Finite element exterior calculus framework for geophysical fluid dynamics

Size: px
Start display at page:

Download "Finite element exterior calculus framework for geophysical fluid dynamics"

Transcription

1 Finite element exterior calculus framework for geophysical fluid dynamics Colin Cotter Department of Aeronautics Imperial College London Part of ongoing work on UK Gung-Ho Dynamical Core Project funded by NERC/STFC/UK Met Office Colin Cotter

2 Aim Aim of Grids workpackage in GungHo Identify numerical discretisation in horizontal that can be used on pseudo-uniform grids on the sphere, but preserves properties of C-grid finite difference method on latitude-longitude grid. Colin Cotter

3 Aim Aim of talk Identify numerical discretisation in horizontal that are stable and accurate on adaptively refined meshes, but preserves properties of C-grid finite difference method on latitude-longitude grid. Colin Cotter

4 C grids and TRiSK J. Thuburn, Numerical wave propagation on the hexagonal C-grid, JCP J. Thuburn, T. D. Ringler, W. C. Skamarock and J. B. Klemp, Numerical representation of geostrophic modes on arbitrarily structured C-grids, JCP T. D. Ringler, J. Thuburn, J. B. Klemp and W. C. Skamarock, A unified approach to energy conservation and potential vorticity dynamics on arbitrarily-structured C-grids, JCP Colin Cotter

5 Beyond TRiSK J. Thuburn and C. J. Cotter, A framework for mimetic discretization of the rotating shallow-water equations on arbitrary polygonal grids, SIAM J. Sci. Comput Requirements for extension to non-orthogonal grids. C. J. Cotter and J. Shipton, Mixed finite elements for numerical weather prediction, JCP, Mimetic finite element methods applied to linear RSWE are energy conserving, have no spurious pressure modes, and geostrophic modes are steady on f -plane, and allow flexibility to increase order of accuracy, use non-orthogonal grids, tinker with balance between velocity and pressure degrees of freedom to remove spurious mode branches. Colin Cotter

6 Objectives Target features of finite element formulation applied to shallow-water equations on sphere: 1 Overall scheme high(er)-order. 2 Bounded, high-order, local conservation of mass. 3 Stable accurate advection of PV, that is consistent with mass transport. 4 Steady geostrophic linear modes on f-plane. 5 Linear system is energy conserving. Colin Cotter

7 Mimetic properties Extend TRiSK framework to finite element approach. Features we need to import: 1 f = 0 identity preserved (d 2 = 0). 2 f = 0 identity preserved (d 2 = 0). 3 Coriolis term maps f to f (Hodge star). For mimetic finite differences, feature (1) is obtained on the primal grid, and feature (2) is obtained on the dual grid. Feature (3) involves mapping from primal to dual grid. Key difference There is no dual grid (in general) in the finite element approach. We circumvent this by building finite element functions that satisfy (1), obtain (2) by integration by parts, and use finite element projection for (3). 1 1 Watch this space for dual grid FEM schemes! Colin Cotter

8 Mimetic properties Extend TRiSK framework to finite element approach. Features we need to import: 1 f = 0 identity preserved (d 2 = 0). 2 f = 0 identity preserved (d 2 = 0). 3 Coriolis term maps f to f (Hodge star). For mimetic finite differences, feature (1) is obtained on the primal grid, and feature (2) is obtained on the dual grid. Feature (3) involves mapping from primal to dual grid. Key difference There is no dual grid (in general) in the finite element approach. We circumvent this by building finite element functions that satisfy (1), obtain (2) by integration by parts, and use finite element projection for (3). 1 1 Watch this space for dual grid FEM schemes! Colin Cotter

9 Mimetic properties Extend TRiSK framework to finite element approach. Features we need to import: 1 f = 0 identity preserved (d 2 = 0). 2 f = 0 identity preserved (d 2 = 0). 3 Coriolis term maps f to f (Hodge star). For mimetic finite differences, feature (1) is obtained on the primal grid, and feature (2) is obtained on the dual grid. Feature (3) involves mapping from primal to dual grid. Key difference There is no dual grid (in general) in the finite element approach. We circumvent this by building finite element functions that satisfy (1), obtain (2) by integration by parts, and use finite element projection for (3). 1 1 Watch this space for dual grid FEM schemes! Colin Cotter

10 Mimetic properties Extend TRiSK framework to finite element approach. Features we need to import: 1 f = 0 identity preserved (d 2 = 0). 2 f = 0 identity preserved (d 2 = 0). 3 Coriolis term maps f to f (Hodge star). For mimetic finite differences, feature (1) is obtained on the primal grid, and feature (2) is obtained on the dual grid. Feature (3) involves mapping from primal to dual grid. Key difference There is no dual grid (in general) in the finite element approach. We circumvent this by building finite element functions that satisfy (1), obtain (2) by integration by parts, and use finite element projection for (3). 1 1 Watch this space for dual grid FEM schemes! Colin Cotter

11 Mimetic properties Extend TRiSK framework to finite element approach. Features we need to import: 1 f = 0 identity preserved (d 2 = 0). 2 f = 0 identity preserved (d 2 = 0). 3 Coriolis term maps f to f (Hodge star). For mimetic finite differences, feature (1) is obtained on the primal grid, and feature (2) is obtained on the dual grid. Feature (3) involves mapping from primal to dual grid. Key difference There is no dual grid (in general) in the finite element approach. We circumvent this by building finite element functions that satisfy (1), obtain (2) by integration by parts, and use finite element projection for (3). 1 1 Watch this space for dual grid FEM schemes! Colin Cotter

12 Finite element exterior calculus Property (1) built in: E }{{} Continuous S }{{} Continuous normals V }{{} Discontinuous Lose continuity at element boundaries after taking derivatives. See: Arnold, Falk and Winther, Acta Numerica, 2006 for a review. Colin Cotter

13 Some candidate FE spaces E = P2 }{{} Continuous S = BDM1 }{{} Continuous normals V = P0 }{{} Discontinuous/finite volume Same DOF counts as TRiSK on hexagons. Extra branches of Rossby modes (requires analysis). Colin Cotter

