Errata list for An Introduction to Modern Astrophysics, c2007 Second Edition (second printing or later) February 23, 2010

Size: px
Start display at page:

Download "Errata list for An Introduction to Modern Astrophysics, c2007 Second Edition (second printing or later) February 23, 2010"

Transcription

1 Errata list for An Introduction to Modern Astrophysics, c2007 Second Edition (second printing or later) February 23, 2010 To determine the printing of your text, look on page ii (the page following the title page); the second line from the bottom shows a string of numbers such as DOC if the first number is 2 then it is a second printing (as in this example), if the first number is 1 then it is a first printing, and so on. The last number on the right indicates the year in which the printing was published. In this case, the second printing came out in Significant Errors, Omissions, or Revisions: 1. inside front cover, Appendix A, Astronomical Constants: Solar effective temperature formula has a misplaced left parenthesis. The correct formula is T e;ˇ Lˇ=4R 2ˇ 1=4. 2. inside front cover, Appendix A, Physical Constants: The latest CODATA constants were published in March 2007 after publication of An Introduction to Modern Astrophysics. The latest constants, including an update to the Universal Gravitational Constant (G), are available at Note that the new values will not be incorporated into the textbook s associated software. The reader can make the changes if desired by updating the Fortran module or C++ header file associated with Appendix I. However, changing the constants may result in slight inconsistencies with solutions given in the text and its solutions manual. An updated Appendix A, Physical Constants, based on the 2006 CODATA constants, is available on the next page. [Please note that the Hydrogen mass (m H ), the Bohr radius for hydrogen (a 0;H ), and the Rydberg constant for hydrogen (R H ) have not been updated with consistent CODATA 2006 values.]

2 Physical Constants Gravitational constant G D 6: / N m 2 kg 2 Speed of light (exact) c 2: m s 1 Permeability of free space N A 2 Permittivity of free space 0 1= 0 c 2 D 8: : : : F m 1 Electric charge e D 1: / C Electron volt 1 ev D 1: / J Planck s constant h D 6: / J s D 4: / ev s h=2 D 1: / J s D 6: / ev s Planck s constant speed of light hc D 1: / 10 3 ev nm ' 1240 ev nm Boltzmann s constant k D 1: / J K 1 D 8: / 10 5 ev K 1 Stefan Boltzmann constant 2 5 k 4 =.15c 2 h 3 / D 5: / 10 8 W m 2 K 4 Radiation constant a D 4=c D 7: / J m 3 K 4 Atomic mass unit 1 u D 1: / kg D 931: / MeV=c 2 Electron mass m e D 9: / kg D 5: / 10 4 u Proton mass m p D 1: / kg D 1: / u Neutron mass m n D 1: / kg D 1: / u Hydrogen mass m H D 1: / kg D 1: / u Avogadro s number N A D 6: / mol 1 Gas constant R D 8: / J mol 1 K 1 Bohr radius a 0; =m e e 2 D 5: / m a 0;H.m e =/a 0;1 D 5: / m Rydberg constant R 1 m e e 4 = c D 1: / 10 7 m 1 R H.=m e /R 1 D 1: / 10 7 m 1 Note: Uncertainties in the last digits are indicated in parentheses. For instance, the universal gravitational constant, G, has an uncertainty of 0: N m 2 kg page 9, Second full paragraph, third sentence should be replaced by: During the start of spring the Sun is in the constellation of Pisces, during the beginning of summer it is in Taurus, at the beginning of autumn the Sun is located in Virgo, and at the start of winter the Sun is in Sagittarius. 4. page 11, Figure 1.12(a): Within the diagram, L should be replaced by 90 ı L. 5. page 28, End of Example 2.1.1: 19% should be replaced by 20:6%. 6. page 34, Figure 2.8: The angles mysteriously did not appear in the printed text. The angle by m

3 between r and s should be while the angle from the sphere center between R and r should be. The correct figure is available in the downloadable collection of Chapter 2 figures. 7. page 47, First sentence of the first full paragraph, beginning with Expressions for the speed..., the aphelion angle should be D, not D =2. 8. page 66, Table 3.1: The gamma ray wavelengths should be indicated as less than 0.01 nm. The corrected version should be Table 3.1 The Electromagnetic Spectrum. Region Gamma ray X-ray Ultraviolet Visible Infrared Microwave Radio Wavelength < 0:01 nm 0.01 nm < < 10 nm 10 nm < < 400 nm 400 nm < < 700 nm 700 nm < < 1 mm 1 mm < < 10 cm 10 cm < 9. page 89, Section 4.2, first line: Albert Einstein was born in page 89, Figure 4.3 caption: Albert Einstein was born in page 121, Table 5.2: The Balmer limit should be 1 $ 2 (instead of 1 $ 3). 12. page 121, Table 5.2: The Lyman lines are actually measured in vacuo rather than in air. It is traditional to quote wavelengths in air for 200 nm to 2000 nm, and in vacuum outside that range. A corrected version of the table should be Table 5.2 The wavelengths of selected hydrogen spectral lines. (Based on Cox, ed., Allen s Astrophysical Quantities, Fourth Edition, Springer, New York, 2000.)

