Ioannis Vardoulakis N.T.U. Athens

Size: px
Start display at page:

Download "Ioannis Vardoulakis N.T.U. Athens"

Transcription

1 ENSHMG March 10-14, 2008 an EU SOCRATES short course on Engineering Continuum Mechanics: traffic flow and shallow water waves Ioannis Vardoulakis N.T.U. Athens ( 1

2 natural phenomena mathematical modeling-the continuum assumption the elementary traffic-flow theory St. Venant s shallow-water theory shallow-water model of granular flows 2

3 the continuum assumption < ρ > zl, = ρ( z) Leonhard Euler

4 L. Prandtl and O.G. Tietjens, Fundamentals of Hydro- and Aerodynamics, Dover,

5 The Lagrangian Approach to continuum mechanics emphasizes the particulate (material) description of a motion The pathlines of car-particles flowing in a highway: Red paths belong to receding particles; white paths to approaching particles. In Fluid Mechanics these lines are called the pathlines. We notice however this snapshot corresponds to a photograph with long exposure. Thus long exposures yield the Lagrangian view, whereas short exposures the Eulerian view 5

6 The Eulerian Approach to continuum mechanics emphasizes the spatial description of a motion Ground-wind velocities meteorologic map of a given place at a given instant. In Fluid Mechanics the integral curves of this velocity field are called the streamlines v = v( x, y, t) 6

7 The Elementary Traffic-Flow Theory (eulerian) (M.J. Lighthill and G.B. Whitham 1955) 7

8 empirical constitutive law 8

9 the celerity 9

10 the traffic flow problem 10

11 11

12 12

13 The traffic light problem 13

14 the expansion fan 14

15 the shock wave 15

16 16

17 17

18 1 st Modification: Viscosity correction (the driver looks ahead; stabilizing) 2 nd Modification: Reaction time (destabilizing) 18

19 Viscosity correction If the flow ahead is getting denser or looser, the driver is able to adjust the speed of the vehicle accordingly: v = V( ρ ν ρ ) ρ x ν= v c 0 2 ρ 2ρ ρ ρ + vmax 1 =ν ( BURGER Eq. ) 2 t ρmax x x 19

20 Canonical form of the Burger equation 2ρ C= vmax 1 ρmax 2 C C C + C =ν t x x 2 20

21 Reaction time v = V ( ρ(x,t τ) ) V( ρ) τv ( ρ) ρ t ρ t + C ρ x x ( ρ) = τ ρv ( ρ) ρ t ρ = ρ * + ρ~ (x,t) ρ * ρ * * ρ c τρ V(ρ ) + = t x x t 2 21

22 Linear stability analysis ρ ~ = Re ( exp(ikx + st) ), i = 1 s = 2 * * * τk ρ cv '(ρ ) ikc ( * * ) 1+ τkρ V'(ρ ) 2 with V <0 instability is predicted at heavy traffic conditions (c<0) 22

23 St. Venant s Shallow-Water Theory (eulerian) De Barr Saint-Venant, A.J.C. (1850). Mémoire sur des formules nouvelles pour la solution des problèmes ralitfs aux eaux courantes. C.R. Acad. Sc., Paris, 31, 283. De Barr Saint-Venant, A.J.C. (1871). Théorie du movement non-permanent des eaux avec applications aux crues des rivieres et a l' introduction des marées dans leurs lit. C.R. Acad. Sc., Paris, 73,

24 The "shallow water theory" is traced originally to St. Venant in the mid 19 th century and its successful application to open channel flow and to river dynamics is extensively presented in standard textbooks. Within the shallow water theory the governing mass and momentum balance equations of continuum mechanics are averaged over space and time in an appropriate manner so that simplified and mathematically more tractable differential equations are derived. Space averaging is done over the height of the flowing mass, whereas time averaging is done primarily in order to account for the effect of fluctuations at the interface between the flowing mass and its stationary base. 24

25 Shallow-water limit 25

26 Storage Equation ( hv) = x h t 26

27 Momentum Balance h ρ gh = w x ρ w hv 27

28 the material time derivative φ = Dφ/ Dt 28

29 Kinematic water-waves h h v + v + h = t x x v v h + v + g = t x x 0 0 v = V( h) 29

30 Kinematic water-waves h t h + ch ( ) = 0 x c h = 3ceq heq 2 3 c eq = gh eq 30

31 Hyperbolic problems 31

32 The breaking-dam problem 32

33 Tsunamis (=harbor waves) 33

34 Long wave approaching a slopping beach (tsunami) 34

35 35

36 36

37 37

38 38

39 the tsunami c= gh 0 39

40 40

41 41

42 Question Given that for a traffic-flow problem the velocity-density relationship is linear determine the traffic flow density so that the car flow is optimal 42

Basic Geodynamics of Landslides: III. Flow-slides

Basic Geodynamics of Landslides: III. Flow-slides International School LAndslide Risk Assessment and Mitigation LARAM School 2007 (3-15 September, Ravello, Italy) Session 1: Introduction to landslides: Landslide analysis using approaches based on: Geology,

More information

Traffic Flow Problems

Traffic Flow Problems Traffic Flow Problems Nicodemus Banagaaya Supervisor : Dr. J.H.M. ten Thije Boonkkamp October 15, 2009 Outline Introduction Mathematical model derivation Godunov Scheme for the Greenberg Traffic model.

