A15. Circular dichroism absorption spectroscopy and its application

Size: px
Start display at page:

Download "A15. Circular dichroism absorption spectroscopy and its application"

Transcription

1 A15. Circular dichroism in X-ray X absorption spectroscopy and its application Klaus Baberschke Institut für Experimentalphysik Freie Universität Berlin Arnimallee 14 D Berlin-Dahlem Germany 1. Introduction to NEXAFS and XMCD. 2. Element specific magnetizations in trilayers. 3. Determination of orbital- and spin- magnetic moments; XMCD sum rules. 4. Magnetic Anisotropy Energy (MAE) and anisotropic µ L. 5. New developments, outlook. Freie Universität Berlin Hercules A15 / Grenoble /

2 See also other lectures 9 S.Pascarelli X-ray absorption spectroscopy A 13 J. Vogel XAS: theoretical basis A14 Y. Joly XAS: the monoelectronic approach A 16 F. Sirotti Magnetic dichroism A 17 M. Sacchi Soft X-ray magnetic dichroism This lecture see: Lectures Hercules 28 2

3 In this lecture we will not discuss the equipment/apparatus, but rather focus on application of XAS in magnetism. Concerning XAS-technique there exist many review articles e.g. J. Stöhr: NEXAFS Spectroscopy, Springer Series in Surface Science 25, 1992; H. Wende: Recent advances in the x-ray absorption spectroscopy, Rep. Prog. Physics 67, 215 (24). J. Stöhr, H.C. Siegmann: Magnetism, Springer 26 In the soft X-ray regime (VUV) one needs to work in vacuum. For nanomagnetism one wants to prepare and work anyway in UHV (in situ experiments). L-edges of 3d elements ( Mn, Fe, Co, Ni ) and K-edges of 2p elements ( C, N, O ) range between 1 and 1 ev 3

4 1. Introduction: XAS X-ray Absorption Spectroscopy is the most appropriate technique for element specific investigations. X-ray absorption cross section (arb. units) Fe Co L 3,2 edges of 3d elements Note: the intensity of the 2p 3d dipole transitions (E1) is proportional to the number of unoccupied final state (i.e. 3d- holes). Ni Cu Photon energy (ev) 4

5 XAS of 1 ML of Fe octaethylporphyrin on metal surface p* s Porphyrin molecule 5

6 XAS / NEXAFS and XMCD at Fe in OEP 6

7 eg t2g Freie Universität Berlin Hercules A15 / Grenoble /

8 X-ray Magnetic Circular Dichroism Faraday effect in the X-ray regime (Gisela Schütz, 1987) Norm. XMCD (arb. units) Norm. XAS (arb. units) L 3 L2 Fe M µ + µ µ continuum µ(e) =µ + µ (E) (E) (E) Spin up Spin down M k L 3 L 2 3d left right +h h 2p 2p E F 3d 3 2 3d Photon Energy (ev) XMCD signal is a measure of the magnetization p 1 2 2p 3 2 Many Reviews, e.g. H. Ebert Rep. Prog. Phys. 59, 1665 (1996) 8

9 The origin of MCD (after K. Fauth, Univ. Würzburg) Reviews e.g.: Lecture Notes in Physics Vol. 466 by H. Ebert, G. Schütz 9

10 X-ray magnetic circular dichroism (XMCD) 3d exchange 3d 3d E F µ s = (n h n h )µ B σ + σ 62.5% 37.5% σ + σ 2p spin orbit 25% 75% 2p 3/2 2p 3/2 2p 1/2 1

11 2. Element specific magnetizations in trilayers T C Co T C Ni e- 3 e ev(l 3) 853 ev(l ) M M substrate J inter Co Cu Ni A trilayer is a prototype to study magnetic coupling in multilayers. What about element specific Curie-temperatures? Two trivial limits: (i) d Cu = direct coupling like a Ni-Co alloy (ii) d Cu = large no coupling, like a mixed Ni/Co powder BUT d Cu 2 ML? 11

12 Ferromagnetic trilayers norm. absorption (a.u) 4 2 Co L 3,2 x 1.72 Ni L 3,2 XMCD (arb.uunits) 29K Ni L 3,2 336K Co L 3,2 x K M Co 2.ML Co 2.8ML Cu -4 M Ni 4.3ML Ni 29K Cu (1) Photon energy (ev) XMCD (arb.uunits) ML Co 3.4 ML Cu 3.6 ML Ni Cu(1) h ν (ev) Cu(1) T = 14K U. Bovensiepen et al., PRL 81, 2368 (1998) T (K) M (arb. units) T C Co = 34 K T* C Ni = 38 K 12

13 Interlayer exchange coupling M (arb. units) ML Cu 4.8 ML Ni Cu(1) T C Ni = 275K 2.8 ML Co 2.8 ML Cu 4.8 ML Ni Cu(1) 37K P. Poulopoulos, K. B., Lecture Notes in Physics 58, 283 (21) T * Ni T (K) J inter (µev/atom) a FMR Cu/ Ni/ Cu/ Ni/ Cu(1) ) b XMCD Co/ Cu/ Ni/ Cu(1) ) c FMR Ni/ Cu/ Co/ Cu(1) ) Theory d ) d Cu (ML) a) J. Lindner, K. B., J. Phys. Condens. Matter 15, S465 (23) b) A. Ney et al., Phys. Rev. B 59, R3938 (1999) c) J. Lindner et al., Phys. Rev. B 63, (21) d) P. Bruno, Phys. Rev. B 52, 441 (1995) 13

