Surface analysis algorithms in the mardyn program and the ls1 project

Size: px
Start display at page:

Download "Surface analysis algorithms in the mardyn program and the ls1 project"

Transcription

1 Surface analysis algorithms in the mardyn program and the ls1 project Stuttgart, 15 th December 1 M. T. Horsch

2 Surface tension The virial route Bakker-Buff equation: γ R 2 out in dz z Normal pressure decays at R. Significant decrease of γ due to spherical curvature. Main advantages of the virial route: 2 p 3 out 2 3 2γ Δ dp ( z ) z p in N z ) p ( z ) N ( T Irving-Kirkwood pressure tensor: f ij srij pn( z ) ktρ( z ) 3 4πz r { i, j } S( z ) ij surface tension in units of LJTS fluid.8 Vrabec et al droplet size in molecules Equilibrium analysis (no unstable configurations) Yields the surface of tension radius R = 2γ/Δp.

3 probability density Surface tension The variational route Canonical partition function: ΔF T ln f exp ΔU T 3 4 ΔU, ΔU 2, ΔU O ΔU For small deformations: γ = ΔF/ΔA with A = 4πQ 2 + O(δQ) Nonlinear terms are essential. Tolman length much smaller than based on other methods. Main advantages of the variational route: deviation of ΔU from mean equimolar radius in units of ζ Free energy differences are considered in a direct way. No mechanical equilibrium assumption is applied. γ in units of εζ -2 LJSTS fluid, T =.8 ε (Source: Sampayo et al., 21)

4 Discretization of interfaces Effective radii for a droplet Capillarity radius P = 2γ /Δp, from the Laplace equation and the surface tension in the planar case. Equimolar radius Q, from condition Γ = for the excess density. Laplace radius R = 2γ/Δp, based on a known value of the surface tension for the curved interface. Conservative radius R C for which 2 the excess free energy is 4πR C γ. Radii R(ρ) for a density ρ > ρ > ρ.

5 Discretization of interfaces equimolar radius Q in units of LJTS fluid p from IK pressure tensor (Vrabec et al.) p from density profiles δ lim R Q Q T =.65 T =.75 T =.85 lim Q P η Q capillarity radius P in units of

6 Clustering Cluster critieria for the dispersed liquid phase Molecules with a distance between the centres of mass r ij < r St are regarded as part of the liquid phase (Stillinger). At least n = 4 neighbours are required within a sphere with the radius r St around the centre of mass (ten Wolde-Frenkel). A molecule is liquid if the sphere around its n nearest neigbours has an average density greater than the arithmetic (a n ) or the geometric (g n ) mean between ρ and ρ. n = 5

7 Clustering evaporation rate (reduced) Carbon dioxide T = 237 K = 1.89 mol/l g 2 (geom. mean) a 2 (arithm. mean) a 8 (arithm. mean) ten Wolde-Frenkel Stillinger n 2/3 scaling liquid drop size in number of molecules

8 Population statistics Nucleation in supersaturated vapours Yasuoka and Matsumoto (1998): Canonical MD simulation Limited time interval Conditions change over time liquid drops per nm 3 pressure / kpa NVT with = 1.46 mol/l Higher-level evaluation subsequent to cluster detection: Population statistics, yielding a nucleation rate 1 25 Argon at T = 96.5 K time in units of ns Cluster identification and tracking of growth and decay Evaluation of cluster temperature to analyze the heat transfer

9 Population statistics Requirement for a steady state: Elimination of liquid drops intervention rate (LJ units, natural logarithm) P ( n) n* CNT n exp 2F n exp 2F n LJTS S = T =.7 CNT transposed CNT T T threshold size (molecules)

10 Confined fluid systems 6 5 Poiseuille flow of methane through nanoporous carbon wall d centre wall 6 5 density in units of mol/l velocity in units of m/s y coordinate in units of nm

11 Confined fluid systems Simulation approach LJTS fluid, generic wall model, Dispersive energy ε fw = ζε Equilibrium state Cylindrical meniscus, based on arithm. mean density z coordinate in units of 2-2 =.16 =.13 =.1 =.7 vapour liquid x coordinate in units of

12 Functionality within the ls1 project Main initial application of ls1 mardyn: structure and properties of fluids at interfaces moldy mardyn b b trunk Interfacial profiles planar spherical planar Surface tension virial variational both Cluster detection o arith. mean local ρ local ρ Population statistics o Adsorption o o o Nanoscopic flow o o o

Dependence of the surface tension on curvature

Dependence of the surface tension on curvature Dependence of the surface tension on curvature rigorously determined from the density profiles of nanodroplets Athens, st September M. T. Horsch,,, S. Eckelsbach, H. Hasse, G. Jackson, E. A. Müller, G.

