes non locaux

Propagation d interfaces avec termes non locaux Propagation d interfaces avec termes non locaux P. Cardaliaguet Univ. Brest Janvier 2008 Joint works with G. Barles (Tours), O. Alvarez (Rouen), O. Ley (Tours), R. Monneau (CERMICS), A. Monteillet (Brest).

More information

Long time behaviour of periodic solutions of uniformly elliptic integro-differential equations

Long time behaviour of periodic solutions of uniformly elliptic integro-differential equations 1/ 15 Long time behaviour of periodic solutions of uniformly elliptic integro-differential equations joint with Barles, Chasseigne (Tours) and Ciomaga (Chicago) C. Imbert CNRS, Université Paris-Est Créteil

More information

The Riemann Solver for Traffic Flow at an Intersection with Buffer of Vanishing Size

The Riemann Solver for Traffic Flow at an Intersection with Buffer of Vanishing Size The Riemann Solver for Traffic Flow at an Intersection with Buffer of Vanishing Size Alberto Bressan ( ) and Anders Nordli ( ) (*) Department of Mathematics, Penn State University, University Par, Pa 16802,

More information

GLOBAL EXISTENCE RESULTS AND UNIQUENESS FOR DISLOCATION EQUATIONS

GLOBAL EXISTENCE RESULTS AND UNIQUENESS FOR DISLOCATION EQUATIONS GLOBAL EXISTENCE RESULTS AND UNIQUENESS FOR DISLOCATION EQUATIONS GUY BARLES, PIERRE CARDALIAGUET, OLIVIER LEY & RÉGIS MONNEAU Abstract. We are interested in nonlocal Eikonal Equations arising in the study

More information

Euler Equations: local existence

Euler Equations: local existence Euler Equations: local existence Mat 529, Lesson 2. 1 Active scalars formulation We start with a lemma. Lemma 1. Assume that w is a magnetization variable, i.e. t w + u w + ( u) w = 0. If u = Pw then u

More information

Convergence of a Generalized Fast Marching Method for an Eikonal equation with a Velocity Changing Sign

Convergence of a Generalized Fast Marching Method for an Eikonal equation with a Velocity Changing Sign Convergence of a Generalized Fast Marching Method for an Eikonal equation with a Velocity Changing Sign E. Carlini, M. Falcone, N. Forcadel, R. Monneau December 28, 2007 Abstract We present a new Fast

More information

1. Introduction Boundary estimates for the second derivatives of the solution to the Dirichlet problem for the Monge-Ampere equation

1. Introduction Boundary estimates for the second derivatives of the solution to the Dirichlet problem for the Monge-Ampere equation POINTWISE C 2,α ESTIMATES AT THE BOUNDARY FOR THE MONGE-AMPERE EQUATION O. SAVIN Abstract. We prove a localization property of boundary sections for solutions to the Monge-Ampere equation. As a consequence

More information

GLOBAL LIPSCHITZ CONTINUITY FOR MINIMA OF DEGENERATE PROBLEMS

GLOBAL LIPSCHITZ CONTINUITY FOR MINIMA OF DEGENERATE PROBLEMS GLOBAL LIPSCHITZ CONTINUITY FOR MINIMA OF DEGENERATE PROBLEMS PIERRE BOUSQUET AND LORENZO BRASCO Abstract. We consider the problem of minimizing the Lagrangian [F ( u+f u among functions on R N with given

More information

arxiv: v1 [math.ap] 10 Apr 2013

arxiv: v1 [math.ap] 10 Apr 2013 QUASI-STATIC EVOLUTION AND CONGESTED CROWD TRANSPORT DAMON ALEXANDER, INWON KIM, AND YAO YAO arxiv:1304.3072v1 [math.ap] 10 Apr 2013 Abstract. We consider the relationship between Hele-Shaw evolution with

More information

A posteriori analysis of a discontinuous Galerkin scheme for a diffuse interface model

A posteriori analysis of a discontinuous Galerkin scheme for a diffuse interface model A posteriori analysis of a discontinuous Galerkin scheme for a diffuse interface model Jan Giesselmann joint work with Ch. Makridakis (Univ. of Sussex), T. Pryer (Univ. of Reading) 9th DFG-CNRS WORKSHOP

More information

Obstacle Problems Involving The Fractional Laplacian

Obstacle Problems Involving The Fractional Laplacian Obstacle Problems Involving The Fractional Laplacian Donatella Danielli and Sandro Salsa January 27, 2017 1 Introduction Obstacle problems involving a fractional power of the Laplace operator appear in