14 Magnetization (arb. units) hν Magnetization (arb. units) H statisch +HV 281 K 265 K Remanence and saturation magnetization I P e _ 184 K Magnetic Field (Oe) C. Sorg et al., XAFS XII, June 23 Physica Scripta T115, 638 (25) 5 ML Cu 6 ML Ni Cu (1) Temperature (K) M (ka/m) M / (T = ) M C,Ni C,Ni ML Cu 2.8 ML Ni 1 T C,Ni T Cu (1) C,Ni 38 K T (K) 2. ML Co 3. ML Cu 2.8 ML Ni * TC,Ni 2D Cu (1) 3D T / T C,Ni d Ni (ML) Theory / Experiment

15 Enhanced spin fluctuations in 2D (theory) P. Jensen et al. PRB 6, R14994 (1999) Ni T / T C J inter 1 K 3 K =3 K Co/Cu/Ni trilayer.9 Tyablikov (or RPA) decoupling.6.3 MF d (ML) Ni + Spin-Spin correlation function S i S j t z + z S i S j Si S j S isi S j S isj S i+ RPA z + Si S j, mean field ansatz (Stoner model) is insufficient to describe spin dynamics at interfaces of nanostructures J.H. Wu et al. J. Phys.: Condens. Matter 12 (2) 2847 E=E AFM E FM (ev/ml) - T ( o K) T= o K T=25 o K T χ 1/ max E FM2 E NM E FM1 E TOT FM coupled AFM coupled (a) (b) (c) d NM Single band Hubbard model: Simple Hartree-Fock (Stoner) ansatz is insufficient Higher order correlations are needed to explain T C -shift 1/ χ max (arbitrary unit) 15

16 Evidence for giant spin fluctuations PRB 72, 54447, (25) d FM1 T C, Ni 2D spin fluctuations IEC ~ 1 2 d NM Jinter FM2 (Co) NM (Cu) FM1 (Ni) d NM 16

17 Crossover of M Co (T) and M Ni (T) Norm. XMCD Difference (arb.units) Co L 3,2 -edges Ni L 3,2 -edges 45K 2.1ML Cu 4ML Ni Cu(1) x Photon Energy (ev) 1.3ML Co 2.1ML Cu 4ML Ni Cu(1) Magnetization M (Gauss) [11] M sat M sat 2 AFM M Ni Temperature (K) [1] easy M Co [11] ext H, k easy M Ni Two order parameter of T C Ni and T C Co A further reduction in symmetry happens at T C low 17

18 3. Orbital magnetism in second order perturbation theory effective Spin Hamiltonian d 1 L Z S Z +λl S L ± S + _ ψ 2 1/ 2 (2) { 2 2 } 2 The orbital moment is quenched in cubic symmetry 2- L Z 2- =, but not for tetragonal symmetry W.D. Brewer, A. Scherz, C. Sorg, H. Wende, K. Baberschke, P. Bencok, and S. Frota-Pessoa Direct observation of orbital magnetism in cubic solids Phys. Rev. Lett. 93, 7725 (24) and W.D. Brewer et al. ESRF Highlights, p. 96 (24) 18

19 Determination of orbital- and spin- magnetic moments Which technique measures what? µ L, µ S in UHV-XMCD µ L + µ S in UHV-SQUID µ L / µ S in UHV-FMR per definition: 1) spin moments are isotropic 2) also exchange coupling J S 1 S 2 is isotropic 3) so called anisotropic exchange is a (hidden) projection of the orbital momentum into spin space For FMR see: J. Lindner and K. Baberschke In situ Ferromagnetic Resonance: An ultimate tool to investigate the coupling in ultrathin magnetic films J. Phys.: Condens. Matter 15, R193 (23) 19

20 Orbital and spin magnetic moments deduced from XMCD N d d (?µ L 3 2?µ L 2 ) de = ( 2 SZ + 7 TZ ) N d (?µ L 3 +?µ L 2 ) de = LZ nor m. X MCD (arb.unit s) L3 edge? Ni?? 2N 3N d h µ S d h L 2 edge µ S ( µ 2 L + µ L ) 3 µ L ( µ 2 L 2 µ L ) 3 de de µ L µ L / µ S XMCD Integral (arb. units) prop. µ S prop. µ L L 3 L Photon Energy (ev) XMCD: FMR: V x5 Fe µ S µ L µ S µ L g<2 g>2 µ µ L / S(Fe) µ L / µ S (Fe+V) bulk Fe Photon Energy (ev) H. Ebert Rep. Prog. Phys. 59, 1665 (1996) µ L / µ S(V) XMCD 4nm Fe Fe Fe /V 4 / V Fe 2 /V 5 2

21 spin moment only Sum rules orbital moment only 3d l z s z +1/2 1/2 3d l z s z +1/2 1/2 L 3 L 3 dichroism Dichroismus only nur m S m S L 2 dichroism Dichroismus only nur m L m L L 2 L 3 dichroism Dichroismus L 2 m S und S and m L m L Photonenenergie 21

22 absorption C n h L 3 L 2 right circular left circular step function 1. Summenregel: µ s = 1 C (A+ 2B) µ B difference integrated difference B (x 3) A A B A photon energy (ev) (P. Carra et al., PRL 7 (1993) 694) 2. Summenregel: µ l = 2 3C (A B) µ B (B. T. Thole et al., PRL 68 (1992) 1943) 22

23 23 Enhancement of Orbital Magnetism at Surfaces: Co on Cu(1) λ λ λ / 1 2)/ ( 3 1) / ( exp nd d n n D d n d D S L e C e B Ae M M = = Σ + Σ + = M. Tischer et al., Phys. Rev. Lett. 75, 162 (1995)

24 Giant Magn. Anisotropy of Single Co Atoms and Nanoparticles P. Gambardella et al., Science 3, 113 (23) Induced magnetism in molecules T. Yokoyama et al., PRB 62, (2) µ L ~531 ev e- O C 1ML Ni Cu µ n = number of atoms XMCD XMCD 24