More information

Surface property corrected modification of the classical nucleation theory

Surface property corrected modification of the classical nucleation theory CCP5 Annual Meeting Surface property corrected modification of the classical nucleation theory Sheffield Hallam University, September 15, 2010 Martin Horsch, Hans Hasse, and Jadran Vrabec The critical

More information

Molecular modeling of hydrogen bonding fluids: vapor-liquid coexistence and interfacial properties

Molecular modeling of hydrogen bonding fluids: vapor-liquid coexistence and interfacial properties 12 th HLRS Results and Review Workshop Molecular modeling of hydrogen bonding fluids: vapor-liquid coexistence and interfacial properties High Performance Computing Center Stuttgart (HLRS), October 8,

More information

MD simulation of methane in nanochannels

MD simulation of methane in nanochannels MD simulation of methane in nanochannels COCIM, Arica, Chile M. Horsch, M. Heitzig, and J. Vrabec University of Stuttgart November 6, 2008 Scope and structure Molecular model for graphite and the fluid-wall

More information

Static and Dynamic Properties of Curved Vapour-Liquid Interfaces by Massively Parallel Molecular Dynamics Simulation

Static and Dynamic Properties of Curved Vapour-Liquid Interfaces by Massively Parallel Molecular Dynamics Simulation Static and Dynamic Properties of Curved Vapour-Liquid Interfaces by Massively Parallel Molecular Dynamics Simulation M.T. Horsch, S.K. Miroshnichenko, J. Vrabec, C.W. Glass, C. Niethammer, M.F. Bernreuther,

More information

Scalable, performant, and resilient large-scale applications of molecular process engineering

Scalable, performant, and resilient large-scale applications of molecular process engineering Scalable, performant, and resilient large-scale applications of molecular process engineering M. Horsch,1 P. Gralka,2 C. Niethammer,3 N. Tchipev,4 J. Vrabec,5 H. Hasse1 1 University of Kaiserslautern,

More information

Surface thermodynamics of planar, cylindrical, and spherical vapour-liquid interfaces of water

Surface thermodynamics of planar, cylindrical, and spherical vapour-liquid interfaces of water Surface thermodynamics of planar, cylindrical, and spherical vapour-liquid interfaces of water Gabriel V. Lau, Ian J. Ford, Patricia A. Hunt, Erich A. Müller, and George Jackson Citation: The Journal of

More information

Large-scale MD simulation of heterogeneous systems with ls1 mardyn

Large-scale MD simulation of heterogeneous systems with ls1 mardyn Large-scale MD simulation of heterogeneous systems with ls1 mardyn M. T. Horsch, R. Srivastava, S. J. Werth, C. Niethammer, C. W. Glass, W. Eckhardt, A. Heinecke, N. Tchipev, H.-J. Bungartz, S. Eckelsbach,

More information

arxiv: v3 [cond-mat.soft] 22 Sep 2011

arxiv: v3 [cond-mat.soft] 22 Sep 2011 Technical report LTD CME/2011 09/A Horsch Hasse Shchekin Agarwal Eckelsbach Vrabec Müller Jackson The excess equimolar radius of liquid drops Martin Horsch and Hans Hasse Lehrstuhl für Thermodynamik, Fachbereich

More information

Multiphase Flow and Heat Transfer

Multiphase Flow and Heat Transfer Multiphase Flow and Heat Transfer ME546 -Sudheer Siddapureddy sudheer@iitp.ac.in Surface Tension The free surface between air and water at a molecular scale Molecules sitting at a free liquid surface against

More information

hydrate systems Gránásy Research Institute for Solid State Physics & Optics H-1525 Budapest, POB 49, Hungary László

hydrate systems Gránásy Research Institute for Solid State Physics & Optics H-1525 Budapest, POB 49, Hungary László Phase field theory of crystal nucleation: Application to the hard-sphere and CO 2 Bjørn Kvamme Department of Physics, University of Bergen Allégaten 55, N-5007 N Bergen, Norway László Gránásy Research

More information

Nucleation rate (m -3 s -1 ) Radius of water nano droplet (Å) 1e+00 1e-64 1e-128 1e-192 1e-256

Nucleation rate (m -3 s -1 ) Radius of water nano droplet (Å) 1e+00 1e-64 1e-128 1e-192 1e-256 Supplementary Figures Nucleation rate (m -3 s -1 ) 1e+00 1e-64 1e-128 1e-192 1e-256 Calculated R in bulk water Calculated R in droplet Modified CNT 20 30 40 50 60 70 Radius of water nano droplet (Å) Supplementary

More information

Molecular Modeling and Simulation of Phase Equilibria for Chemical Engineering

Molecular Modeling and Simulation of Phase Equilibria for Chemical Engineering InPROMT 2012, Berlin, 16. November 2012 DFG Transregio CRC 63 Molecular Modeling and Simulation of Phase Equilibria for Chemical Engineering Hans Hasse 1, Martin Horsch 1, Jadran Vrabec 2 1 Laboratory

More information

Direct determination of the Tolman length from the bulk pressures of liquid drops via molecular dynamics simulations

Direct determination of the Tolman length from the bulk pressures of liquid drops via molecular dynamics simulations Direct determination of the Tolman length from the bulk pressures of liquid drops via molecular dynamics simulations Alan E. van Giessen, and Edgar M. Blokhuis Citation: The Journal of Chemical Physics

More information

Vapor-to-Droplet Transition in a Lennard-Jones Fluid: Simulation Study of Nucleation Barriers Using the Ghost Field Method

Vapor-to-Droplet Transition in a Lennard-Jones Fluid: Simulation Study of Nucleation Barriers Using the Ghost Field Method 5962 J. Phys. Chem. B 2005, 109, 5962-5976 Vapor-to-Droplet Transition in a Lennard-Jones Fluid: Simulation Study of Nucleation Barriers Using the Ghost Field Method Alexander V. Neimark* and Aleksey Vishnyakov

More information

Reaction at the Interfaces

Reaction at the Interfaces Reaction at the Interfaces Lecture 1 On the course Physics and Chemistry of Interfaces by HansJürgen Butt, Karlheinz Graf, and Michael Kappl Wiley VCH; 2nd edition (2006) http://homes.nano.aau.dk/lg/surface2009.htm