14 Some candidate FE spaces E = P2+ }{{} Continuous S = BDFM1 }{{} Continuous normals V = P1 DG }{{} Discontinuous Equal balance of vorticity and pressure DOFs. Second-order accurate, can use DG advection. Colin Cotter

15 Finite element functions Property (1) built in: E }{{} Continuous S }{{} Continuous normals V }{{} Discontinuous Lose continuity at element boundaries after taking derivatives. Property (2) defined weakly (integrate by parts): Weak gradient of D V: Ω w δd dv = Ω wd ds, w S. Weak curl of u S: Ω γδ u ds = Ω γ u ds, γ E. V }{{} Discontinuous δ S }{{} Continuous normals δ E }{{} Continuous Colin Cotter

16 Finite element functions Property (2) defined weakly (integrate by parts): So: Weak gradient of D V: Ω w δd ds = Ω wd ds, w S. Weak curl of u S: Ω γδ u ds = Ω γ u ds, γ E. Ω γδ δd ds = γ δd ds Ω = γ D ds = 0, γ E, Ω }{{} =0 and so δ δd = 0. Colin Cotter

17 PV conservation RSWE in Strong Form: u t + Q }{{} =(ζ+f )u + gd u 2 = 0, }{{} =K D t + (ud) = 0. Finite element discretisation of linear RSWE: Seek u S, D V with w u ds + w Q ds w(gd + K ) ds = 0, t Ω Ω Ω φd ds φ ud ds + φ t Du nds = 0. e for all suitable test functions w S, φ V. e e Colin Cotter

18 Vorticity equation Define vorticity on E using integration by parts: γζ ds = γ u ds, γ E. Ω Ω Get vorticity equation by choosing test function w = γ in velocity equation: d γζ ds = d γ u ds, dt Ω dt Ω = γ Q ds ( γ) (gd + K ) ds Ω Ω }{{} =0 = γ Q ds, γ E. Ω Integration by parts allowed since γ continuous and if Q has continuous normal components. How to construct Q? Colin Cotter

19 How to construct Q? Follow steps of TRiSK: 1 Update D and diagnose a mass flux F. 2 Write PV equation as 3 Set Q = (F q). (qd) + (F q) = 0. t Colin Cotter

20 Compute mass flux DG/finite volume advection equation for D V, φd ds φ ud ds + φ t Du nds = 0, φ V, e e e can be written as for flux F S. t D + F = 0, Crucially: flux can be reconstructed locally (no global elliptic solve), and still works if apply a slope limiter to D to preserve monoticity. (Makes use of Fortin projection). Colin Cotter

21 Compute PV flux Define potential vorticity q E: γqd ds = γ u ds + Ω PV equation is then d γqd ds + dt Ω Ω Ω Ω γf ds, γ E. γ (F q) ds = 0, γ E. For constant q = q 0 we get γ Ω t qd ds = γq 0 D + F Ω } t ds = 0, γ E, {{} =0 so q t = 0 and q stays constant. Colin Cotter

22 Compute PV flux II PV equation (after integration by parts) is d γqd ds γ (F q) ds, γ E. dt Ω Ω Substitute definition of PV, and rewrite as d ( ) ( ) γ u dv + γ (F q) dv. dt Ω Compare with velocity equation with w = γ: d ( ) ( ) γ u dv + γ Q dv, dt so Q = F q. Ω Ω Ω Colin Cotter

23 Stabilising PV advection I What about PV advection? q is in E, not V. Requirement for PV Don t need rigorous bounds for q, just need advection to be stable and not too oscillatory near to fronts, to keep control over the divergence-free component of u. Can add extra dissipative fluxes to PV equation, modifying Q: d γqd ds γ (F q + Q ) ds = 0, γ E, dt Ω with Q = F q + Q. Ω Colin Cotter

24 Stabilising PV advection II Simple Laplacian diffusive fluxes: d γqd ds γ (F q κ q) ds = 0, γ E, dt Ω Ω Q = F q κ q. Petrov-Galerkin method (replaces γ γ + τu γ): d (γ + τu γ) qd ds γ (F q) ds dt Ω Ω + τu γ (F q) ds = 0, γ E, Q = F q τu ( t (qd) + (F q)). Linear, stable, but remains high-order (so can still get overshoots near discontinuities). Ω Colin Cotter

25 Stabilising PV advection II Simple Laplacian diffusive fluxes: d γqd ds γ (F q κ q) ds = 0, γ E, dt Ω Ω Q = F q κ q. Petrov-Galerkin method (replaces γ γ + τu γ): d (γ + τu γ) qd ds γ (F q) ds dt Ω Ω + τu γ (F q) ds = 0, γ E, Q = F q τu ( t (qd) + (F q)). Linear, stable, but remains high-order (so can still get overshoots near discontinuities). Ω Colin Cotter

26 Stabilising PV advection II Simple Laplacian diffusive fluxes: d γqd ds γ (F q κ q) ds = 0, γ E, dt Ω Ω Q = F q κ q. Petrov-Galerkin method (replaces γ γ + τu γ): d (γ + τu γ) qd ds γ (F q) ds dt Ω Ω + τu γ (F q) ds = 0, γ E, Q = F q τu ( t (qd) + (F q)). Linear, stable, but remains high-order (so can still get overshoots near discontinuities). Ω Colin Cotter

27 Stabilising PV advection III If we really need it: Petrov-Galerkin method with discontinuity capturing: d (γ + τu γ) qd ds γ (F q) ds dt Ω Ω + τu γ (F q) ds Ω + η γd q ds = 0, γ E, Where η is a discontinuity detecting switch. Q = F q τu ( t (qd) + (F q)) ηd q. Ω Colin Cotter

28 Timestepping framework Incremental pseudo-newton formulation. Helmholtz equation includes Coriolis term (hybridisation). Mass transport uses subcycled explicit steps with Kuzmin s vertex-based slope limiter. PV advection takes one implicit timestep (to compute Q) with Petrov-Galerkin stabilisation. Colin Cotter

29 Testcases Solid rotation testcase. Colin Cotter

30 Testcases Solid rotation testcase. Colin Cotter

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81 Summary and Outlook Summary: TRiSK s mimetic scheme adapted for finite element exterior calculus framework. Based on sequence of spaces for streamfunction, velocity, pressure. Outlook: Stable consistent PV advection built in. Further test cases comparisons with GungHo team. Primal-Dual grid version (see talks by JT). Extension to 3D PV conservation. Colin Cotter