25 4. Magnetic Anisotropy Energy (MAE) and anisotropic µ L 1. Magnetic anisotropy energy = f(t) 2. Anisotropic magnetic moment f(t) 5 [111] M (G) 3 1 [1] Ni [111] [1] 1 2 B (G) µ L ~.1 G 3 MAE =?M db ½?M?B ½ 2 2 G 2 MAE erg / cm 3.2 µev / atom Characteristic energies of metallic ferromagnets binding energy 1-1 ev/atom exchange energy mev/atom cubic MAE (Ni).2 µev/atom uniaxial MAE (Co) 7 µev/atom 1µeV/atom is very small compared to 1 ev/atom total energy but all important K. Baberschke, Lecture Notes in Physics, Springer 58, 27 (21) 25

26 Magnetic Anisotropy Energy MAE and anisotropic µ L anisotropic µ L MAE K V (µev/atom) Orbital moment ( µ /atom) B exp. SO+OP [1] SO+OP [11] SO (1] SO[11] bcc fcc 1.5 c/a O. Hjortstam, K. B. et al. PRB 55, 1526 ( 97) K V (µev) Ni c/a=.69 c/a=1.8 α =1 c/a=.79 α = Orbital moment (µ B) D= λ ge g; MAE g - g = g e λ(λ -Λ ) x LS µ L 4µ B Bruno ( 89) 26

27 effective Spin Hamiltonian d 1 L Z S Z +λl S L ± S + _ ψ 2 1/ 2 (2) { 2 2 } 2 The orbital moment is quenched in cubic symmetry 2- L Z 2- =, but not for tetragonal symmetry 27

28 L 2,3 XAS and XMCD of 3d TM s Sc Ti V Cr Mn Fe Co Ni Cu Zn normalized XAS, XMCD (arb. units) Ti V Cr x15 x1 x Fe Co Ni Photon Energy (ev) A. Scherz et al., XAFS XII June 23 Sweden, Physica Scripta T115, 586 (25) A. Scherz et al., BESSY Highlights p. 8 (22) 28

29 5. Full calculation of µ(e) norm. XAS (arb. units) norm. XMCD (arb. units) Experiment A. Scherz et al. a) E V L 3,2 edges E B C x2.23 b) Photon Energy (ev) A Fe 9 V 1 alloy Fe/V 3 /Fe trilayer D PRB 66, (22) XAS (arb. units) XMCD (arb. units) Theory J. Minar, D. Benea, H. Ebert, LMU a) b) B V L 3,2 edges C Energy (ev) Fe 9 V 1 alloy: L 3,2 edge Fe/V 3 /Fe trilayer L 2 edge x6 D 2. no oxygen! A theory exp. 29

30 Summary gap-scan technique systematic investigation of XAS, XMCD fine structure development double pole approximation correlation energies (Ti: M 11 =3.7 ev, M 22 =-.56 ev, M 12 =.54 ev) experiment theory failure of spin sum rule core-hole interaction correlation energies as input for theory future ab initio calculations must include core-hole correlation effects 1) intergral SR 2) MMA 3) calculation of full µ(e) see: Recent advances in x-ray absorption spectroscopy H. Wende, Rep. Prog. Phys. 67 (24)

31 All spectroscopic techniques do not restrict themselves to measure the intensity (area under the resonance) only. i.e.: integral sum rules. A resonance signal contains a resonance position, a width, an asymmetry profile, etc. The optimum is given if theory can calculate the full profile of the resonance, in our case µ(e) i.e. the spectral density. In many calculations the matrix elements for the transition probability have been taken f(e) now we have to pay attention even to the spin dependence A.L. Ankudinov, J.J. Rehr, H. Wende, A. Scherz, K. Baberschke Spin-dependent sum rules for x-ray absorption spectra Europhysics Letters 66, 441 (24) Recent advances in x-ray absorption spectroscopy H. Wende, Rep. Prog. Phys. 67, 215 (24) Handbook of Magnetism and Advanced Magnetic Materials (Wiley&Sons 28) Five volumes ; K. Baberschke Vol. 3 31

32 Conclusion, Future During last few years: enormous progress in Theory: Experiment: calculate µ(e), spin dependent spectral distribution full relativistic calculations real (not ideal) crystallographic structures higher E/E, detailed dichroic fine structure undulator, gap-scan technique, constant high P C element-selective microscopy, probe of non-magnetic constituents Future: core hole effects: change of branching ratio for early 3d elements effect on XMCD unknown! correct determination of µ L and MAE with XMCD (x3) correction for spin- and energy-dependence of matrix elements 32

Lectures on magnetism at the Fudan University, Shanghai October 2005

Lectures on magnetism at the Fudan University, Shanghai October 2005 Lectures on magnetism at the Fudan University, Shanghai 10. 26. October 2005 Klaus Baberschke Institut für Experimentalphysik Freie Universität Berlin Arnimallee 14 D-14195 D Berlin-Dahlem Germany 1 Introduction

More information

WHY ARE SPIN WAVE EXCITATIONS ALL IMPORTANT IN NANOSCALE MAGNETISM?

WHY ARE SPIN WAVE EXCITATIONS ALL IMPORTANT IN NANOSCALE MAGNETISM? WHY ARE SPIN WAVE EXCITATIONS ALL IMPORTANT IN NANOSCALE MAGNETISM? Klaus Baberschke Institut für Experimentalphysik Freie Universität Berlin Arnimallee 14 D-14195 Berlin-Dahlem Germany 1. Element specific

More information

Phase transitions in ferromagnetic monolayers: A playground to study fundamentals

Phase transitions in ferromagnetic monolayers: A playground to study fundamentals Phase transitions in ferromagnetic monolayers: A playground to study fundamentals Klaus Baberschke Institut für f r Experimentalphysik Freie Universität t Berlin Arnimallee 14 D-14195 D Berlin-Dahlem e-mail:

More information

WHAT IS THE DIFFERENCE IN MAGNETISM OF SIZE CONTROLLED AND OF BULK MATERIAL?