More information

Molecular dynamics simulation of atomic clusters in equilibrium with a vapour

Molecular dynamics simulation of atomic clusters in equilibrium with a vapour Molecular Simulation, Vol. 33, No. 3, 15 March 2007, 245 251 Molecular dynamics simulation of atomic clusters in equilibrium with a vapour M. SALONEN*, I. NAPARI and H. VEHKAMÄKI Department of Physical

More information

Molecular dynamics simulation of nanofluidics and nanomachining

Molecular dynamics simulation of nanofluidics and nanomachining Molecular dynamics simulation of nanofluidics and nanomachining M. T. Horsch,1, 4 S. Stephan,1 S. Becker,1 M. Heier,1 M. P. Lautenschläger,1 F. Diewald,2 R. Müller,2 H. M. Urbassek,3 and H. Hasse1 1 Engineering

More information

of Nebraska - Lincoln

of Nebraska - Lincoln University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Xiao Cheng Zeng Publications Published Research - Department of Chemistry 10-1-2006 Homogeneous nucleation at high supersaturation

More information

MOLECULAR DYNAMICS SIMULATION OF HETEROGENEOUS NUCLEATION OF LIQUID DROPLET ON SOLID SURFACE

MOLECULAR DYNAMICS SIMULATION OF HETEROGENEOUS NUCLEATION OF LIQUID DROPLET ON SOLID SURFACE MOLECULAR DYNAMICS SIMULATION OF HETEROGENEOUS NUCLEATION OF LIQUID DROPLET ON SOLID SURFACE Tatsuto Kimura* and Shigeo Maruyama** *Department of Mechanical Engineering, The University of Tokyo 7-- Hongo,

More information

Chemistry 431 Problem Set 10 Fall 2018 Solutions

Chemistry 431 Problem Set 10 Fall 2018 Solutions Chemistry 43 Problem Set 0 Fall 208 Solutions. A lead bullet is fired at a wooden plank. At what speed must it be traveling to melt upon impact if its initial temperature is 00. C and the heating of the

More information

Chemical Potential. Combining the First and Second Laws for a closed system, Considering (extensive properties)

Chemical Potential. Combining the First and Second Laws for a closed system, Considering (extensive properties) Chemical Potential Combining the First and Second Laws for a closed system, Considering (extensive properties) du = TdS pdv Hence For an open system, that is, one that can gain or lose mass, U will also

More information

IMPROVED METHOD FOR CALCULATING SURFACE TENSION AND APPLICATION TO WATER

IMPROVED METHOD FOR CALCULATING SURFACE TENSION AND APPLICATION TO WATER IMPROVED METHOD FOR CALCULATING SURFACE TENSION AND APPLICATION TO WATER ABSTRACT Hong Peng 1, Anh V Nguyen 2 and Greg R Birkett* School of Chemical Engineering, The University of Queensland Brisbane,

More information

Comparative study on methodology in molecular dynamics simulation of nucleation

Comparative study on methodology in molecular dynamics simulation of nucleation THE JOURNAL OF CHEMICAL PHYSICS 126, 224517 2007 Comparative study on methodology in molecular dynamics simulation of nucleation Jan Julin, Ismo Napari, and Hanna Vehkamäki Department of Physical Sciences,

More information

3.10. Capillary Condensation and Adsorption Hysteresis

3.10. Capillary Condensation and Adsorption Hysteresis 3.10. Capillary Condensation and Adsorption Hysteresis We shall restrict our attention to the adsorption behavior of porous solids. Hysteresis: two quantities of adsorbed material for each equilibrium

More information

Atomistic molecular simulations for engineering applications: methods, tools and results. Jadran Vrabec

Atomistic molecular simulations for engineering applications: methods, tools and results. Jadran Vrabec Atomistic molecular simulations for engineering applications: methods, tools and results Jadran Vrabec Motivation Simulation methods vary in their level of detail The more detail, the more predictive power

More information

Surface Tension of the Vapor Liquid Interface with Finite Curvature

Surface Tension of the Vapor Liquid Interface with Finite Curvature Colloid Journal, Vol. 65, No. 4, 00, pp. 44045. Translated from Kolloidnyi Zhurnal, Vol. 65, No. 4, 00, pp. 480494. Original Russian Text Copyright 00 by Zhukhovitskii. Surface Tension of the VaporLiquid

More information

Surface and Interfacial Tensions. Lecture 1

Surface and Interfacial Tensions. Lecture 1 Surface and Interfacial Tensions Lecture 1 Surface tension is a pull Surfaces and Interfaces 1 Thermodynamics for Interfacial Systems Work must be done to increase surface area just as work must be done

More information

Surface chemistry. Liquid-gas, solid-gas and solid-liquid surfaces.

