The concept that additionally depends on location in a gravitational field is [mass] [weight].

Size: px
Start display at page:

Download "The concept that additionally depends on location in a gravitational field is [mass] [weight]."

Transcription

1 Nae Date CONCEPTUAL 'hys;, PRACTICE PAGE Mass and Weight..k Learning physics is learning the connections aong concepts in nature, and also learning to distinguish between closely-related concepts. Velocity and acceleration, previously treated, are often confused. Siilarly in this chapter, we find that ass and weight are often confused. They aren't the sae! Please review the distinction between ass and weight in your textbook...);1.:. To reinforce your understanding of this distinction, circle the correct answers below: Coparing the concepts of ass and weight, one is basic-fundaental-depending only on the internal akeup of an object and the nuber and kind of atos that copose it. The concept that is fundaental is [ass] [weight]. The concept that additionally depends on location in a gravitational field is [ass] [weight]. [Mass] [Weight] is a easure of the aount of atter in an object and only depends on the nuber and kind of atos that copose it. It can correctly be said that [ass] [weight] is a easure of "laziness" of an object. [Mass] [Weight] is related to the gravitational force acting on the object. [Mass] [Weight] depends on an object's location, whereas [ass] [weight] does not. In other words, a stone would have the sae [ass] [weight] whether it is on the surface of Earth or on the surface of the Moon. However, its [ass] [weight] depends on its location. On the Moon's surface, where gravity is only about 1/6 th Earth gravity [ass] [weight] [both the ass and the weight] of the stone would be the sae as on Earth. While ass and weight are not the sae, they are [directly proportional] [inversely proportional] to each other. In the sae location, twice the ass has [twice] [half] the weight. The Standard International (SI) unit of ass is the [kilogra] [newton], and the SI unit of force is the [kilogra] [newton]. In the United States, it is coon to easure the ass of soething by easuring its gravitational pull to Earth, its weight. The coon unit of weight in the U.S. is the [pound] [kilogra] [newton]. When I step on a weighing scale, two forces act on it; a downward pull of gravity, and an upward support force. These equal and opposite forces effectively copress a spring inside the scale that is calibrated to show weight. When in equilibriu, y weight = g. Support orce thanx to Daniela Taylor 11

2 CONCEPTUAL "Y5;C PRACTICE PAGE Converting Mass to Weight Objects with ass also have weight (although they can be weightless under special conditions). If you know the ass of soething in kilogras and want its weight in newtons, at Earth's surface, you can take advantage of the forula that relates weight and ass. Weight = ass x acceleration W=g due to gravity This is in accord with Newton's 2 nd law, written as = a. When the force of gravity is the only force, the acceleration of any object of ass will be g, the acceleration of free fall. Iportantly, 9 acts as a proportionality constant, 9.8 Nlkg, which is equivalent to 9.8 /s 2. Saple Question: fro = a, we see that the unit of How uch does a 1-kg bag of nails weigh on Earth? force equals the units [kg x /5 2 ]. the units [/s 2 1:: [N/kg]? W = g = (1 kg)(9.8 rn/s") = 9.8 /s" = 9.8 N....~ or siply, W = g = (1 kg)(9.8 Nlkg) = 9.8 N. ",::;r Answer the following questions: elicia the ballet dancer has a ass of 45.0 kg. 1. What is elicia's weight in newtons at Earth's surface? 2. Given that 1 kilogra of ass corresponds to 2.2 pounds at Earth's surface, what is elicia's weight in pounds on Earth? 3. What would be elicia's ass on the surface of Jupiter? 4. What would be elicia's weight on Jupiter's surface, where the acceleration due to gravity is 25.0 /s 2? Different asses are hung on a spring scale calibrated in newtons. The force exerted by gravity on 1 kg = 9.8 N. 5. The force exerted by gravity on 5 kg = N. i.r9.8n 6. The force exerted by gravity on kg=98n. Make up your own ass and show the corresponding weight: The force exerted by gravity on kg = N. By whatever eans (spring scales, easuring balances, etc.), find the ass of your physics book. Then coplete the table. OBJECT MELON APPLE MASS t kg WEIGHT 1 N BOOK A RIEND 60 k9 12

3 Nae Date CONCEPTUAL ~!r;~ PRACTICE PAGE A Day at the Races with a = / In each situation below, Cart A has a ass of 1 kg. Circle the correct answer (A, B, or Sae for both). 1. Cart A is pulled with a force of 1 N. Cart B also has a ass of 1 kg and is pulled with a force of 2 N. Which undergoes the greater acceleration? [A) [B) [Sae for both) 3. Cart A is pulled with a force of 1 N. Cart B has a ass of 2 kg and is pulled with a force of 2 N. Which undergoes the greater acceleration? [A) [B) [Sae for both) 2. Cart A is pulled with a force of 1 N. Cart B has a ass of 2 kg and is also pulled with a force of 1 N. Which undergoes the greater acceleration? [A) [B] [Sae for both] Age e~jt~~t~ B~:r~ 4. Cart A is pulled with a force of 1 N. Cart B has a ass of 3 kg and is pulled with a force of 3 N. Which undergoes the greater acceleration? [A] [B] [Sae for both] Aq~ (;J~ 3Uj~ A~ (;J~Jt!~[)!+- B~l~:t»- 5. This tie Cart A is pulled with a force of 4 N. Cart B has a ass of 4 kg and is pulled with a force of 4 N.. Which undergoes the greater acceleration? [A) [B) [Sae for both) Aq~.(;J2::: == S ~ ; ~j t~ ~~3t::t)g 6. Cart A is pulled with a force of 2 N. Cart B has a ass of 4 kg and is pulled with a force of 3 N. Which undergoes the greater acceleration? [A) [B) [Sae for both) A~ (;J~;}r~;t~ B~J~332J thanx to Dean Baird 13