WHAT IS THE DIFFERENCE IN MAGNETISM OF SIZE CONTROLLED AND OF BULK MATERIAL? WHAT IS THE DIFFERENCE IN MAGNETISM OF SIZE CONTROLLED AND OF BULK MATERIAL? Klaus Baberschke Institut für Experimentalphysik Freie Universität Berlin Arnimallee 14 D-14195 Berlin-Dahlem Germany Today

More information

WHY ARE SPIN WAVE EXCITATIONS ALL IMPORTANT IN NANOSCALE MAGNETISM?

WHY ARE SPIN WAVE EXCITATIONS ALL IMPORTANT IN NANOSCALE MAGNETISM? WHY ARE SPIN WAVE EXCITATIONS ALL IMPORTANT IN NANOSCALE MAGNETISM? Klaus Baberschke Institut für Experimentalphysik Freie Universität Berlin Arnimallee 14 D-14195 Berlin-Dahlem Germany 1. Element specific

More information

SPIN DYNAMICS IN NANOSCALE MAGNETISM BEYOND THE STATIC MEAN FIELD MODEL. Handbook of Magnetism Adv. Magn.. Mater. (Wiley & Sons 2007) Klaus Baberschke

SPIN DYNAMICS IN NANOSCALE MAGNETISM BEYOND THE STATIC MEAN FIELD MODEL. Handbook of Magnetism Adv. Magn.. Mater. (Wiley & Sons 2007) Klaus Baberschke SPIN DYNAMICS IN NANOSCALE MAGNETISM BEYOND THE STATIC MEAN FIELD MODEL Klaus Baberschke Institut für f r Experimentalphysik Freie Universität t Berlin Arnimallee 14 D-14195 D Berlin-Dahlem Germany 1.

More information

Lecture 2: Magnetic Anisotropy Energy (MAE)

Lecture 2: Magnetic Anisotropy Energy (MAE) Lecture : Magnetic Anisotropy Energy (MAE) 1. Magnetic anisotropy energy = f(t). Anisotropic magnetic moment f(t) [111] T=3 K Characteristic energies of metallic ferromagnets M (G) 5 3 [1] 1 binding energy

More information

Magnetism of ultrathin films: Theory and Experiment

Magnetism of ultrathin films: Theory and Experiment 1/23 Magnetism of ultrathin films: Theory and Experiment Klaus Baberschke Institut für f r Experimentalphysik Freie Universität t Berlin 2/23 New and fundamental aspects are found in nanomagnetism with

More information

XMCD analysis beyond standard procedures

XMCD analysis beyond standard procedures XMCD analysis beyond standard procedures H. Wende, A. Scherz,, C. Sorg, K. Baberschke, E.K.U. Gross, H. Appel, K. Burke, J. Minár, H. Ebert, A.L. Ankudinov and J.J. Rehr Fachbereich Physik, Freie Universität

More information

Ni 8 Cu n Ni 9. Lectue 4 Trilayers a prototype of multilayers. for FM1 and FM2 interlayer exchange coupling IEC, J inter

Ni 8 Cu n Ni 9. Lectue 4 Trilayers a prototype of multilayers. for FM1 and FM2 interlayer exchange coupling IEC, J inter Lectue 4 Trilayers a prototype of multilayers Ni 8 Cu n Ni 9 Important parameters: K anisotropy, E band for FM1 and FM2 interlayer exchange coupling IEC, J inter 1 4a Optical and acoustic modes in the

More information

X-Ray Magnetic Dichroism. S. Turchini ISM-CNR

X-Ray Magnetic Dichroism. S. Turchini ISM-CNR X-Ray Magnetic Dichroism S. Turchini SM-CNR stefano.turchini@ism.cnr.it stefano.turchini@elettra.trieste.it Magnetism spin magnetic moment direct exchange: ferro antiferro superexchange 3d Ligand 2p 3d

More information

X-Ray Magnetic Circular Dichroism: basic concepts and applications for 3d transition metals. Stefania PIZZINI Laboratoire Louis Néel CNRS- Grenoble

X-Ray Magnetic Circular Dichroism: basic concepts and applications for 3d transition metals. Stefania PIZZINI Laboratoire Louis Néel CNRS- Grenoble X-Ray Magnetic Circular Dichroism: basic concepts and applications for 3d transition metals Stefania PIZZINI Laboratoire Louis Néel CNRS- Grenoble I) - Basic concepts of XAS and XMCD - XMCD at L 2,3 edges

More information

Soft X-ray Physics DELNOR-WIGGINS PASS STATE PARK

Soft X-ray Physics DELNOR-WIGGINS PASS STATE PARK Soft X-ray Physics Overview of research in Prof. Tonner s group Introduction to synchrotron radiation physics Photoemission spectroscopy: band-mapping and photoelectron diffraction Magnetic spectroscopy

More information

Soft X-ray Absorption Spectroscopy Kenta Amemiya (KEK-PF)

Soft X-ray Absorption Spectroscopy Kenta Amemiya (KEK-PF) Cheiron School 014 Soft X-ray Absorption Spectroscopy Kenta Amemiya (KEK-PF) 1 Atomic Number Absorption Edges in the Soft X-ray Region M edge L edge K edge. Li Absorption-edge Energy (ev) Studies using

More information

Making the Invisible Visible: Probing Antiferromagnetic Order in Novel Materials

Making the Invisible Visible: Probing Antiferromagnetic Order in Novel Materials Making the Invisible Visible: Probing Antiferromagnetic Order in Novel Materials Elke Arenholz Lawrence Berkeley National Laboratory Antiferromagnetic contrast in X-ray absorption Ni in NiO Neel Temperature

More information

X-ray Magnetic Circular and Linear Dichroism (XMCD, XMLD) and X-ray Magnetic Imaging (PEEM,...)