More information

Finite volumes for complex applications In this paper, we study finite-volume methods for balance laws. In particular, we focus on Godunov-type centra

Finite volumes for complex applications In this paper, we study finite-volume methods for balance laws. In particular, we focus on Godunov-type centra Semi-discrete central schemes for balance laws. Application to the Broadwell model. Alexander Kurganov * *Department of Mathematics, Tulane University, 683 St. Charles Ave., New Orleans, LA 708, USA kurganov@math.tulane.edu

More information

Index. Chromatography, 3 Condition of C 0 compatibility, 8, 9 Condition of C 1 compatibility, 8, 9, 33, 36, 38, 39, 41, 43, 50, 53, 56, 58, 59, 62

Index. Chromatography, 3 Condition of C 0 compatibility, 8, 9 Condition of C 1 compatibility, 8, 9, 33, 36, 38, 39, 41, 43, 50, 53, 56, 58, 59, 62 References 1. Bressan, A., Čanić, S., Garavello, M., Herty, M., Piccoli, B.: Flows on networks: recent results and perspectives. EMS Surv. Math. Sci. 1, 47 111 (2014) 2. Coron, J.-M., Wang, Z.: Controllability

More information

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 1 / 29 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS Hierarchy of Mathematical Models 1 / 29 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 2 / 29

More information

Resonant wave run-up on sloping beaches and vertical walls

Resonant wave run-up on sloping beaches and vertical walls Resonant wave run-up on sloping beaches and vertical walls DENYS DUTYKH 1 Chargé de Recherche CNRS 1 Université de Savoie Mont Blanc Laboratoire de Mathématiques (LAMA) 73376 Le Bourget-du-Lac France Seminar:

More information

Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer

Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer 1. Nusselt number Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer Average Nusselt number: convective heat transfer Nu L = conductive heat transfer = hl where L is the characteristic

More information

Numerical Simulation of Traffic Flow via Fluid Dynamics Approach

Numerical Simulation of Traffic Flow via Fluid Dynamics Approach International Journal of Computing and Optimization Vol. 3, 2016, no. 1, 93-104 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijco.2016.6613 Numerical Simulation of Traffic Flow via Fluid Dynamics

More information

Numerical Methods for Modern Traffic Flow Models. Alexander Kurganov

Numerical Methods for Modern Traffic Flow Models. Alexander Kurganov Numerical Methods for Modern Traffic Flow Models Alexander Kurganov Tulane University Mathematics Department www.math.tulane.edu/ kurganov joint work with Pierre Degond, Université Paul Sabatier, Toulouse

More information

A simple numerical scheme for the 2D shallow-water system

A simple numerical scheme for the 2D shallow-water system A simple numerical scheme for the D shallow-water system Jie Hu, Graduate Research Student, The National Hydraulics and Environmental Laboratory LNHE (Laboratoire National d Hydraulique et Environnement),

More information

Dedicated to the 70th birthday of Professor Lin Qun

Dedicated to the 70th birthday of Professor Lin Qun Journal of Computational Mathematics, Vol.4, No.3, 6, 39 5. ANTI-DIFFUSIVE FINITE DIFFERENCE WENO METHODS FOR SHALLOW WATER WITH TRANSPORT OF POLLUTANT ) Zhengfu Xu (Department of Mathematics, Pennsylvania

More information

From Navier-Stokes to Saint-Venant

From Navier-Stokes to Saint-Venant From Navier-Stokes to Saint-Venant Course 1 E. Godlewski 1 & J. Sainte-Marie 1 1 ANGE team LJLL - January 2017 Euler Eulerian vs. Lagrangian description Lagrange x(t M(t = y(t, z(t flow of the trajectories

More information

CRITERIA FOR THE CHOICE OF FLOOD ROUTING METHODS IN

CRITERIA FOR THE CHOICE OF FLOOD ROUTING METHODS IN Criteria for the choice of flood routing methods in natural... CRITERIA FOR THE CHOICE OF FLOOD ROUTING METHODS IN NATURAL CHANNELS WITH OVERBANK FLOWS Roger Moussa 1 Abstract: The classification of river

More information

Introduction to the Finite Volumes Method. Application to the Shallow Water Equations. Jaime Miguel Fe Marqués

Introduction to the Finite Volumes Method. Application to the Shallow Water Equations. Jaime Miguel Fe Marqués Introduction to the Finite Volumes Method. Application to the Shallow Water Equations. Jaime Miguel Fe Marqués Contents Preliminary considerations 3. Study of the movement of a fluid................ 3.