Mixed Mimetic Spectral Elements for Geophysical Fluid Dynamics

Mixed Mimetic Spectral Elements for Geophysical Fluid Dynamics for Geophysical Fluid Dynamics Dave Lee Los Alamos National Laboratory Outline Connection of finite volumes to differential forms Key ideas of differential forms Differential forms for discrete data Construction

More information

A primal-dual mixed finite element method. for accurate and efficient atmospheric. modelling on massively parallel computers

A primal-dual mixed finite element method. for accurate and efficient atmospheric. modelling on massively parallel computers A primal-dual mixed finite element method for accurate and efficient atmospheric modelling on massively parallel computers John Thuburn (University of Exeter, UK) Colin Cotter (Imperial College, UK) AMMW03,

More information

Extension of the 1981 Arakawa and Lamb Scheme to Arbitrary Grids

Extension of the 1981 Arakawa and Lamb Scheme to Arbitrary Grids Extension of the 1981 Arakawa and Lamb Scheme to Arbitrary Grids Department of Atmospheric Science Colorado State University January 13th, 2015 Key Papers Introduction Arakawa and Lamb 1981 Salmon 2004

More information

Extension of the 1981 Arakawa and Lamb Scheme to Arbitrary Grids

Extension of the 1981 Arakawa and Lamb Scheme to Arbitrary Grids Extension of the 1981 Arakawa and Lamb Scheme to Arbitrary Grids Department of Atmospheric Science Colorado State University May 7th, 2015 Intro Introduction Introduction Key Principles of Numerical Modeling

More information

arxiv: v1 [math.na] 3 Jan 2014

arxiv: v1 [math.na] 3 Jan 2014 Compatible finite element methods for numerical weather prediction C. J. Cotter and A. T. T. McRae October 15, 218 arxiv:141.616v1 [math.na] 3 Jan 214 Abstract This article takes the form of a tutorial

More information

arxiv: v2 [math.na] 2 Sep 2013

arxiv: v2 [math.na] 2 Sep 2013 Energy- and enstrophy-conserving schemes for the shallow-water equations, based on mimetic finite elements Andrew T. T. McRae 1,2,* and Colin J. Cotter 1 1 Department of Aeronautics, Imperial College London,

More information

ICON-IAP: A non-hydrostatic global. Almut Gassmann IAP Kühlungsborn, Germany. model designed for energetic consistency

ICON-IAP: A non-hydrostatic global. Almut Gassmann IAP Kühlungsborn, Germany. model designed for energetic consistency ICON-IAP: A non-hydrostatic global Almut Gassmann IAP Kühlungsborn, Germany model designed for energetic consistency ICON-IAP is a model on a Voronoi mesh: The divergence lives on Voronoi cells (mostly

More information

ORE Open Research Exeter

ORE Open Research Exeter ORE Open Research Exeter TITLE A unified approach to energy conservation and potential vorticity dynamics for arbitrarily-structured C- grids AUTHORS Ringler, T.D.; Thuburn, John; Klemp, J.B.; et al. JOURNAL

More information

Mimetic Finite Difference methods

Mimetic Finite Difference methods Mimetic Finite Difference methods An introduction Andrea Cangiani Università di Roma La Sapienza Seminario di Modellistica Differenziale Numerica 2 dicembre 2008 Andrea Cangiani (IAC CNR) mimetic finite

More information

Evaluation of three spatial discretization schemes with the Galewsky et al. test

Evaluation of three spatial discretization schemes with the Galewsky et al. test Evaluation of three spatial discretization schemes with the Galewsky et al. test Seoleun Shin Matthias Sommer Sebastian Reich Peter Névir February 22, 2 Abstract We evaluate the Hamiltonian Particle Methods

More information

6 Two-layer shallow water theory.

6 Two-layer shallow water theory. 6 Two-layer shallow water theory. Wewillnowgoontolookatashallowwatersystemthathastwolayersofdifferent density. This is the next level of complexity and a simple starting point for understanding the behaviour

More information

Introduction to Finite Volume projection methods. On Interfaces with non-zero mass flux

Introduction to Finite Volume projection methods. On Interfaces with non-zero mass flux Introduction to Finite Volume projection methods On Interfaces with non-zero mass flux Rupert Klein Mathematik & Informatik, Freie Universität Berlin Summerschool SPP 1506 Darmstadt, July 09, 2010 Introduction

More information

A Space-Time Expansion Discontinuous Galerkin Scheme with Local Time-Stepping for the Ideal and Viscous MHD Equations

A Space-Time Expansion Discontinuous Galerkin Scheme with Local Time-Stepping for the Ideal and Viscous MHD Equations A Space-Time Expansion Discontinuous Galerkin Scheme with Local Time-Stepping for the Ideal and Viscous MHD Equations Ch. Altmann, G. Gassner, F. Lörcher, C.-D. Munz Numerical Flow Models for Controlled

More information

arxiv: v1 [math.na] 18 Jan 2019

arxiv: v1 [math.na] 18 Jan 2019 Energy conserving upwinded compatible finite element schemes for the rotating shallow water equations Golo Wimmer*, Colin Cotter* and Werner Bauer* * Imperial College London, **INRIA Rennes Monday 21 st

More information

The Shallow Water Equations

The Shallow Water Equations If you have not already done so, you are strongly encouraged to read the companion file on the non-divergent barotropic vorticity equation, before proceeding to this shallow water case. We do not repeat

More information

AProofoftheStabilityoftheSpectral Difference Method For All Orders of Accuracy

AProofoftheStabilityoftheSpectral Difference Method For All Orders of Accuracy AProofoftheStabilityoftheSpectral Difference Method For All Orders of Accuracy Antony Jameson 1 1 Thomas V. Jones Professor of Engineering Department of Aeronautics and Astronautics Stanford University

More information

Lecture 2: Reconstruction and decomposition of vector fields on the sphere with applications

Lecture 2: Reconstruction and decomposition of vector fields on the sphere with applications 2013 Dolomites Research Week on Approximation : Reconstruction and decomposition of vector fields on the sphere with applications Grady B. Wright Boise State University What's the problem with vector fields

More information

Differential Geometry: Discrete Exterior Calculus

Differential Geometry: Discrete Exterior Calculus Differential Geometry: Discrete Exterior Calculus [Discrete Exterior Calculus (Thesis). Hirani, 23] [Discrete Differential Forms for Computational Modeling. Desbrun et al., 25] [Build Your Own DEC at Home.

