From Navier-Stokes to Saint-Venant

Size: px
Start display at page:

Download "From Navier-Stokes to Saint-Venant"

Transcription

1 From Navier-Stokes to Saint-Venant Course 1 E. Godlewski 1 & J. Sainte-Marie 1 1 ANGE team LJLL - January 2017

2 Euler Eulerian vs. Lagrangian description Lagrange x(t M(t = y(t, z(t flow of the trajectories u(x, y, z, t dm dt ϕ t : R 3 R 3 M(t 0 M(t Relation Lagrangian/Eulerian description = u(m(t, t Df Dt = d f f (M(t, t = dt t + u. f. Fluid mechanics vs. solid mechanics particle position time constant

3 The Navier-Stokes equations Equations + w z = 0, ( ρ 0 t + u + w z ( w ρ 0 t + u w + w w z Role of the pressure Boundary conditions + p Completed with an energy equality = σ xx + σ xz z, + p z = ρ 0g + σ zx + σ zz z,

4 The Navier-Stokes equations (cont d Kinematic oundary conditions at the ottom z u w = 0 ( z u + z y v w = 0 at the free surface η t + η u s w s = 0 Dynamic oundary conditions (σ pi d n s = p a (x, tn s, t (n (σ pi d n = κu

5 The Navier-Stokes equations (cont d Equations + w z = 0, t + u + w z + p = σ xx + σ xz z, w t + u w + w w z + p z = g + σ zx + σ zz z, Newtonian fluids σ xx = 2µ, σ zz = 2µ w z, σ xz = µ ( z + w, σ zx = µ ( z + w,

6 Equations The Euler system + w z = 0, t + u + w z + p = 0, w t + u w + w w z + p z = g, Boundary conditions kinematic (ottom + free surface, dynamical (p s = p a Energy equality: a constraint with t ˆ η z E dz + ˆ η z u (E + p dz = 0 E = u2 + w 2 + gz 2 The Euler system and physical solutions?

7 Origins of the Euler/NS system Mass within a volume V m = V ρdv Mass conservation dm dt = ρ V t dv + ρu.ds = 0 S Green-Ostrogradsky formula ρu.ds = div (ρudv local mass conservation equation When ρ = cst S ρ t + (ρu + (ρv + (ρw = 0 y z V + v y + w z = 0

8 Origins of the Euler/NS system (cont d Divergence free condition + v y + w z = 0 Variation of velocity du = u(x + udt, y + vdt, z + wdt u(x, y, z, t i.e. du = udt + y vdt + wdt + z t dt Acceleration a defined y du = adt Fundamental law of dynamics with σ T = pi d + σ a = t + u + v y + w z ρa div (σ T = ρg

9 Models for compressile fluids Euler equation (compressile gas dynamics ρ + (ρu (ρu + (ρu2 t (ρw t E (E + p + t + (ρw z + (ρuw = 0, + (ρuw z + (ρw 2 + z w(e + p z + p = 0, + p z = 0, = 0, with p = (γ 1ρe (for polytropic gas 1 γ 3 and E = 1 2 ρ(u2 + w 2 + ρe, Compressile incompressile : singular limit

10 Free surface and compressile models We (often consider incompressile fluids ut ecause of the free surface, the models have compressile features Several velocities

11 Fluids with complex rheology Newtonian fluids σ v,xx = 2µ, σ v,zz = 2µ w z, The Mohr-Coulom criterion σ v,xz = µ ( z + w, σ v,zx = µ ( z + w, σ T = σ N tan(φ + c c: cohesion, φ: internal friction angle The Drucker-Prager criterion { σ = σv + κ σv σ v if σ v 0, σ κ else with κ = 2λ[p] + Also Herschel-Bulkley fluid,...

12 The Navier-Stokes equations Equations + w z = 0, t + u + w z + p = σ xx + σ xz z, w t + u w + w w z + p z = g + σ zx σ xx = 2µ, σ xz = σ zx = µ ( z + w Kinematic oundary conditions at the ottom z u w = 0 + σ zz z,, σzz = 2µ w z, ( z u + z y v w = 0 at the free surface η t + η u s w s = 0

13 Boundary conditions for Navier-Stokes Normals n s = ( η 2 ( η 1, n = ( z 2 ( z 1 Free surface ( µ z + w s η ( 2µ s p s = 0, s 2µ w z p s µ η ( s z + w s = 0, s.

14 Boundary conditions for Navier-Stokes (cont d At the ottom ( w µ + z z ( 2µ p + z ( 2µ w z p µ z ( z + w = κu, Mainly µ z = κu +...