Surface chemistry. Liquid-gas, solid-gas and solid-liquid surfaces. Surface chemistry. Liquid-gas, solid-gas and solid-liquid surfaces. Levente Novák & István Bányai, University of Debrecen Dept of Colloid and Environmental Chemistry http://kolloid.unideb.hu/~kolloid/

More information

The Shape of a Rain Drop as determined from the Navier-Stokes equation John Caleb Speirs Classical Mechanics PHGN 505 December 12th, 2011

The Shape of a Rain Drop as determined from the Navier-Stokes equation John Caleb Speirs Classical Mechanics PHGN 505 December 12th, 2011 The Shape of a Rain Drop as determined from the Navier-Stokes equation John Caleb Speirs Classical Mechanics PHGN 505 December 12th, 2011 Derivation of Navier-Stokes Equation 1 The total stress tensor

More information

Interfaces and interfacial energy

Interfaces and interfacial energy Interfaces and interfacial energy 1/14 kinds: l/g }{{ l/l } mobile s/g s/l s/s Example. Estimate the percetage of water molecules on the surface of a fog droplet of diameter (i) 0.1 mm (naked eye visibility

More information

Heterogeneous nucleation on mesoscopic wettable particles: A hybrid thermodynamic/densityfunctional

Heterogeneous nucleation on mesoscopic wettable particles: A hybrid thermodynamic/densityfunctional University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Xiao Cheng Zeng Publications Published esearch - Department of Chemistry 7--00 Heterogeneous nucleation on mesoscopic wettable

More information

arxiv: v1 [physics.comp-ph] 21 Apr 2009

arxiv: v1 [physics.comp-ph] 21 Apr 2009 arxiv:0904.3191v1 [physics.comp-ph] 21 Apr 2009 Molecular Modeling and Simulation of Thermophysical Properties: Application to Pure Substances and Mixtures Bernhard Eckl, Martin Horsch, Jadran Vrabec,

More information

Citation Journal of Chemical Physics, 140(7) Right (2014) and may be found at

Citation Journal of Chemical Physics, 140(7) Right (2014) and may be found at Title Properties of liquid clusters in la nucleation simulations Author(s) Angélil, Raymond; Diemand, Jürg; Ta Hidekazu Citation Journal of Chemical Physics, 140(7) Issue Date 2014 DOI Doc URLhttp://hdl.handle.net/2115/57528

More information

Step 1. Step 2. g l = g v. dg = 0 We have shown that over a plane surface of water. g v g l = ρ v R v T ln e/e sat. this can be rewritten

Step 1. Step 2. g l = g v. dg = 0 We have shown that over a plane surface of water. g v g l = ρ v R v T ln e/e sat. this can be rewritten The basic question is what makes the existence of a droplet thermodynamically preferable to the existence only of water vapor. We have already derived an expression for the saturation vapor pressure over

More information

A MOLECULAR DYNAMICS SIMULATION OF A BUBBLE NUCLEATION ON SOLID SURFACE

A MOLECULAR DYNAMICS SIMULATION OF A BUBBLE NUCLEATION ON SOLID SURFACE A MOLECULAR DYNAMICS SIMULATION OF A BUBBLE NUCLEATION ON SOLID SURFACE Shigeo Maruyama and Tatsuto Kimura Department of Mechanical Engineering The University of Tokyo 7-- Hongo, Bunkyo-ku, Tokyo -866,

More information

Nucleation: Theory and Applications to Protein Solutions and Colloidal Suspensions

Nucleation: Theory and Applications to Protein Solutions and Colloidal Suspensions Nucleation: Theory and Applications to Protein Solutions and Colloidal Suspensions Richard P. Sear Department of Physics, University of Surrey Guildford, Surrey GU2 7XH, United Kingdom r.sear@surrey.ac.uk

More information

Microfluidics 2 Surface tension, contact angle, capillary flow

Microfluidics 2 Surface tension, contact angle, capillary flow MT-0.6081 Microfluidics and BioMEMS Microfluidics 2 Surface tension, contact angle, capillary flow 28.1.2017 Ville Jokinen Surface tension & Surface energy Work required to create new surface = surface

More information

The microscopic aspects of solid-liquid-vapor interactions are usually crucial when we consider

The microscopic aspects of solid-liquid-vapor interactions are usually crucial when we consider 2.3 Microscopic Representation of Solid-Liquid-Vapor Interactions The microscopic aspects of solid-liquid-vapor interactions are usually crucial when we consider theories of phase change phenomena such

More information

ChE 385M Surface Phenomena University of Texas at Austin. Marangoni-Driven Finger Formation at a Two Fluid Interface. James Stiehl

ChE 385M Surface Phenomena University of Texas at Austin. Marangoni-Driven Finger Formation at a Two Fluid Interface. James Stiehl ChE 385M Surface Phenomena University of Texas at Austin Marangoni-Driven Finger Formation at a Two Fluid Interface James Stiehl Introduction Marangoni phenomena are driven by gradients in surface tension

More information

emulsions, and foams March 21 22, 2009

emulsions, and foams March 21 22, 2009 Wetting and adhesion Dispersions in liquids: suspensions, emulsions, and foams ACS National Meeting March 21 22, 2009 Salt Lake City Ian Morrison 2009 Ian Morrison 2009 Lecure 2 - Wetting and adhesion

More information

arxiv: v1 [cond-mat.other] 5 Oct 2015

arxiv: v1 [cond-mat.other] 5 Oct 2015 a) st@ruc.dk Dynamics of homogeneous nucleation Søren Toxvaerd a) arxiv:1510.01065v1 [cond-mat.other] 5 Oct 2015 DNRF centre Glass and Time, IMFUFA, Department of Sciences, Roskilde University, Postbox

More information

A patching model for surface tension of spherical droplet and Tolman length. II

A patching model for surface tension of spherical droplet and Tolman length. II University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Xiao Cheng Zeng Publications Published Research - Department of Chemistry -5-999 A patching model for surface tension of

More information

Molecular modelling and simulation of hydrogen bonding fluids

Molecular modelling and simulation of hydrogen bonding fluids Molecular modelling and simulation of hydrogen bonding fluids Martin Horsch, Alptekin Celik and Hans Hasse Lehrstuhl für Thermodynamik (LTD) Technische Universität Kaiserslautern Rostock, 27 th March 13