More information

Mathematical Concepts & Notation

Mathematical Concepts & Notation Mathematical Concepts & Notation Appendix A: Notation x, δx: a small change in x t : the partial derivative with respect to t holding the other variables fixed d : the time derivative of a quantity that

More information

t tendency advection convergence twisting baroclinicity

t tendency advection convergence twisting baroclinicity RELATIVE VORTICITY EQUATION Newton s law in a rotating frame in z-coordinate (frictionless): U + U U = 2Ω U Φ α p U + U U 2 + ( U) U = 2Ω U Φ α p Applying to both sides, and noting ω U and using identities

More information

The Relationship between Discrete Calculus Methods and other Mimetic Approaches

The Relationship between Discrete Calculus Methods and other Mimetic Approaches The Relationship between Discrete Calculus Methods and other Mimetic Approaches Blair Perot Theoretical and Computational Fluid Dynamics Laboratory Woudschoten Conerence Oct. 2011 October 7, 2011 Background

More information

PAPER 333 FLUID DYNAMICS OF CLIMATE

PAPER 333 FLUID DYNAMICS OF CLIMATE MATHEMATICAL TRIPOS Part III Wednesday, 1 June, 2016 1:30 pm to 4:30 pm Draft 21 June, 2016 PAPER 333 FLUID DYNAMICS OF CLIMATE Attempt no more than THREE questions. There are FOUR questions in total.

More information

MOX EXPONENTIAL INTEGRATORS FOR MULTIPLE TIME SCALE PROBLEMS OF ENVIRONMENTAL FLUID DYNAMICS. Innsbruck Workshop October

MOX EXPONENTIAL INTEGRATORS FOR MULTIPLE TIME SCALE PROBLEMS OF ENVIRONMENTAL FLUID DYNAMICS. Innsbruck Workshop October Innsbruck Workshop October 29 21 EXPONENTIAL INTEGRATORS FOR MULTIPLE TIME SCALE PROBLEMS OF ENVIRONMENTAL FLUID DYNAMICS Luca Bonaventura - Modellistica e Calcolo Scientifico Dipartimento di Matematica

More information

Fourier Spectral Computing for PDEs on the Sphere

Fourier Spectral Computing for PDEs on the Sphere Fourier Spectral Computing for PDEs on the Sphere an FFT-based method with implicit-explicit timestepping a simple & efficient approach Dave Muraki, Andrea Blazenko & Kevin Mitchell Mathematics, Simon

More information

Modeling, Simulating and Rendering Fluids. Thanks to Ron Fediw et al, Jos Stam, Henrik Jensen, Ryan

Modeling, Simulating and Rendering Fluids. Thanks to Ron Fediw et al, Jos Stam, Henrik Jensen, Ryan Modeling, Simulating and Rendering Fluids Thanks to Ron Fediw et al, Jos Stam, Henrik Jensen, Ryan Applications Mostly Hollywood Shrek Antz Terminator 3 Many others Games Engineering Animating Fluids is

More information

New Model Stability Criteria for Mixed Finite Elements

New Model Stability Criteria for Mixed Finite Elements New Model Stability Criteria for Mixed Finite Elements Andrew Gillette Department of Mathematics Institute of Computational Engineering and Sciences University of Texas at Austin http://www.math.utexas.edu/users/agillette

More information

Overview of the Numerics of the ECMWF. Atmospheric Forecast Model

Overview of the Numerics of the ECMWF. Atmospheric Forecast Model Overview of the Numerics of the Atmospheric Forecast Model M. Hortal Seminar 6 Sept 2004 Slide 1 Characteristics of the model Hydrostatic shallow-atmosphere approimation Pressure-based hybrid vertical

More information

AposteriorierrorestimatesinFEEC for the de Rham complex

AposteriorierrorestimatesinFEEC for the de Rham complex AposteriorierrorestimatesinFEEC for the de Rham complex Alan Demlow Texas A&M University joint work with Anil Hirani University of Illinois Urbana-Champaign Partially supported by NSF DMS-1016094 and a

More information

Conservation of Mass. Computational Fluid Dynamics. The Equations Governing Fluid Motion

Conservation of Mass. Computational Fluid Dynamics. The Equations Governing Fluid Motion http://www.nd.edu/~gtryggva/cfd-course/ http://www.nd.edu/~gtryggva/cfd-course/ Computational Fluid Dynamics Lecture 4 January 30, 2017 The Equations Governing Fluid Motion Grétar Tryggvason Outline Derivation

More information

BALANCED FLOW: EXAMPLES (PHH lecture 3) Potential Vorticity in the real atmosphere. Potential temperature θ. Rossby Ertel potential vorticity

BALANCED FLOW: EXAMPLES (PHH lecture 3) Potential Vorticity in the real atmosphere. Potential temperature θ. Rossby Ertel potential vorticity BALANCED FLOW: EXAMPLES (PHH lecture 3) Potential Vorticity in the real atmosphere Need to introduce a new measure of the buoyancy Potential temperature θ In a compressible fluid, the relevant measure

More information

RESEARCH HIGHLIGHTS. WAF: Weighted Average Flux Method

RESEARCH HIGHLIGHTS. WAF: Weighted Average Flux Method RESEARCH HIGHLIGHTS (Last update: 3 rd April 2013) Here I briefly describe my contributions to research on numerical methods for hyperbolic balance laws that, in my view, have made an impact in the scientific

More information

Computational challenges in Numerical Weather Prediction

Computational challenges in Numerical Weather Prediction Computational challenges in Numerical Weather Prediction Mike Cullen Oxford 15 September 2008 Contents This presentation covers the following areas Historical background Current challenges Why does it