15 Shallow water approximation Rescaling ε = h/λ Rescaling Time : T = λ/c Velocities : W = h/t = εc, U = λ/t = C Pressure P = C 2 Variales without dimension x = x λ, z = z h, η = η h, t = t T, p = p P, ũ = u U, and w = w W. Reynolds numer, Froude numer, ottom friction ν = µ Uλ = 1 Re, g = gh U 2 = 1 Fr 2, κ = κ U,

16 Shallow water approximation (cont d Dimensionless 2D Navier-Stokes equations ũ x + w z = 0 ũ t + ũ2 ũ w + x z ε 2 ( w t Boundary conditions + p x = ( 2 ν ũ x x ũ w + x + w 2 + p z kinematic (not modified + z ( ν ũ ε 2 z z = 1 + x + z ( 2 ν w z w + ν x ( ν ũ z + ε2 ν w x

17 Shallow water approximation (cont d Boundary conditions at the free surface ( ν ũ ε z + ε 2 w s x ε η ( 2 ν ũ s x x p s = 0, s 2 ν w z p s ε ν η ( ũ s x z + ε 2 w s x = 0, s at the ottom ( ν ε 2 w ε x + ũ z ε z ( 2 ν ũ x x p +ε z ( 2 ν w x z p ν z ( ũ x z + ε 2 w x = κũ,

18 Hydrostatic Navier-Stokes system With initial variales + w z = 0 t w z A good model + p = p z = g + Simplified role of the pressure Rather complex to analyse and solve ( 2ν ( ν z + ν w + z + z ( ν z + ν w ( 2ν w z

19 Validity of the hydrostatic assumption OK for river flows, tsunami,... Questionale for short waves

20 Vertically averaged hydrostatic Euler system Still with initial variales Hydrostatic Euler system Averaged version H t + t ˆ η z ˆ η + w z = 0 t w z udz = 0, z (ˆ η u dz + p = p a + g(η z A closure relation needed p z = g z u 2 dz + ˆ η + p = 0 z p dz = p z

21 Closure relations Rescaled viscosity & friction ν = εν 0, κ = εκ 0

22 Closure relations (cont d Rescaled oundary conditions give z = O(ε, s z = O(ε, couple with gives and hence 2 u z 2 = O(ε z = O(ε u = u + O(ε

23 The Saint-Venant system Formulation H t + ( Hū = 0, (Hū + (Hū2 + g t 2 With viscosity H t + ( Hū = 0, (Hū + (Hū2 + g t 2 H 2 H 2 pa = H gh z κu. pa = H gh z + Energy alance, vertical velocity, passive tracer Friction laws u u Navier S f = κu, Manning-Strickler S f = C f, Darcy-Weisach S f = C f u u H The Saint-Venant system in 2d H 4 3 ( ū κū 4νH 1 + κ 3ν H,

Modeling and simulation of bedload transport with viscous effects

Modeling and simulation of bedload transport with viscous effects Introduction Modeling and simulation of bedload transport with viscous effects E. Audusse, L. Boittin, M. Parisot, J. Sainte-Marie Project-team ANGE, Inria; CEREMA; LJLL, UPMC Université Paris VI; UMR

More information

The Shallow Water Equations

The Shallow Water Equations The Shallow Water Equations Clint Dawson and Christopher M. Mirabito Institute for Computational Engineering and Sciences University of Texas at Austin clint@ices.utexas.edu September 29, 2008 The Shallow

More information

Getting started: CFD notation

Getting started: CFD notation PDE of p-th order Getting started: CFD notation f ( u,x, t, u x 1,..., u x n, u, 2 u x 1 x 2,..., p u p ) = 0 scalar unknowns u = u(x, t), x R n, t R, n = 1,2,3 vector unknowns v = v(x, t), v R m, m =

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master Degree in Mechanical Engineering Numerical Heat and Mass Transfer 15-Convective Heat Transfer Fausto Arpino f.arpino@unicas.it Introduction In conduction problems the convection entered the analysis

More information

Mathematical Theory of Non-Newtonian Fluid

Mathematical Theory of Non-Newtonian Fluid Mathematical Theory of Non-Newtonian Fluid 1. Derivation of the Incompressible Fluid Dynamics 2. Existence of Non-Newtonian Flow and its Dynamics 3. Existence in the Domain with Boundary Hyeong Ohk Bae

More information

The University cannot take responsibility for any misprints or errors in the presented formulas. Please use them carefully and wisely.

The University cannot take responsibility for any misprints or errors in the presented formulas. Please use them carefully and wisely. Aide Mémoire Suject: Useful formulas for flow in rivers and channels The University cannot take responsiility for any misprints or errors in the presented formulas. Please use them carefully and wisely.

More information

AE/ME 339. Computational Fluid Dynamics (CFD) K. M. Isaac. Momentum equation. Computational Fluid Dynamics (AE/ME 339) MAEEM Dept.

AE/ME 339. Computational Fluid Dynamics (CFD) K. M. Isaac. Momentum equation. Computational Fluid Dynamics (AE/ME 339) MAEEM Dept. AE/ME 339 Computational Fluid Dynamics (CFD) 9//005 Topic7_NS_ F0 1 Momentum equation 9//005 Topic7_NS_ F0 1 Consider the moving fluid element model shown in Figure.b Basis is Newton s nd Law which says

More information

Introduction to Fluid Mechanics

Introduction to Fluid Mechanics Introduction to Fluid Mechanics Tien-Tsan Shieh April 16, 2009 What is a Fluid? The key distinction between a fluid and a solid lies in the mode of resistance to change of shape. The fluid, unlike the

More information

Conservation of Mass. Computational Fluid Dynamics. The Equations Governing Fluid Motion

Conservation of Mass. Computational Fluid Dynamics. The Equations Governing Fluid Motion http://www.nd.edu/~gtryggva/cfd-course/ http://www.nd.edu/~gtryggva/cfd-course/ Computational Fluid Dynamics Lecture 4 January 30, 2017 The Equations Governing Fluid Motion Grétar Tryggvason Outline Derivation