More information

Thermodynamic expansion of nucleation free-energy barrier and size of critical nucleus near the vapor-liquid coexistence

Thermodynamic expansion of nucleation free-energy barrier and size of critical nucleus near the vapor-liquid coexistence JOURNAL OF CHEMICAL PHYSICS VOLUME 110, NUMBER 7 15 FEBRUARY 1999 hermodynamic expansion of nucleation free-energy barrier and size of critical nucleus near the vapor-liquid coexistence Kenichiro Koga

More information

Exam TFY4230 Statistical Physics kl Wednesday 01. June 2016

Exam TFY4230 Statistical Physics kl Wednesday 01. June 2016 TFY423 1. June 216 Side 1 av 5 Exam TFY423 Statistical Physics l 9. - 13. Wednesday 1. June 216 Problem 1. Ising ring (Points: 1+1+1 = 3) A system of Ising spins σ i = ±1 on a ring with periodic boundary

More information

Consequences of surface tension in homogeneous liquids:

Consequences of surface tension in homogeneous liquids: Colloid science 3 Consequences of surface tension in homogeneous liquids: Pressure change of curved surfaces: Laplace equation Vapor pressure change of curved surfaces: Kelvin equation There are two easily

More information

Multiphase Flow and Heat Transfer

Multiphase Flow and Heat Transfer Multiphase Flow and Heat Transfer Liquid-Vapor Interface Sudheer Siddapuredddy sudheer@iitp.ac.in Department of Mechanical Engineering Indian Institution of Technology Patna Multiphase Flow and Heat Transfer

More information

Statistical Mechanics of Active Matter

Statistical Mechanics of Active Matter Statistical Mechanics of Active Matter Umberto Marini Bettolo Marconi University of Camerino, Italy Naples, 24 May,2017 Umberto Marini Bettolo Marconi (2017) Statistical Mechanics of Active Matter 2017

More information

Modeling the combined effect of surface roughness and shear rate on slip flow of simple fluids

Modeling the combined effect of surface roughness and shear rate on slip flow of simple fluids Modeling the combined effect of surface roughness and shear rate on slip flow of simple fluids Anoosheh Niavarani and Nikolai Priezjev www.egr.msu.edu/~niavaran November 2009 A. Niavarani and N.V. Priezjev,

More information

classical molecular dynamics method

classical molecular dynamics method Numerical study on local pressure c Titletensions of liquid film in the vici classical molecular dynamics method Author(s) 藤原, 邦夫 Citation Issue Date Text Version ETD URL http://hdl.handle.net/11094/52207

More information

MOLECULAR SIMULATION OF THE MICROREGION

MOLECULAR SIMULATION OF THE MICROREGION GASMEMS2010-HT01 MOLECULAR SIMULATION OF THE MICROREGION E.A.T. van den Akker 1, A.J.H. Frijns 1, P.A.J. Hilbers 1, P. Stephan 2 and A.A. van Steenhoven 1 1 Eindhoven University of Technology, Eindhoven,

More information

Köhler Curve. Covers Reading Material in Chapter 10.3 Atmospheric Sciences 5200 Physical Meteorology III: Cloud Physics

Köhler Curve. Covers Reading Material in Chapter 10.3 Atmospheric Sciences 5200 Physical Meteorology III: Cloud Physics Köhler Curve Covers Reading Material in Chapter 10.3 Atmospheric Sciences 5200 Physical Meteorology III: Cloud Physics Review of Kelvin Effect Gibbs Energy for formation of a drop G = G &'()*+, G ).'+

More information

Phase Equilibria and Molecular Solutions Jan G. Korvink and Evgenii Rudnyi IMTEK Albert Ludwig University Freiburg, Germany

Phase Equilibria and Molecular Solutions Jan G. Korvink and Evgenii Rudnyi IMTEK Albert Ludwig University Freiburg, Germany Phase Equilibria and Molecular Solutions Jan G. Korvink and Evgenii Rudnyi IMTEK Albert Ludwig University Freiburg, Germany Preliminaries Learning Goals Phase Equilibria Phase diagrams and classical thermodynamics

More information

Part I.

Part I. Part I bblee@unimp . Introduction to Mass Transfer and Diffusion 2. Molecular Diffusion in Gasses 3. Molecular Diffusion in Liquids Part I 4. Molecular Diffusion in Biological Solutions and Gels 5. Molecular

More information

Capillarity. ESS5855 Lecture Fall 2010

Capillarity. ESS5855 Lecture Fall 2010 Capillarity ESS5855 Lecture Fall 2010 Capillarity: the tendency of a liquid in a narrow tube or pore to rise or fall as a result of surface tension (The concise Oxford Dictionary) Surface tension: the

More information

Liquid-vapour oscillations of water in hydrophobic nanopores

Liquid-vapour oscillations of water in hydrophobic nanopores Alicante 2003 4th European Biophysics Congress Liquid-vapour oscillations of water in hydrophobic nanopores 7 th July 2003 Oliver Beckstein and Mark S. P. Sansom Department of Biochemistry, Laboratory

More information

5.2 Surface Tension Capillary Pressure: The Young-Laplace Equation. Figure 5.1 Origin of surface tension at liquid-vapor interface.