More information

Stochastic Homogenization for Reaction-Diffusion Equations

Stochastic Homogenization for Reaction-Diffusion Equations Stochastic Homogenization for Reaction-Diffusion Equations Jessica Lin McGill University Joint Work with Andrej Zlatoš June 18, 2018 Motivation: Forest Fires ç ç ç ç ç ç ç ç ç ç Motivation: Forest Fires

More information

HOMOGENIZATION OF THE PEIERLS-NABARRO MODEL FOR DISLOCATION DYNAMICS. Régis Monneau. Stefania Patrizi

HOMOGENIZATION OF THE PEIERLS-NABARRO MODEL FOR DISLOCATION DYNAMICS. Régis Monneau. Stefania Patrizi HOMOGENIZATION OF THE PEIERLS-NABARRO MODEL FOR DISLOCATION DYNAMICS Régis Monneau Université Paris-Est, CERMICS, Ecole des Ponts ParisTech, 6-8 avenue Blaise Pascal, Cité Descartes, Champs sur Marne,

More information

Laplace s Equation. Chapter Mean Value Formulas

Laplace s Equation. Chapter Mean Value Formulas Chapter 1 Laplace s Equation Let be an open set in R n. A function u C 2 () is called harmonic in if it satisfies Laplace s equation n (1.1) u := D ii u = 0 in. i=1 A function u C 2 () is called subharmonic

More information

A non local free boundary problem arising in a theory of financial bubbles

A non local free boundary problem arising in a theory of financial bubbles A non local free boundary problem arising in a theory of financial bubbles Henri Berestycki, Regis Monneau, and José A. Scheinkman April 22, 2014 Abstract We consider an evolution non local free boundary

More information

Models of collective displacements: from microscopic to macroscopic description

Models of collective displacements: from microscopic to macroscopic description Models of collective displacements: from microscopic to macroscopic description Sébastien Motsch CSCAMM, University of Maryland joint work with : P. Degond, L. Navoret (IMT, Toulouse) SIAM Analysis of

More information

Robustness for a Liouville type theorem in exterior domains

Robustness for a Liouville type theorem in exterior domains Robustness for a Liouville type theorem in exterior domains Juliette Bouhours 1 arxiv:1207.0329v3 [math.ap] 24 Oct 2014 1 UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris,

More information

A LOCALIZATION PROPERTY AT THE BOUNDARY FOR MONGE-AMPERE EQUATION

A LOCALIZATION PROPERTY AT THE BOUNDARY FOR MONGE-AMPERE EQUATION A LOCALIZATION PROPERTY AT THE BOUNDARY FOR MONGE-AMPERE EQUATION O. SAVIN. Introduction In this paper we study the geometry of the sections for solutions to the Monge- Ampere equation det D 2 u = f, u

More information

Homogenization of the dislocation dynamics and of some particle systems with two-body interactions

Homogenization of the dislocation dynamics and of some particle systems with two-body interactions Homogenization of the dislocation dynamics and of some particle systems with two-body interactions Nicolas Forcadel 1, Cyril Imbert, Régis Monneau 1 May 15, 007 Abstract. This paper is concerned with the

More information

Regularity of flat level sets in phase transitions

Regularity of flat level sets in phase transitions Annals of Mathematics, 69 (2009), 4 78 Regularity of flat level sets in phase transitions By Ovidiu Savin Abstract We consider local minimizers of the Ginzburg-Landau energy functional 2 u 2 + 4 ( u2 )

More information

Singular Diffusion Equations With Nonuniform Driving Force. Y. Giga University of Tokyo (Joint work with M.-H. Giga) July 2009

Singular Diffusion Equations With Nonuniform Driving Force. Y. Giga University of Tokyo (Joint work with M.-H. Giga) July 2009 Singular Diffusion Equations With Nonuniform Driving Force Y. Giga University of Tokyo (Joint work with M.-H. Giga) July 2009 1 Contents 0. Introduction 1. Typical Problems 2. Variational Characterization

More information

PHASE TRANSITIONS: REGULARITY OF FLAT LEVEL SETS

PHASE TRANSITIONS: REGULARITY OF FLAT LEVEL SETS PHASE TRANSITIONS: REGULARITY OF FLAT LEVEL SETS OVIDIU SAVIN Abstract. We consider local minimizers of the Ginzburg-Landau energy functional 2 u 2 + 4 ( u2 ) 2 dx and prove that, if the level set is included

More information

Entropy and Relative Entropy

Entropy and Relative Entropy Entropy and Relative Entropy Joshua Ballew University of Maryland October 24, 2012 Outline Hyperbolic PDEs Entropy/Entropy Flux Pairs Relative Entropy Weak-Strong Uniqueness Weak-Strong Uniqueness for

More information

Title. Author(s)Giga, Yoshikazu; Hamamuki, Nao. CitationHokkaido University Preprint Series in Mathematics, Issue Date DOI 10.