More information

Total energy in volume

Total energy in volume General Heat Transfer Equations (Set #3) ChE 1B Fundamental Energy Postulate time rate of change of internal +kinetic energy = rate of heat transfer + surface work transfer (viscous & other deformations)

More information

Fluid Dynamics Exercises and questions for the course

Fluid Dynamics Exercises and questions for the course Fluid Dynamics Exercises and questions for the course January 15, 2014 A two dimensional flow field characterised by the following velocity components in polar coordinates is called a free vortex: u r

More information

Dimensional Analysis - Concepts

Dimensional Analysis - Concepts Dimensional Analysis - Concepts Physical quantities: R j = v(r j )[R j ] = value unit, j = 1,..., m. Units: Dimension matrix of R 1,, R m : A = Change of units change of values: [R j ] = F a 1j 1 F a nj

More information

Convection Heat Transfer

Convection Heat Transfer Convection Heat Transfer Department of Chemical Eng., Isfahan University of Technology, Isfahan, Iran Seyed Gholamreza Etemad Winter 2013 Heat convection: Introduction Difference between the temperature

More information

Numerical Modeling of Stratified Shallow Flows: Applications to Aquatic Ecosystems

Numerical Modeling of Stratified Shallow Flows: Applications to Aquatic Ecosystems Numerical Modeling of Stratified Shallow Flows: Applications to Aquatic Ecosystems Marica Pelanti 1,2, Marie-Odile Bristeau 1 and Jacques Sainte-Marie 1,2 1 INRIA Paris-Rocquencourt, 2 EDF R&D Joint work

More information

Lecture 1: Introduction to Linear and Non-Linear Waves

Lecture 1: Introduction to Linear and Non-Linear Waves Lecture 1: Introduction to Linear and Non-Linear Waves Lecturer: Harvey Segur. Write-up: Michael Bates June 15, 2009 1 Introduction to Water Waves 1.1 Motivation and Basic Properties There are many types

More information

Please remember all the unit that you use in your calculation. There are no marks for correct answer without unit.

Please remember all the unit that you use in your calculation. There are no marks for correct answer without unit. CHAPTER 1 : PROPERTIES OF FLUIDS What is fluid? A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude. In a fluid at rest, normal stress is called

More information

Governing Equations of Fluid Dynamics

Governing Equations of Fluid Dynamics Chapter 3 Governing Equations of Fluid Dynamics The starting point of any numerical simulation are the governing equations of the physics of the problem to be solved. In this chapter, we first present

More information

Computational Fluid Dynamics 2

Computational Fluid Dynamics 2 Seite 1 Introduction Computational Fluid Dynamics 11.07.2016 Computational Fluid Dynamics 2 Turbulence effects and Particle transport Martin Pietsch Computational Biomechanics Summer Term 2016 Seite 2

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

Estimation of State Noise for the Ensemble Kalman filter algorithm for 2D shallow water equations.

Estimation of State Noise for the Ensemble Kalman filter algorithm for 2D shallow water equations. Estimation of State Noise for the Ensemble Kalman filter algorithm for 2D shallow water equations. May 6, 2009 Motivation Constitutive Equations EnKF algorithm Some results Method Navier Stokes equations

More information

Lecture: Wave-induced Momentum Fluxes: Radiation Stresses

Lecture: Wave-induced Momentum Fluxes: Radiation Stresses Chapter 4 Lecture: Wave-induced Momentum Fluxes: Radiation Stresses Here we derive the wave-induced depth-integrated momentum fluxes, otherwise known as the radiation stress tensor S. These are the 2nd-order

More information

Module 2: Governing Equations and Hypersonic Relations

Module 2: Governing Equations and Hypersonic Relations Module 2: Governing Equations and Hypersonic Relations Lecture -2: Mass Conservation Equation 2.1 The Differential Equation for mass conservation: Let consider an infinitely small elemental control volume

More information

Chapter 1. Continuum mechanics review. 1.1 Definitions and nomenclature

Chapter 1. Continuum mechanics review. 1.1 Definitions and nomenclature Chapter 1 Continuum mechanics review We will assume some familiarity with continuum mechanics as discussed in the context of an introductory geodynamics course; a good reference for such problems is Turcotte

More information

ENGR Heat Transfer II

ENGR Heat Transfer II ENGR 7901 - Heat Transfer II Convective Heat Transfer 1 Introduction In this portion of the course we will examine convection heat transfer principles. We are now interested in how to predict the value

More information

2. FLUID-FLOW EQUATIONS SPRING 2019

2. FLUID-FLOW EQUATIONS SPRING 2019 2. FLUID-FLOW EQUATIONS SPRING 2019 2.1 Introduction 2.2 Conservative differential equations 2.3 Non-conservative differential equations 2.4 Non-dimensionalisation Summary Examples 2.1 Introduction Fluid

More information

Math background. Physics. Simulation. Related phenomena. Frontiers in graphics. Rigid fluids

Math background. Physics. Simulation. Related phenomena. Frontiers in graphics. Rigid fluids Fluid dynamics Math background Physics Simulation Related phenomena Frontiers in graphics Rigid fluids Fields Domain Ω R2 Scalar field f :Ω R Vector field f : Ω R2 Types of derivatives Derivatives measure

More information

Fundamentals of Fluid Dynamics: Elementary Viscous Flow

Fundamentals of Fluid Dynamics: Elementary Viscous Flow Fundamentals of Fluid Dynamics: Elementary Viscous Flow Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research

More information

Lecture 3: 1. Lecture 3.