4 Series Name Symbol Transition Wavelength (nm) Medium Lyman Ly 2 $ 1 121:567 vacuum Lyˇ 3 $ 1 102:572 vacuum Ly 4 $ 1 97:254 vacuum Ly limit 1 $ 1 91:18 vacuum Balmer H 3 $ 2 656:281 air Hˇ 4 $ 2 486:134 air H 5 $ 2 434:048 air Hı 6 $ 2 410:175 air H 7 $ 2 397:007 air H 8 8 $ 2 388:905 air H limit 1 $ 2 364:6 air Paschen Pa 4 $ :10 air Paˇ 5 $ :81 air Pa 6 $ :81 air Pa limit 1 $ 3 820:4 air 13. page 369, First sentence: the wavelength dependence should be 4, not page 532, Example : The second sentence of the second paragraph should read: From the virial theorem (see Eq ), the energy released in the formation of a spherically symmetric star of constant density is E 3 GM 2 5 R : 15. page 686, last paragraph: The uncertainty in hm B i should be 0: page 687, end of second paragraph:. 0:1c/ should read. 0:03c/. 17. page 900, center of page: `NCP should be 122 ı : page 901, Eq. (24.21): The subscript on ` in the final cos term should be NCP rather than NGP, as in cos ı cos. NGP / D cos ı NGP sin b sin ı NGP cos b cos.`ncp `/: 19. page 913: Due to sign changes for 0 ` 90 ı and 270 ı ` 360 ı, it becomes necessary to modify Eq. (24.45) and two of the equations leading up to it. The first equation on p. 913 should be written as C; if 0 R min D R 0 j sin `j D R 0 sin ` ı ` 90 ı ; if 270 ı ` 360 ı The second equation becomes v r;max D.R min / 0.R 0 / sin ` C; if 0 ı ` 90 ı ; if 270 ı ` 360 ı

5 Finally, Eq. (24.45) becomes v r;maz ' 2AR 0. 1 sin `/ C; if 0 ı ` 90 ı ; if 270 ı ` 360 ı 20. page 937, Problem 24.22(b): 0 should be in units of Mˇ pc page 1042, First paragraph following Example : The uncertainty in hm B i should be 0: page 1043, Example : The answer should be 36:5 Mpc. 23. page 1128, Example : The first part of the example should read: Referring to Example , since the actual speed of the radio knot ejected by 3C 273 must be less than c, as required by special relativity, it is necessary from Eq. (28.16) that! v 2 < cos 1 app =c2 1 D 14:5 ı : vapp 2 =c2 C 1 That is, the knot must be approaching Earth within 14.5 ı of the line of sight. 24. page 1176, final paragraph, second-to-last sentence: billion years, a billion years... should be replaced by billion years, more than six billion years page 1177, Eq. (29.96): The subscripts on the right-hand-side are reversed. The equation should read: n n n p D e.m n m p /c2 =kt :

6 Minor Errors or Typos: 1. inside front cover, Appendix A, Astronomical Constants: magnitude was misspelled in Solar absolute bolometric magnitude. 2. page 159, fifth line from bottom of page: replace aide with aid. 3. page 159, fourth line from bottome of page: replace later with latter. 4. page 434, Figure 12.15, second sentence of caption: replace left most with left-most. 5. page 524, first sentence of Section 15.2: replace Lupis with Lupus. 6. page 691, last paragraph, second-to-last line: replace quelched with squelched. 7. page 756, third line under heading Moon Rocks: addition should be additional. 8. page 784, tenth line under heading Internal Heat and the Cooling Timescale: it s should be its. 9. page 860, last sentence, top (partial) paragraph: the leading quotes on blizzard line are facing the wrong way. 10. page 1222, Problem 29.18: The referenced quasar should be Q page 1128, Eq. (28.19): The ' should be replaced by D. 12. page 1228, Problem 29.55(b): The units for F x in both cases should be roman font rather than italicized, as in F x D 5: W m 2 and F x D 7: W m page 1248, first full paragraph, seventh line: replace fluctuation with fluctuations. 14. inside back cover, Appendix B, under second table: replace micellaneous with miscellaneous.

Cosmology. Distinction Course. Modules 4, 5, 6 and 7 (including Residential 2) 2005 HIGHER SCHOOL CERTIFICATE EXAMINATION. Total marks 120.

Cosmology. Distinction Course. Modules 4, 5, 6 and 7 (including Residential 2) 2005 HIGHER SCHOOL CERTIFICATE EXAMINATION. Total marks 120. 2005 HIGHER SCHOOL CERTIFICATE EXAMINATION Cosmology Distinction Course Modules 4, 5, 6 and 7 (including Residential 2) Total marks 120 Section I Page 2 General Instructions Reading time 5 minutes Working

More information

Ay 1 Midterm. Due by 5pm on Wednesday, May 9 to your head TA s mailbox (249 Cahill), or hand it directly to any section TA

Ay 1 Midterm. Due by 5pm on Wednesday, May 9 to your head TA s mailbox (249 Cahill), or hand it directly to any section TA Ay 1 Midterm Due by 5pm on Wednesday, May 9 to your head TA s mailbox (249 Cahill), or hand it directly to any section TA You have THREE HOURS to complete the exam, but it is about two hours long. The

More information

Topics Covered in Chapter. Light and Other Electromagnetic Radiation. A Subatomic Interlude II. A Subatomic Interlude. A Subatomic Interlude III

Topics Covered in Chapter. Light and Other Electromagnetic Radiation. A Subatomic Interlude II. A Subatomic Interlude. A Subatomic Interlude III Light and Other Electromagnetic Radiation Topics Covered in Chapter 1.Structure of Atoms 2.Origins of Electromagnetic Radiation 3.Objects with Different Temperature and their Electromagnetic Radiation

More information

Light and Other Electromagnetic Radiation

Light and Other Electromagnetic Radiation Light and Other Electromagnetic Radiation 1 Topics Covered in Chapter 1.Structure of Atoms 2.Origins of Electromagnetic Radiation 3.Objects with Different Temperature and their Electromagnetic Radiation