Title. Author(s)Giga, Yoshikazu; Hamamuki, Nao. CitationHokkaido University Preprint Series in Mathematics, Issue Date DOI 10. Title On a dynamic boundary condition for singular degener Author(s)Giga, Yoshikazu; Hamamuki, Nao CitationHokkaido University Preprint Series in Mathematics, Issue Date 2018-04-28 DOI 10.14943/84298 Doc

More information

Global existence results for eikonal equation with BV initial data

Global existence results for eikonal equation with BV initial data Global existence results for eikonal equation with BV initial data. Boudjerada 1, A. El Hajj 2 July 8, 2014 Abstract In this paper, we study a local and a non-local eikonal equations in one dimensional

More information

L 1 stability of conservation laws for a traffic flow model

L 1 stability of conservation laws for a traffic flow model Electronic Journal of Differential Equations, Vol. 2001(2001), No. 14, pp. 1 18. ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu ftp ejde.math.unt.edu (login:

More information

The infinity-laplacian and its properties

The infinity-laplacian and its properties U.U.D.M. Project Report 2017:40 Julia Landström Examensarbete i matematik, 15 hp Handledare: Kaj Nyström Examinator: Martin Herschend December 2017 Department of Mathematics Uppsala University Department

More information

Solution Sheet 3. Solution Consider. with the metric. We also define a subset. and thus for any x, y X 0

Solution Sheet 3. Solution Consider. with the metric. We also define a subset. and thus for any x, y X 0 Solution Sheet Throughout this sheet denotes a domain of R n with sufficiently smooth boundary. 1. Let 1 p

More information

Differential Games II. Marc Quincampoix Université de Bretagne Occidentale ( Brest-France) SADCO, London, September 2011

Differential Games II. Marc Quincampoix Université de Bretagne Occidentale ( Brest-France) SADCO, London, September 2011 Differential Games II Marc Quincampoix Université de Bretagne Occidentale ( Brest-France) SADCO, London, September 2011 Contents 1. I Introduction: A Pursuit Game and Isaacs Theory 2. II Strategies 3.

More information

PERTURBATION THEORY FOR NONLINEAR DIRICHLET PROBLEMS

PERTURBATION THEORY FOR NONLINEAR DIRICHLET PROBLEMS Annales Academiæ Scientiarum Fennicæ Mathematica Volumen 28, 2003, 207 222 PERTURBATION THEORY FOR NONLINEAR DIRICHLET PROBLEMS Fumi-Yuki Maeda and Takayori Ono Hiroshima Institute of Technology, Miyake,

More information

HOW TO APPROXIMATE THE HEAT EQUATION WITH NEUMANN BOUNDARY CONDITIONS BY NONLOCAL DIFFUSION PROBLEMS. 1. Introduction

HOW TO APPROXIMATE THE HEAT EQUATION WITH NEUMANN BOUNDARY CONDITIONS BY NONLOCAL DIFFUSION PROBLEMS. 1. Introduction HOW TO APPROXIMATE THE HEAT EQUATION WITH NEUMANN BOUNDARY CONDITIONS BY NONLOCAL DIFFUSION PROBLEMS CARMEN CORTAZAR, MANUEL ELGUETA, ULIO D. ROSSI, AND NOEMI WOLANSKI Abstract. We present a model for

More information

NON-EXTINCTION OF SOLUTIONS TO A FAST DIFFUSION SYSTEM WITH NONLOCAL SOURCES

NON-EXTINCTION OF SOLUTIONS TO A FAST DIFFUSION SYSTEM WITH NONLOCAL SOURCES Electronic Journal of Differential Equations, Vol. 2016 (2016, No. 45, pp. 1 5. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu NON-EXTINCTION OF

More information

Thuong Nguyen. SADCO Internal Review Metting

Thuong Nguyen. SADCO Internal Review Metting Asymptotic behavior of singularly perturbed control system: non-periodic setting Thuong Nguyen (Joint work with A. Siconolfi) SADCO Internal Review Metting Rome, Nov 10-12, 2014 Thuong Nguyen (Roma Sapienza)

More information

REACTION-DIFFUSION EQUATIONS FOR POPULATION DYNAMICS WITH FORCED SPEED II - CYLINDRICAL-TYPE DOMAINS. Henri Berestycki and Luca Rossi

REACTION-DIFFUSION EQUATIONS FOR POPULATION DYNAMICS WITH FORCED SPEED II - CYLINDRICAL-TYPE DOMAINS. Henri Berestycki and Luca Rossi Manuscript submitted to Website: http://aimsciences.org AIMS Journals Volume 00, Number 0, Xxxx XXXX pp. 000 000 REACTION-DIFFUSION EQUATIONS FOR POPULATION DYNAMICS WITH FORCED SPEED II - CYLINDRICAL-TYPE