Lecture 3: 1. Lecture 3. Lecture 3: 1 Lecture 3. Lecture 3: 2 Plan for today Summary of the key points of the last lecture. Review of vector and tensor products : the dot product (or inner product ) and the cross product (or vector

More information

Candidates must show on each answer book the type of calculator used. Log Tables, Statistical Tables and Graph Paper are available on request.

Candidates must show on each answer book the type of calculator used. Log Tables, Statistical Tables and Graph Paper are available on request. UNIVERSITY OF EAST ANGLIA School of Mathematics Spring Semester Examination 2004 FLUID DYNAMICS Time allowed: 3 hours Attempt Question 1 and FOUR other questions. Candidates must show on each answer book

More information

Neatest and Promptest Manner. E d i t u r ami rul)lihher. FOIt THE CIIILDIIES'. Trifles.

Neatest and Promptest Manner. E d i t u r ami rul)lihher. FOIt THE CIIILDIIES'. Trifles. » ~ $ ) 7 x X ) / ( 8 2 X 39 ««x» ««! «! / x? \» «({? «» q «(? (?? x! «? 8? ( z x x q? ) «q q q ) x z x 69 7( X X ( 3»«! ( ~«x ««x ) (» «8 4 X «4 «4 «8 X «x «(» X) ()»» «X «97 X X X 4 ( 86) x) ( ) z z

More information

Duality methods for variational inequalities and Non-Newtonian fluid mechanics

Duality methods for variational inequalities and Non-Newtonian fluid mechanics Duality methods for variational inequalities and Non-Newtonian fluid mechanics Enrique Fernández-Nieto, Paul Vigneaux Dpto. Matemática Aplicada I, Universidad de Sevilla UMPA, Ecole Normale Supérieure

More information

Équation de Burgers avec particule ponctuelle

Équation de Burgers avec particule ponctuelle Équation de Burgers avec particule ponctuelle Nicolas Seguin Laboratoire J.-L. Lions, UPMC Paris 6, France 7 juin 2010 En collaboration avec B. Andreianov, F. Lagoutière et T. Takahashi Nicolas Seguin

More information

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost Game and Media Technology Master Program - Utrecht University Dr. Nicolas Pronost Soft body physics Soft bodies In reality, objects are not purely rigid for some it is a good approximation but if you hit

More information

Numerical Solution of Partial Differential Equations governing compressible flows

Numerical Solution of Partial Differential Equations governing compressible flows Numerical Solution of Partial Differential Equations governing compressible flows Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore

More information

LECTURE 2: FLUID MECHANICS

LECTURE 2: FLUID MECHANICS LECTURE 2: FLUID MECHANICS Introduction Conservation of mass and momentum General types of flow Laminar vs. turbulent flow Shear Stress Reach-average shear stress Bed roughness and reach average flow velocity

More information

Navier-Stokes equations in thin domains with Navier friction boundary conditions

Navier-Stokes equations in thin domains with Navier friction boundary conditions Navier-Stokes equations in thin domains with Navier friction boundary conditions Luan Thach Hoang Department of Mathematics and Statistics, Texas Tech University www.math.umn.edu/ lhoang/ luan.hoang@ttu.edu

More information

UNIVERSITY of LIMERICK

UNIVERSITY of LIMERICK UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH Faculty of Science and Engineering END OF SEMESTER ASSESSMENT PAPER MODULE CODE: MA4607 SEMESTER: Autumn 2012-13 MODULE TITLE: Introduction to Fluids DURATION OF

More information

Lecture 8: Tissue Mechanics

Lecture 8: Tissue Mechanics Computational Biology Group (CoBi), D-BSSE, ETHZ Lecture 8: Tissue Mechanics Prof Dagmar Iber, PhD DPhil MSc Computational Biology 2015/16 7. Mai 2016 2 / 57 Contents 1 Introduction to Elastic Materials

More information

Asymptotic Derivation of Shallow Water equations for Non Newtonian Free Surface Flow

Asymptotic Derivation of Shallow Water equations for Non Newtonian Free Surface Flow Asymptotic Derivation of Shallow Water equations for Non Newtonian Free Surface Flow Jean Paul Vila Institut de Mathématiques de Toulouse. Mathématiques pour l Industrie et la Physique. Joint Work with

More information

NDT&E Methods: UT. VJ Technologies CAVITY INSPECTION. Nondestructive Testing & Evaluation TPU Lecture Course 2015/16.