4 CONCEPTUAL frysic PRACTICE PAGE Chapter 4 Newton's Second law of Motion Dropping Masses and Accelerating Cart 1. Consider a 1-kg cart being pulled by a 10-N. According to Newton's 2 nd law, acceleration of the cart is a = = 10 N = 10 /s2. 1 kg This is thescees the.cccelerctlon of free fa1t/g-becausea fcorceeq:ual to thecarfsweighf accelerates it. 2. Consider the acceleration of the cart when the is due to a 10-N iron weight attached to a string draped over a pulley. Will the cart accelerate as before, at 10 /s 2? The answer is no, because the ass being accelerated is the ass of the cart plus the ass of the piece of iron that pulls it. Both asses accelerate. The ass of the 10-N iron weight is 1 kg-so the being accelerated (cart + iron) is 2 kg. Then, The puh~ changes only thedireetion of the force. a = = 10 N 2 kg = 5/s2. Don't forget; the of a syste includes the. ass of the h~ing iron. Note this is half the acceleration due to gravity alone,g. So the acceleration of 2 kg produced by the weight of 1 kg is 9/2. a ind the acceleration of the 1-kg cart when two identical 1O-N weights are attached to the string. a = = Here we siplify and say 9 = 10 /s 2. 14

5 CONCEPTUAL PRACTICE PAGE Dropping Masses and Accelerating Cart-continued b. ind the acceleration of the 1-kg cart when the three identical 10-N weights are attach to the string. a = = = /s2. c. ind the acceleration of the 1-kg cart when four identical 10-N weights (not shown) are attached to the string. a = d. This tie 1 kg of iron is added to the cart, and only one iron piece dangles fro the pulley. ind the acceleration of the cart. a = = /s2. The force due to gravity on Q IT\QSS is g. So gravitatiomi forc.e on lkgis (1 kg)(10 /s 2 ) = 10 N. e. ind the acceleration of the cart when it carries two pieces of iron and only one iron piece dangles fro the pulley. a = = = = /s". 15

6 CONCEPTUAL flrsl PRACTICE PAGE Dropping Masses and Accelerating Calt-continued 1. ind the acceleration of the cart when it carries 3 pieces of iron and only one iron piece dangles fro the pulley. a = = = = /s 2. g. ind the acceleration of the cart when it carries 3 pieces of iron and 4 pieces of iron dangle fro the pulley. a= = = /s2..:il MOSS. of ccrt 15 ll<g. - of 10-N Iron is else 1 kg. h. Draw your own cobination of asses and find the acceleration. a = = = = /52. 16

7 N~e D~ _ _ CONCEPTUAL flysi, PRACTICE PAGE orce and Acceleration 1. Skelly the skater, 25 kg, is propelled by rocket power. a. Coplete Table I (neglect resistance). TABLE I!=ORCE 100 N 200 N ACCELERATION 10 /s1 b. Coplete Table 11 for a constant 50-N resistance. TABLE 11 I ORCE ACCELERATION 50 N o /S 2 WON 200N 2. Block A on a horizontal friction-free table is accelerated by a force fro a string attached to Block B of the sae ass. Block B falls vertically and drags Block A horizontally. (Neglect the string's ass). ( ( Circle the correct answers: a. The ass of the syste (A + B) is [] [2 ]. b. The force that accelerates (A + B) is the weight of [A] [B] [A + B]. c. The weight of B is [g/2] [g] [2 g]. d. Acceleration of (A + B) is [less than g] [g] [ore than g]. A ~.. B e. Use a = f..- to show the acceleration of (A + B) as a fraction of g. If B were allowed to foil by itself, not dragging A, then wojldn't its occeleroilon be g? bl~ t< Yes, because the force tret accelerates it woukl only be oding on its own ass - not twice t~ oss! To better U'"'derstond this. consider 3 ord 4 00 the other side! 17

8 CONCEPTUAL fty,; PRACTICE PAGE orce and Acceleration-continued A 3. Suppose Block A is still a 1-kg block, but B is a low-ass feather (or a coin). a. Copared to the acceleration of the syste of 2 equal-ass blocks the acceleration of (A + B) here is [less] [ore] B and is [close to zero] [close to g]. b. In this case, the acceleration of B is [practically that of free fall] [nearly zero]. A 4. Suppose A is the feather or coin, and Block B has a ass of 1 kg. a. The acceleration of (A + B) here is [close to zero] [close to g]. b. In this case, the acceleration of Block B is B [practically that of free fall] [nearly zero]. 5. Suarizing we see that when the weight of one object causes the acceleration of two objects, the range of possible accelerations is between [zero and g] [zero and infinity] [g and infinity]. 6. or a change of pace, consider a ball that rolls down a unifor-slope rap. a. Speed of the ball is [decreasing] [constant] [increasing]. b. Acceleration is [decreasing] [constant] [increasing]. c. If the rap were steeper, acceleration would be [ore] [the sae] [less]. d. When the ball reaches the botto and rolls along the sooth level surface, it [continues to accelerate] [does not accelerate]. ~,--\.~ r 18

9 N~e ~~ CONCEPTUAL fly./e PRACT~CE PAGE riction 1. A crate filled with delicious junk food rests on a horizontal floor. Only gravity and the support force of the floor act on it, as shown by the vectors for weight Wand noral force N. a. The net force on the crate is [zero] [greater than zero]. b. Evidence for this is <' ~f -~. f 11 w N._~ ~ - f w p 2. A slight pull P is exerted onthe crate, not enough to ove it. A force of friction f now acts, a. which is [less than] [equal to] [greater than] P b. Net force on the crate is [zero] [greater than zero]. 3. Pull P is increased until the crate beqins to ove. It is pulled so that it oves with constant velocity across the floor. a. riction fis [;Iess than] [equal to] [greater than] P b. Constant velocity eans acceleration is [zero] [ore than zero]. c. Net force on the crate is [less than] [equal to] [ore than] zero. <1\/ N ~ 4. Pull P is further increased and is now greater than friction f a. Net force on the crate is [less than] [equal to] [greater than] zero: b. The net force acts toward the right, so acceleration acts toward the [left] [right]. 5. If the pullinq force P is 150 N and the crate doesn't ove, what is the agnitude of f? 6. If the pulling force Pis 200 N and the crate doesn't ove, what is the agnitude of f? _ 7. If the force of sliding friction is 250 N, what force is necessary to keep the crate sliding at constant velocity? 8. If the ass of the crate is 50 kg and sliding friction is 250 N, what is the acceleration of the crate when the pulling force is 250 N? 300 N? 500 N? 19