More information

HJ equations. Reachability analysis. Optimal control problems

HJ equations. Reachability analysis. Optimal control problems HJ equations. Reachability analysis. Optimal control problems Hasnaa Zidani 1 1 ENSTA Paris-Tech & INRIA-Saclay Graz, 8-11 September 2014 H. Zidani (ENSTA & Inria) HJ equations. Reachability analysis -

More information

A CONNECTION BETWEEN A GENERAL CLASS OF SUPERPARABOLIC FUNCTIONS AND SUPERSOLUTIONS

A CONNECTION BETWEEN A GENERAL CLASS OF SUPERPARABOLIC FUNCTIONS AND SUPERSOLUTIONS A CONNECTION BETWEEN A GENERAL CLASS OF SUPERPARABOLIC FUNCTIONS AND SUPERSOLUTIONS RIIKKA KORTE, TUOMO KUUSI, AND MIKKO PARVIAINEN Abstract. We show to a general class of parabolic equations that every

More information

UNCERTAINTY FUNCTIONAL DIFFERENTIAL EQUATIONS FOR FINANCE

UNCERTAINTY FUNCTIONAL DIFFERENTIAL EQUATIONS FOR FINANCE Surveys in Mathematics and its Applications ISSN 1842-6298 (electronic), 1843-7265 (print) Volume 5 (2010), 275 284 UNCERTAINTY FUNCTIONAL DIFFERENTIAL EQUATIONS FOR FINANCE Iuliana Carmen Bărbăcioru Abstract.

More information

Fractal first order partial differential equations

Fractal first order partial differential equations Fractal first order partial differential equations Jérôme Droniou, Cyril Imbert 29/9/25 Abstract The present paper is concerned with semilinear partial differential equations involving a particular pseudo-differential

More information

Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks

Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks Cyril Imbert, R Monneau To cite this version: Cyril Imbert, R Monneau. Flux-limited solutions for quasi-convex Hamilton-Jacobi

More information

The incompressible Navier-Stokes equations in vacuum

The incompressible Navier-Stokes equations in vacuum The incompressible, Université Paris-Est Créteil Piotr Bogus law Mucha, Warsaw University Journées Jeunes EDPistes 218, Institut Elie Cartan, Université de Lorraine March 23th, 218 Incompressible Navier-Stokes

More information

Bound-state solutions and well-posedness of the dispersion-managed nonlinear Schrödinger and related equations

Bound-state solutions and well-posedness of the dispersion-managed nonlinear Schrödinger and related equations Bound-state solutions and well-posedness of the dispersion-managed nonlinear Schrödinger and related equations J. Albert and E. Kahlil University of Oklahoma, Langston University 10th IMACS Conference,

More information

VISCOSITY SOLUTIONS OF ELLIPTIC EQUATIONS

VISCOSITY SOLUTIONS OF ELLIPTIC EQUATIONS VISCOSITY SOLUTIONS OF ELLIPTIC EQUATIONS LUIS SILVESTRE These are the notes from the summer course given in the Second Chicago Summer School In Analysis, in June 2015. We introduce the notion of viscosity

More information

Asymptotic Behavior of Fragmentation-drift Equations with Variable Drift Rates

Asymptotic Behavior of Fragmentation-drift Equations with Variable Drift Rates Asymptotic Behavior of Fragmentation-drift Equations with Variable Drift Rates Daniel Balagué joint work with José A. Cañizo and Pierre GABRIEL (in preparation) Universitat Autònoma de Barcelona SIAM Conference

More information

KPP Pulsating Traveling Fronts within Large Drift

KPP Pulsating Traveling Fronts within Large Drift KPP Pulsating Traveling Fronts within Large Drift Mohammad El Smaily Joint work with Stéphane Kirsch University of British olumbia & Pacific Institute for the Mathematical Sciences September 17, 2009 PIMS

More information

Quantitative Homogenization of Elliptic Operators with Periodic Coefficients

Quantitative Homogenization of Elliptic Operators with Periodic Coefficients Quantitative Homogenization of Elliptic Operators with Periodic Coefficients Zhongwei Shen Abstract. These lecture notes introduce the quantitative homogenization theory for elliptic partial differential

More information

Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian

Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian Luis Caffarelli, Sandro Salsa and Luis Silvestre October 15, 2007 Abstract We use a characterization