More information

CHAPTER 4. Basics of Fluid Dynamics

CHAPTER 4. Basics of Fluid Dynamics CHAPTER 4 Basics of Fluid Dynamics What is a fluid? A fluid is a substance that can flow, has no fixed shape, and offers little resistance to an external stress In a fluid the constituent particles (atoms,

More information

CH.1. DESCRIPTION OF MOTION. Continuum Mechanics Course (MMC)

CH.1. DESCRIPTION OF MOTION. Continuum Mechanics Course (MMC) CH.1. DESCRIPTION OF MOTION Continuum Mechanics Course (MMC) Overview 1.1. Definition of the Continuous Medium 1.1.1. Concept of Continuum 1.1.. Continuous Medium or Continuum 1.. Equations of Motion 1..1

More information

Anti-diffusive finite difference WENO methods for shallow water with. transport of pollutant

Anti-diffusive finite difference WENO methods for shallow water with. transport of pollutant Anti-diffusive finite difference WENO methods for shallow water with transport of pollutant Zhengfu Xu 1 and Chi-Wang Shu 2 Dedicated to Professor Qun Lin on the occasion of his 70th birthday Abstract

More information

Lattice Boltzmann Method

Lattice Boltzmann Method 3 Lattice Boltzmann Method 3.1 Introduction The lattice Boltzmann method is a discrete computational method based upon the lattice gas automata - a simplified, fictitious molecular model. It consists of

More information

Answers to Problem Set Number 02 for MIT (Spring 2008)

Answers to Problem Set Number 02 for MIT (Spring 2008) Answers to Problem Set Number 02 for 18.311 MIT (Spring 2008) Rodolfo R. Rosales (MIT, Math. Dept., room 2-337, Cambridge, MA 02139). March 10, 2008. Course TA: Timothy Nguyen, MIT, Dept. of Mathematics,

More information

A MACROSCOPIC TRAFFIC MODEL FOR ROAD NETWORKS WITH A REPRESENTATION OF THE CAPACITY DROP PHENOMENON AT THE JUNCTIONS

A MACROSCOPIC TRAFFIC MODEL FOR ROAD NETWORKS WITH A REPRESENTATION OF THE CAPACITY DROP PHENOMENON AT THE JUNCTIONS A MACROSCOPIC TRAFFIC MODEL FOR ROAD NETWORKS WITH A REPRESENTATION OF THE CAPACITY DROP PHENOMENON AT THE JUNCTIONS B. Haut G. Bastin Y. Chitour Aspirant FNRS, haut@auto.ucl.ac.be, Centre for Systems

More information

Two-dimensional macroscopic models for traffic flow on highways

Two-dimensional macroscopic models for traffic flow on highways Two-dimensional macroscopic models for traffic flow on highways Giuseppe Visconti Institut für Geometrie und Praktische Mathematik RWTH Aachen University (Germany) XVII Italian Meeting on Hyperbolic Equations

More information

Modeling and simulation of bedload transport with viscous effects

Modeling and simulation of bedload transport with viscous effects Introduction Modeling and simulation of bedload transport with viscous effects E. Audusse, L. Boittin, M. Parisot, J. Sainte-Marie Project-team ANGE, Inria; CEREMA; LJLL, UPMC Université Paris VI; UMR

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master Degree in Mechanical Engineering Numerical Heat and Mass Transfer 15-Convective Heat Transfer Fausto Arpino f.arpino@unicas.it Introduction In conduction problems the convection entered the analysis

More information

Finite Volume Method

Finite Volume Method Finite Volume Method An Introduction Praveen. C CTFD Division National Aerospace Laboratories Bangalore 560 037 email: praveen@cfdlab.net April 7, 2006 Praveen. C (CTFD, NAL) FVM CMMACS 1 / 65 Outline

More information

Cranfield ^91. College of Aeronautics Report No.9007 March The Dry-Bed Problem in Shallow-Water Flows. E F Toro

Cranfield ^91. College of Aeronautics Report No.9007 March The Dry-Bed Problem in Shallow-Water Flows. E F Toro Cranfield ^91 College of Aeronautics Report No.9007 March 1990 The Dry-Bed Problem in Shallow-Water Flows E F Toro College of Aeronautics Cranfield Institute of Technology Cranfield. Bedford MK43 OAL.

More information

Fluid Dynamics. Massimo Ricotti. University of Maryland. Fluid Dynamics p.1/14

Fluid Dynamics. Massimo Ricotti. University of Maryland. Fluid Dynamics p.1/14 Fluid Dynamics p.1/14 Fluid Dynamics Massimo Ricotti ricotti@astro.umd.edu University of Maryland Fluid Dynamics p.2/14 The equations of fluid dynamics are coupled PDEs that form an IVP (hyperbolic). Use

More information

Solitons in a macroscopic traffic model

Solitons in a macroscopic traffic model Solitons in a macroscopic traffic model P. Saavedra R. M. Velasco Department of Mathematics, Universidad Autónoma Metropolitana, Iztapalapa, 093 México, (e-mail: psb@xanum.uam.mx). Department of Physics,

More information

Topics in Fluid Dynamics: Classical physics and recent mathematics

Topics in Fluid Dynamics: Classical physics and recent mathematics Topics in Fluid Dynamics: Classical physics and recent mathematics Toan T. Nguyen 1,2 Penn State University Graduate Student Seminar @ PSU Jan 18th, 2018 1 Homepage: http://math.psu.edu/nguyen 2 Math blog:

More information

Numerical simulation of some macroscopic mathematical models of traffic flow. Comparative study

Numerical simulation of some macroscopic mathematical models of traffic flow. Comparative study Numerical simulation of some macroscopic mathematical models of traffic flow. Comparative study A. Lakhouili 1, El. Essoufi 1, H. Medromi 2, M. Mansouri 1 1 Hassan 1 st University, FST Settat, Morocco

More information

A Continuous Model for Two-Lane Traffic Flow

A Continuous Model for Two-Lane Traffic Flow A Continuous Model for Two-Lane Traffic Flow Richard Yi, Harker School Prof. Gabriele La Nave, University of Illinois, Urbana-Champaign PRIMES Conference May 16, 2015 Two Ways of Approaching Traffic Flow

More information

Abstract. 1 Introduction

Abstract. 1 Introduction On solid transport in suspension in a waterway : a two dimensional numerical approach N. Hadj-Rabia, S. Mekbel, M. Bouhadef Institute of Civil Engineering. U.&T.H.B. B.P. 32 Bab-Ezzouar 16111 El-Alia.