10 CONCEPTUAL fty. PRACTICE PAGE Chapter :::s:;~~r:~;:::s 4 Newton's Second Law of Motion ~ froastationary Q ~ R e 0 helicopter. Various stages of fall are shown in positions a through f. Using Newton's 2 nd law, W '" 1000 N f;ndbro::::,e:tj:::hpo~jon (answer in the blanks to the right). You need to know that Bronco's ass is 100 kg so his weight is a constant 1000 N. Air resistance R varies with speed and cross-sectional area as shown. Circle the correct answers: 1. When Bronco's speed is least, his acceleration is [least] [ost]. 2. In which position(s) does Bronco experience a downward acceleration? [a] [b] [cl [d] le] [f] 3. In which position(s) does Bronco experience an upward acceleration? [a] [b] [cl [d] [e] [f] b1.~::nn c d R'" 1200N 4. When Bronco experiences an upward acceleration, his velocity is [still downward] [upward also]. R'" 2000N 5. In which position(s) is Bronco's velocity constant? [a] [b] [cl [d] [e] [f] 6. In which position(s) does Bronco experience terinal velocity? [a] [b] [cl [d] [e] 7. In which position(s) is terinal velocity greatest? [a] [b] [cl [d] [e] R"'1000N 8. If Bronco were heavier, his terinal velocity would be [greater] [less] [the sae]. 20

Chapter 4 FORCES AND NEWTON S LAWS OF MOTION PREVIEW QUICK REFERENCE. Important Terms

Chapter 4 FORCES AND NEWTON S LAWS OF MOTION PREVIEW QUICK REFERENCE. Important Terms Chapter 4 FORCES AND NEWTON S LAWS OF MOTION PREVIEW Dynaics is the study o the causes o otion, in particular, orces. A orce is a push or a pull. We arrange our knowledge o orces into three laws orulated

More information

XI PHYSICS M. AFFAN KHAN LECTURER PHYSICS, AKHSS, K. https://promotephysics.wordpress.com

XI PHYSICS M. AFFAN KHAN LECTURER PHYSICS, AKHSS, K. https://promotephysics.wordpress.com XI PHYSICS M. AFFAN KHAN LECTURER PHYSICS, AKHSS, K affan_414@live.co https://prootephysics.wordpress.co [MOTION] CHAPTER NO. 3 In this chapter we are going to discuss otion in one diension in which we

More information

Name Class Date. two objects depends on the masses of the objects.

Name Class Date. two objects depends on the masses of the objects. CHAPTER 12 2 Gravity SECTION Forces KEY IDEAS As you read this section keep these questions in ind: What is free fall? How are weight and ass related? How does gravity affect the otion of objects? What

More information

1. The property of matter that causes an object to resist changes in its state of motion is called:

1. The property of matter that causes an object to resist changes in its state of motion is called: SPH3U Exa Review 1. The property of atter that causes an object to resist changes in its state of otion is called: A. friction B. inertia C. the noral force D. tension 1. The property of atter that causes

More information

15 Newton s Laws #2: Kinds of Forces, Creating Free Body Diagrams

15 Newton s Laws #2: Kinds of Forces, Creating Free Body Diagrams Chapter 15 ewton s Laws #2: inds of s, Creating ree Body Diagras 15 ewton s Laws #2: inds of s, Creating ree Body Diagras re is no force of otion acting on an object. Once you have the force or forces

More information

I. AXN/RXN W.S. In the example below, the action-reaction pair is shown by the arrows (vectors), and the action-reaction described in words.

I. AXN/RXN W.S. In the example below, the action-reaction pair is shown by the arrows (vectors), and the action-reaction described in words. I. AXN/RXN W.S. In the example below, the action-reaction pair is shown by the arrows (vectors), and the action-reaction described in words. 1. For the remaining situations, discuss with your neighbor

More information

NB1140: Physics 1A - Classical mechanics and Thermodynamics Problem set 2 - Forces and energy Week 2: November 2016

NB1140: Physics 1A - Classical mechanics and Thermodynamics Problem set 2 - Forces and energy Week 2: November 2016 NB1140: Physics 1A - Classical echanics and Therodynaics Proble set 2 - Forces and energy Week 2: 21-25 Noveber 2016 Proble 1. Why force is transitted uniforly through a assless string, a assless spring,

More information

Sir Isaac Newton. Newton s Laws of Motion. Mass. First Law of Motion. Weight. Weight

Sir Isaac Newton. Newton s Laws of Motion. Mass. First Law of Motion. Weight. Weight Sir Isaac Newton Newton s Laws of Motion Suppleental Textbook Material Pages 300-320 Born 1642 1665 began individual studies Proved universal gravitation Invented the Calculus Reflector telescope 1672

More information

Name Period. What force did your partner s exert on yours? Write your answer in the blank below:

Name Period. What force did your partner s exert on yours? Write your answer in the blank below: Nae Period Lesson 7: Newton s Third Law and Passive Forces 7.1 Experient: Newton s 3 rd Law Forces of Interaction (a) Tea up with a partner to hook two spring scales together to perfor the next experient:

More information

2. Which of the following best describes the relationship between force and potential energy?

2. Which of the following best describes the relationship between force and potential energy? Work/Energy with Calculus 1. An object oves according to the function x = t 5/ where x is the distance traveled and t is the tie. Its kinetic energy is proportional to (A) t (B) t 5/ (C) t 3 (D) t 3/ (E)

More information

CHAPTER 1 MOTION & MOMENTUM

CHAPTER 1 MOTION & MOMENTUM CHAPTER 1 MOTION & MOMENTUM SECTION 1 WHAT IS MOTION? All atter is constantly in MOTION Motion involves a CHANGE in position. An object changes position relative to a REFERENCE POINT. DISTANCE is the total

More information

For a situation involving gravity near earth s surface, a = g = jg. Show. that for that case v 2 = v 0 2 g(y y 0 ).