More information

Nonlinear Control Systems

Nonlinear Control Systems Nonlinear Control Systems António Pedro Aguiar pedro@isr.ist.utl.pt 3. Fundamental properties IST-DEEC PhD Course http://users.isr.ist.utl.pt/%7epedro/ncs2012/ 2012 1 Example Consider the system ẋ = f

More information

Master Thesis. Nguyen Tien Thinh. Homogenization and Viscosity solution

Master Thesis. Nguyen Tien Thinh. Homogenization and Viscosity solution Master Thesis Nguyen Tien Thinh Homogenization and Viscosity solution Advisor: Guy Barles Defense: Friday June 21 th, 2013 ii Preface Firstly, I am grateful to Prof. Guy Barles for helping me studying

More information

Continuous dependence estimates for the ergodic problem with an application to homogenization

Continuous dependence estimates for the ergodic problem with an application to homogenization Continuous dependence estimates for the ergodic problem with an application to homogenization Claudio Marchi Bayreuth, September 12 th, 2013 C. Marchi (Università di Padova) Continuous dependence Bayreuth,

More information

Threshold solutions and sharp transitions for nonautonomous parabolic equations on R N

Threshold solutions and sharp transitions for nonautonomous parabolic equations on R N Threshold solutions and sharp transitions for nonautonomous parabolic equations on R N P. Poláčik School of Mathematics, University of Minnesota Minneapolis, MN 55455 Abstract This paper is devoted to

More information

EXISTENCE OF SOLUTIONS TO THE CAHN-HILLIARD/ALLEN-CAHN EQUATION WITH DEGENERATE MOBILITY

EXISTENCE OF SOLUTIONS TO THE CAHN-HILLIARD/ALLEN-CAHN EQUATION WITH DEGENERATE MOBILITY Electronic Journal of Differential Equations, Vol. 216 216), No. 329, pp. 1 22. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu EXISTENCE OF SOLUTIONS TO THE CAHN-HILLIARD/ALLEN-CAHN

More information

Homogenization of First Order Equations with u/ -Periodic Hamiltonians Part II: Application to Dislocations Dynamics

Homogenization of First Order Equations with u/ -Periodic Hamiltonians Part II: Application to Dislocations Dynamics Communications in Partial Differential Equations, 33: 479 516, 2008 Copyright Taylor & Francis Group, LLC ISSN 0360-5302 print/1532-4133 online DOI: 10.1080/03605300701318922 Homogenization of First Order

More information

Scalar conservation laws with moving density constraints arising in traffic flow modeling

Scalar conservation laws with moving density constraints arising in traffic flow modeling Scalar conservation laws with moving density constraints arising in traffic flow modeling Maria Laura Delle Monache Email: maria-laura.delle monache@inria.fr. Joint work with Paola Goatin 14th International

More information

Conservation laws and some applications to traffic flows

Conservation laws and some applications to traffic flows Conservation laws and some applications to traffic flows Khai T. Nguyen Department of Mathematics, Penn State University ktn2@psu.edu 46th Annual John H. Barrett Memorial Lectures May 16 18, 2016 Khai

More information

Existence and stability of solitary-wave solutions to nonlocal equations

Existence and stability of solitary-wave solutions to nonlocal equations Existence and stability of solitary-wave solutions to nonlocal equations Mathias Nikolai Arnesen Norwegian University of Science and Technology September 22nd, Trondheim The equations u t + f (u) x (Lu)

More information

Asymptotic behavior of the degenerate p Laplacian equation on bounded domains

Asymptotic behavior of the degenerate p Laplacian equation on bounded domains Asymptotic behavior of the degenerate p Laplacian equation on bounded domains Diana Stan Instituto de Ciencias Matematicas (CSIC), Madrid, Spain UAM, September 19, 2011 Diana Stan (ICMAT & UAM) Nonlinear

More information

Calculus of Variations. Final Examination

Calculus of Variations. Final Examination Université Paris-Saclay M AMS and Optimization January 18th, 018 Calculus of Variations Final Examination Duration : 3h ; all kind of paper documents (notes, books...) are authorized. The total score of

More information

Singular limits for reaction-diffusion equations with fractional Laplacian and local or nonlocal nonlinearity

Singular limits for reaction-diffusion equations with fractional Laplacian and local or nonlocal nonlinearity Singular limits for reaction-diffusion equations with fractional Laplacian and local or nonlocal nonlinearity Sylvie Méléard, Sepideh Mirrahimi September 2, 214 Abstract We perform an asymptotic analysis

More information

Convection and total variation flow

Convection and total variation flow Convection and total variation flow R. Eymard joint work wit F. Boucut and D. Doyen LAMA, Université Paris-Est marc, 2nd, 2016 Flow wit cange-of-state simplified model for Bingam fluid + Navier-Stokes