5.2 Surface Tension Capillary Pressure: The Young-Laplace Equation. Figure 5.1 Origin of surface tension at liquid-vapor interface. 5.2.1 Capillary Pressure: The Young-Laplace Equation Vapor Fo Fs Fs Fi Figure 5.1 Origin of surface tension at liquid-vapor interface. Liquid 1 5.2.1 Capillary Pressure: The Young-Laplace Equation Figure

More information

Critical cluster size and droplet nucleation rate from growth and decay simulations of Lennard-Jones clusters

Critical cluster size and droplet nucleation rate from growth and decay simulations of Lennard-Jones clusters JOURNAL OF CHEMICAL PHYSICS VOLUME 112, NUMBER 9 1 MARCH 2000 Critical cluster size and droplet nucleation rate from growth and decay simulations of Lennard-Jones clusters Hanna Vehkamäki a) and Ian J.

More information

PORE SIZE DISTRIBUTION OF CARBON WITH DIFFERENT PROBE MOLECULES

PORE SIZE DISTRIBUTION OF CARBON WITH DIFFERENT PROBE MOLECULES PORE SIZE DISTRIBUTION OF CARBON WITH DIFFERENT PROBE MOLECULES Atichat Wongkoblap*, Worapot Intomya, Warangkhana Somrup, Sorod Charoensuk, Supunnee Junpirom and Chaiyot Tangsathitkulchai School of Chemical

More information

3 Formation free energy

3 Formation free energy 3 Formation free energy So far we have studied isolated systems : U, V, N i are constant. Equilibrium is determined by maximum of entropy S = S max. The maximum is found in respect to some extra parameter(s

More information

8.2 Surface phenomenon of liquid. Out-class reading: Levine p Curved interfaces

8.2 Surface phenomenon of liquid. Out-class reading: Levine p Curved interfaces Out-class reading: Levine p. 387-390 13.2 Curved interfaces https://news.cnblogs.com/n/559867/ 8.2.1 Some interesting phenomena 8.2.1 Some interesting phenomena Provided by Prof. Yu-Peng GUO of Jilin

More information

Hard-sphere fluids in contact with curved substrates

Hard-sphere fluids in contact with curved substrates Hard-sphere fluids in contact with curved substrates P. Bryk, 1,2,3 R. Roth, 2,3 K. R. Mecke, 2,3 and S. Dietrich 2,3 1 Department for the Modeling of Physico-Chemical Processes, Maria Curie-Skłodowska

More information

arxiv: v3 [cond-mat.mes-hall] 12 Mar 2010

arxiv: v3 [cond-mat.mes-hall] 12 Mar 2010 Contact angle dependence on the fluid-wall arxiv:1001.2681v3 [cond-mat.mes-hall] 12 Mar 2010 dispersive energy Martin Horsch, Martina Heitzig,, Calin Dan, Jens Harting,, Hans Hasse, and Jadran Vrabec,

More information

Perturbation approach for equation of state for hard-sphere and Lennard Jones pure fluids

Perturbation approach for equation of state for hard-sphere and Lennard Jones pure fluids PRAMANA c Indian Academy of Sciences Vol. 76, No. 6 journal of June 2011 physics pp. 901 908 Perturbation approach for equation of state for hard-sphere and Lennard Jones pure fluids S B KHASARE and M

More information

Colloidal Particles at Liquid Interfaces: An Introduction

Colloidal Particles at Liquid Interfaces: An Introduction 1 Colloidal Particles at Liquid Interfaces: An Introduction Bernard P. Binks and Tommy S. Horozov Surfactant and Colloid Group, Department of Chemistry, University of Hull, Hull, HU6 7RX, UK 1.1 Some Basic

More information

Supporting information for: Anomalous Stability of Two-Dimensional Ice. Confined in Hydrophobic Nanopore

Supporting information for: Anomalous Stability of Two-Dimensional Ice. Confined in Hydrophobic Nanopore Supporting information for: Anomalous Stability of Two-Dimensional Ice Confined in Hydrophobic Nanopore Boxiao Cao, Enshi Xu, and Tianshu Li Department of Civil and Environmental Engineering, George Washington

More information

Toward a Quantitative Theory of Ultrasmall Liquid Droplets and VaporsLiquid Nucleation

Toward a Quantitative Theory of Ultrasmall Liquid Droplets and VaporsLiquid Nucleation 4988 Ind. Eng. Chem. Res. 2008, 47, 4988 4995 Toward a Quantitative Theory of Ultrasmall Liquid Droplets and VaporsLiquid Nucleation Zhidong Li and Jianzhong Wu* Department of Chemical and EnVironmental

More information

Introduction Statistical Thermodynamics. Monday, January 6, 14

Introduction Statistical Thermodynamics. Monday, January 6, 14 Introduction Statistical Thermodynamics 1 Molecular Simulations Molecular dynamics: solve equations of motion Monte Carlo: importance sampling r 1 r 2 r n MD MC r 1 r 2 2 r n 2 3 3 4 4 Questions How can

More information

Steady-State Molecular Diffusion

Steady-State Molecular Diffusion Steady-State Molecular Diffusion This part is an application to the general differential equation of mass transfer. The objective is to solve the differential equation of mass transfer under steady state

More information

Supporting Information: On Localized Vapor Pressure Gradients Governing Condensation and Frost Phenomena

Supporting Information: On Localized Vapor Pressure Gradients Governing Condensation and Frost Phenomena Supporting Information: On Localized Vapor Pressure Gradients Governing Condensation and Frost Phenomena Saurabh Nath and Jonathan B. Boreyko Department of Biomedical Engineering and Mechanics, Virginia

More information

Advantages of a Finite Extensible Nonlinear Elastic Potential in Lattice Boltzmann Simulations

Advantages of a Finite Extensible Nonlinear Elastic Potential in Lattice Boltzmann Simulations The Hilltop Review Volume 7 Issue 1 Winter 2014 Article 10 December 2014 Advantages of a Finite Extensible Nonlinear Elastic Potential in Lattice Boltzmann Simulations Tai-Hsien Wu Western Michigan University

More information

UNIVERSITY OF MISSOURI-COLUMBIA PHYSICS DEPARTMENT. PART I Qualifying Examination. January 20, 2015, 5:00 p.m. to 8:00 p.m.