More information

Coupling conditions for transport problems on networks governed by conservation laws

Coupling conditions for transport problems on networks governed by conservation laws Coupling conditions for transport problems on networks governed by conservation laws Michael Herty IPAM, LA, April 2009 (RWTH 2009) Transport Eq s on Networks 1 / 41 Outline of the Talk Scope: Boundary

More information

Math background. Physics. Simulation. Related phenomena. Frontiers in graphics. Rigid fluids

Math background. Physics. Simulation. Related phenomena. Frontiers in graphics. Rigid fluids Fluid dynamics Math background Physics Simulation Related phenomena Frontiers in graphics Rigid fluids Fields Domain Ω R2 Scalar field f :Ω R Vector field f : Ω R2 Types of derivatives Derivatives measure

More information

Chapter 5 Control Volume Approach and Continuity Equation

Chapter 5 Control Volume Approach and Continuity Equation Chapter 5 Control Volume Approach and Continuity Equation Lagrangian and Eulerian Approach To evaluate the pressure and velocities at arbitrary locations in a flow field. The flow into a sudden contraction,

More information

Improvement of Calculation Stability for Slow Fluid Flow Analysis Using Particle Method *

Improvement of Calculation Stability for Slow Fluid Flow Analysis Using Particle Method * Materials Transactions, Vol. 58, No. 3 (2017) pp. 479 to 484 2017 Japan Foundry Engineering Society Improvement of Calculation Stability for Slow Fluid Flow Analysis Using Particle Method * Naoya Hirata

More information

A Very Brief Introduction to Conservation Laws

A Very Brief Introduction to Conservation Laws A Very Brief Introduction to Wen Shen Department of Mathematics, Penn State University Summer REU Tutorial, May 2013 Summer REU Tutorial, May 2013 1 / The derivation of conservation laws A conservation

More information

CH.1. DESCRIPTION OF MOTION. Multimedia Course on Continuum Mechanics

CH.1. DESCRIPTION OF MOTION. Multimedia Course on Continuum Mechanics CH.1. DESCRIPTION OF MOTION Multimedia Course on Continuum Mechanics Overview 1.1. Definition of the Continuous Medium 1.1.1. Concept of Continuum 1.1.2. Continuous Medium or Continuum 1.2. Equations of

More information

Chapter 3. Finite Difference Methods for Hyperbolic Equations Introduction Linear convection 1-D wave equation

Chapter 3. Finite Difference Methods for Hyperbolic Equations Introduction Linear convection 1-D wave equation Chapter 3. Finite Difference Methods for Hyperbolic Equations 3.1. Introduction Most hyperbolic problems involve the transport of fluid properties. In the equations of motion, the term describing the transport

More information

Finite-Volume-Particle Methods for Models of Transport of Pollutant in Shallow Water

Finite-Volume-Particle Methods for Models of Transport of Pollutant in Shallow Water Journal of Scientific Computing ( 006) DOI: 0.007/s095-005-9060-x Finite-Volume-Particle Methods for Models of Transport of Pollutant in Shallow Water Alina Chertock, Alexander Kurganov, and Guergana Petrova

More information

Introduction to Aerospace Engineering

Introduction to Aerospace Engineering Introduction to Aerospace Engineering Lecture slides Challenge the future 3-0-0 Introduction to Aerospace Engineering Aerodynamics 5 & 6 Prof. H. Bijl ir. N. Timmer Delft University of Technology 5. Compressibility

More information

Energy dissipation caused by boundary layer instability at vanishing viscosity

Energy dissipation caused by boundary layer instability at vanishing viscosity Energy dissipation caused by boundary layer instability at vanishing viscosity Marie Farge, Ecole Normale Supérieure, Paris Kai Schneider, Université d Aix-Marseille in collaboration with Romain Nguyen-Nouch

More information

Lecture 6: Introduction to Partial Differential Equations

Lecture 6: Introduction to Partial Differential Equations Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without explicit written permission from the copyright owner. 1 Lecture 6: Introduction

More information

Hyperbolic Systems of Conservation Laws. in One Space Dimension. I - Basic concepts. Alberto Bressan. Department of Mathematics, Penn State University

Hyperbolic Systems of Conservation Laws. in One Space Dimension. I - Basic concepts. Alberto Bressan. Department of Mathematics, Penn State University Hyperbolic Systems of Conservation Laws in One Space Dimension I - Basic concepts Alberto Bressan Department of Mathematics, Penn State University http://www.math.psu.edu/bressan/ 1 The Scalar Conservation

More information

Summary We develop an unconditionally stable explicit particle CFD scheme: Boltzmann Particle Hydrodynamics (BPH)