More information

Parameter Dependent Quasi-Linear Parabolic Equations

Parameter Dependent Quasi-Linear Parabolic Equations CADERNOS DE MATEMÁTICA 4, 39 33 October (23) ARTIGO NÚMERO SMA#79 Parameter Dependent Quasi-Linear Parabolic Equations Cláudia Buttarello Gentile Departamento de Matemática, Universidade Federal de São

More information

Stability of an abstract wave equation with delay and a Kelvin Voigt damping

Stability of an abstract wave equation with delay and a Kelvin Voigt damping Stability of an abstract wave equation with delay and a Kelvin Voigt damping University of Monastir/UPSAY/LMV-UVSQ Joint work with Serge Nicaise and Cristina Pignotti Outline 1 Problem The idea Stability

More information

An introduction to Mathematical Theory of Control

An introduction to Mathematical Theory of Control An introduction to Mathematical Theory of Control Vasile Staicu University of Aveiro UNICA, May 2018 Vasile Staicu (University of Aveiro) An introduction to Mathematical Theory of Control UNICA, May 2018

More information

Equilibria with a nontrivial nodal set and the dynamics of parabolic equations on symmetric domains

Equilibria with a nontrivial nodal set and the dynamics of parabolic equations on symmetric domains Equilibria with a nontrivial nodal set and the dynamics of parabolic equations on symmetric domains J. Földes Department of Mathematics, Univerité Libre de Bruxelles 1050 Brussels, Belgium P. Poláčik School

More information

REGULARITY RESULTS FOR THE EQUATION u 11 u 22 = Introduction

REGULARITY RESULTS FOR THE EQUATION u 11 u 22 = Introduction REGULARITY RESULTS FOR THE EQUATION u 11 u 22 = 1 CONNOR MOONEY AND OVIDIU SAVIN Abstract. We study the equation u 11 u 22 = 1 in R 2. Our results include an interior C 2 estimate, classical solvability

More information

Threshold behavior and non-quasiconvergent solutions with localized initial data for bistable reaction-diffusion equations

Threshold behavior and non-quasiconvergent solutions with localized initial data for bistable reaction-diffusion equations Threshold behavior and non-quasiconvergent solutions with localized initial data for bistable reaction-diffusion equations P. Poláčik School of Mathematics, University of Minnesota Minneapolis, MN 55455

More information

Existence, stability and instability for Einstein-scalar field Lichnerowicz equations by Emmanuel Hebey

Existence, stability and instability for Einstein-scalar field Lichnerowicz equations by Emmanuel Hebey Existence, stability and instability for Einstein-scalar field Lichnerowicz equations by Emmanuel Hebey Joint works with Olivier Druet and with Frank Pacard and Dan Pollack Two hours lectures IAS, October

More information

Prof. Erhan Bayraktar (University of Michigan)

Prof. Erhan Bayraktar (University of Michigan) September 17, 2012 KAP 414 2:15 PM- 3:15 PM Prof. (University of Michigan) Abstract: We consider a zero-sum stochastic differential controller-and-stopper game in which the state process is a controlled

More information

AN INTRODUCTION TO VISCOSITY SOLUTION THEORY. In this note, we study the general second-order fully nonlinear equations arising in various fields:

AN INTRODUCTION TO VISCOSITY SOLUTION THEORY. In this note, we study the general second-order fully nonlinear equations arising in various fields: AN INTRODUCTION TO VISCOSITY SOLUTION THEORY QING LIU AND XIAODAN ZHOU 1. Introduction to Fully Nonlinear Equations In this note, we study the general second-order fully nonlinear equations arising in

More information

VISCOSITY SOLUTIONS OF HAMILTON JACOBI EQUATIONS WITH DISCONTINUOUS COEFFICIENTS

VISCOSITY SOLUTIONS OF HAMILTON JACOBI EQUATIONS WITH DISCONTINUOUS COEFFICIENTS Dept. of Math. Univ. of Oslo Pure Mathematics No. 2 ISSN 86 2439 January 25 VISCOSITY SOLUTIONS OF HAMILTON JACOBI EQUATIONS WITH DISCONTINUOUS COEFFICIENTS GIUSEPPE MARIA COCLITE AND NILS HENRIK RISEBRO

More information

OPTIMAL CONTROL PROBLEM DESCRIBING BY THE CAUCHY PROBLEM FOR THE FIRST ORDER LINEAR HYPERBOLIC SYSTEM WITH TWO INDEPENDENT VARIABLES

OPTIMAL CONTROL PROBLEM DESCRIBING BY THE CAUCHY PROBLEM FOR THE FIRST ORDER LINEAR HYPERBOLIC SYSTEM WITH TWO INDEPENDENT VARIABLES TWMS J. Pure Appl. Math., V.6, N.1, 215, pp.1-11 OPTIMAL CONTROL PROBLEM DESCRIBING BY THE CAUCHY PROBLEM FOR THE FIRST ORDER LINEAR HYPERBOLIC SYSTEM WITH TWO INDEPENDENT VARIABLES K.K. HASANOV 1, T.S.