More information

The Nature of Light. Chapter Five

The Nature of Light. Chapter Five The Nature of Light Chapter Five Guiding Questions 1. How fast does light travel? How can this speed be measured? 2. Why do we think light is a wave? What kind of wave is it? 3. How is the light from an

More information

Cosmology Distinction Course

Cosmology Distinction Course 2006 HIGHER SCHOOL CERTIFICATE EXAMINATION Cosmology Distinction Course Modules 1, 2 and 3 (including Residential 1) Total marks 60 Section I Page 2 General Instructions Reading time 5 minutes Working

More information

normalized spectral amplitude R(λ)

normalized spectral amplitude R(λ) Mid-Term Exam 2 Physics 23 Modern Physics Tuesday October 23, 2 Point distribution: All questions are worth points 5 points. Questions # - #6 are multiple choice and answers should be bubbled onto the

More information

6 Light from the Stars

6 Light from the Stars 6 Light from the Stars Essentially everything that we know about objects in the sky is because of the light coming from them. 6.1 The Electromagnetic Spectrum The properties of light (electromagnetic waves)

More information

Astrophysics (Physics 489) Final Exam

Astrophysics (Physics 489) Final Exam Astrophysics (Physics 489) Final Exam 1. A star emits radiation with a characteristic wavelength! max = 100 nm. (! max is the wavelength at which the Planck distribution reaches its maximum.) The apparent

More information

MIDSUMMER EXAMINATIONS 2001 PHYSICS, PHYSICS WITH ASTROPHYSICS PHYSICS WITH SPACE SCIENCE & TECHNOLOGY PHYSICS WITH MEDICAL PHYSICS

MIDSUMMER EXAMINATIONS 2001 PHYSICS, PHYSICS WITH ASTROPHYSICS PHYSICS WITH SPACE SCIENCE & TECHNOLOGY PHYSICS WITH MEDICAL PHYSICS No. of Pages: 6 No. of Questions: 10 MIDSUMMER EXAMINATIONS 2001 Subject PHYSICS, PHYSICS WITH ASTROPHYSICS PHYSICS WITH SPACE SCIENCE & TECHNOLOGY PHYSICS WITH MEDICAL PHYSICS Title of Paper MODULE PA266

More information

Examination paper for FY2450 Astrophysics

Examination paper for FY2450 Astrophysics 1 Department of Physics Examination paper for FY2450 Astrophysics Academic contact during examination: Robert Hibbins Phone: 94 82 08 34 Examination date: 04-06-2013 Examination time: 09:00 13:00 Permitted

More information

Ch 7 Quantum Theory of the Atom (light and atomic structure)

Ch 7 Quantum Theory of the Atom (light and atomic structure) Ch 7 Quantum Theory of the Atom (light and atomic structure) Electromagnetic Radiation - Electromagnetic radiation consists of oscillations in electric and magnetic fields. The oscillations can be described

More information

Name Final Exam December 7, 2015

Name Final Exam December 7, 2015 Name Final Exam December 7, 015 This test consists of five parts. Please note that in parts II through V, you can skip one question of those offered. Part I: Multiple Choice (mixed new and review questions)

More information

Sharif University of Technology Physics Department. Modern Physics Spring 2016 Prof. Akhavan

Sharif University of Technology Physics Department. Modern Physics Spring 2016 Prof. Akhavan Sharif University of Technology Physics Department Modern Physics Spring 2016 Prof. Akhavan Problems Set #5. Due on: 03 th of April / 15 th of Farvardin. 1 Blackbody Radiation. (Required text book is Modern

More information

Examination, course FY2450 Astrophysics Wednesday May 20, 2009 Time:

Examination, course FY2450 Astrophysics Wednesday May 20, 2009 Time: Page 1 of 6 The Norwegian University of Science and Technology Department of Physics Contact person: Name: Jan Myrheim Telephone: 93653, mobile 90 07 51 72 Examination, course FY2450 Astrophysics Wednesday

More information

Atomic Structure 11/21/2011

Atomic Structure 11/21/2011 Atomic Structure Topics: 7.1 Electromagnetic Radiation 7.2 Planck, Einstein, Energy, and Photons 7.3 Atomic Line Spectra and Niels Bohr 7.4 The Wave Properties of the Electron 7.5 Quantum Mechanical View

More information

Chapter 5 Light and Matter

Chapter 5 Light and Matter Chapter 5 Light and Matter Stars and galaxies are too far for us to send a spacecraft or to visit (in our lifetimes). All we can receive from them is light But there is much we can learn (composition,

More information

Astronomy 1 Winter 2011

Astronomy 1 Winter 2011 Astronomy 1 Winter 2011 Lecture 8; January 24 2011 Previously on Astro 1 Light as a wave The Kelvin Temperature scale What is a blackbody? Wien s law: λ max (in meters) = (0.0029 K m)/t. The Stefan-Boltzmann

More information

MIDSUMMER EXAMINATIONS 2001

MIDSUMMER EXAMINATIONS 2001 No. of Pages: 7 No. of Questions: 10 MIDSUMMER EXAMINATIONS 2001 Subject PHYSICS, PHYSICS WITH ASTROPHYSICS, PHYSICS WITH SPACE SCIENCE & TECHNOLOGY, PHYSICS WITH MEDICAL PHYSICS Title of Paper MODULE

More information

ASTR-1010: Astronomy I Course Notes Section IV

ASTR-1010: Astronomy I Course Notes Section IV ASTR-1010: Astronomy I Course Notes Section IV Dr. Donald G. Luttermoser Department of Physics and Astronomy East Tennessee State University Edition 2.0 Abstract These class notes are designed for use