More information

Fluid Animation. Christopher Batty November 17, 2011

Fluid Animation. Christopher Batty November 17, 2011 Fluid Animation Christopher Batty November 17, 2011 What distinguishes fluids? What distinguishes fluids? No preferred shape Always flows when force is applied Deforms to fit its container Internal forces

More information

Block-Structured Adaptive Mesh Refinement

Block-Structured Adaptive Mesh Refinement Block-Structured Adaptive Mesh Refinement Lecture 2 Incompressible Navier-Stokes Equations Fractional Step Scheme 1-D AMR for classical PDE s hyperbolic elliptic parabolic Accuracy considerations Bell

More information

Finite element exterior calculus: A new approach to the stability of finite elements

Finite element exterior calculus: A new approach to the stability of finite elements Finite element exterior calculus: A new approach to the stability of finite elements Douglas N. Arnold joint with R. Falk and R. Winther Institute for Mathematics and its Applications University of Minnesota

More information

Comparison of cell-centered and node-centered formulations of a high-resolution well-balanced finite volume scheme: application to shallow water flows

Comparison of cell-centered and node-centered formulations of a high-resolution well-balanced finite volume scheme: application to shallow water flows Comparison of cell-centered and node-centered formulations of a high-resolution well-balanced finite volume scheme: application to shallow water flows Dr Argiris I. Delis Dr Ioannis K. Nikolos (TUC) Maria

More information

Computational Modes in Weather and Climate Models

Computational Modes in Weather and Climate Models Computational Modes in Weather and Climate Models John Thuburn College of Engineering, Mathematics and Physical Sciences, University of Exeter, North Park Road, Exeter, EX4 4QF, United Kingdom j.thuburn@exeter.ac.uk

More information

Lecture 1: Introduction to Linear and Non-Linear Waves

Lecture 1: Introduction to Linear and Non-Linear Waves Lecture 1: Introduction to Linear and Non-Linear Waves Lecturer: Harvey Segur. Write-up: Michael Bates June 15, 2009 1 Introduction to Water Waves 1.1 Motivation and Basic Properties There are many types

More information

A posteriori error estimates in FEEC for the de Rham complex

A posteriori error estimates in FEEC for the de Rham complex A posteriori error estimates in FEEC for the de Rham complex Alan Demlow Texas A&M University joint work with Anil Hirani University of Illinois Urbana-Champaign Partially supported by NSF DMS-1016094

More information

Mimetic Methods and why they are better

Mimetic Methods and why they are better Mimetic Methods and why they are better Blair Perot Theoretical and Computational Fluid Dynamics Laboratory February 25, 2015 Numerical Methods: Are more than Mathematics Math: Accuracy Stability Convergence

More information

New variables in spherical geometry. David G. Dritschel. Mathematical Institute University of St Andrews.

New variables in spherical geometry. David G. Dritschel. Mathematical Institute University of St Andrews. New variables in spherical geometry David G Dritschel Mathematical Institute University of St Andrews http://www-vortexmcsst-andacuk Collaborators: Ali Mohebalhojeh (Tehran St Andrews) Jemma Shipton &

More information

FEM-Level Set Techniques for Multiphase Flow --- Some recent results

FEM-Level Set Techniques for Multiphase Flow --- Some recent results FEM-Level Set Techniques for Multiphase Flow --- Some recent results ENUMATH09, Uppsala Stefan Turek, Otto Mierka, Dmitri Kuzmin, Shuren Hysing Institut für Angewandte Mathematik, TU Dortmund http://www.mathematik.tu-dortmund.de/ls3

More information

Linear and Nonlinear Properties of Numerical Methods for the Rotating Shallow Water Equations

Linear and Nonlinear Properties of Numerical Methods for the Rotating Shallow Water Equations Linear and Nonlinear Properties of Numerical Methods for the Rotating Shallow Water Equations Ph.D. Thesis Chris Eldred Department of Atmospheric Science Colorado State University Advisor: David Randall

More information

Internal boundary layers in the ocean circulation

Internal boundary layers in the ocean circulation Internal boundary layers in the ocean circulation Lecture 9 by Andrew Wells We have so far considered boundary layers adjacent to physical boundaries. However, it is also possible to find boundary layers

More information

Salmon: Lectures on partial differential equations

Salmon: Lectures on partial differential equations 4 Burger s equation In Lecture 2 we remarked that if the coefficients in u x, y,! "! "x + v x,y,! "! "y = 0 depend not only on x,y but also on!, then the characteristics may cross and the solutions become

More information

Semi-implicit methods, nonlinear balance, and regularized equations

Semi-implicit methods, nonlinear balance, and regularized equations ATMOSPHERIC SCIENCE LETTERS Atmos. Sci. Let. 8: 1 6 (7 Published online 9 January 7 in Wiley InterScience (www.interscience.wiley.com.1 Semi-implicit methods, nonlinear balance, and regularized equations

More information

Quasi-geostrophic system

Quasi-geostrophic system Quasi-eostrophic system (or, why we love elliptic equations for QGPV) Charney s QG the motion of lare-scale atmospheric disturbances is overned by Laws of conservation of potential temperature and potential

More information

Chapter 3. Stability theory for zonal flows :formulation

Chapter 3. Stability theory for zonal flows :formulation Chapter 3. Stability theory for zonal flows :formulation 3.1 Introduction Although flows in the atmosphere and ocean are never strictly zonal major currents are nearly so and the simplifications springing

More information

Weak Galerkin Finite Element Scheme and Its Applications

Weak Galerkin Finite Element Scheme and Its Applications Weak Galerkin Finite Element Scheme and Its Applications Ran Zhang Department of Mathematics Jilin University, China IMS, Singapore February 6, 2015 Talk Outline Motivation WG FEMs: Weak Operators + Stabilizer

More information

arxiv: v1 [math-ph] 25 Apr 2013

arxiv: v1 [math-ph] 25 Apr 2013 Higher-order compatible discretization on hexahedrals Jasper Kreeft and Marc Gerritsma arxiv:1304.7018v1 [math-ph] 5 Apr 013 Abstract We derive a compatible discretization method that relies heavily on

More information

Justin Solomon MIT, Spring 2017

Justin Solomon MIT, Spring 2017 Fisher et al. Design of Tangent Vector Fields (SIGGRAPH 2007) Justin Solomon MIT, Spring 2017 Original version from Stanford CS 468, spring 2013 (Butscher & Solomon) Divergence Theorem Green s Theorem