More information

Existence of minimizers for the Newton s problem of the body of minimal resistance under a single impact assumption

Existence of minimizers for the Newton s problem of the body of minimal resistance under a single impact assumption Existence of minimizers for the Newton s problem of the body of minimal resistance under a single impact assumption M. Comte T. Lachand-Robert 30th September 999 Abstract We prove that the infimum of the

More information

ESTIMATES FOR THE MONGE-AMPERE EQUATION

ESTIMATES FOR THE MONGE-AMPERE EQUATION GLOBAL W 2,p ESTIMATES FOR THE MONGE-AMPERE EQUATION O. SAVIN Abstract. We use a localization property of boundary sections for solutions to the Monge-Ampere equation obtain global W 2,p estimates under

More information

EXISTENCE THEOREMS FOR FUNCTIONAL DIFFERENTIAL EQUATIONS IN BANACH SPACES. 1. Introduction

EXISTENCE THEOREMS FOR FUNCTIONAL DIFFERENTIAL EQUATIONS IN BANACH SPACES. 1. Introduction Acta Math. Univ. Comenianae Vol. LXXVIII, 2(29), pp. 287 32 287 EXISTENCE THEOREMS FOR FUNCTIONAL DIFFERENTIAL EQUATIONS IN BANACH SPACES A. SGHIR Abstract. This paper concernes with the study of existence

More information

Invariances in spectral estimates. Paris-Est Marne-la-Vallée, January 2011

Invariances in spectral estimates. Paris-Est Marne-la-Vallée, January 2011 Invariances in spectral estimates Franck Barthe Dario Cordero-Erausquin Paris-Est Marne-la-Vallée, January 2011 Notation Notation Given a probability measure ν on some Euclidean space, the Poincaré constant

More information

Free energy estimates for the two-dimensional Keller-Segel model

Free energy estimates for the two-dimensional Keller-Segel model Free energy estimates for the two-dimensional Keller-Segel model dolbeaul@ceremade.dauphine.fr CEREMADE CNRS & Université Paris-Dauphine in collaboration with A. Blanchet (CERMICS, ENPC & Ceremade) & B.

More information

From the Newton equation to the wave equation in some simple cases

From the Newton equation to the wave equation in some simple cases From the ewton equation to the wave equation in some simple cases Xavier Blanc joint work with C. Le Bris (EPC) and P.-L. Lions (Collège de France) Université Paris Diderot, FRACE http://www.ann.jussieu.fr/

More information

Lower Tail Probabilities and Normal Comparison Inequalities. In Memory of Wenbo V. Li s Contributions

Lower Tail Probabilities and Normal Comparison Inequalities. In Memory of Wenbo V. Li s Contributions Lower Tail Probabilities and Normal Comparison Inequalities In Memory of Wenbo V. Li s Contributions Qi-Man Shao The Chinese University of Hong Kong Lower Tail Probabilities and Normal Comparison Inequalities

More information

A CONVEX-CONCAVE ELLIPTIC PROBLEM WITH A PARAMETER ON THE BOUNDARY CONDITION

A CONVEX-CONCAVE ELLIPTIC PROBLEM WITH A PARAMETER ON THE BOUNDARY CONDITION A CONVEX-CONCAVE ELLIPTIC PROBLEM WITH A PARAMETER ON THE BOUNDARY CONDITION JORGE GARCÍA-MELIÁN, JULIO D. ROSSI AND JOSÉ C. SABINA DE LIS Abstract. In this paper we study existence and multiplicity of

More information

MATH 819 FALL We considered solutions of this equation on the domain Ū, where

MATH 819 FALL We considered solutions of this equation on the domain Ū, where MATH 89 FALL. The D linear wave equation weak solutions We have considered the initial value problem for the wave equation in one space dimension: (a) (b) (c) u tt u xx = f(x, t) u(x, ) = g(x), u t (x,

More information

REPEATED GAMES FOR NON-LINEAR PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS AND INTEGRAL CURVATURE FLOWS

REPEATED GAMES FOR NON-LINEAR PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS AND INTEGRAL CURVATURE FLOWS REPEATED GAMES FOR NON-LINEAR PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS AND INTEGRAL CURVATURE FLOWS CYRIL IMBERT AND SYLVIA SERFATY Abstract. The main purpose of this paper is to approximate several non-local