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Earth, Atmospheric, and Planetary Sciences Department. Final Exam

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Earth, Atmospheric, and Planetary Sciences Department. Final Exam MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Earth, Atmospheric, and Planetary Sciences Department Physics 8.282J EAPS 12.402J May 20, 2005 Final Exam Name Last First (please print) 1. Do any

More information

Examination paper for FY2450 Astrophysics

Examination paper for FY2450 Astrophysics 1 Department of Physics Examination paper for FY2450 Astrophysics Academic contact during examination: Rob Hibbins Phone: 94820834 Examination date: 01-06-2015 Examination time: 09:00 13:00 Permitted examination

More information

Atomic Structure. Standing Waves x10 8 m/s. (or Hz or 1/s) λ Node

Atomic Structure. Standing Waves x10 8 m/s. (or Hz or 1/s) λ Node Atomic Structure Topics: 7.1 Electromagnetic Radiation 7.2 Planck, Einstein, Energy, and Photons 7.3 Atomic Line Spectra and Niels Bohr 7.4 The Wave Properties of the Electron 7.5 Quantum Mechanical View

More information

Examination paper for FY2450 Astrophysics

Examination paper for FY2450 Astrophysics 1 Department of Physics Examination paper for FY2450 Astrophysics Academic contact during examination: Rob Hibbins Phone: 94820834 Examination date: 31-05-2014 Examination time: 09:00 13:00 Permitted examination

More information

January 2017 Qualifying Exam

January 2017 Qualifying Exam January 2017 Qualifying Exam Part I Calculators are allowed. No reference material may be used. Please clearly mark the problems you have solved and want to be graded. Do only mark the required number

More information

ASTRONOMY QUIZ NUMBER 1

ASTRONOMY QUIZ NUMBER 1 ASTRONOMY QUIZ NUMBER. You read in an astronomy atlas that an object has a negative right ascension. You immediately conclude that A) the object is located in the Southern Sky. B) the object is located

More information

Astronomy 1102 Exam #1 Chapters 1,2,5,6 & 16

Astronomy 1102 Exam #1 Chapters 1,2,5,6 & 16 Astronomy 1102 Exam #1 Chapters 1,2,5,6 & 16 Chapter 1 Degrees- basic unit of angle measurement, designated by the symbol -a full circle is divided into 360 and a right angle measures 90. arc minutes-one-sixtieth

More information

Chapter 6. Quantum Theory and the Electronic Structure of Atoms Part 1

Chapter 6. Quantum Theory and the Electronic Structure of Atoms Part 1 Chapter 6 Quantum Theory and the Electronic Structure of Atoms Part 1 The nature of light Quantum theory Topics Bohr s theory of the hydrogen atom Wave properties of matter Quantum mechanics Quantum numbers

More information

Astronomy The Nature of Light

Astronomy The Nature of Light Astronomy The Nature of Light A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Measuring the speed of light Light is an electromagnetic wave The relationship between Light and temperature

More information

The Structure of the Atom Review

The Structure of the Atom Review The Structure of the Atom Review Atoms are composed of PROTONS + positively charged mass = 1.6726 x 10 27 kg NEUTRONS neutral mass = 1.6750 x 10 27 kg ELECTRONS negatively charged mass = 9.1096 x 10 31

More information

T m / A. Table C2 Submicroscopic Masses [2] Symbol Meaning Best Value Approximate Value

T m / A. Table C2 Submicroscopic Masses [2] Symbol Meaning Best Value Approximate Value APPENDIX C USEFUL INFORMATION 1247 C USEFUL INFORMATION This appendix is broken into several tables. Table C1, Important Constants Table C2, Submicroscopic Masses Table C3, Solar System Data Table C4,

More information

LIGHT. Question. Until very recently, the study of ALL astronomical objects, outside of the Solar System, has been with telescopes observing light.

LIGHT. Question. Until very recently, the study of ALL astronomical objects, outside of the Solar System, has been with telescopes observing light. LIGHT Question Until very recently, the study of ALL astronomical objects, outside of the Solar System, has been with telescopes observing light. What kind of information can we get from light? 1 Light

More information

Atoms and Spectroscopy

Atoms and Spectroscopy Atoms and Spectroscopy Lecture 3 1 ONE SMALL STEP FOR MAN ONE GIANT LEAP FOR MANKIND 2 FROM ATOMS TO STARS AND GALAXIES HOW DO WE KNOW? Observations The Scientific Method Hypothesis Verifications LAW 3

More information

Do Now: Bohr Diagram, Lewis Structures, Valence Electrons 1. What is the maximum number of electrons you can fit in each shell?

Do Now: Bohr Diagram, Lewis Structures, Valence Electrons 1. What is the maximum number of electrons you can fit in each shell? Chemistry Ms. Ye Name Date Block Do Now: Bohr Diagram, Lewis Structures, Valence Electrons 1. What is the maximum number of electrons you can fit in each shell? 1 st shell 2 nd shell 3 rd shell 4 th shell

More information

NATS 101 Section 13: Lecture 5. Radiation

NATS 101 Section 13: Lecture 5. Radiation NATS 101 Section 13: Lecture 5 Radiation What causes your hand to feel warm when you place it near the pot? NOT conduction or convection. Why? Therefore, there must be an mechanism of heat transfer which

More information

Mentor Invitational Division C Astronomy February 11, 2017

Mentor Invitational Division C Astronomy February 11, 2017 Mentor Invitational Division C Astronomy February 11, 2017 Team Name Team Number Participant 1 Participant 2 General Instructions. Make sure your team name and number is on each piece of paper you turn