For a situation involving gravity near earth s surface, a = g = jg. Show. that for that case v 2 = v 0 2 g(y y 0 ). Reading: Energy 1, 2. Key concepts: Scalar products, work, kinetic energy, work-energy theore; potential energy, total energy, conservation of echanical energy, equilibriu and turning points. 1.! In 1-D

More information

Chapter 5, Conceptual Questions

Chapter 5, Conceptual Questions Chapter 5, Conceptual Questions 5.1. Two forces are present, tension T in the cable and gravitational force 5.. F G as seen in the figure. Four forces act on the block: the push of the spring F, sp gravitational

More information

A 30 o 30 o M. Homework #4. Ph 231 Introductory Physics, Sp-03 Page 1 of 4

A 30 o 30 o M. Homework #4. Ph 231 Introductory Physics, Sp-03 Page 1 of 4 Hoework #4. Ph 231 Introductory Physics, Sp-03 Page 1 o 4 4-1A. A particle o ass 2 kg is initially at rest at the origin x = 0. I the only orce acting on the particle is a constant 4 in the x-direction,

More information

Chapter 4: Newton's Second Law of Motion

Chapter 4: Newton's Second Law of Motion Lecture Outline Chapter 4: Newton's Second Law of Motion This lecture will help you understand: Force Causes Acceleration Friction Mass and Weight Newton's Second Law of Motion Free Fall Nonfree Fall Force

More information

8.1 Force Laws Hooke s Law

8.1 Force Laws Hooke s Law 8.1 Force Laws There are forces that don't change appreciably fro one instant to another, which we refer to as constant in tie, and forces that don't change appreciably fro one point to another, which

More information

Lesson 24: Newton's Second Law (Motion)

Lesson 24: Newton's Second Law (Motion) Lesson 24: Newton's Second Law (Motion) To really appreciate Newton s Laws, it soeties helps to see how they build on each other. The First Law describes what will happen if there is no net force. The

More information

Q5 We know that a mass at the end of a spring when displaced will perform simple m harmonic oscillations with a period given by T = 2!

Q5 We know that a mass at the end of a spring when displaced will perform simple m harmonic oscillations with a period given by T = 2! Chapter 4.1 Q1 n oscillation is any otion in which the displaceent of a particle fro a fixed point keeps changing direction and there is a periodicity in the otion i.e. the otion repeats in soe way. In

More information

Physics 140 D100 Midterm Exam 2 Solutions 2017 Nov 10

Physics 140 D100 Midterm Exam 2 Solutions 2017 Nov 10 There are 10 ultiple choice questions. Select the correct answer for each one and ark it on the bubble for on the cover sheet. Each question has only one correct answer. (2 arks each) 1. An inertial reference

More information

Physics 20 Lesson 18 Pulleys and Systems

Physics 20 Lesson 18 Pulleys and Systems Physics 20 Lesson 18 Pulleys and Systes I. Pulley and syste probles In this lesson we learn about dynaics probles that involve several asses that are connected and accelerating together. Using the pulley

More information

PHYSICS - CLUTCH CH 05: FRICTION, INCLINES, SYSTEMS.

PHYSICS - CLUTCH CH 05: FRICTION, INCLINES, SYSTEMS. !! www.clutchprep.co INTRO TO FRICTION Friction happens when two surfaces are in contact f = μ =. KINETIC FRICTION (v 0 *): STATIC FRICTION (v 0 *): - Happens when ANY object slides/skids/slips. * = Point

More information

CHAPTER 4 NEWTON S LAWS OF MOTION

CHAPTER 4 NEWTON S LAWS OF MOTION 62 CHAPTER 4 NEWTON S LAWS O MOTION CHAPTER 4 NEWTON S LAWS O MOTION 63 Up to now we have described the motion of particles using quantities like displacement, velocity and acceleration. These quantities

More information

Physics for Scientists and Engineers. Chapter 6 Dynamics I: Motion Along a Line

Physics for Scientists and Engineers. Chapter 6 Dynamics I: Motion Along a Line Physics for Scientists and Engineers Chapter 6 Dynamics I: Motion Along a Line Spring, 008 Ho Jung Paik Applications of Newton s Law Objects can be modeled as particles Masses of strings or ropes are negligible

More information

Physics 18 Spring 2011 Homework 3 - Solutions Wednesday February 2, 2011

Physics 18 Spring 2011 Homework 3 - Solutions Wednesday February 2, 2011 Phsics 18 Spring 2011 Hoework 3 - s Wednesda Februar 2, 2011 Make sure our nae is on our hoework, and please bo our final answer. Because we will be giving partial credit, be sure to attept all the probles,

More information

BALLISTIC PENDULUM. EXPERIMENT: Measuring the Projectile Speed Consider a steel ball of mass

BALLISTIC PENDULUM. EXPERIMENT: Measuring the Projectile Speed Consider a steel ball of mass BALLISTIC PENDULUM INTRODUCTION: In this experient you will use the principles of conservation of oentu and energy to deterine the speed of a horizontally projected ball and use this speed to predict the

More information

Physics 120 Final Examination

Physics 120 Final Examination Physics 120 Final Exaination 12 August, 1998 Nae Tie: 3 hours Signature Calculator and one forula sheet allowed Student nuber Show coplete solutions to questions 3 to 8. This exaination has 8 questions.

More information

7. Two forces are applied to a 2.0-kilogram block on a frictionless horizontal surface, as shown in the diagram below.

7. Two forces are applied to a 2.0-kilogram block on a frictionless horizontal surface, as shown in the diagram below. 1. Which statement about the movement of an object with zero acceleration is true? The object must be at rest. The object must be slowing down. The object may be speeding up. The object may be in motion.

More information

What is mass? What is inertia? Turn to a partner and discuss. Turn to a new partner and discuss. Mass is. Newton s Law of Universal Gravitation

What is mass? What is inertia? Turn to a partner and discuss. Turn to a new partner and discuss. Mass is. Newton s Law of Universal Gravitation Turn to a partner and discuss Newton s Law of Universal Gravitation ass? Mass is the aount of atter in an object.! a easure of the inertia of an object.! easured in units of kilogras.! constant everywhere.!!

More information

Experiment 2: Hooke s Law

Experiment 2: Hooke s Law COMSATS Institute of Inforation Technology, Islaabad Capus PHYS-108 Experient 2: Hooke s Law Hooke s Law is a physical principle that states that a spring stretched (extended) or copressed by soe distance

More information

Note on Posted Slides. Net Force. Normal Force a.k.a. Support Force. PHY205H1S Physics of Everyday Life Class 3. Review from Class 1: What is a force?