More information

Introduction to finite element exterior calculus

Introduction to finite element exterior calculus Introduction to finite element exterior calculus Ragnar Winther CMA, University of Oslo Norway Why finite element exterior calculus? Recall the de Rham complex on the form: R H 1 (Ω) grad H(curl, Ω) curl

More information

What is a flux? The Things We Does Know

What is a flux? The Things We Does Know What is a flux? Finite Volume methods (and others) (are based on ensuring conservation by computing the flux through the surfaces of a polyhedral box. Either the normal component of the flux is evaluated

More information

Spectral finite elements for a mixed formulation in computational acoustics taking flow effects into account

Spectral finite elements for a mixed formulation in computational acoustics taking flow effects into account Spectral finite elements for a mixed formulation in computational acoustics taking flow effects into account Manfred Kaltenbacher in cooperation with A. Hüppe, I. Sim (University of Klagenfurt), G. Cohen

More information

Quick Recapitulation of Fluid Mechanics

Quick Recapitulation of Fluid Mechanics Quick Recapitulation of Fluid Mechanics Amey Joshi 07-Feb-018 1 Equations of ideal fluids onsider a volume element of a fluid of density ρ. If there are no sources or sinks in, the mass in it will change

More information

Motivations. Outline. Finite element exterior calculus and the geometrical basis of numerical stability. References. Douglas N.

Motivations. Outline. Finite element exterior calculus and the geometrical basis of numerical stability. References. Douglas N. Outline Finite element exterior calculus and the geometrical basis of numerical stability Douglas N. Arnold joint with R. Falk and R. Winther School of Mathematics University of Minnesota April 009 Motivations

More information

A recovery-assisted DG code for the compressible Navier-Stokes equations

A recovery-assisted DG code for the compressible Navier-Stokes equations A recovery-assisted DG code for the compressible Navier-Stokes equations January 6 th, 217 5 th International Workshop on High-Order CFD Methods Kissimmee, Florida Philip E. Johnson & Eric Johnsen Scientific

More information

Implicit Solution of Viscous Aerodynamic Flows using the Discontinuous Galerkin Method

Implicit Solution of Viscous Aerodynamic Flows using the Discontinuous Galerkin Method Implicit Solution of Viscous Aerodynamic Flows using the Discontinuous Galerkin Method Per-Olof Persson and Jaime Peraire Massachusetts Institute of Technology 7th World Congress on Computational Mechanics

More information

[#1] Exercises in exterior calculus operations

[#1] Exercises in exterior calculus operations D. D. Holm M3-4A16 Assessed Problems # 3 Due when class starts 13 Dec 2012 1 M3-4A16 Assessed Problems # 3 Do all four problems [#1] Exercises in exterior calculus operations Vector notation for differential

More information

First, Second, and Third Order Finite-Volume Schemes for Diffusion

First, Second, and Third Order Finite-Volume Schemes for Diffusion First, Second, and Third Order Finite-Volume Schemes for Diffusion Hiro Nishikawa 51st AIAA Aerospace Sciences Meeting, January 10, 2013 Supported by ARO (PM: Dr. Frederick Ferguson), NASA, Software Cradle.

More information

Idealized Nonhydrostatic Supercell Simulations in the Global MPAS

Idealized Nonhydrostatic Supercell Simulations in the Global MPAS Idealized Nonhydrostatic Supercell Simulations in the Global Joe Klemp, Bill Skamarock, and Sang-Hun Park National Center for Atmospheric Research Boulder, Colorado Typical characteristics: Supercell Thunderstorms

More information

Finite Element Multigrid Framework for Mimetic Finite Difference Discretizations

Finite Element Multigrid Framework for Mimetic Finite Difference Discretizations Finite Element Multigrid Framework for Mimetic Finite ifference iscretizations Xiaozhe Hu Tufts University Polytopal Element Methods in Mathematics and Engineering, October 26-28, 2015 Joint work with:

More information

Chapter 6. Finite Element Method. Literature: (tiny selection from an enormous number of publications)

Chapter 6. Finite Element Method. Literature: (tiny selection from an enormous number of publications) Chapter 6 Finite Element Method Literature: (tiny selection from an enormous number of publications) K.J. Bathe, Finite Element procedures, 2nd edition, Pearson 2014 (1043 pages, comprehensive). Available

More information

Shock Capturing for Discontinuous Galerkin Methods using Finite Volume Sub-cells

Shock Capturing for Discontinuous Galerkin Methods using Finite Volume Sub-cells Abstract We present a shock capturing procedure for high order Discontinuous Galerkin methods, by which shock regions are refined in sub-cells and treated by finite volume techniques Hence, our approach

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction Many astrophysical scenarios are modeled using the field equations of fluid dynamics. Fluids are generally challenging systems to describe analytically, as they form a nonlinear

More information

Finite Elements. Colin Cotter. January 15, Colin Cotter FEM

Finite Elements. Colin Cotter. January 15, Colin Cotter FEM Finite Elements January 15, 2018 Why Can solve PDEs on complicated domains. Have flexibility to increase order of accuracy and match the numerics to the physics. has an elegant mathematical formulation

More information

Spherical Shallow Water Turbulence: Cyclone-Anticyclone Asymmetry, Potential Vorticity Homogenisation and Jet Formation

Spherical Shallow Water Turbulence: Cyclone-Anticyclone Asymmetry, Potential Vorticity Homogenisation and Jet Formation Spherical Shallow Water Turbulence: Cyclone-Anticyclone Asymmetry, Potential Vorticity Homogenisation and Jet Formation Jemma Shipton Department of Atmospheric, Oceanic and Planetary Physics, University

More information

Divergence Formulation of Source Term

Divergence Formulation of Source Term Preprint accepted for publication in Journal of Computational Physics, 2012 http://dx.doi.org/10.1016/j.jcp.2012.05.032 Divergence Formulation of Source Term Hiroaki Nishikawa National Institute of Aerospace,

More information

An abstract Hodge Dirac operator and its stable discretization

An abstract Hodge Dirac operator and its stable discretization An abstract Hodge Dirac operator and its stable discretization Paul Leopardi Mathematical Sciences Institute, Australian National University. For presentation at ICCA, Tartu,. Joint work with Ari Stern,