X-ray Magnetic Circular and Linear Dichroism (XMCD, XMLD) and X-ray Magnetic Imaging (PEEM,...) X-ray Magnetic Circular and Linear Dichroism (XMCD, XMLD) and X-ray Magnetic Imaging (PEEM,...) Jan Vogel Institut Néel (CNRS, UJF), Nanoscience Department Grenoble, France - X-ray (Magnetic) Circular

More information

Spettroscopia risonante di stati elettronici: un approccio impossibile senza i sincrotroni

Spettroscopia risonante di stati elettronici: un approccio impossibile senza i sincrotroni Spettroscopia risonante di stati elettronici: un approccio impossibile senza i sincrotroni XAS, XMCD, XES, RIXS, ResXPS: introduzione alle spettroscopie risonanti * Dipartimento di Fisica - Politecnico

More information

On the temperature dependence of multiple- and single-scattering contributions in magnetic EXAFS

On the temperature dependence of multiple- and single-scattering contributions in magnetic EXAFS Ames Laboratory Conference Papers, Posters, and Presentations Ames Laboratory 9-1999 On the temperature dependence of multiple- and single-scattering contributions in magnetic EXAFS H. Wende Freie Universität

More information

Electronic, magnetic and spectroscopic properties of free Fe clusters

Electronic, magnetic and spectroscopic properties of free Fe clusters Electronic, magnetic and spectroscopic properties of free Fe clusters O. Šipr 1, M. Košuth 2, J. Minár 2, S. Polesya 2 and H. Ebert 2 1 Institute of Physics, Academy of Sciences of the Czech Republic,

More information

Probing Matter: Diffraction, Spectroscopy and Photoemission

Probing Matter: Diffraction, Spectroscopy and Photoemission Probing Matter: Diffraction, Spectroscopy and Photoemission Anders Nilsson Stanford Synchrotron Radiation Laboratory Why X-rays? VUV? What can we hope to learn? 1 Photon Interaction Incident photon interacts

More information

Dominant role of thermal magnon excitation in temperature dependence of interlayer exchange coupling: Experimental verification

Dominant role of thermal magnon excitation in temperature dependence of interlayer exchange coupling: Experimental verification Dominant role of thermal magnon excitation in temperature dependence of interlayer exchange coupling: Experimental verification S. S. Kalarickal,* X. Y. Xu, K. Lenz, W. Kuch, and K. Baberschke Institut

More information

physica status solidi REPRINT basic solid state physics Why are spin wave excitations all important in nanoscale magnetism?

physica status solidi REPRINT basic solid state physics Why are spin wave excitations all important in nanoscale magnetism? physica pss status solidi basic solid state physics b Why are spin wave excitations all important in nanoscale magnetism? Klaus Baberschke Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee

More information

Magnetic anisotropy energy and interlayer exchange coupling in ultrathin ferromagnets: experiment versus theory

Magnetic anisotropy energy and interlayer exchange coupling in ultrathin ferromagnets: experiment versus theory Philosophical Magazine 28, 1 12, ifirst Magnetic anisotropy energy and interlayer exchange coupling in ultrathin ferromagnets: experiment versus theory Klaus Baberschke* Institut fu r Experimentalphysik,

More information

Lecture 6: Spin Dynamics

Lecture 6: Spin Dynamics Lecture 6: Spin Dynamics All kinds of resonance spectroscopies deliver (at least) 3 informations: 1. The resonance position. The width of the resonance (and its shape) 3. The area under the resonance From

More information

Neutron and x-ray spectroscopy

Neutron and x-ray spectroscopy Neutron and x-ray spectroscopy B. Keimer Max-Planck-Institute for Solid State Research outline 1. self-contained introduction neutron scattering and spectroscopy x-ray scattering and spectroscopy 2. application

More information

Investigation of Ultrathin Ferromagnetic Films by Magnetic Resonance

Investigation of Ultrathin Ferromagnetic Films by Magnetic Resonance Investigation of Ultrathin Ferromagnetic Films by Magnetic Resonance Klaus Baberschke Freie Universität Berlin, Berlin-Dahlem, Germany 1 Introduction 1617 2 In situ UHV-FMR: Experimental Details 1618 3

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Titanium d xy ferromagnetism at the LaAlO 3 /SrTiO 3 interface J.-S. Lee 1,*, Y. W. Xie 2, H. K. Sato 3, C. Bell 3, Y. Hikita 3, H. Y. Hwang 2,3, C.-C. Kao 1 1 Stanford Synchrotron Radiation Lightsource,

More information

PEEM and XPEEM: methodology and applications for dynamic processes

PEEM and XPEEM: methodology and applications for dynamic processes PEEM and XPEEM: methodology and applications for dynamic processes PEEM methods and General considerations Chemical imaging Magnetic imaging XMCD/XMLD Examples Dynamic studies PEEM and XPEEM methods 1

More information

Magnetism of Atoms and Nanostructures Adsorbed onto Surfaces

Magnetism of Atoms and Nanostructures Adsorbed onto Surfaces Magnetism of Atoms and Nanostructures Adsorbed onto Surfaces Magnetism Coordination Small Ferromagnets Superlattices Basic properties of a permanent magnet Magnetization "the strength of the magnet" depends

More information

X-ray Imaging and Spectroscopy of Individual Nanoparticles

X-ray Imaging and Spectroscopy of Individual Nanoparticles X-ray Imaging and Spectroscopy of Individual Nanoparticles A. Fraile Rodríguez, F. Nolting Swiss Light Source Paul Scherrer Institut, Switzerland Intensity [a.u.] 1.4 1.3 1.2 1.1 D 8 nm 1 1 2 3 1.0 770

More information

Magnetic recording technology

Magnetic recording technology Magnetic recording technology The grain (particle) can be described as a single macrospin μ = Σ i μ i 1 0 1 0 1 W~500nm 1 bit = 300 grains All spins in the grain are ferromagnetically aligned B~50nm Exchange