Note on Posted Slides. Net Force. Normal Force a.k.a. Support Force. PHY205H1S Physics of Everyday Life Class 3. Review from Class 1: What is a force? Note on Posted Slides These are the slides that I intended to show in class on Tue. Jan. 14, 014. They contain important ideas and questions from your reading. Due to time constraints, I was probably not

More information

Flipping Physics Lecture Notes: Free Response Question #1 - AP Physics Exam Solutions

Flipping Physics Lecture Notes: Free Response Question #1 - AP Physics Exam Solutions 2015 FRQ #1 Free Response Question #1 - AP Physics 1-2015 Exa Solutions (a) First off, we know both blocks have a force of gravity acting downward on the. et s label the F & F. We also know there is a

More information

PHYS 101 Previous Exam Problems. Force & Motion I

PHYS 101 Previous Exam Problems. Force & Motion I PHYS 101 Previous Exam Problems CHAPTER 5 Force & Motion I Newton s Laws Vertical motion Horizontal motion Mixed forces Contact forces Inclines General problems 1. A 5.0-kg block is lowered with a downward

More information

PY /005 Practice Test 1, 2004 Feb. 10

PY /005 Practice Test 1, 2004 Feb. 10 PY 205-004/005 Practice Test 1, 2004 Feb. 10 Print nae Lab section I have neither given nor received unauthorized aid on this test. Sign ature: When you turn in the test (including forula page) you ust

More information

Forces and Newton s Laws Notes

Forces and Newton s Laws Notes Forces and Newton s Laws Notes Force An action exerted on an object which can change the motion of the object. The SI unit for force is the Newton (N) o N = (kg m)/s 2 o Pound is also a measure of force

More information

U V. r In Uniform Field the Potential Difference is V Ed

U V. r In Uniform Field the Potential Difference is V Ed SPHI/W nit 7.8 Electric Potential Page of 5 Notes Physics Tool box Electric Potential Energy the electric potential energy stored in a syste k of two charges and is E r k Coulobs Constant is N C 9 9. E

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Departent of Physics and Engineering Physics Physics 115.3 MIDTERM TEST October 22, 2008 Tie: 90 inutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION (please

More information

26 Impulse and Momentum

26 Impulse and Momentum 6 Ipulse and Moentu First, a Few More Words on Work and Energy, for Coparison Purposes Iagine a gigantic air hockey table with a whole bunch of pucks of various asses, none of which experiences any friction

More information

According to Newton s 2 nd Law

According to Newton s 2 nd Law According to Newton s 2 nd Law If the force is held constant the relationship between mass and acceleration is direct/inverse. If the mass is held constant the relationship between force and acceleration

More information

Honors Lab 4.5 Freefall, Apparent Weight, and Friction

Honors Lab 4.5 Freefall, Apparent Weight, and Friction Nae School Date Honors Lab 4.5 Freefall, Apparent Weight, and Friction Purpose To investigate the vector nature of forces To practice the use free-body diagras (FBDs) To learn to apply Newton s Second

More information

Chapter 3 Laws of Motion

Chapter 3 Laws of Motion Conceptual Physics/ PEP Name: Date: Chapter 3 Laws of Motion Section Review 3.1 1. State Newton s first law in your own words. An object at rest will stay at rest until an outside force acts on it to move.

More information

Conceptual Physics 11 th Edition

Conceptual Physics 11 th Edition Conceptual Physics 11 th Edition Chapter 4: NEWTON S SECOND LAW OF MOTION Force Causes Acceleration Friction Mass Resists Acceleration Newton s Second Law of Motion Free Fall Non-Free Fall Force causes

More information

Unit 14 Harmonic Motion. Your Comments

Unit 14 Harmonic Motion. Your Comments Today s Concepts: Periodic Motion Siple - Mass on spring Daped Forced Resonance Siple - Pendulu Unit 1, Slide 1 Your Coents Please go through the three equations for siple haronic otion and phase angle

More information

Conceptual Physics Fundamentals. Chapter 3: EQUILIBRIUM AND LINEAR MOTION

Conceptual Physics Fundamentals. Chapter 3: EQUILIBRIUM AND LINEAR MOTION Conceptual Physics Fundamentals Chapter 3: EQUILIBRIUM AND LINEAR MOTION This lecture will help you understand: Aristotle on Motion Galileo s Concept of Inertia Mass A Measure of Inertia Net Force The

More information

University Physics (Prof. David Flory) Chapt_06 Saturday, October 06, 2007 Page 1

University Physics (Prof. David Flory) Chapt_06 Saturday, October 06, 2007 Page 1 University Physics (Prof. David Flory) Chapt_06 Saturday, October 06, 2007 Page 1 Name: Date: 1. A crate resting on a rough horizontal floor is to be moved horizontally. The coefficient of static friction

More information

4 Study Guide. Forces in One Dimension Vocabulary Review

4 Study Guide. Forces in One Dimension Vocabulary Review Date Period Name CHAPTER 4 Study Guide Forces in One Dimension Vocabulary Review Write the term that correctly completes the statement. Use each term once. agent force Newton s second law apparent weight

More information

Systems of Masses. 1. Ignoring friction, calculate the acceleration of the system below and the tension in the rope. and (4.0)(9.80) 39.