UNIVERSITY OF MISSOURI-COLUMBIA PHYSICS DEPARTMENT. PART I Qualifying Examination. January 20, 2015, 5:00 p.m. to 8:00 p.m. UNIVERSITY OF MISSOURI-COLUMBIA PHYSICS DEPARTMENT PART I Qualifying Examination January 20, 2015, 5:00 p.m. to 8:00 p.m. Instructions: The only material you are allowed in the examination room is a writing

More information

Relaxation of surface tension in the freesurface boundary layers of simple Lennard Jones liquids

Relaxation of surface tension in the freesurface boundary layers of simple Lennard Jones liquids Relaxation of surface tension in the freesurface boundary layers of simple Lennard Jones liquids rticle Published Version Lukyanov,. V. and Likhtman,. E. (213) Relaxation of surface tension in the free

More information

Chapter 10. Solids and Fluids

Chapter 10. Solids and Fluids Chapter 10 Solids and Fluids Surface Tension Net force on molecule A is zero Pulled equally in all directions Net force on B is not zero No molecules above to act on it Pulled toward the center of the

More information

Lecture 7: quick review

Lecture 7: quick review Lecture 7: quick review We discussed the meaning of the critical r* and ΔG*: since it s unstable, if we can form a drop with r > r*, the system will keep going falling down the energy curve, trying to

More information

MOLECULAR DYNAMICS SIMULATION OF VAPOR BUBBLE NUCLEATION ON A SOLID SURFACE. Tatsuto Kimura and Shigeo Maruyama

MOLECULAR DYNAMICS SIMULATION OF VAPOR BUBBLE NUCLEATION ON A SOLID SURFACE. Tatsuto Kimura and Shigeo Maruyama MOLECULAR DYNAMICS SIMULATION OF VAPOR BUBBLE NUCLEATION ON A SOLID SURFACE Tatsuto Kimura and Shigeo Maruyama * Department of Mechanical Engineering, The University of Tokyo, 7-- Hongo, Bunkyo-ku, Tokyo

More information

Relaxation Effects in the Modeling of Gradient Stresses

Relaxation Effects in the Modeling of Gradient Stresses Relaxation Effects in the Modeling of Gradient Stresses Daniel D. Joseph 1 The topics being discussed here are the physics and modeling of stresses due to gradients of composition volume fraction of solute

More information

Crystal nucleation for a model of globular proteins

Crystal nucleation for a model of globular proteins JOURNAL OF CHEMICAL PHYSICS VOLUME 120, NUMBER 17 1 MAY 2004 Crystal nucleation for a model of globular proteins Andrey Shiryayev and James D. Gunton Department of Physics, Lehigh University, Bethlehem,

More information

4.1 Introduction. Reality is just an approximation to theory. Abstract

4.1 Introduction. Reality is just an approximation to theory. Abstract 4 Nanoscale Structure of the Liquid Gas Interphase Surface and the Capillary Fluctuations Dmitry I. Zhukhovitskii Joint Institute of High Temperatures, Russian Academy of Sciences, Izhorskaya 13/19, 1541

More information

Power Series. Part 1. J. Gonzalez-Zugasti, University of Massachusetts - Lowell

Power Series. Part 1. J. Gonzalez-Zugasti, University of Massachusetts - Lowell Power Series Part 1 1 Power Series Suppose x is a variable and c k & a are constants. A power series about x = 0 is c k x k A power series about x = a is c k x a k a = center of the power series c k =

More information

CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer

CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer You are assigned to design a fallingcylinder viscometer to measure the viscosity of Newtonian liquids. A schematic

More information

GFD 2006 Lecture 2: Diffusion-controlled solidification

GFD 2006 Lecture 2: Diffusion-controlled solidification GFD 2006 Lecture 2: Diffusion-controlled solidification Grae Worster; notes by Victor Tsai and Dan Goldberg March 15, 2007 1 Finishing off Lecture 1 As shown in Lecture 1, an approximation for the diffusion

More information

An Introduction to Two Phase Molecular Dynamics Simulation

An Introduction to Two Phase Molecular Dynamics Simulation An Introduction to Two Phase Molecular Dynamics Simulation David Keffer Department of Materials Science & Engineering University of Tennessee, Knoxville date begun: April 19, 2016 date last updated: April

More information

Clouds associated with cold and warm fronts. Whiteman (2000)

Clouds associated with cold and warm fronts. Whiteman (2000) Clouds associated with cold and warm fronts Whiteman (2000) Dalton s law of partial pressures! The total pressure exerted by a mixture of gases equals the sum of the partial pressure of the gases! Partial

More information

An Analytical Approach for Determination of Riverbank Erosion under Action of Capillary Cohesion, Viscous Force and Force due to Pore Pressure