Summary We develop an unconditionally stable explicit particle CFD scheme: Boltzmann Particle Hydrodynamics (BPH) Summary Steps in BPH Space is divided into Cartesian cells Finite number of particles ~10 6-10 7 Particles fly freely between t n and t n+1 Mass, momentum and total energy are conserved Relax into a (LTE)

More information

Modeling, Simulating and Rendering Fluids. Thanks to Ron Fediw et al, Jos Stam, Henrik Jensen, Ryan

Modeling, Simulating and Rendering Fluids. Thanks to Ron Fediw et al, Jos Stam, Henrik Jensen, Ryan Modeling, Simulating and Rendering Fluids Thanks to Ron Fediw et al, Jos Stam, Henrik Jensen, Ryan Applications Mostly Hollywood Shrek Antz Terminator 3 Many others Games Engineering Animating Fluids is

More information

- Marine Hydrodynamics. Lecture 4. Knowns Equations # Unknowns # (conservation of mass) (conservation of momentum)

- Marine Hydrodynamics. Lecture 4. Knowns Equations # Unknowns # (conservation of mass) (conservation of momentum) 2.20 - Marine Hydrodynamics, Spring 2005 Lecture 4 2.20 - Marine Hydrodynamics Lecture 4 Introduction Governing Equations so far: Knowns Equations # Unknowns # density ρ( x, t) Continuity 1 velocities

More information

Traffic Flow Theory & Simulation

Traffic Flow Theory & Simulation Traffic Flow Theory & Simulation S.P. Hoogendoorn Lecture 7 Introduction to Phenomena Introduction to phenomena And some possible explanations... 2/5/2011, Prof. Dr. Serge Hoogendoorn, Delft University

More information

Continuum Modelling of Traffic Flow

Continuum Modelling of Traffic Flow Continuum Modelling of Traffic Flow Christopher Lustri June 16, 2010 1 Introduction We wish to consider the problem of modelling flow of vehicles within a traffic network. In the past, stochastic traffic

More information

A Probability-Based Model of Traffic Flow

A Probability-Based Model of Traffic Flow A Probability-Based Model of Traffic Flow Richard Yi, Harker School Mentored by Gabriele La Nave, University of Illinois, Urbana-Champaign January 23, 2016 Abstract Describing the behavior of traffic via

More information

Linear Hyperbolic Systems

Linear Hyperbolic Systems Linear Hyperbolic Systems Professor Dr E F Toro Laboratory of Applied Mathematics University of Trento, Italy eleuterio.toro@unitn.it http://www.ing.unitn.it/toro October 8, 2014 1 / 56 We study some basic

More information

FUNDAMENTAL CONCEPTS IN CONTINUUM MECHANICS

FUNDAMENTAL CONCEPTS IN CONTINUUM MECHANICS PART I FUNDAMENTAL CONCEPTS IN CONTINUUM MECHANICS CHAPTER ONE Describing the motion ofa system: geometry and kinematics 1.1. Deformations The purpose of mechanics is to study and describe the motion of

More information

Emergence of traffic jams in high-density environments

Emergence of traffic jams in high-density environments Emergence of traffic jams in high-density environments Bill Rose 12/19/2012 Physics 569: Emergent States of Matter Phantom traffic jams, those that have no apparent cause, can arise as an emergent phenomenon

More information

7. Basics of Turbulent Flow Figure 1.

7. Basics of Turbulent Flow Figure 1. 1 7. Basics of Turbulent Flow Whether a flow is laminar or turbulent depends of the relative importance of fluid friction (viscosity) and flow inertia. The ratio of inertial to viscous forces is the Reynolds

More information

The shallow water equations Lecture 8. (photo due to Clark Little /SWNS)

The shallow water equations Lecture 8. (photo due to Clark Little /SWNS) The shallow water equations Lecture 8 (photo due to Clark Little /SWNS) The shallow water equations This lecture: 1) Derive the shallow water equations 2) Their mathematical structure 3) Some consequences

More information

dynamics of f luids in porous media

dynamics of f luids in porous media dynamics of f luids in porous media Jacob Bear Department of Civil Engineering Technion Israel Institute of Technology, Haifa DOVER PUBLICATIONS, INC. New York Contents Preface xvii CHAPTER 1 Introduction

More information

Duality methods for variational inequalities and Non-Newtonian fluid mechanics

Duality methods for variational inequalities and Non-Newtonian fluid mechanics Duality methods for variational inequalities and Non-Newtonian fluid mechanics Enrique Fernández-Nieto, Paul Vigneaux Dpto. Matemática Aplicada I, Universidad de Sevilla UMPA, Ecole Normale Supérieure

More information

Macroscopic limits of microscopic models

Macroscopic limits of microscopic models Macroscopic limits of microscopic models The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher Abeyaratne,

More information

ME 3560 Fluid Mechanics

ME 3560 Fluid Mechanics ME 3560 Fluid Mechanics 1 4.1 The Velocity Field One of the most important parameters that need to be monitored when a fluid is flowing is the velocity. In general the flow parameters are described in

More information

Some results on the stabilization and on the controllability of hyperbolic systems

Some results on the stabilization and on the controllability of hyperbolic systems Some results on the stabilization and on the controllability of hyperbolic systems Jean-Michel Coron http://www.ann.jussieu.fr/~coron/ Irrigation Channels and Related Problems Maiori (Salerno, Italy) October