More information

X-Ray Magnetic Circular Dichroism: basic concepts and theory for 4f rare earth ions and 3d metals. Stefania PIZZINI Laboratoire Louis Néel - Grenoble

X-Ray Magnetic Circular Dichroism: basic concepts and theory for 4f rare earth ions and 3d metals. Stefania PIZZINI Laboratoire Louis Néel - Grenoble X-Ray Magnetic Circular Dichroism: basic concepts and theory for 4f rare earth ions and 3d metals Stefania PIZZINI Laboratoire Louis Néel - Grenoble I) - History and basic concepts of XAS - XMCD at M 4,5

More information

Photon Interaction. Spectroscopy

Photon Interaction. Spectroscopy Photon Interaction Incident photon interacts with electrons Core and Valence Cross Sections Photon is Adsorbed Elastic Scattered Inelastic Scattered Electron is Emitted Excitated Dexcitated Stöhr, NEXAPS

More information

The Gutzwiller Density Functional Theory

The Gutzwiller Density Functional Theory The Gutzwiller Density Functional Theory Jörg Bünemann, BTU Cottbus I) Introduction 1. Model for an H 2 -molecule 2. Transition metals and their compounds II) Gutzwiller variational theory 1. Gutzwiller

More information

Size- and site-dependence of XMCD spectra of iron clusters from ab-initio calculations

Size- and site-dependence of XMCD spectra of iron clusters from ab-initio calculations Size- and site-dependence of XMCD spectra of iron clusters from ab-initio calculations O. Šipr 1 and H. Ebert 2 1 Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnická 10, 162

More information

Low dimensional magnetism Experiments

Low dimensional magnetism Experiments Low dimensional magnetism Experiments Olivier Fruchart Brasov (Romania), Sept. 2003 1 Introduction...................................... 2 2 Ferromagnetic order................................. 2 2.1 Methods.....................................

More information

Self-organized growth on the Au(111) surface

Self-organized growth on the Au(111) surface Self-organized growth on the Au(111) surface Olivier Fruchart 02/03/2002 Olivier Fruchart - Laboratoire Louis Néel, Grenoble, France. Slides on-line: http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/

More information

MAGNETIC ANISOTROPY IN TIGHT-BINDING

MAGNETIC ANISOTROPY IN TIGHT-BINDING MAGNETIC ANISOTROPY IN TIGHT-BINDING Cyrille Barreteau Magnetic Tight-Binding Workshop, London10-11 Sept. 2012 9 SEPTEMBRE 2012 CEA 10 AVRIL 2012 PAGE 1 SOMMAIRE TB Model TB 0 : Mehl & Papaconstantopoulos

More information

Spin-resolved photoelectron spectroscopy

Spin-resolved photoelectron spectroscopy Spin-resolved photoelectron spectroscopy Application Notes Spin-resolved photoelectron spectroscopy experiments were performed in an experimental station consisting of an analysis and a preparation chamber.

More information

arxiv: v1 [cond-mat.mtrl-sci] 25 Jun 2017

arxiv: v1 [cond-mat.mtrl-sci] 25 Jun 2017 Magnetic anisotropy of L1 0 -ordered FePt thin films studied by Fe and Pt L 2,3 -edges x-ray magnetic circular dichroism K. Ikeda, 1 T. Seki, 2 G. Shibata, 1 T. Kadono, 1 K. Ishigami, 1 Y. Takahashi, 1

More information

X-ray absorption spectroscopy.

X-ray absorption spectroscopy. X-ray absorption spectroscopy www.anorg.chem.uu.nl/people/staff/frankdegroot/ X-ray absorption spectroscopy www.anorg.chem.uu.nl/people/staff/frankdegroot/ Frank de Groot PhD: solid state chemistry U Nijmegen

More information

EFFECTIVE MAGNETIC HAMILTONIANS: ab initio determination

EFFECTIVE MAGNETIC HAMILTONIANS: ab initio determination ICSM212, Istanbul, May 3, 212, Theoretical Magnetism I, 17:2 p. 1 EFFECTIVE MAGNETIC HAMILTONIANS: ab initio determination Václav Drchal Institute of Physics ASCR, Praha, Czech Republic in collaboration

More information

Fe-porphyrin monolayers on ferromagnetic substrates: Electronic structure and magnetic coupling strength

Fe-porphyrin monolayers on ferromagnetic substrates: Electronic structure and magnetic coupling strength PHYSICAL REVIEW B 76, 21446 27 Fe-porphyrin monolayers on ferromagnetic substrates: Electronic structure and magnetic coupling strength M. Bernien, X. Xu,* J. Miguel, M. Piantek, Ph. Eckhold, J. Luo, J.

More information

Introduction of X-ray Absorption Near Edge Structure (XANES)

Introduction of X-ray Absorption Near Edge Structure (XANES) Introduction of X-ray Absorption Near Edge Structure (XANES) 2012 년 2 월 29 일 11:00 11:50 Eun Suk Jeong February 29-March 1, 2012 xafs school Outline 1. Introduction of XANES 2. Structural and chemical

More information

arxiv:cond-mat/ v1 [cond-mat.str-el] 27 Oct 2003

arxiv:cond-mat/ v1 [cond-mat.str-el] 27 Oct 2003 Magnetic versus crystal field linear dichroism in NiO thin films arxiv:cond-mat/0310634v1 [cond-mat.str-el] 27 Oct 2003 M. W. Haverkort, 1 S. I. Csiszar, 2 Z. Hu, 1 S. Altieri, 3 A. Tanaka, 4 H. H. Hsieh,

More information

Tuning magnetic anisotropy, Kondo screening and Dzyaloshinskii-Moriya interaction in pairs of Fe adatoms