More information

Advanced Higher Physics

Advanced Higher Physics Wallace Hall Academy Physics Department Advanced Higher Physics Astrophysics Problems Data Common Physical Quantities QUANTITY SYMBOL VALUE Gravitational acceleration g 9.8 m s -2 Radius of Earth R E 6.4

More information

Printed Name: Signature: PHYSICS DEPARTMENT. Ph.D. Qualifying Examination, PART III. Modern and Applied Physics

Printed Name: Signature: PHYSICS DEPARTMENT. Ph.D. Qualifying Examination, PART III. Modern and Applied Physics Exam #: Printed Name: Signature: PHYSICS DEPARTMENT UNIVERSITY OF OREGON Ph.D. Qualifying Examination, PART III Modern and Applied Physics Friday, September 22, 2000, 1:00 p.m. to 5:00 p.m. The examination

More information

Table of Information and Equation Tables for AP Physics Exams

Table of Information and Equation Tables for AP Physics Exams Table of Information and Equation Tables for AP Physics Exams The accompanying Table of Information and Equation Tables will be provided to students when they take the AP Physics Exams. Therefore, students

More information

is the minimum stopping potential for which the current between the plates reduces to zero.

is the minimum stopping potential for which the current between the plates reduces to zero. Module 1 :Quantum Mechanics Chapter 2 : Introduction to Quantum ideas Introduction to Quantum ideas We will now consider some experiments and their implications, which introduce us to quantum ideas. The

More information

Chapter Test B. Chapter: Arrangement of Electrons in Atoms. possible angular momentum quantum numbers? energy level? a. 4 b. 8 c. 16 d.

Chapter Test B. Chapter: Arrangement of Electrons in Atoms. possible angular momentum quantum numbers? energy level? a. 4 b. 8 c. 16 d. Assessment Chapter Test B Chapter: Arrangement of Electrons in Atoms PART I In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question

More information

Supplemental Activities. Module: Atomic Theory. Section: Electromagnetic Radiation and Matter - Key

Supplemental Activities. Module: Atomic Theory. Section: Electromagnetic Radiation and Matter - Key Supplemental Activities Module: Atomic Theory Section: Electromagnetic Radiation and Matter - Key Introduction to Electromagnetic Radiation Activity 1 1. What are the two components that make up electromagnetic

More information

Deducing Temperatures and Luminosities of Stars (and other objects ) Electromagnetic Fields. Sinusoidal Fields

Deducing Temperatures and Luminosities of Stars (and other objects ) Electromagnetic Fields. Sinusoidal Fields Deducing Temperatures and Luminosities of Stars (and other objects ) Review: Electromagnetic Radiation Gamma Rays X Rays Ultraviolet (UV) Visible Light Infrared (IR) Increasing energy Microwaves Radio

More information

Name: unid: Foundations of Astronomy ASTR/PHYS Final Exam

Name: unid: Foundations of Astronomy ASTR/PHYS Final Exam Name: unid: Physical Constants * Foundations of Astronomy ASTR/PHYS 2500 Final Exam Gravitational constant G 6.673 x 10-11 m 3 kg - 1 s - 2 Elementary charge e 1.602 x 10-19 C Vacuum permittivity ε 0 8.854

More information

ASTR : Stars & Galaxies (Spring 2019)... Study Guide for Midterm 1

ASTR : Stars & Galaxies (Spring 2019)... Study Guide for Midterm 1 ASTR-1200-01: Stars & Galaxies (Spring 2019)........................ Study Guide for Midterm 1 The first midterm exam for ASTR-1200 takes place in class on Wednesday, February 13, 2019. The exam covers

More information

PHYS-1050 Hydrogen Atom Energy Levels Solutions Spring 2013

PHYS-1050 Hydrogen Atom Energy Levels Solutions Spring 2013 1 Introduction Read through this information before proceeding on with the lab. 1.1 Energy Levels 1.1.1 Hydrogen Atom A Hydrogen atom consists of a proton and an electron which are bound together the proton

More information

2) The energy of a photon of light is proportional to its frequency and proportional to its wavelength.

2) The energy of a photon of light is proportional to its frequency and proportional to its wavelength. Advanced Chemistry Chapter 13 Review Name Per Show all work Wave Properties 1) Which one of the following is correct? A) ν + λ = c B) ν λ = c C) ν = cλ D) λ = c ν E) νλ = c 2) The energy of a photon of

More information

ATOMIC MODELS. Models are formulated to fit the available data. Atom was known to have certain size. Atom was known to be neutral.

ATOMIC MODELS. Models are formulated to fit the available data. Atom was known to have certain size. Atom was known to be neutral. ATOMIC MODELS Models are formulated to fit the available data. 1900 Atom was known to have certain size. Atom was known to be neutral. Atom was known to give off electrons. THOMPSON MODEL To satisfy the

More information

Astrophysics (Physics 489) Exam 2

Astrophysics (Physics 489) Exam 2 Astrophysics (Physics 489) Exam 2 Please show all significant steps clearly in all problems. 1. Fun with dark energy. Since the dark energy is currently a total mystery, many theoretical cosmologists have

More information

10/27/2017 [pgs ]

10/27/2017 [pgs ] Objectives SWBAT explain the relationship between energy and frequency. SWBAT predict the behavior of and/or calculate quantum and photon energy from frequency. SWBAT explain how the quantization of energy

More information

Quantum Mysteries. Scott N. Walck. September 2, 2018

Quantum Mysteries. Scott N. Walck. September 2, 2018 Quantum Mysteries Scott N. Walck September 2, 2018 Key events in the development of Quantum Theory 1900 Planck proposes quanta of light 1905 Einstein explains photoelectric effect 1913 Bohr suggests special