More information

PHYSFLU - Physics of Fluids

PHYSFLU - Physics of Fluids Coordinating unit: 230 - ETSETB - Barcelona School of Telecommunications Engineering Teaching unit: 748 - FIS - Department of Physics Academic year: Degree: 2018 BACHELOR'S DEGREE IN ENGINEERING PHYSICS

More information

MAE 3130: Fluid Mechanics Lecture 7: Differential Analysis/Part 1 Spring Dr. Jason Roney Mechanical and Aerospace Engineering

MAE 3130: Fluid Mechanics Lecture 7: Differential Analysis/Part 1 Spring Dr. Jason Roney Mechanical and Aerospace Engineering MAE 3130: Fluid Mechanics Lecture 7: Differential Analysis/Part 1 Spring 2003 Dr. Jason Roney Mechanical and Aerospace Engineering Outline Introduction Kinematics Review Conservation of Mass Stream Function

More information

Turbulence is a ubiquitous phenomenon in environmental fluid mechanics that dramatically affects flow structure and mixing.

Turbulence is a ubiquitous phenomenon in environmental fluid mechanics that dramatically affects flow structure and mixing. Turbulence is a ubiquitous phenomenon in environmental fluid mechanics that dramatically affects flow structure and mixing. Thus, it is very important to form both a conceptual understanding and a quantitative

More information

Lecture 11: Non-linear Diffusion

Lecture 11: Non-linear Diffusion Lecture 11: Non-linear Diffusion Scribe: Lou Odette - American International Group (AIG) October 17, 006 1 Non-linear Drift In the continuum limit the PDF ρ(x, t) for the x at time t of a single random

More information

Deforming Composite Grids for Fluid Structure Interactions

Deforming Composite Grids for Fluid Structure Interactions Deforming Composite Grids for Fluid Structure Interactions Jeff Banks 1, Bill Henshaw 1, Don Schwendeman 2 1 Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore,

More information

Fundamentals of Fluid Dynamics: Ideal Flow Theory & Basic Aerodynamics

Fundamentals of Fluid Dynamics: Ideal Flow Theory & Basic Aerodynamics Fundamentals of Fluid Dynamics: Ideal Flow Theory & Basic Aerodynamics Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI (after: D.J. ACHESON s Elementary Fluid Dynamics ) bluebox.ippt.pan.pl/

More information

Correction to Euler equations and closure in turbulence do not require any closures model does not require any closures 1. Introduction.

Correction to Euler equations and closure in turbulence do not require any closures model does not require any closures 1. Introduction. Correction to Euler equations and closure in turbulence. Michail Zak Senior Research Scientist (Emeritus) Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91109, USA. It has been

More information

Introduction to Fluid Mechanics

Introduction to Fluid Mechanics Introduction to Fluid Mechanics Tien-Tsan Shieh April 16, 2009 What is a Fluid? The key distinction between a fluid and a solid lies in the mode of resistance to change of shape. The fluid, unlike the

More information

Comparison of Numerical Schemes for Shallow Water Equation

Comparison of Numerical Schemes for Shallow Water Equation Global Journal of Science Frontier Research Mathematics and Decision Sciences Volume 13 Issue 4 Version 1.0 Year Type : Double Blind Peer Reviewed International Research Journal Publisher: Global Journals

More information

Acoustic Energy Estimates in Inhomogeneous Moving Media

Acoustic Energy Estimates in Inhomogeneous Moving Media Subject: FORUM ACUSTICUM 1999 Abstract Acoustic Energy Estimates in Inhomogeneous Moving Media, NASA Langley Research Center, Hampton, Virginia Mark Farris, Midwestern State University, Wichita Falls,

More information

Convective Mass Transfer

Convective Mass Transfer Convective Mass Transfer Definition of convective mass transfer: The transport of material between a boundary surface and a moving fluid or between two immiscible moving fluids separated by a mobile interface

More information

Lecture 3: 1. Lecture 3.

Lecture 3: 1. Lecture 3. Lecture 3: 1 Lecture 3. Lecture 3: 2 Plan for today Summary of the key points of the last lecture. Review of vector and tensor products : the dot product (or inner product ) and the cross product (or vector

More information

Research of Micro-Rectangular-Channel Flow Based on Lattice Boltzmann Method

Research of Micro-Rectangular-Channel Flow Based on Lattice Boltzmann Method Research Journal of Applied Sciences, Engineering and Technology 6(14): 50-55, 013 ISSN: 040-7459; e-issn: 040-7467 Maxwell Scientific Organization, 013 Submitted: November 08, 01 Accepted: December 8,

More information

Hopf equation In Lecture 1 we considered propagation of sound in a compressible gas with the use of equation,

Hopf equation In Lecture 1 we considered propagation of sound in a compressible gas with the use of equation, Lecture 4 In preceding lectures we discussed dispersion effects defined as a nontrivial dependence of phase velocity of harmonic waves on their wave number. Due to dispersion effects, envelope of a wave

More information

Ecoulements turbulents des eaux peu profondes Turbulent flows in shallow water

Ecoulements turbulents des eaux peu profondes Turbulent flows in shallow water Ecoulements turbulents des eaux peu profondes Turbulent flows in shallow water SERGEY GAVRILYUK a, HENRI GOUIN b a. Université d Aix-Marseille & C.N.R.S. U.M.R. 6595, IUSTI, Project SMASH, 5 rue E. Fermi,

More information

Notes. Multi-Dimensional Plasticity. Yielding. Multi-Dimensional Yield criteria. (so rest state includes plastic strain): #=#(!