Systems of Masses. 1. Ignoring friction, calculate the acceleration of the system below and the tension in the rope. and (4.0)(9.80) 39. Systes of Masses. Ignoring friction, calculate the acceleration of the syste below and the tension in the rope. Drawing individual free body diagras we get 4.0kg 7.0kg g 9.80 / s a?? g and g (4.0)(9.80)

More information

Lecture 4. Newton s 3rd law and Friction

Lecture 4. Newton s 3rd law and Friction Lecture 4 Newton s 3rd law and Friction Newtons First Law or Law of Inertia If no net external force is applied to an object, its velocity will remain constant ("inert"). OR A body cannot change its state

More information

Chapter 11 Simple Harmonic Motion

Chapter 11 Simple Harmonic Motion Chapter 11 Siple Haronic Motion "We are to adit no ore causes of natural things than such as are both true and sufficient to explain their appearances." Isaac Newton 11.1 Introduction to Periodic Motion

More information

NAME NUMBER SEC. PHYCS 101 SUMMER 2001/2002 FINAL EXAME:24/8/2002. PART(I) 25% PART(II) 15% PART(III)/Lab 8% ( ) 2 Q2 Q3 Total 40%

NAME NUMBER SEC. PHYCS 101 SUMMER 2001/2002 FINAL EXAME:24/8/2002. PART(I) 25% PART(II) 15% PART(III)/Lab 8% ( ) 2 Q2 Q3 Total 40% NAME NUMER SEC. PHYCS 101 SUMMER 2001/2002 FINAL EXAME:24/8/2002 PART(I) 25% PART(II) 15% PART(III)/Lab 8% ( ) 2.5 Q1 ( ) 2 Q2 Q3 Total 40% Use the followings: Magnitude of acceleration due to gravity

More information

For more Study Material and Latest Questions related to IIT-JEE visit

For more Study Material and Latest Questions related to IIT-JEE visit or ore Study Material and Latest Questions related to IIT-JEE visit www. ICTION Introduction If we slide or try to slide a body over a surface, the otion is resisted by a bonding between the body and the

More information

27 Oscillations: Introduction, Mass on a Spring

27 Oscillations: Introduction, Mass on a Spring Chapter 7 Oscillations: Introduction, Mass on a Spring 7 Oscillations: Introduction, Mass on a Spring If a siple haronic oscillation proble does not involve the tie, you should probably be using conservation

More information

In the session you will be divided into groups and perform four separate experiments:

In the session you will be divided into groups and perform four separate experiments: Mechanics Lab (Civil Engineers) Nae (please print): Tutor (please print): Lab group: Date of lab: Experients In the session you will be divided into groups and perfor four separate experients: (1) air-track

More information

Chapter 05 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Chapter 05 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Class: Date: Chapter 05 Test A Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The SI unit of force preferred by scientists is the: a. kilogram. b. newton.

More information

PHYS 101 Previous Exam Problems. Kinetic Energy and

PHYS 101 Previous Exam Problems. Kinetic Energy and PHYS 101 Previous Exam Problems CHAPTER 7 Kinetic Energy and Work Kinetic energy Work Work-energy theorem Gravitational work Work of spring forces Power 1. A single force acts on a 5.0-kg object in such

More information

Newton s First Law and IRFs

Newton s First Law and IRFs Goals: Physics 207, Lecture 6, Sept. 22 Recognize different types of forces and know how they act on an object in a particle representation Identify forces and draw a Free Body Diagram Solve 1D and 2D

More information

Chapter 7 Newton s Third Law

Chapter 7 Newton s Third Law Chapter 7 Newton s Third Law Chapter Goal: To use Newton s third law to understand interacting objects. Slide 7-2 Chapter 7 Preview Slide 7-3 Chapter 7 Preview Slide 7-4 Chapter 7 Preview Slide 7-6 Chapter

More information

Note-A-Rific: Mechanical

Note-A-Rific: Mechanical Note-A-Rific: Mechanical Kinetic You ve probably heard of inetic energy in previous courses using the following definition and forula Any object that is oving has inetic energy. E ½ v 2 E inetic energy

More information

Newton s Laws of Motion

Newton s Laws of Motion Newton s Laws of Motion Observation #1 An object at rest remains at rest, unless something makes it move. Observation #2 A object in motion continues in motion with constant velocity, unless something

More information

The Concept of Force Newton s First Law and Inertial Frames Mass Newton s Second Law The Gravitational Force and Weight Newton s Third Law Analysis

The Concept of Force Newton s First Law and Inertial Frames Mass Newton s Second Law The Gravitational Force and Weight Newton s Third Law Analysis The Laws of Motion The Concept of Force Newton s First Law and Inertial Frames Mass Newton s Second Law The Gravitational Force and Weight Newton s Third Law Analysis Models using Newton s Second Law Forces

More information

that when friction is present, a is needed to keep an object moving. 21. State Newton s first law of motion.

that when friction is present, a is needed to keep an object moving. 21. State Newton s first law of motion. Chapter 3 Newton s First Law of Motion Inertia Exercises 31 Aristotle on Motion (pages 29 30) Fill in the blanks with the correct terms 1 Aristotle divided motion into two types: and 2 Natural motion on

More information

F = 0. x o F = -k x o v = 0 F = 0. F = k x o v = 0 F = 0. x = 0 F = 0. F = -k x 1. PHYSICS 151 Notes for Online Lecture 2.4.

F = 0. x o F = -k x o v = 0 F = 0. F = k x o v = 0 F = 0. x = 0 F = 0. F = -k x 1. PHYSICS 151 Notes for Online Lecture 2.4. PHYSICS 151 Notes for Online Lecture.4 Springs, Strings, Pulleys, and Connected Objects Hook s Law F = 0 F = -k x 1 x = 0 x = x 1 Let s start with a horizontal spring, resting on a frictionless table.

More information

Lecture 5. Dynamics. Forces: Newton s First and Second

Lecture 5. Dynamics. Forces: Newton s First and Second Lecture 5 Dynamics. Forces: Newton s First and Second What is a force? It s a pull or a push: F F Force is a quantitative description of the interaction between two physical bodies that causes them to

More information

Chapter 5. The Laws of Motion

Chapter 5. The Laws of Motion Chapter 5 The Laws of Motion The Laws of Motion The description of an object in motion included its position, velocity, and acceleration. There was no consideration of what might influence that motion.