More information

Modern Physics for Scientists and Engineers International Edition, 4th Edition

Modern Physics for Scientists and Engineers International Edition, 4th Edition Modern Physics for Scientists and Engineers International Edition, 4th Edition http://optics.hanyang.ac.kr/~shsong Review: 1. THE BIRTH OF MODERN PHYSICS 2. SPECIAL THEORY OF RELATIVITY 3. THE EXPERIMENTAL

More information

QUANTUM MECHANICS Chapter 12

QUANTUM MECHANICS Chapter 12 QUANTUM MECHANICS Chapter 12 Colours which appear through the Prism are to be derived from the Light of the white one Sir Issac Newton, 1704 Electromagnetic Radiation (prelude) FIG Electromagnetic Radiation

More information

Medical Imaging Signals and Systems Jerry L. Prince and Jonathan M. Links Upper Saddle River, NJ: Pearson Prentice Hall, 2006

Medical Imaging Signals and Systems Jerry L. Prince and Jonathan M. Links Upper Saddle River, NJ: Pearson Prentice Hall, 2006 i Medical Imaging Signals and Systems Jerry L. Prince and Jonathan M. Links Upper Saddle River, NJ: Pearson Prentice Hall, 2006 Errata, Version 1.02, August 8, 2006 This errata applies to the first printing

More information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information Concepts: Properties of Electromagnetic Radiation Chapter 5 Electromagnetic waves Types of spectra Temperature Blackbody radiation Dual nature of radiation Atomic structure Interaction of light and matter

More information

Lecture 11 Atomic Structure

Lecture 11 Atomic Structure Lecture 11 Atomic Structure Earlier in the semester, you read about the discoveries that lead to the proposal of the nuclear atom, an atom of atomic number Z, composed of a positively charged nucleus surrounded

More information

Experiment #9. Atomic Emission Spectroscopy

Experiment #9. Atomic Emission Spectroscopy Introduction Experiment #9. Atomic Emission Spectroscopy Spectroscopy is the study of the interaction of light with matter. This interaction can be in the form of the absorption or the emission of electromagnetic

More information

Stellar Astrophysics: The Interaction of Light and Matter

Stellar Astrophysics: The Interaction of Light and Matter Stellar Astrophysics: The Interaction of Light and Matter The Photoelectric Effect Methods of electron emission Thermionic emission: Application of heat allows electrons to gain enough energy to escape

More information

LIFE CYCLE OF A STAR

LIFE CYCLE OF A STAR LIFE CYCLE OF A STAR First stage = Protostar PROTOSTAR Cloud of gas and dust many light-years across Gravity tries to pull the materials together Eventually, at the center of the ball of dust and gas,

More information

CHAPTER 3 The Experimental Basis of Quantum

CHAPTER 3 The Experimental Basis of Quantum CHAPTER 3 The Experimental Basis of Quantum 3.1 Discovery of the X Ray and the Electron 3.2 Determination of Electron Charge 3.3 Line Spectra 3.4 Quantization 3.5 Blackbody Radiation 3.6 Photoelectric

More information

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron Chapter 27 Early Quantum Theory and Models of the Atom 27-1 Discovery and Properties of the electron Measure charge to mass ratio e/m (J. J. Thomson, 1897) When apply magnetic field only, the rays are

More information

Examination Radiation Physics - 8N120 5 November 2014, 13:30-16:30

Examination Radiation Physics - 8N120 5 November 2014, 13:30-16:30 Examination Radiation Physics - 8N120 5 November 2014, 13:30-16:30 Four general remarks: This exam consists of 8 assignments on a total of 3 pages. There is a table on page 4 listing the maximum number

More information

THE UNIVERSITY OF SYDNEY FACULTY OF SCIENCE INTERMEDIATE PHYSICS PHYS 2913 ASTROPHYSICS AND RELATIVITY (ADVANCED) ALL QUESTIONS HAVE THE VALUE SHOWN

THE UNIVERSITY OF SYDNEY FACULTY OF SCIENCE INTERMEDIATE PHYSICS PHYS 2913 ASTROPHYSICS AND RELATIVITY (ADVANCED) ALL QUESTIONS HAVE THE VALUE SHOWN CC0937 THE UNIVERSITY OF SYDNEY FACULTY OF SCIENCE INTERMEDIATE PHYSICS PHYS 2913 ASTROPHYSICS AND RELATIVITY (ADVANCED) SEMESTER 2, 2014 TIME ALLOWED: 2 HOURS ALL QUESTIONS HAVE THE VALUE SHOWN INSTRUCTIONS:

More information

Preliminary Examination: Astronomy

Preliminary Examination: Astronomy Preliminary Examination: Astronomy Department of Physics and Astronomy University of New Mexico Spring 2017 Instructions: Answer 8 of the 10 questions (10 points each) Total time for the test is three

More information

Properties of Light and Atomic Structure. Chapter 7. So Where are the Electrons? Electronic Structure of Atoms. The Wave Nature of Light!