Notes. Multi-Dimensional Plasticity. Yielding. Multi-Dimensional Yield criteria. (so rest state includes plastic strain): #=#(! Notes Multi-Dimensional Plasticity! I am back, but still catching up! Assignment is due today (or next time I!m in the dept following today)! Final project proposals: I haven!t sorted through my email,

More information

ρ Du i Dt = p x i together with the continuity equation = 0, x i

ρ Du i Dt = p x i together with the continuity equation = 0, x i 1 DIMENSIONAL ANALYSIS AND SCALING Observation 1: Consider the flow past a sphere: U a y x ρ, µ Figure 1: Flow past a sphere. Far away from the sphere of radius a, the fluid has a uniform velocity, u =

More information

The Hopf equation. The Hopf equation A toy model of fluid mechanics

The Hopf equation. The Hopf equation A toy model of fluid mechanics The Hopf equation A toy model of fluid mechanics 1. Main physical features Mathematical description of a continuous medium At the microscopic level, a fluid is a collection of interacting particles (Van

More information

Answers to Problem Set Number 04 for MIT (Spring 2008)

Answers to Problem Set Number 04 for MIT (Spring 2008) Answers to Problem Set Number 04 for 18.311 MIT (Spring 008) Rodolfo R. Rosales (MIT, Math. Dept., room -337, Cambridge, MA 0139). March 17, 008. Course TA: Timothy Nguyen, MIT, Dept. of Mathematics, Cambridge,

More information

FLUID MECHANICS. Gaza. Chapter CHAPTER 44. Motion of Fluid Particles and Streams. Dr. Khalil Mahmoud ALASTAL

FLUID MECHANICS. Gaza. Chapter CHAPTER 44. Motion of Fluid Particles and Streams. Dr. Khalil Mahmoud ALASTAL FLUID MECHANICS Gaza Chapter CHAPTER 44 Motion of Fluid Particles and Streams Dr. Khalil Mahmoud ALASTAL Objectives of this Chapter: Introduce concepts necessary to analyze fluids in motion. Identify differences

More information

Traffic Flow. June 30, David Bosworth

Traffic Flow. June 30, David Bosworth Traffic Flow June 30, 2009 By David Bosworth Abstract: In the following, I will try to eplain the method of characteristics, which is involved in solving many aspects of traffic flow, but not for traffic

More information

Lattice Boltzmann Method for Fluid Simulations

Lattice Boltzmann Method for Fluid Simulations 1 / 16 Lattice Boltzmann Method for Fluid Simulations Yuanxun Bill Bao & Justin Meskas Simon Fraser University April 7, 2011 2 / 16 Ludwig Boltzmann and His Kinetic Theory of Gases The Boltzmann Transport

More information

The Stochastic Piston Problem

The Stochastic Piston Problem The Stochastic Piston Problem G. Lin, C.-H. Su and G.E. Karniadakis Division of Applied Mathematics 18 George Street Brown University Providence, RI 91 Classification: Physical Sciences: Applied Mathematics

More information

A lattice traffic model with consideration of preceding mixture traffic information

A lattice traffic model with consideration of preceding mixture traffic information Chin. Phys. B Vol. 0, No. 8 011) 088901 A lattice traffic model with consideration of preceding mixture traffic information Li Zhi-Peng ) a), Liu Fu-Qiang ) a), Sun Jian ) b) a) School of Electronics and

More information

ESCI 485 Air/Sea Interaction Lesson 1 Stresses and Fluxes Dr. DeCaria

ESCI 485 Air/Sea Interaction Lesson 1 Stresses and Fluxes Dr. DeCaria ESCI 485 Air/Sea Interaction Lesson 1 Stresses and Fluxes Dr DeCaria References: An Introduction to Dynamic Meteorology, Holton MOMENTUM EQUATIONS The momentum equations governing the ocean or atmosphere

More information

Lecture 5: Kinetic theory of fluids

Lecture 5: Kinetic theory of fluids Lecture 5: Kinetic theory of fluids September 21, 2015 1 Goal 2 From atoms to probabilities Fluid dynamics descrines fluids as continnum media (fields); however under conditions of strong inhomogeneities

More information

M E 320 Professor John M. Cimbala Lecture 10. The Reynolds Transport Theorem (RTT) (Section 4-6)

M E 320 Professor John M. Cimbala Lecture 10. The Reynolds Transport Theorem (RTT) (Section 4-6) M E 320 Professor John M. Cimbala Lecture 10 Today, we will: Discuss the Reynolds Transport Theorem (RTT) Show how the RTT applies to the conservation laws Begin Chapter 5 Conservation Laws D. The Reynolds

More information

6. Basic basic equations I ( )

6. Basic basic equations I ( ) 6. Basic basic equations I (4.2-4.4) Steady and uniform flows, streamline, streamtube One-, two-, and three-dimensional flow Laminar and turbulent flow Reynolds number System and control volume Continuity