More information

Chapter 5. Shallow Water Equations. 5.1 Derivation of shallow water equations

Chapter 5. Shallow Water Equations. 5.1 Derivation of shallow water equations Chapter 5 Shallow Water Equations So far we have concentrated on the dynamics of small-scale disturbances in the atmosphere and ocean with relatively simple background flows. In these analyses we have

More information

GFD 2012 Lecture 1: Dynamics of Coherent Structures and their Impact on Transport and Predictability

GFD 2012 Lecture 1: Dynamics of Coherent Structures and their Impact on Transport and Predictability GFD 2012 Lecture 1: Dynamics of Coherent Structures and their Impact on Transport and Predictability Jeffrey B. Weiss; notes by Duncan Hewitt and Pedram Hassanzadeh June 18, 2012 1 Introduction 1.1 What

More information

Finite Element Clifford Algebra: A New Toolkit for Evolution Problems

Finite Element Clifford Algebra: A New Toolkit for Evolution Problems Finite Element Clifford Algebra: A New Toolkit for Evolution Problems Andrew Gillette joint work with Michael Holst Department of Mathematics University of California, San Diego http://ccom.ucsd.edu/ agillette/

More information

8 3D transport formulation

8 3D transport formulation 8 3D transport formulation 8.1 The QG case We consider the average (x; y; z; t) of a 3D, QG system 1. The important distinction from the zonal mean case is that the mean now varies with x, or (more generally)

More information

Adaptive C1 Macroelements for Fourth Order and Divergence-Free Problems

Adaptive C1 Macroelements for Fourth Order and Divergence-Free Problems Adaptive C1 Macroelements for Fourth Order and Divergence-Free Problems Roy Stogner Computational Fluid Dynamics Lab Institute for Computational Engineering and Sciences University of Texas at Austin March

More information

On divergence-free reconstruction schemes for CED and MHD

On divergence-free reconstruction schemes for CED and MHD On divergence-free reconstruction schemes for CED and MHD Praveen Chandrashekar praveen@math.tifrbng.res.in Center for Applicable Mathematics Tata Institute of Fundamental Research Bangalore-560065, India

More information

On two fractional step finite volume and finite element schemes for reactive low Mach number flows

On two fractional step finite volume and finite element schemes for reactive low Mach number flows Fourth International Symposium on Finite Volumes for Complex Applications - Problems and Perspectives - July 4-8, 2005 / Marrakech, Morocco On two fractional step finite volume and finite element schemes

More information

weak mean flow R. M. Samelson

weak mean flow R. M. Samelson An effective-β vector for linear planetary waves on a weak mean flow R. M. Samelson College of Oceanic and Atmospheric Sciences 14 COAS Admin Bldg Oregon State University Corvallis, OR 97331-553 USA rsamelson@coas.oregonstate.edu

More information

From GungHo to LFRic. Replacing the Met Office Unified Model Steve Mullerworth. Crown copyright Met Office

From GungHo to LFRic. Replacing the Met Office Unified Model Steve Mullerworth. Crown copyright Met Office From GungHo to LFRic Replacing the Met Office Unified Model Steve Mullerworth Summary the perspective from a Computational Scientist point of view Where are we now What are Gung Ho and LFRic LFRic plan

More information

Lecture 9: Tidal Rectification, Stratification and Mixing

Lecture 9: Tidal Rectification, Stratification and Mixing Lecture 9: Tidal Rectification, Stratification and Mixing Chris Garrett 1 Additional Notes on Tidal Rectification This lecture continues the discussion of long-wavelength tidal flow over comparatively

More information

Mimetic Finite Difference Methods

Mimetic Finite Difference Methods Mimetic Finite Difference Methods Applications to the Diffusion Equation Asbjørn Nilsen Riseth May 15, 2014 2014-05-15 Mimetic Finite Difference Methods Mimetic Finite Difference Methods Applications to

More information

An Optimization-based Framework for Controlling Discretization Error through Anisotropic h-adaptation

An Optimization-based Framework for Controlling Discretization Error through Anisotropic h-adaptation An Optimization-based Framework for Controlling Discretization Error through Anisotropic h-adaptation Masayuki Yano and David Darmofal Aerospace Computational Design Laboratory Massachusetts Institute

More information

Chapter 2. Quasi-Geostrophic Theory: Formulation (review) ε =U f o L <<1, β = 2Ω cosθ o R. 2.1 Introduction

Chapter 2. Quasi-Geostrophic Theory: Formulation (review) ε =U f o L <<1, β = 2Ω cosθ o R. 2.1 Introduction Chapter 2. Quasi-Geostrophic Theory: Formulation (review) 2.1 Introduction For most of the course we will be concerned with instabilities that an be analyzed by the quasi-geostrophic equations. These are

More information

Scalable Non-Linear Compact Schemes

Scalable Non-Linear Compact Schemes Scalable Non-Linear Compact Schemes Debojyoti Ghosh Emil M. Constantinescu Jed Brown Mathematics Computer Science Argonne National Laboratory International Conference on Spectral and High Order Methods

More information

Stochastic Particle Dynamics for Unresolved Degrees of Freedom. Sebastian Reich in collaborative work with Colin Cotter (Imperial College)

Stochastic Particle Dynamics for Unresolved Degrees of Freedom. Sebastian Reich in collaborative work with Colin Cotter (Imperial College) Stochastic Particle Dynamics for Unresolved Degrees of Freedom Sebastian Reich in collaborative work with Colin Cotter (Imperial College) 1. The Motivation Classical molecular dynamics (MD) as well as

More information

Efficient multigrid solvers for mixed finite element discretisations in NWP models

Efficient multigrid solvers for mixed finite element discretisations in NWP models 1/20 Efficient multigrid solvers for mixed finite element discretisations in NWP models Colin Cotter, David Ham, Lawrence Mitchell, Eike Hermann Müller *, Robert Scheichl * * University of Bath, Imperial

More information

Barotropic geophysical flows and two-dimensional fluid flows: Conserved Quantities