More information

G r a d e 1 1 P h y s i c s ( 3 0 s ) Midterm Practice exam

G r a d e 1 1 P h y s i c s ( 3 0 s ) Midterm Practice exam G r a d e 1 1 P h y s i c s ( 3 0 s ) Midterm Practice exam G r a d e 1 1 P h y s i c s ( 3 0 s ) Midterm Practice Exam Instructions The final exam will be weighted as follows: Modules 1 6 100% The format

More information

PY241 Solutions Set 9 (Dated: November 7, 2002)

PY241 Solutions Set 9 (Dated: November 7, 2002) PY241 Solutions Set 9 (Dated: Noveber 7, 2002) 9-9 At what displaceent of an object undergoing siple haronic otion is the agnitude greatest for the... (a) velocity? The velocity is greatest at x = 0, the

More information

3. In the figure below, the coefficient of friction between the center mass and the surface is

3. In the figure below, the coefficient of friction between the center mass and the surface is Physics 04A Exa October 9, 05 Short-answer probles: Do any seven probles in your exa book. Start each proble on a new page and and clearly indicate the proble nuber for each. If you attept ore than seven

More information

A Question about free-body diagrams

A Question about free-body diagrams Free-body Diagrams To help us understand why something moves as it does (or why it remains at rest) it is helpful to draw a free-body diagram. The free-body diagram shows the various forces that act on

More information

Chapter 4. Forces in One Dimension

Chapter 4. Forces in One Dimension Chapter 4 Forces in One Dimension Chapter 4 Forces in One Dimension In this chapter you will: *VD Note Use Newton s laws to solve problems. Determine the magnitude and direction of the net force that causes

More information

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B.

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B. 2003 B1. (15 points) A rope of negligible mass passes over a pulley of negligible mass attached to the ceiling, as shown above. One end of the rope is held by Student A of mass 70 kg, who is at rest on

More information

Definition of Work, The basics

Definition of Work, The basics Physics 07 Lecture 16 Lecture 16 Chapter 11 (Work) v Eploy conservative and non-conservative forces v Relate force to potential energy v Use the concept of power (i.e., energy per tie) Chapter 1 v Define

More information

Dynamics: Forces and Newton s Laws of Motion

Dynamics: Forces and Newton s Laws of Motion Lecture 7 Chapter 5 Dynamics: Forces and Newton s Laws of Motion Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Today we are going to discuss: Chapter 5: Force, Mass: Section 5.1

More information

2009 Academic Challenge

2009 Academic Challenge 009 Acadeic Challenge PHYSICS TEST - REGIONAL This Test Consists of 5 Questions Physics Test Production Tea Len Stor, Eastern Illinois University Author/Tea Leader Doug Brandt, Eastern Illinois University

More information

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal.

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal. Name: 1) 2) 3) Two students are pushing a car. What should be the angle of each student's arms with respect to the flat ground to maximize the horizontal component of the force? A) 90 B) 0 C) 30 D) 45

More information

Common Exam 2 Physics 111 Fall 2006 Name A

Common Exam 2 Physics 111 Fall 2006 Name A Coon Ea Physics Fall 006 Nae A Total Nuber of Points is 5 (Multiple Choice and Worout Probles). Multiple Choice Probles are Point per Question..) A toy car oving at constant speed copletes one lap around

More information

Problem Set 14: Oscillations AP Physics C Supplementary Problems

Problem Set 14: Oscillations AP Physics C Supplementary Problems Proble Set 14: Oscillations AP Physics C Suppleentary Probles 1 An oscillator consists of a bloc of ass 050 g connected to a spring When set into oscillation with aplitude 35 c, it is observed to repeat

More information

Particle dynamics Physics 1A, UNSW

Particle dynamics Physics 1A, UNSW 1 Particle dynaics Physics 1A, UNSW Newton's laws: S & J: Ch 5.1 5.9, 6.1 force, ass, acceleration also weight Physclips Chapter 5 Friction - coefficients of friction Physclips Chapter 6 Hooke's Law Dynaics

More information

PHYSICS 231 Laws of motion PHY 231

PHYSICS 231 Laws of motion PHY 231 PHYSICS 231 Laws of motion 1 Newton s Laws First Law: If the net force exerted on an object is zero the object continues in its original state of motion; if it was at rest, it remains at rest. If it was

More information

4 Newton s Second Law of Motion

4 Newton s Second Law of Motion 4 Newton s Second Law of Motion Answers and Solutions for Chapter 4 Reading Check Questions 1. Acceleration and net force are proportional to each other, not equal to each other. 2. Your push and the force

More information

Solving two-body problems with Newton s Second Law. Example Static and Kinetic Friction. Section 5.1 Friction 10/15/13

Solving two-body problems with Newton s Second Law. Example Static and Kinetic Friction. Section 5.1 Friction 10/15/13 Solving two-body problems with Newton s Second Law You ll get multiple equations from the x and y directions, these equations can be solved simultaneously to find unknowns 1. Draw a separate free body

More information

Conceptual Physics Fundamentals

Conceptual Physics Fundamentals Conceptual Physics Fundamentals Chapter 3: EQUILIBRIUM AND LINEAR MOTION This lecture will help you understand: Aristotle on Motion Galileo s Concept of Inertia Mass A Measure of Inertia Net Force The

More information

Part A Here, the velocity is at an angle of 45 degrees to the x-axis toward the z-axis. The velocity is then given in component form as.

Part A Here, the velocity is at an angle of 45 degrees to the x-axis toward the z-axis. The velocity is then given in component form as. Electrodynaics Chapter Andrew Robertson 32.30 Here we are given a proton oving in a agnetic eld ~ B 0:5^{ T at a speed of v :0 0 7 /s in the directions given in the gures. Part A Here, the velocity is

More information

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3 1. A sphere with a radius of 1.7 cm has a volume of: A) 2.1 10 5 m 3 B) 9.1 10 4 m 3 C) 3.6 10 3 m 3 D) 0.11 m 3 E) 21 m 3 2. A 25-N crate slides down a frictionless incline that is 25 above the horizontal.