More information

Hydraulics for Urban Storm Drainage

Hydraulics for Urban Storm Drainage Urban Hydraulics Hydraulics for Urban Storm Drainage Learning objectives: understanding of basic concepts of fluid flow and how to analyze conduit flows, free surface flows. to analyze, hydrostatic pressure

More information

1/18/2011. Conservation of Momentum Conservation of Mass Conservation of Energy Scaling Analysis ESS227 Prof. Jin-Yi Yu

1/18/2011. Conservation of Momentum Conservation of Mass Conservation of Energy Scaling Analysis ESS227 Prof. Jin-Yi Yu Lecture 2: Basic Conservation Laws Conservation Law of Momentum Newton s 2 nd Law of Momentum = absolute velocity viewed in an inertial system = rate of change of Ua following the motion in an inertial

More information

Hydrodynamics. Stefan Flörchinger (Heidelberg) Heidelberg, 3 May 2010

Hydrodynamics. Stefan Flörchinger (Heidelberg) Heidelberg, 3 May 2010 Hydrodynamics Stefan Flörchinger (Heidelberg) Heidelberg, 3 May 2010 What is Hydrodynamics? Describes the evolution of physical systems (classical or quantum particles, fluids or fields) close to thermal

More information

A unifying model for fluid flow and elastic solid deformation: a novel approach for fluid-structure interaction and wave propagation

A unifying model for fluid flow and elastic solid deformation: a novel approach for fluid-structure interaction and wave propagation A unifying model for fluid flow and elastic solid deformation: a novel approach for fluid-structure interaction and wave propagation S. Bordère a and J.-P. Caltagirone b a. CNRS, Univ. Bordeaux, ICMCB,

More information

Chapter 2: Fluid Dynamics Review

Chapter 2: Fluid Dynamics Review 7 Chapter 2: Fluid Dynamics Review This chapter serves as a short review of basic fluid mechanics. We derive the relevant transport equations (or conservation equations), state Newton s viscosity law leading

More information

Modified Serre Green Naghdi equations with improved or without dispersion

Modified Serre Green Naghdi equations with improved or without dispersion Modified Serre Green Naghdi equations with improved or without dispersion DIDIER CLAMOND Université Côte d Azur Laboratoire J. A. Dieudonné Parc Valrose, 06108 Nice cedex 2, France didier.clamond@gmail.com

More information

ON A DIFFUSIVELY CORRECTED KINEMATIC-WAVE TRAFFIC MODEL WITH CHANGING ROAD SURFACE CONDITIONS

ON A DIFFUSIVELY CORRECTED KINEMATIC-WAVE TRAFFIC MODEL WITH CHANGING ROAD SURFACE CONDITIONS Dept. of Math. University of Oslo Pure Mathematics ISBN 8 55 85 No. 9 ISSN 86 49 June ON A DIFFUSIVELY CORRECTED KINEMATIC-WAVE TRAFFIC MODEL WITH CHANGING ROAD SURFACE CONDITIONS R. BÜRGERA AND K.H. KARLSEN

More information

Numerical methods for the Navier- Stokes equations

Numerical methods for the Navier- Stokes equations Numerical methods for the Navier- Stokes equations Hans Petter Langtangen 1,2 1 Center for Biomedical Computing, Simula Research Laboratory 2 Department of Informatics, University of Oslo Dec 6, 2012 Note:

More information

Notes: Outline. Shock formation. Notes: Notes: Shocks in traffic flow

Notes: Outline. Shock formation. Notes: Notes: Shocks in traffic flow Outline Scalar nonlinear conservation laws Traffic flow Shocks and rarefaction waves Burgers equation Rankine-Hugoniot conditions Importance of conservation form Weak solutions Reading: Chapter, 2 R.J.

More information

Solution of Impulsive Hamilton-Jacobi Equation and Its Applications

Solution of Impulsive Hamilton-Jacobi Equation and Its Applications Nonlinear Analysis and Differential Equations, Vol. 7, 219, no. 1, 1-8 HIKARI Ltd, www.m-hikari.com https://doi.org/1.12988/nade.219.888 Solution of Impulsive Hamilton-Jacobi Equation and Its Applications

More information

KINEMATICS OF CONTINUA

KINEMATICS OF CONTINUA KINEMATICS OF CONTINUA Introduction Deformation of a continuum Configurations of a continuum Deformation mapping Descriptions of motion Material time derivative Velocity and acceleration Transformation

More information

Roll waves in two-layer Hele-Shaw flows

Roll waves in two-layer Hele-Shaw flows Journal of Physics: Conference Series PAPER OPEN ACCESS Roll waves in two-layer Hele-Shaw flows To cite this article: I V Stepanova et al 016 J. Phys.: Conf. Ser. 7 01036 View the article online for updates

More information

Application of Reconstruction of Variational Iteration Method on the Laminar Flow in a Porous Cylinder with Regressing Walls

Application of Reconstruction of Variational Iteration Method on the Laminar Flow in a Porous Cylinder with Regressing Walls Mechanics and Mechanical Engineering Vol. 21, No. 2 (2017) 379 387 c Lodz University of Technology Application of Reconstruction of Variational Iteration Method on the Laminar Flow in a Porous Cylinder

More information