NDT&E Methods: UT. VJ Technologies CAVITY INSPECTION. Nondestructive Testing & Evaluation TPU Lecture Course 2015/16. CAVITY INSPECTION NDT&E Methods: UT VJ Technologies NDT&E Methods: UT 6. NDT&E: Introduction to Methods 6.1. Ultrasonic Testing: Basics of Elasto-Dynamics 6.2. Principles of Measurement 6.3. The Pulse-Echo

More information

Viscous capillary fluids in fast rotation

Viscous capillary fluids in fast rotation Viscous capillary fluids in fast rotation Centro di Ricerca Matematica Ennio De Giorgi SCUOLA NORMALE SUPERIORE BCAM BASQUE CENTER FOR APPLIED MATHEMATICS BCAM Scientific Seminar Bilbao May 19, 2015 Contents

More information

Block 3 Open channel flow

Block 3 Open channel flow Numerical Hydraulics Block 3 Open channel flow Markus Holzner Contents of the course Block 1 The equations Block Computation of pressure surges Block 3 Open channel flow (flow in rivers) Block 4 Numerical

More information

Soft Bodies. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies

Soft Bodies. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies Soft-Body Physics Soft Bodies Realistic objects are not purely rigid. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies Deformed

More information

Fundamentals of Atmospheric Modelling

Fundamentals of Atmospheric Modelling M.Sc. in Computational Science Fundamentals of Atmospheric Modelling Peter Lynch, Met Éireann Mathematical Computation Laboratory (Opp. Room 30) Dept. of Maths. Physics, UCD, Belfield. January April, 2004.

More information

Basic concepts in viscous flow

Basic concepts in viscous flow Élisabeth Guazzelli and Jeffrey F. Morris with illustrations by Sylvie Pic Adapted from Chapter 1 of Cambridge Texts in Applied Mathematics 1 The fluid dynamic equations Navier-Stokes equations Dimensionless

More information

BAE 820 Physical Principles of Environmental Systems

BAE 820 Physical Principles of Environmental Systems BAE 820 Physical Principles of Environmental Systems Stokes' law and Reynold number Dr. Zifei Liu The motion of a particle in a fluid environment, such as air or water m dv =F(t) - F dt d - 1 4 2 3 πr3

More information

AE/ME 339. K. M. Isaac Professor of Aerospace Engineering. 12/21/01 topic7_ns_equations 1

AE/ME 339. K. M. Isaac Professor of Aerospace Engineering. 12/21/01 topic7_ns_equations 1 AE/ME 339 Professor of Aerospace Engineering 12/21/01 topic7_ns_equations 1 Continuity equation Governing equation summary Non-conservation form D Dt. V 0.(2.29) Conservation form ( V ) 0...(2.33) t 12/21/01

More information

Chapter 2: Basic Governing Equations

Chapter 2: Basic Governing Equations -1 Reynolds Transport Theorem (RTT) - Continuity Equation -3 The Linear Momentum Equation -4 The First Law of Thermodynamics -5 General Equation in Conservative Form -6 General Equation in Non-Conservative

More information

CHAPTER 9 DIMENSIONAL ANALYSIS AND SCALING

CHAPTER 9 DIMENSIONAL ANALYSIS AND SCALING CHAPTER 9 DIMENSIONAL ANALYSIS AND SCALING The Philosopher s approach The Mathematicians s approach The Engineer s approach Example - an orifice plate Example - an aeroplane Example - the drag force on

More information

Fundamentals of Fluid Dynamics: Ideal Flow Theory & Basic Aerodynamics

Fundamentals of Fluid Dynamics: Ideal Flow Theory & Basic Aerodynamics Fundamentals of Fluid Dynamics: Ideal Flow Theory & Basic Aerodynamics Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI (after: D.J. ACHESON s Elementary Fluid Dynamics ) bluebox.ippt.pan.pl/

More information

Review of fluid dynamics

Review of fluid dynamics Chapter 2 Review of fluid dynamics 2.1 Preliminaries ome basic concepts: A fluid is a substance that deforms continuously under stress. A Material olume is a tagged region that moves with the fluid. Hence

More information

Wave and Elasticity Equations

Wave and Elasticity Equations 1 Wave and lasticity quations Now let us consider the vibrating string problem which is modeled by the one-dimensional wave equation. Suppose that a taut string is suspended by its extremes at the points

More information

Compressible primitive equations

Compressible primitive equations Compressible primitive equations M. Ersoy, IMATH, Toulon 1 8e mes journe es scientifiques de l Universite de Toulon Toulon, April 16, 2014 1. joint work with T. Ngom and M. Sy (LANI, Senegal) Outline of

More information

Dynamics of Glaciers

Dynamics of Glaciers Dynamics of Glaciers McCarthy Summer School 01 Andy Aschwanden Arctic Region Supercomputing Center University of Alaska Fairbanks, USA June 01 Note: This script is largely based on the Physics of Glaciers

More information

Modeling of River Hydrodynamics with D-Flow Flexible Mesh and 3Di Case Study of the river Elbe

Modeling of River Hydrodynamics with D-Flow Flexible Mesh and 3Di Case Study of the river Elbe Preliminary Report Modeling of River Hydrodynamics with D-Flow Flexible Mesh and 3Di Case Study of the river Elbe F. Fennis B.Sc. Faculty of Civil Engineering & EEMCS Delft University of Technology Modeling

More information

KINEMATICS OF CONTINUA

KINEMATICS OF CONTINUA KINEMATICS OF CONTINUA Introduction Deformation of a continuum Configurations of a continuum Deformation mapping Descriptions of motion Material time derivative Velocity and acceleration Transformation