More information

HATZIC SECONDARY SCHOOL

HATZIC SECONDARY SCHOOL HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT VECTOR DYNAMICS MULTIPLE CHOICE / 45 OPEN ENDED / 75 TOTAL / 120 NAME: 1. Unless acted on by an external net force, an object will stay at rest

More information

Twentieth SLAPT Physics Contest Southern Illinois University Edwardsville April 30, Mechanics Test

Twentieth SLAPT Physics Contest Southern Illinois University Edwardsville April 30, Mechanics Test Twentieth SLAPT Physics Contest Southern Illinois University Edwardsville April 30, 2005 Mechanics Test Please answer the following questions on the supplied answer sheet. You may write on this test booklet,

More information

Aristotle s Ideas of Motion. Conceptual Physics 11 th Edition. Galileo s Concept of Inertia. Aristotle s Ideas of Motion. Galileo s Concept of Inertia

Aristotle s Ideas of Motion. Conceptual Physics 11 th Edition. Galileo s Concept of Inertia. Aristotle s Ideas of Motion. Galileo s Concept of Inertia Aristotle s Ideas of Motion Conceptual Physics 11 th Edition Chapter 2: NEWTON S FIRST LAW OF MOTION INERTIA Natural motion (continued) Straight up or straight down for all things on Earth. Beyond Earth,

More information

9. h = R. 10. h = 3 R

9. h = R. 10. h = 3 R Version PREVIEW Torque Chap. 8 sizeore (13756) 1 This print-out should have 3 questions. ultiple-choice questions ay continue on the next colun or page find all choices before answering. Note in the dropped

More information

Chapter 6 Energy and Oscillations

Chapter 6 Energy and Oscillations Chapter 6 Energy and Oscillations Conservation of Energy In this chapter we will discuss one of the most important and fundamental principles in the universe. Energy is conserved. This means that in any

More information

National 5 Summary Notes

National 5 Summary Notes North Berwick High School Departent of Physics National 5 Suary Notes Unit 3 Energy National 5 Physics: Electricity and Energy 1 Throughout the Course, appropriate attention should be given to units, prefixes

More information

4. As you increase your push, will friction on the crate increase also? Ans. Yes it will.

4. As you increase your push, will friction on the crate increase also? Ans. Yes it will. Ch. 4 Newton s Second Law of Motion p.65 Review Questions 3. How great is the force of friction compared with your push on a crate that doesn t move on a level floor? Ans. They are equal in magnitude and

More information

POGIL: Newton s First Law of Motion and Statics. Part 1: Net Force Model: Read the following carefully and study the diagrams that follow.

POGIL: Newton s First Law of Motion and Statics. Part 1: Net Force Model: Read the following carefully and study the diagrams that follow. POGIL: Newton s First Law of Motion and Statics Name Purpose: To become familiar with the forces acting on an object at rest Part 1: Net Force Model: Read the following carefully and study the diagrams

More information

P11 Dynamics 1 Forces and Laws of Motion Bundle.notebook October 14, 2013

P11 Dynamics 1 Forces and Laws of Motion Bundle.notebook October 14, 2013 Dynamics 1 Definition of Dynamics Dynamics is the study of why an object moves. In order to understand why objects move, we must first study forces. Forces A force is defined as a push or a pull. Forces

More information

Conceptual Physics Fundamentals. Chapter 4: NEWTON S LAWS OF MOTION

Conceptual Physics Fundamentals. Chapter 4: NEWTON S LAWS OF MOTION Conceptual Physics Fundamentals Chapter 4: NEWTON S LAWS OF MOTION This lecture will help you understand: Newton s First Law of Motion Newton s Second Law of Motion Forces and Interactions Newton s Third

More information

= 1.49 m/s m. 2 kg. 2 kg

= 1.49 m/s m. 2 kg. 2 kg 5.6. Visualize: Please refer to Figure Ex5.6. Solve: For the diagra on the left, three of the vectors lie along the axes of the tilted coordinate sste. Notice that the angle between the 3 N force and the

More information

= T. Oscillations and Waves. Example of an Oscillating System IB 12 IB 12

= T. Oscillations and Waves. Example of an Oscillating System IB 12 IB 12 Oscillation: the vibration of an object Oscillations and Waves Eaple of an Oscillating Syste A ass oscillates on a horizontal spring without friction as shown below. At each position, analyze its displaceent,

More information

The Concept of Force. field forces d) The gravitational force of attraction between two objects. f) Force a bar magnet exerts on a piece of iron.

The Concept of Force. field forces d) The gravitational force of attraction between two objects. f) Force a bar magnet exerts on a piece of iron. Lecture 3 The Laws of Motion OUTLINE 5.1 The Concept of Force 5.2 Newton s First Law and Inertial Frames 5.3 Mass 5.4 Newton s Second Law 5.5 The Gravitational Force and Weight 5.6 Newton s Third Law 5.8

More information

Unit 2: Vector Dynamics

Unit 2: Vector Dynamics Multiple Choice Portion Unit 2: Vector Dynamics 1. Which one of the following best describes the motion of a projectile close to the surface of the Earth? (Assume no friction) Vertical Acceleration Horizontal

More information

Physics 11 HW #6 Solutions

Physics 11 HW #6 Solutions Physics HW #6 Solutions Chapter 6: Focus On Concepts:,,, Probles: 8, 4, 4, 43, 5, 54, 66, 8, 85 Focus On Concepts 6- (b) Work is positive when the orce has a coponent in the direction o the displaceent.

More information

1 (40) Gravitational Systems Two heavy spherical (radius 0.05R) objects are located at fixed positions along

1 (40) Gravitational Systems Two heavy spherical (radius 0.05R) objects are located at fixed positions along (40) Gravitational Systes Two heavy spherical (radius 0.05) objects are located at fixed positions along 2M 2M 0 an axis in space. The first ass is centered at r = 0 and has a ass of 2M. The second ass

More information

Chapter FOUR: Forces in One Dimension. kew. 7 1:30 PM. force: a push or pull exerted on an object. therefore, a force causes an acceleration

Chapter FOUR: Forces in One Dimension. kew. 7 1:30 PM. force: a push or pull exerted on an object. therefore, a force causes an acceleration Chapter FOUR: Forces in One Dimension 4.1 Force and Motion force: a push or pull exerted on an object forces cause objects to: speed up slow down change direction = change in velocity therefore, a force

More information

Section /07/2013. PHY131H1F University of Toronto Class 12 Preclass Video by Jason Harlow. Based on Knight 3 rd edition Ch. 7, pgs.

Section /07/2013. PHY131H1F University of Toronto Class 12 Preclass Video by Jason Harlow. Based on Knight 3 rd edition Ch. 7, pgs. PHY131H1F University of Toronto Class 12 Preclass Video by Jason Harlow Section 7.1 Based on Knight 3 rd edition Ch. 7, pgs. 167-184 When a hammer hits a nail, it exerts a forward force on the nail At

More information