Properties of Light and Atomic Structure. Chapter 7. So Where are the Electrons? Electronic Structure of Atoms. The Wave Nature of Light! Properties of Light and Atomic Structure Chapter 7 So Where are the Electrons? We know where the protons and neutrons are Nuclear structure of atoms (Chapter 2) The interaction of light and matter helps

More information

Constants and Conversions

Constants and Conversions Fundamental constants Constants and Conversions Gravitational constant: G=6.67408 10 8 dyn cm 2 g 2 = 6.67408 10 8 g 1 cm 3 s 2 = 6.67408 10 8 erg cm g 2 = 2.960 10 4 M 1 AU 3 days 2 = 1.327 10 11 M 1

More information

Light & Matter Interactions

Light & Matter Interactions Light & Matter Interactions. Spectral Lines. Kirchoff's Laws 2. Inside atoms 3. Classical Atoms 4. The Bohr Model 5. Lowest energy 6. Kirchoff's laws, again 2. Quantum Theory. The Photoelectric Effect

More information

Chapter 1. From Classical to Quantum Mechanics

Chapter 1. From Classical to Quantum Mechanics Chapter 1. From Classical to Quantum Mechanics Classical Mechanics (Newton): It describes the motion of a classical particle (discrete object). dp F ma, p = m = dt dx m dt F: force (N) a: acceleration

More information

Chapter 28. Atomic Physics

Chapter 28. Atomic Physics Chapter 28 Atomic Physics Sir Joseph John Thomson J. J. Thomson 1856-1940 Discovered the electron Did extensive work with cathode ray deflections 1906 Nobel Prize for discovery of electron Early Models

More information

2016 Lloyd G. Elliott University Prize Exam Compiled by the Department of Physics & Astronomy, University of Waterloo

2016 Lloyd G. Elliott University Prize Exam Compiled by the Department of Physics & Astronomy, University of Waterloo Canadian Association of Physicists SUPPORTING PHYSICS RESEARCH AND EDUCATION IN CANADA 2016 Lloyd G. Elliott University Prize Exam Compiled by the Department of Physics & Astronomy, University of Waterloo

More information

aka Light Properties of Light are simultaneously

aka Light Properties of Light are simultaneously Today Interaction of Light with Matter Thermal Radiation Kirchhoff s Laws aka Light Properties of Light are simultaneously wave-like AND particle-like Sometimes it behaves like ripples on a pond (waves).

More information

Information in Radio Waves

Information in Radio Waves Summative Assessment: Natural Sources of Radio Performance expectation: Develop and use a model of two objects interacting through electric or magnetic fields to illustrate the forces between objects and

More information

CHEMISTRY 113 EXAM 3(A)

CHEMISTRY 113 EXAM 3(A) Summer 2003 CHEMISTRY 113 EXAM 3(A) 1. Specify radiation with the greatest energy from the following list: A. ultraviolet B. gamma C. infrared D. radio waves 2. The photoelectric effect is: A. reflection

More information

Physics 1C Lecture 29B

Physics 1C Lecture 29B Physics 1C Lecture 29B Emission Spectra! The easiest gas to analyze is hydrogen gas.! Four prominent visible lines were observed, as well as several ultraviolet lines.! In 1885, Johann Balmer, found a

More information

Name Class Date. For each pair of terms, explain how the meanings of the terms differ.

Name Class Date. For each pair of terms, explain how the meanings of the terms differ. Skills Worksheet Chapter Review USING KEY TERMS 1. Use each of the following terms in a separate sentence: year, month, day, astronomy, electromagnetic spectrum, constellation, and altitude. For each pair

More information

CHAPTER 27 Quantum Physics

CHAPTER 27 Quantum Physics CHAPTER 27 Quantum Physics Units Discovery and Properties of the Electron Planck s Quantum Hypothesis; Blackbody Radiation Photon Theory of Light and the Photoelectric Effect Energy, Mass, and Momentum

More information

Midsummer Examinations 2016

Midsummer Examinations 2016 4313.1 All candidates Midsummer Examinations 2016 Blackboard version with numerical answers DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO BY THE CHIEF INVIGILATOR Department PHYSICS AND ASTRONOMY

More information

Are You Ready for S818?

Are You Ready for S818? S818 Space Science Are ou Ready for S818? Are you ready for S818 Space Science? The purpose of this document is to allow you assess for yourself whether your academic background suitably prepares you for

More information

Determining the Properties of the Stars

Determining the Properties of the Stars Determining the Properties of the Stars This set of notes by Nick Strobel covers: The properties of stars--their distances, luminosities, compositions, velocities, masses, radii, and how we determine those

More information

By Charles William Johnson. September, 2014 Copyrighted

By Charles William Johnson. September, 2014 Copyrighted A Proposal for Reordering and Making Additions to the Complete List of Fundamental Physical and Chemical Constants Published by NIST [Preliminary Version of a Work in Progress] By Charles William Johnson

More information

ASTRONOMY II Spring 1995 FINAL EXAM. Monday May 8th 2:00pm

ASTRONOMY II Spring 1995 FINAL EXAM. Monday May 8th 2:00pm ASTRONOMY II - 79202 Spring 1995 FINAL EXAM Monday May 8th 2:00pm Name: You have three hours to complete this exam. I suggest you read through the entire exam before you spend too much time on any one

More information

= : K A

= : K A Atoms and Nuclei. State two limitations of JJ Thomson s model of atom. 2. Write the SI unit for activity of a radioactive substance. 3. What observations led JJ Thomson to conclusion that all atoms have

More information

Interstellar Astrophysics Summary notes: Part 2

Interstellar Astrophysics Summary notes: Part 2 Interstellar Astrophysics Summary notes: Part 2 Dr. Paul M. Woods The main reference source for this section of the course is Chapter 5 in the Dyson and Williams (The Physics of the Interstellar Medium)

More information

ISP209 Spring Exam #3. Name: Student #:

ISP209 Spring Exam #3. Name: Student #: ISP209 Spring 2014 Exam #3 Name: Student #: Please write down your name and student # on both the exam and the scoring sheet. After you are finished with the exam, please place the scoring sheet inside