More information

ρ Du i Dt = p x i together with the continuity equation = 0, x i

ρ Du i Dt = p x i together with the continuity equation = 0, x i 1 DIMENSIONAL ANALYSIS AND SCALING Observation 1: Consider the flow past a sphere: U a y x ρ, µ Figure 1: Flow past a sphere. Far away from the sphere of radius a, the fluid has a uniform velocity, u =

More information

The Phenomena of Fluid Flow

The Phenomena of Fluid Flow The Phenomena of Fluid Flow Nicholas S. Vlachos Lab. Fluid Mechanics & Turbomachines Department of Mechanical Engineering University of Thessaly Program of Graduate Studies Academic Year 2009-2010 2010

More information

Convergence of QuickFlow

Convergence of QuickFlow Convergence of QuickFlow A Steady State Solver for the Shallow Water Equations Femke van Wageningen-Kessels Report literature study December 2006 PSfrag replacements Supervisors Dr.ir. C. Vuik TUDelft

More information

The Orchestra of Partial Differential Equations. Adam Larios

The Orchestra of Partial Differential Equations. Adam Larios The Orchestra of Partial Differential Equations Adam Larios 19 January 2017 Landscape Seminar Outline 1 Fourier Series 2 Some Easy Differential Equations 3 Some Not-So-Easy Differential Equations Outline

More information

' Liberty and Umou Ono and Inseparablo "

' Liberty and Umou Ono and Inseparablo 3 5? #< q 8 2 / / ) 9 ) 2 ) > < _ / ] > ) 2 ) ) 5 > x > [ < > < ) > _ ] ]? <

More information

Ioannis Vardoulakis N.T.U. Athens

Ioannis Vardoulakis N.T.U. Athens ENSHMG March 10-14, 2008 an EU SOCRATES short course on Engineering Continuum Mechanics: traffic flow and shallow water waves Ioannis Vardoulakis N.T.U. Athens (http://geolab.mechan.ntua.gr) 1 natural

More information

2. Getting Ready for Computational Aerodynamics: Fluid Mechanics Foundations

2. Getting Ready for Computational Aerodynamics: Fluid Mechanics Foundations . Getting Ready for Computational Aerodynamics: Fluid Mechanics Foundations We need to review the governing equations of fluid mechanics before examining the methods of computational aerodynamics in detail.

More information

Simulation of free surface fluids in incompressible dynamique

Simulation of free surface fluids in incompressible dynamique Simulation of free surface fluids in incompressible dynamique Dena Kazerani INRIA Paris Supervised by Pascal Frey at Laboratoire Jacques-Louis Lions-UPMC Workshop on Numerical Modeling of Liquid-Vapor

More information

DIMENSIONAL ANALYSIS IN MOMENTUM TRANSFER

DIMENSIONAL ANALYSIS IN MOMENTUM TRANSFER DIMENSIONAL ANALYSIS IN MOMENTUM TRANSFER FT I Alda Simões Techniques for Dimensional Analysis Fluid Dynamics: Microscopic analysis, theory Physical modelling Differential balances Limited to simple geometries

More information

Chapter 2. General concepts. 2.1 The Navier-Stokes equations

Chapter 2. General concepts. 2.1 The Navier-Stokes equations Chapter 2 General concepts 2.1 The Navier-Stokes equations The Navier-Stokes equations model the fluid mechanics. This set of differential equations describes the motion of a fluid. In the present work

More information

EULERIAN DERIVATIONS OF NON-INERTIAL NAVIER-STOKES EQUATIONS

EULERIAN DERIVATIONS OF NON-INERTIAL NAVIER-STOKES EQUATIONS EULERIAN DERIVATIONS OF NON-INERTIAL NAVIER-STOKES EQUATIONS ML Combrinck, LN Dala Flamengro, a div of Armscor SOC Ltd & University of Pretoria, Council of Scientific and Industrial Research & University

More information

Part IB Fluid Dynamics

Part IB Fluid Dynamics Part IB Fluid Dynamics Based on lectures by P. F. Linden Notes taken by Dexter Chua Lent 2016 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

Dynamics of Ice Sheets and Glaciers

Dynamics of Ice Sheets and Glaciers Dynamics of Ice Sheets and Glaciers Ralf Greve Institute of Low Temperature Science Hokkaido University Lecture Notes Sapporo 2004/2005 Literature Ice dynamics Paterson, W. S. B. 1994. The Physics of

More information

MANY BILLS OF CONCERN TO PUBLIC

MANY BILLS OF CONCERN TO PUBLIC - 6 8 9-6 8 9 6 9 XXX 4 > -? - 8 9 x 4 z ) - -! x - x - - X - - - - - x 00 - - - - - x z - - - x x - x - - - - - ) x - - - - - - 0 > - 000-90 - - 4 0 x 00 - -? z 8 & x - - 8? > 9 - - - - 64 49 9 x - -

More information

AE/ME 339. K. M. Isaac. 9/22/2005 Topic 6 FluidFlowEquations_Introduction. Computational Fluid Dynamics (AE/ME 339) MAEEM Dept.