Tuning magnetic anisotropy, Kondo screening and Dzyaloshinskii-Moriya interaction in pairs of Fe adatoms Tuning magnetic anisotropy, Kondo screening and Dzyaloshinskii-Moriya interaction in pairs of Fe adatoms Department of Physics, Hamburg University, Hamburg, Germany SPICE Workshop, Mainz Outline Tune magnetic

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Reversible Electric Control of Exchange Bias in a Multiferroic Field Effect Device S. M. Wu 1, 2, Shane A. Cybart 1, 2, P. Yu 1, 2, M. D. Abrodos 1, J. Zhang 1, R. Ramesh 1, 2

More information

X-Ray Spectro-Microscopy Joachim Stöhr Stanford Synchrotron Radiation Laboratory

X-Ray Spectro-Microscopy Joachim Stöhr Stanford Synchrotron Radiation Laboratory X-Ray Spectro-Microscopy Joachim Stöhr Stanford Synchrotron Radiation Laboratory X-Rays have come a long way Application to Magnetic Systems 1 µm 1895 1993 2003 http://www-ssrl.slac.stanford.edu/stohr/index.htm

More information

Outline. Surface, interface, and nanoscience short introduction. Some surface/interface concepts and techniques

Outline. Surface, interface, and nanoscience short introduction. Some surface/interface concepts and techniques Outline Surface, interface, and nanoscience short introduction Some surface/interface concepts and techniques Experimental aspects: intro. to laboratory-based and SR-based Electronic structure a brief

More information

Single Atom Magnets? 1. Magnetic Anisotropy 2. Magnetism of individual Co Adatoms 3. Single Atom Magnets? 4. Single Molecule Magnets at Surfaces

Single Atom Magnets? 1. Magnetic Anisotropy 2. Magnetism of individual Co Adatoms 3. Single Atom Magnets? 4. Single Molecule Magnets at Surfaces Single Atom Magnets? 1. Magnetic Anisotropy 2. Magnetism of individual Co Adatoms 3. Single Atom Magnets? 4. Single Molecule Magnets at Surfaces Basic properties of a permanent magnet Magnetization "the

More information

Protection of excited spin states by a superconducting energy gap

Protection of excited spin states by a superconducting energy gap Protection of excited spin states by a superconducting energy gap B. W. Heinrich, 1 L. Braun, 1, J. I. Pascual, 1, 2, 3 and K. J. Franke 1 1 Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee

More information

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER Driving forces in the nano-magnetism world Intra-atomic exchange, electron correlation effects: LOCAL (ATOMIC) MAGNETIC MOMENTS m d or f electrons Inter-atomic exchange: MAGNETIC ORDER H exc J S S i j

More information

Italian School of Magnetism

Italian School of Magnetism Spintronics I 1. Introduction 3. Mott paradigm: two currents model 4. Giant MagnetoResistance: story and basic principles 5. Semiclassical model for CIP GMR Italian School of Magnetism Prof. Riccardo Bertacco

More information

Band calculations: Theory and Applications

Band calculations: Theory and Applications Band calculations: Theory and Applications Lecture 2: Different approximations for the exchange-correlation correlation functional in DFT Local density approximation () Generalized gradient approximation

More information

Department of Electrical Engineering and Information Systems, Tanaka-Ohya lab.

Department of Electrical Engineering and Information Systems, Tanaka-Ohya lab. Observation of the room-temperature local ferromagnetism and its nanoscale expansion in the ferromagnetic semiconductor Ge 1 xfe x Yuki K. Wakabayashi 1 and Yukio Takahashi 2 1 Department of Electrical

More information

X-ray Magnetic Circular Dichroism for Quantitative Element- Resolved Magnetic Microscopy

X-ray Magnetic Circular Dichroism for Quantitative Element- Resolved Magnetic Microscopy Physica Scripta. Vol. T109, 89 95, 2004 X-ray Magnetic Circular Dichroism for Quantitative Element- Resolved Magnetic Microscopy Wolfgang Kuch Max-Planck-Institut fu r Mikrostrukturphysik, Weinberg 2,

More information

ANGULAR DEPENDENCE OF MAGNETIC PROPERTIES IN Co/Pt MULTILAYERS WITH PERPENDICULAR MAGNETIC ANISOTROPY

ANGULAR DEPENDENCE OF MAGNETIC PROPERTIES IN Co/Pt MULTILAYERS WITH PERPENDICULAR MAGNETIC ANISOTROPY International Journal of Modern Physics B Vol. 19, Nos. 15, 16 & 17 (2005) 2562-2567 World Scientific Publishing Company World Scientific V www.worldscientific.com ANGULAR DEPENDENCE OF MAGNETIC PROPERTIES

More information

Lecture 3 continuation from Wednesday

Lecture 3 continuation from Wednesday Lecture 3 continuation from Wednesday Dynamical Matrix - Conduction electrons Importance of el-ph Matrix elements NiAl 50-50 compound Confirmed by H. Chou and S.M.Shapiro Phys. Rev. B48, 16088 (1993) Exp.

More information

Mott insulators. Introduction Cluster-model description Chemical trend Band description Self-energy correction

Mott insulators. Introduction Cluster-model description Chemical trend Band description Self-energy correction Mott insulators Introduction Cluster-model description Chemical trend Band description Self-energy correction Introduction Mott insulators Lattice models for transition-metal compounds Hubbard model Anderson-lattice

More information

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER Driving forces in the nano-magnetism world Intra-atomic exchange, electron correlation effects: LOCAL (ATOMIC) MAGNETIC MOMENTS m d or f electrons Inter-atomic exchange: MAGNETIC ORDER H exc J S S i j

More information

Orbital magnetism in transition-metal systems: The role of local correlation effects. arxiv: v1 [cond-mat.