More information

2013 CAP Prize Examination

2013 CAP Prize Examination Canadian Association of Physicists SUPPORTING PHYSICS RESEARCH AND EDUCATION IN CANADA 2013 CAP Prize Examination Compiled by the Department of Physics & Engineering Physics, University of Saskatchewan

More information

Discussion Review Test #2. Units 12-19: (1) (2) (3) (4) (5) (6)

Discussion Review Test #2. Units 12-19: (1) (2) (3) (4) (5) (6) Discussion Review Test #2 Units 12-19: (1) (2) (3) (4) (5) (6) (7) (8) (9) Galileo used his observations of the changing phases of Venus to demonstrate that a. the sun moves around the Earth b. the universe

More information

Exam 4--PHYS 151--Spring 2017

Exam 4--PHYS 151--Spring 2017 Name: Exam 4--PHYS 151--Spring 2017 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Electromagnetic radiation is caused by a. electricity b. radioactive

More information

Part I. Quantum Mechanics. 2. Is light a Wave or Particle. 3a. Electromagnetic Theory 1831 Michael Faraday proposes Electric and Magnetic Fields

Part I. Quantum Mechanics. 2. Is light a Wave or Particle. 3a. Electromagnetic Theory 1831 Michael Faraday proposes Electric and Magnetic Fields Quantized Radiation (Particle Theory of Light) Dr. Bill Pezzaglia Part I 1 Quantum Mechanics A. Classical vs Quantum Theory B. Black Body Radiation C. Photoelectric Effect 2 Updated: 2010Apr19 D. Atomic

More information

Fundamental Constants

Fundamental Constants Fundamental Constants Atomic Mass Unit u 1.660 540 2 10 10 27 kg 931.434 32 28 MeV c 2 Avogadro s number N A 6.022 136 7 36 10 23 (g mol) 1 Bohr magneton μ B 9.274 015 4(31) 10-24 J/T Bohr radius a 0 0.529

More information

Unit 3. Chapter 4 Electrons in the Atom. Niels Bohr s Model. Recall the Evolution of the Atom. Bohr s planetary model

Unit 3. Chapter 4 Electrons in the Atom. Niels Bohr s Model. Recall the Evolution of the Atom. Bohr s planetary model Unit 3 Chapter 4 Electrons in the Atom Electrons in the Atom (Chapter 4) & The Periodic Table/Trends (Chapter 5) Niels Bohr s Model Recall the Evolution of the Atom He had a question: Why don t the electrons

More information

Blackbody radiation The photoelectric effect Compton effect Line spectra Nuclear physics/bohr model Lasers Quantum mechanics

Blackbody radiation The photoelectric effect Compton effect Line spectra Nuclear physics/bohr model Lasers Quantum mechanics Blackbody radiation The photoelectric effect Compton effect Line spectra Nuclear physics/bohr model Lasers Quantum mechanics Phys 2435: Chap. 38, Pg 1 Blackbody radiation New Topic Phys 2435: Chap. 38,

More information

ASTRONOMY. Chapter 5 RADIATION AND SPECTRA PowerPoint Image Slideshow

ASTRONOMY. Chapter 5 RADIATION AND SPECTRA PowerPoint Image Slideshow ASTRONOMY Chapter 5 RADIATION AND SPECTRA PowerPoint Image Slideshow FIGURE 5.1 Our Sun in Ultraviolet Light. This photograph of the Sun was taken at several different wavelengths of ultraviolet, which

More information

where n = (an integer) =

where n = (an integer) = 5.111 Lecture Summary #5 Readings for today: Section 1.3 (1.6 in 3 rd ed) Atomic Spectra, Section 1.7 up to equation 9b (1.5 up to eq. 8b in 3 rd ed) Wavefunctions and Energy Levels, Section 1.8 (1.7 in

More information

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level *7710720031* PHYSICS 9702/21 Paper 2 AS Level Structured Questions October/November 2016 1 hour 15 minutes

More information

Electromagnetic Radiation. is a form of energy that exhibits wavelike behavior as it travels through space.

Electromagnetic Radiation. is a form of energy that exhibits wavelike behavior as it travels through space. Electromagnetic Radiation is a form of energy that exhibits wavelike behavior as it travels through space. What are the 7 forms of electromagnetic radiation, in order of INCREASING wavelength? gamma rays

More information

Essential Astrophysics

Essential Astrophysics ASTR 530 Essential Astrophysics Course Notes Paul Hickson The University of British Columbia, Department of Physics and Astronomy January 2015 1 1 Introduction and review Several text books present an

More information

Physical Electronics. First class (1)

Physical Electronics. First class (1) Physical Electronics First class (1) Bohr s Model Why don t the electrons fall into the nucleus? Move like planets around the sun. In circular orbits at different levels. Amounts of energy separate one

More information

Cosmic Microwave Background Radiation

Cosmic Microwave Background Radiation Base your answers to questions 1 and 2 on the passage below and on your knowledge of Earth Science. Cosmic Microwave Background Radiation In the 1920s, Edwin Hubble's discovery of a pattern in the red

More information

GRADUATE WRITTEN EXAMINATION. Fall 2018 PART I

GRADUATE WRITTEN EXAMINATION. Fall 2018 PART I University of Minnesota School of Physics and Astronomy GRADUATE WRITTEN EXAMINATION Fall 2018 PART I Monday, August 20 th, 2018 9:00 am to 1:00 pm Part 1 of this exam consists of 10 problems of equal

More information

Astronomy-part 3 notes Properties of Stars

Astronomy-part 3 notes Properties of Stars Astronomy-part 3 notes Properties of Stars What are Stars? Hot balls of that shine because nuclear fusion (hydrogen to helium) is happening at their cores. They create their own. Have different which allow

More information