AE/ME 339. K. M. Isaac. 9/22/2005 Topic 6 FluidFlowEquations_Introduction. Computational Fluid Dynamics (AE/ME 339) MAEEM Dept. AE/ME 339 Computational Fluid Dynamics (CFD) 1...in the phrase computational fluid dynamics the word computational is simply an adjective to fluid dynamics.... -John D. Anderson 2 1 Equations of Fluid

More information

Approximation of fluid-structure interaction problems with Lagrange multiplier

Approximation of fluid-structure interaction problems with Lagrange multiplier Approximation of fluid-structure interaction problems with Lagrange multiplier Daniele Boffi Dipartimento di Matematica F. Casorati, Università di Pavia http://www-dimat.unipv.it/boffi May 30, 2016 Outline

More information

Module 2 : Lecture 1 GOVERNING EQUATIONS OF FLUID MOTION (Fundamental Aspects)

Module 2 : Lecture 1 GOVERNING EQUATIONS OF FLUID MOTION (Fundamental Aspects) Module : Lecture 1 GOVERNING EQUATIONS OF FLUID MOTION (Fundamental Aspects) Descriptions of Fluid Motion A fluid is composed of different particles for which the properties may change with respect to

More information

Differential relations for fluid flow

Differential relations for fluid flow Differential relations for fluid flow In this approach, we apply basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of a flow

More information

A Sufficient Condition for the Kolmogorov 4/5 Law for Stationary Martingale Solutions to the 3D Navier-Stokes Equations

A Sufficient Condition for the Kolmogorov 4/5 Law for Stationary Martingale Solutions to the 3D Navier-Stokes Equations A Sufficient Condition for the Kolmogorov 4/5 Law for Stationary Martingale Solutions to the 3D Navier-Stokes Equations Franziska Weber Joint work with: Jacob Bedrossian, Michele Coti Zelati, Samuel Punshon-Smith

More information

Calculus of Variations Summer Term 2016

Calculus of Variations Summer Term 2016 Calculus of Variations Summer Term 2016 Lecture 14 Universität des Saarlandes 28. Juni 2016 c Daria Apushkinskaya (UdS) Calculus of variations lecture 14 28. Juni 2016 1 / 31 Purpose of Lesson Purpose

More information

The Hopf equation. The Hopf equation A toy model of fluid mechanics

The Hopf equation. The Hopf equation A toy model of fluid mechanics The Hopf equation A toy model of fluid mechanics 1. Main physical features Mathematical description of a continuous medium At the microscopic level, a fluid is a collection of interacting particles (Van

More information

0 = p. 2 x + 2 w. z +ν w

0 = p. 2 x + 2 w. z +ν w Solution (Elliptical pipe flow (a Using the Navier Stokes equations in three dimensional cartesian coordinates, given that u =, v = and w = w(x,y only, and assuming no body force, we are left with = p

More information

Sediment continuity: how to model sedimentary processes?

Sediment continuity: how to model sedimentary processes? Sediment continuity: how to model sedimentary processes? N.M. Vriend 1 Sediment transport The total sediment transport rate per unit width is a combination of bed load q b, suspended load q s and wash-load

More information

Alexei F. Cheviakov. University of Saskatchewan, Saskatoon, Canada. INPL seminar June 09, 2011

Alexei F. Cheviakov. University of Saskatchewan, Saskatoon, Canada. INPL seminar June 09, 2011 Direct Method of Construction of Conservation Laws for Nonlinear Differential Equations, its Relation with Noether s Theorem, Applications, and Symbolic Software Alexei F. Cheviakov University of Saskatchewan,

More information

Chapter 3. Theoretical Discussion and Development of Model Equations. 3.1 Introduction. 3.2 General discussion

Chapter 3. Theoretical Discussion and Development of Model Equations. 3.1 Introduction. 3.2 General discussion Chapter 3 Theoretical Discussion and Development of Model Equations 3.1 Introduction The need for studying the applicaility of the Boussinesq-type momentum equation with pre-assumed uniform centrifugal

More information

Continuum Mechanics Lecture 4 Fluid dynamics

Continuum Mechanics Lecture 4 Fluid dynamics Continuum Mechanics Lecture 4 Flui ynamics Prof. http://www.itp.uzh.ch/~teyssier Outline - Flui kinematics - Mass an momentum conservation laws - The energy equation - Real fluis - Ieal fluis - Incompressible

More information

3.5 Vorticity Equation

3.5 Vorticity Equation .0 - Marine Hydrodynamics, Spring 005 Lecture 9.0 - Marine Hydrodynamics Lecture 9 Lecture 9 is structured as follows: In paragraph 3.5 we return to the full Navier-Stokes equations (unsteady, viscous

More information

On the relation between lattice variables and physical quantities in lattice Boltzmann simulations

On the relation between lattice variables and physical quantities in lattice Boltzmann simulations On the relation between lattice variables and physical quantities in lattice Boltzmann simulations Michael Junk Dirk Kehrwald th July 6 Kaiserslautern, Germany CONTENTS Contents Initial situation Problem

More information

MATHEMATICAL JUSTIFICATION OF A SHALLOW WATER MODEL

MATHEMATICAL JUSTIFICATION OF A SHALLOW WATER MODEL METHODS AND APPLICATIONS OF ANALYSIS. c 7 International Press Vol. 14, No., pp. 87 118, June 7 1 MATHEMATICAL JUSTIFICATION OF A SHALLOW WATER MODEL DIDIER BRESCH AND PASCAL NOBLE Abstract. The shallow

More information

q v = - K h = kg/ν units of velocity Darcy's Law: K = kρg/µ HYDRAULIC CONDUCTIVITY, K Proportionality constant in Darcy's Law

q v = - K h = kg/ν units of velocity Darcy's Law: K = kρg/µ HYDRAULIC CONDUCTIVITY, K Proportionality constant in Darcy's Law Darcy's Law: q v - K h HYDRAULIC CONDUCTIVITY, K m/s K kρg/µ kg/ν units of velocity Proportionality constant in Darcy's Law Property of both fluid and medium see D&S, p. 62 HYDRAULIC POTENTIAL (Φ): Φ g

More information

MAT 211 Final Exam. Spring Jennings. Show your work!