More information

ξ,i = x nx i x 3 + δ ni + x n x = 0. x Dξ = x i ξ,i = x nx i x i x 3 Du = λ x λ 2 xh + x λ h Dξ,

ξ,i = x nx i x 3 + δ ni + x n x = 0. x Dξ = x i ξ,i = x nx i x i x 3 Du = λ x λ 2 xh + x λ h Dξ, 1 PDE, HW 3 solutions Problem 1. No. If a sequence of harmonic polynomials on [ 1,1] n converges uniformly to a limit f then f is harmonic. Problem 2. By definition U r U for every r >. Suppose w is a

More information

Regularity for Poisson Equation

Regularity for Poisson Equation Regularity for Poisson Equation OcMountain Daylight Time. 4, 20 Intuitively, the solution u to the Poisson equation u= f () should have better regularity than the right hand side f. In particular one expects

More information

On the p-laplacian and p-fluids

On the p-laplacian and p-fluids LMU Munich, Germany Lars Diening On the p-laplacian and p-fluids Lars Diening On the p-laplacian and p-fluids 1/50 p-laplacian Part I p-laplace and basic properties Lars Diening On the p-laplacian and

More information

Intersection Models and Nash Equilibria for Traffic Flow on Networks

Intersection Models and Nash Equilibria for Traffic Flow on Networks Intersection Models and Nash Equilibria for Traffic Flow on Networks Alberto Bressan Department of Mathematics, Penn State University bressan@math.psu.edu (Los Angeles, November 2015) Alberto Bressan (Penn

More information

arxiv: v3 [math.ap] 28 Feb 2017

arxiv: v3 [math.ap] 28 Feb 2017 ON VISCOSITY AND WEA SOLUTIONS FOR NON-HOMOGENEOUS P-LAPLACE EQUATIONS arxiv:1610.09216v3 [math.ap] 28 Feb 2017 Abstract. In this manuscript, we study the relation between viscosity and weak solutions

More information

Some notes on viscosity solutions

Some notes on viscosity solutions Some notes on viscosity solutions Jeff Calder October 11, 2018 1 2 Contents 1 Introduction 5 1.1 An example............................ 6 1.2 Motivation via dynamic programming............. 8 1.3 Motivation

More information

ON WEAKLY NONLINEAR BACKWARD PARABOLIC PROBLEM

ON WEAKLY NONLINEAR BACKWARD PARABOLIC PROBLEM ON WEAKLY NONLINEAR BACKWARD PARABOLIC PROBLEM OLEG ZUBELEVICH DEPARTMENT OF MATHEMATICS THE BUDGET AND TREASURY ACADEMY OF THE MINISTRY OF FINANCE OF THE RUSSIAN FEDERATION 7, ZLATOUSTINSKY MALIY PER.,

More information

Partial regularity for fully nonlinear PDE

Partial regularity for fully nonlinear PDE Partial regularity for fully nonlinear PDE Luis Silvestre University of Chicago Joint work with Scott Armstrong and Charles Smart Outline Introduction Intro Review of fully nonlinear elliptic PDE Our result

More information

Numerical schemes for short wave long wave interaction equations

Numerical schemes for short wave long wave interaction equations Numerical schemes for short wave long wave interaction equations Paulo Amorim Mário Figueira CMAF - Université de Lisbonne LJLL - Séminaire Fluides Compréssibles, 29 novembre 21 Paulo Amorim (CMAF - U.

More information

HOMOGENIZATION OF THE PEIERLS-NABARRO MODEL FOR DISLOCATION DYNAMICS AND THE OROWAN S LAW. Régis Monneau. Stefania Patrizi

HOMOGENIZATION OF THE PEIERLS-NABARRO MODEL FOR DISLOCATION DYNAMICS AND THE OROWAN S LAW. Régis Monneau. Stefania Patrizi HOMOGENIZATION OF THE PEIERLS-NABARRO MODEL FOR DISLOCATION DYNAMICS AND THE OROWAN S LAW Régis Monneau Université Paris-Est, CERMICS, Ecole des Ponts ParisTech, 6-8 avenue Blaise Pascal, Cité Descartes,

More information

PDEs in Image Processing, Tutorials

PDEs in Image Processing, Tutorials PDEs in Image Processing, Tutorials Markus Grasmair Vienna, Winter Term 2010 2011 Direct Methods Let X be a topological space and R: X R {+ } some functional. following definitions: The mapping R is lower

More information

Fractal first order partial differential equations

Fractal first order partial differential equations ARMA manuscript No. (will be inserted by the editor) Fractal first order partial differential equations Jérôme Droniou, Cyril Imbert Abstract The present paper is concerned with semilinear partial differential

More information