Barotropic geophysical flows and two-dimensional fluid flows: Conserved Quantities Barotropic geophysical flows and two-dimensional fluid flows: Conserved Quantities Di Qi, and Andrew J. Majda Courant Institute of Mathematical Sciences Fall 2016 Advanced Topics in Applied Math Di Qi,

More information

Latest thoughts on stochastic kinetic energy backscatter - good and bad

Latest thoughts on stochastic kinetic energy backscatter - good and bad Latest thoughts on stochastic kinetic energy backscatter - good and bad by Glenn Shutts DARC Reading University May 15 2013 Acknowledgments ECMWF for supporting this work Martin Leutbecher Martin Steinheimer

More information

An Overview of Fluid Animation. Christopher Batty March 11, 2014

An Overview of Fluid Animation. Christopher Batty March 11, 2014 An Overview of Fluid Animation Christopher Batty March 11, 2014 What distinguishes fluids? What distinguishes fluids? No preferred shape. Always flows when force is applied. Deforms to fit its container.

More information

WEAK GALERKIN FINITE ELEMENT METHODS ON POLYTOPAL MESHES

WEAK GALERKIN FINITE ELEMENT METHODS ON POLYTOPAL MESHES INERNAIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING Volume 12, Number 1, Pages 31 53 c 2015 Institute for Scientific Computing and Information WEAK GALERKIN FINIE ELEMEN MEHODS ON POLYOPAL MESHES LIN

More information

ECE 695 Numerical Simulations Lecture 12: Thermomechanical FEM. Prof. Peter Bermel February 6, 2017

ECE 695 Numerical Simulations Lecture 12: Thermomechanical FEM. Prof. Peter Bermel February 6, 2017 ECE 695 Numerical Simulations Lecture 12: Thermomechanical FEM Prof. Peter Bermel February 6, 2017 Outline Static Equilibrium Dynamic Equilibrium Thermal transport mechanisms Thermal transport modeling

More information

Towards pressure-robust mixed methods for the incompressible Navier Stokes equations

Towards pressure-robust mixed methods for the incompressible Navier Stokes equations Mohrenstrasse 39 10117 Berlin Germany Tel. +49 30 20372 0 www.wias-berlin.de 2016-05-05, Pittsburgh Weierstrass Institute for Applied Analysis and Stochastics Towards pressure-robust mixed methods for

More information

A Hamiltonian Numerical Scheme for Large Scale Geophysical Fluid Systems

A Hamiltonian Numerical Scheme for Large Scale Geophysical Fluid Systems A Hamiltonian Numerical Scheme for Large Scale Geophysical Fluid Systems Bob Peeters Joint work with Onno Bokhove & Jason Frank TW, University of Twente, Enschede CWI, Amsterdam PhD-TW colloquium, 9th

More information

HYPERSONIC AERO-THERMO-DYNAMIC HEATING PREDICTION WITH HIGH-ORDER DISCONTINOUS GALERKIN SPECTRAL ELEMENT METHODS

HYPERSONIC AERO-THERMO-DYNAMIC HEATING PREDICTION WITH HIGH-ORDER DISCONTINOUS GALERKIN SPECTRAL ELEMENT METHODS 1 / 36 HYPERSONIC AERO-THERMO-DYNAMIC HEATING PREDICTION WITH HIGH-ORDER DISCONTINOUS GALERKIN SPECTRAL ELEMENT METHODS Jesús Garicano Mena, E. Valero Sánchez, G. Rubio Calzado, E. Ferrer Vaccarezza Universidad

More information

On a Discontinuous Galerkin Method for Surface PDEs

On a Discontinuous Galerkin Method for Surface PDEs On a Discontinuous Galerkin Method for Surface PDEs Pravin Madhavan (joint work with Andreas Dedner and Bjo rn Stinner) Mathematics and Statistics Centre for Doctoral Training University of Warwick Applied

More information

An A Posteriori Error Estimate for Discontinuous Galerkin Methods

An A Posteriori Error Estimate for Discontinuous Galerkin Methods An A Posteriori Error Estimate for Discontinuous Galerkin Methods Mats G Larson mgl@math.chalmers.se Chalmers Finite Element Center Mats G Larson Chalmers Finite Element Center p.1 Outline We present an

More information

A Discrete Vector Calculus in Tensor Grids

A Discrete Vector Calculus in Tensor Grids COMPUTATIONAL METHODS IN APPLIED MATHEMATICS Vol. (00,, pp. 44 c 00 Institute of Mathematics, National Academy of Sciences A Discrete Vector Calculus in Tensor Grids Nicolas Robidoux Stanly Steinberg Abstract

More information

Performance comparison between hybridizable DG and classical DG methods for elastic waves simulation in harmonic domain

Performance comparison between hybridizable DG and classical DG methods for elastic waves simulation in harmonic domain March 4-5, 2015 Performance comparison between hybridizable DG and classical DG methods for elastic waves simulation in harmonic domain M. Bonnasse-Gahot 1,2, H. Calandra 3, J. Diaz 1 and S. Lanteri 2

More information

Lecture II: Vector and Multivariate Calculus

Lecture II: Vector and Multivariate Calculus Lecture II: Vector and Multivariate Calculus Dot Product a, b R ' ', a ( b = +,- a + ( b + R. a ( b = a b cos θ. θ convex angle between the vectors. Squared norm of vector: a 3 = a ( a. Alternative notation:

More information

Energy norm a-posteriori error estimation for divergence-free discontinuous Galerkin approximations of the Navier-Stokes equations

Energy norm a-posteriori error estimation for divergence-free discontinuous Galerkin approximations of the Navier-Stokes equations INTRNATIONAL JOURNAL FOR NUMRICAL MTHODS IN FLUIDS Int. J. Numer. Meth. Fluids 19007; 1:1 [Version: 00/09/18 v1.01] nergy norm a-posteriori error estimation for divergence-free discontinuous Galerkin approximations

More information

Space-time XFEM for two-phase mass transport

Space-time XFEM for two-phase mass transport Space-time XFEM for two-phase mass transport Space-time XFEM for two-phase mass transport Christoph Lehrenfeld joint work with Arnold Reusken EFEF, Prague, June 5-6th 2015 Christoph Lehrenfeld EFEF, Prague,

More information