MAT 211 Final Exam. Spring Jennings. Show your work! MAT 211 Final Exam. pring 215. Jennings. how your work! Hessian D = f xx f yy (f xy ) 2 (for optimization). Polar coordinates x = r cos(θ), y = r sin(θ), da = r dr dθ. ylindrical coordinates x = r cos(θ),

More information

Chapter 6 Equations of Continuity and Motion

Chapter 6 Equations of Continuity and Motion Chapter 6 Equations of Continuity and Motion Derivation of 3-D Eq. conservation of mass Continuity Eq. conservation of momentum Eq. of motion Navier-Strokes Eq. 6.1 Continuity Equation Consider differential

More information

Chapter 1. Governing Equations of GFD. 1.1 Mass continuity

Chapter 1. Governing Equations of GFD. 1.1 Mass continuity Chapter 1 Governing Equations of GFD The fluid dynamical governing equations consist of an equation for mass continuity, one for the momentum budget, and one or more additional equations to account for

More information

Chapter 9: Differential Analysis

Chapter 9: Differential Analysis 9-1 Introduction 9-2 Conservation of Mass 9-3 The Stream Function 9-4 Conservation of Linear Momentum 9-5 Navier Stokes Equation 9-6 Differential Analysis Problems Recall 9-1 Introduction (1) Chap 5: Control

More information

- Marine Hydrodynamics. Lecture 4. Knowns Equations # Unknowns # (conservation of mass) (conservation of momentum)

- Marine Hydrodynamics. Lecture 4. Knowns Equations # Unknowns # (conservation of mass) (conservation of momentum) 2.20 - Marine Hydrodynamics, Spring 2005 Lecture 4 2.20 - Marine Hydrodynamics Lecture 4 Introduction Governing Equations so far: Knowns Equations # Unknowns # density ρ( x, t) Continuity 1 velocities

More information

examples of equations: what and why intrinsic view, physical origin, probability, geometry

examples of equations: what and why intrinsic view, physical origin, probability, geometry Lecture 1 Introduction examples of equations: what and why intrinsic view, physical origin, probability, geometry Intrinsic/abstract F ( x, Du, D u, D 3 u, = 0 Recall algebraic equations such as linear

More information

0.2. CONSERVATION LAW FOR FLUID 9

0.2. CONSERVATION LAW FOR FLUID 9 0.2. CONSERVATION LAW FOR FLUID 9 Consider x-component of Eq. (26), we have D(ρu) + ρu( v) dv t = ρg x dv t S pi ds, (27) where ρg x is the x-component of the bodily force, and the surface integral is

More information

Dispersion in Shallow Water

Dispersion in Shallow Water Seattle University in collaboration with Harvey Segur University of Colorado at Boulder David George U.S. Geological Survey Diane Henderson Penn State University Outline I. Experiments II. St. Venant equations

More information

Glacier Dynamics. Glaciers 617. Andy Aschwanden. Geophysical Institute University of Alaska Fairbanks, USA. October 2011

Glacier Dynamics. Glaciers 617. Andy Aschwanden. Geophysical Institute University of Alaska Fairbanks, USA. October 2011 Glacier Dynamics Glaciers 617 Andy Aschwanden Geophysical Institute University of Alaska Fairbanks, USA October 2011 1 / 81 The tradition of glacier studies that we inherit draws upon two great legacies

More information

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 1 / 29 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS Hierarchy of Mathematical Models 1 / 29 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 2 / 29

More information

1 POTENTIAL FLOW THEORY Formulation of the seakeeping problem

1 POTENTIAL FLOW THEORY Formulation of the seakeeping problem 1 POTENTIAL FLOW THEORY Formulation of the seakeeping problem Objective of the Chapter: Formulation of the potential flow around the hull of a ship advancing and oscillationg in waves Results of the Chapter:

More information

Exercise Set 4. D s n ds + + V. s dv = V. After using Stokes theorem, the surface integral becomes

Exercise Set 4. D s n ds + + V. s dv = V. After using Stokes theorem, the surface integral becomes Exercise Set Exercise - (a) Let s consider a test volum in the pellet. The substract enters the pellet by diffusion and some is created and disappears due to the chemical reaction. The two contribute to

More information

Basic hydrodynamics. David Gurarie. 1 Newtonian fluids: Euler and Navier-Stokes equations

Basic hydrodynamics. David Gurarie. 1 Newtonian fluids: Euler and Navier-Stokes equations Basic hydrodynamics David Gurarie 1 Newtonian fluids: Euler and Navier-Stokes equations The basic hydrodynamic equations in the Eulerian form consist of conservation of mass, momentum and energy. We denote

More information