An Analytical Approach for Determination of Riverbank Erosion under Action of Capillary Cohesion, Viscous Force and Force due to Pore Pressure An Analytical Approach for Determination of Riverbank Erosion under Action of Capillary Cohesion, Viscous Force and Force due to Pore Pressure Sanchayan Mukherjee 1, Bimalendu Pal 2, Debasish Mandi 2,

More information

Monte Carlo Calculations of Effective Surface Tension for Small Clusters

Monte Carlo Calculations of Effective Surface Tension for Small Clusters Monte Carlo Calculations of Effective Surface Tension for Small Clusters Barbara N. Hale Physics Department and Cloud and Aerosol Science Laboratory, University of Missouri- Rolla, Rolla, MO 65401, USA

More information

The Clausius-Clapeyron and the Kelvin Equations

The Clausius-Clapeyron and the Kelvin Equations PhD Environmental Fluid Mechanics Physics of the Atmosphere University of Trieste International Center for Theoretical Physics The Clausius-Clapeyron and the Kelvin Equations by Dario B. Giaiotti and Fulvio

More information

The transport of mass at the nano-scale during. evaporation of droplets: the Hertz-Knudsen equation. at the nano-scale

The transport of mass at the nano-scale during. evaporation of droplets: the Hertz-Knudsen equation. at the nano-scale Page of 0 0 0 0 0 The transport of mass at the nano-scale during evaporation of droplets: the Hertz-Knudsen equation at the nano-scale Marcin Zientara,, Daniel Jakubczyk, Marek Litniewski, and Robert Hołyst

More information

Boundary Conditions in Fluid Mechanics

Boundary Conditions in Fluid Mechanics Boundary Conditions in Fluid Mechanics R. Shankar Subramanian Department of Chemical and Biomolecular Engineering Clarkson University The governing equations for the velocity and pressure fields are partial

More information

Modeling the Free Energy Landscape for Janus Particle Self-Assembly in the Gas Phase. Andy Long Kridsanaphong Limtragool

Modeling the Free Energy Landscape for Janus Particle Self-Assembly in the Gas Phase. Andy Long Kridsanaphong Limtragool Modeling the Free Energy Landscape for Janus Particle Self-Assembly in the Gas Phase Andy Long Kridsanaphong Limtragool Motivation We want to study the spontaneous formation of micelles and vesicles Applications

More information

AP Physics C. Gauss s Law. Free Response Problems

AP Physics C. Gauss s Law. Free Response Problems AP Physics Gauss s Law Free Response Problems 1. A flat sheet of glass of area 0.4 m 2 is placed in a uniform electric field E = 500 N/. The normal line to the sheet makes an angle θ = 60 ẘith the electric

More information

CE 530 Molecular Simulation

CE 530 Molecular Simulation CE 530 Molecular Simulation Lecture 20 Phase Equilibria David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu 2 Thermodynamic Phase Equilibria Certain thermodynamic states

More information

Jacco Snoeijer PHYSICS OF FLUIDS

Jacco Snoeijer PHYSICS OF FLUIDS Jacco Snoeijer PHYSICS OF FLUIDS dynamics dynamics freezing dynamics freezing microscopics of capillarity Menu 1. surface tension: thermodynamics & microscopics 2. wetting (statics): thermodynamics & microscopics

More information

Adsorption of Lennard-Jones Fluids in Carbon Slit Pores of a Finite Length. AComputer Simulation Study

Adsorption of Lennard-Jones Fluids in Carbon Slit Pores of a Finite Length. AComputer Simulation Study 1 Invited Contribution Adsorption of Lennard-Jones Fluids in Carbon Slit Pores of a Finite Length. AComputer Simulation Study A. Wongkoblap 1, S. Junpirom 2 and D.D. Do 1 * (1) Department of Chemical Engineering,

More information

Tides in Higher-Dimensional Newtonian Gravity

Tides in Higher-Dimensional Newtonian Gravity Tides in Higher-Dimensional Newtonian Gravity Philippe Landry Department of Physics University of Guelph 23 rd Midwest Relativity Meeting October 25, 2013 Tides: A Familiar Example Gravitational interactions

More information

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2013

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2013 Lecture 1 3/13/13 University of Washington Department of Chemistry Chemistry 53 Winter Quarter 013 A. Definition of Viscosity Viscosity refers to the resistance of fluids to flow. Consider a flowing liquid

More information

convection coefficient, h c = 18.1 W m K and the surrounding temperature to be 20 C.) (20 marks) Question 3 [35 marks]

convection coefficient, h c = 18.1 W m K and the surrounding temperature to be 20 C.) (20 marks) Question 3 [35 marks] COP 311 June Examination 18 June 005 Duration: 3 hours Starting time: 08:30 Internal examiners: Prof. T. Majozi Mnr. D.J. de Kock Mnr. A.T. Tolmay External examiner: Mnr. B. du Plessis Metallurgists: Questions

More information

Cluster and virial expansions for multi-species models

Cluster and virial expansions for multi-species models Cluster and virial expansions for multi-species models Sabine Jansen Ruhr-Universität Bochum Yerevan, September 2016 Overview 1. Motivation: dynamic nucleation models 2. Statistical mechanics for mixtures

More information

Supplemental Material for Curvature-dependence of the liquid-vapor surface tension beyond the Tolman approximation

Supplemental Material for Curvature-dependence of the liquid-vapor surface tension beyond the Tolman approximation Supplemental Material for Curvature-dependence of the liquid-vapor surface tension beyond the Tolman approximation Nicolas Bruot and Frédéric Caupin Institut Lumière Matière, UMR536 Université Claude Bernard

More information