Orbital magnetism in transition-metal systems: The role of local correlation effects. arxiv: v1 [cond-mat. epl draft arxiv:83.v [cond-mat.str-el] 7 Mar 8 Orbital magnetism in transition-metal systems: The role of local correlation effects S. Chadov, J. Minár, M. I. Katsnelson, H. Ebert, D. Ködderitzsch and

More information

Lecture 6: Physical Methods II. UV Vis (electronic spectroscopy) Electron Spin Resonance Mossbauer Spectroscopy

Lecture 6: Physical Methods II. UV Vis (electronic spectroscopy) Electron Spin Resonance Mossbauer Spectroscopy Lecture 6: Physical Methods II UV Vis (electronic spectroscopy) Electron Spin Resonance Mossbauer Spectroscopy Physical Methods used in bioinorganic chemistry X ray crystallography X ray absorption (XAS)

More information

Supporting Information. for. Advanced Materials, adma Wiley-VCH 2005

Supporting Information. for. Advanced Materials, adma Wiley-VCH 2005 Supporting Information for Advanced Materials, adma.200501482 Wiley-VCH 2005 69451 Weinheim, Germany Supplementary Material Characterization of SAMs The HBCS monolayers were characterized by XPS, NEXAFS

More information

A facility for Femtosecond Soft X-Ray Imaging on the Nanoscale

A facility for Femtosecond Soft X-Ray Imaging on the Nanoscale A facility for Femtosecond Soft X-Ray Imaging on the Nanoscale Jan Lüning Outline Scientific motivation: Random magnetization processes Technique: Lensless imaging by Fourier Transform holography Feasibility:

More information

2.1 Experimental and theoretical studies

2.1 Experimental and theoretical studies Chapter 2 NiO As stated before, the first-row transition-metal oxides are among the most interesting series of materials, exhibiting wide variations in physical properties related to electronic structure.

More information

Sfb 658 Colloquium 11 May Part II. Introduction to Two-Photon-Photoemission (2PPE) Spectroscopy. Martin Wolf

Sfb 658 Colloquium 11 May Part II. Introduction to Two-Photon-Photoemission (2PPE) Spectroscopy. Martin Wolf Sfb 658 Colloquium 11 May 2006 Part II Introduction to Two-Photon-Photoemission (2PPE) Spectroscopy Martin Wolf Motivation: Electron transfer across interfaces key step for interfacial and surface dynamics

More information

SHG Spectroscopy. Clean surfaces Oxidation SOI wafer

SHG Spectroscopy. Clean surfaces Oxidation SOI wafer SHG Spectroscopy Clean surfaces Oxidation SOI wafer Scan regions Idler: 730-1050 nm 1000-1400 nm Signal: 680-550 nm Ti:Sapphire: 700-1000 nm 600-500 nm SHG set-up Bergfeld, Daum, PRL 90, 2915 SHG from

More information

Competing Ferroic Orders The magnetoelectric effect

Competing Ferroic Orders The magnetoelectric effect Competing Ferroic Orders The magnetoelectric effect Cornell University I would found an institution where any person can find instruction in any study. Ezra Cornell, 1868 Craig J. Fennie School of Applied

More information

Electron transport through Shiba states induced by magnetic adsorbates on a superconductor

Electron transport through Shiba states induced by magnetic adsorbates on a superconductor Electron transport through Shiba states induced by magnetic adsorbates on a superconductor Michael Ruby, Nino Hatter, Benjamin Heinrich Falko Pientka, Yang Peng, Felix von Oppen, Nacho Pascual, Katharina

More information

Energy Spectroscopy. Ex.: Fe/MgO

Energy Spectroscopy. Ex.: Fe/MgO Energy Spectroscopy Spectroscopy gives access to the electronic properties (and thus chemistry, magnetism,..) of the investigated system with thickness dependence Ex.: Fe/MgO Fe O Mg Control of the oxidation

More information

arxiv:cond-mat/ v1 7 Aug 1996

arxiv:cond-mat/ v1 7 Aug 1996 EXCHANGE COUPLING AND MAGNETIZATION PROFILES OF BINARY AND TERNARY MAGNETIC MULTILAYERS F. Süss, U. Krey 1 Institut für Physik II der Universität, D-93040 Regensburg, Germany arxiv:cond-mat/9608037v1 7

More information

Excitations and Interactions

Excitations and Interactions Excitations and Interactions Magnon gases A7 A8 Spin physics A3 A5 A9 A10 A12 Quantum magnets A3 A8 B1 B2 B3 B4 B5 Synthesis B4 B6 B10 E Spectroscopy B11 Excitations and Interactions Charge-transfer induced

More information

Peter Oppeneer. Department of Physics and Astronomy Uppsala University, S Uppsala, Sweden

Peter Oppeneer. Department of Physics and Astronomy Uppsala University, S Uppsala, Sweden Light Matter Interactions (II Peter Oppeneer Department of Physics and Astronomy Uppsala University, S-751 20 Uppsala, Sweden 1 Outline Lecture II Light-magnetism interaction Phenomenology of magnetic

More information

Supplementary Figure 1: Spin noise spectra of 55 Mn in bulk sample at BL =10.5 mt, before subtraction of the zero-frequency line. a, Contour plot of

Supplementary Figure 1: Spin noise spectra of 55 Mn in bulk sample at BL =10.5 mt, before subtraction of the zero-frequency line. a, Contour plot of 1 Supplementary Figure 1: Spin noise spectra of 55 Mn in bulk sample at BL =10.5 mt, before subtraction of the zero-frequency line. a, Contour plot of the spin noise spectra calculated with Eq. (2) for

More information

复习题. 2 Calculate the intensity of magnetic field in the air gap of the magnetic circuit shown in the figure. Use the values N=200,

复习题. 2 Calculate the intensity of magnetic field in the air gap of the magnetic circuit shown in the figure. Use the values N=200, 复习题 1 Calculate the magnetic moment of a sphere of radius R made from a magnetic material with magnetic susceptibility, when it is magnetized by an external magnetic field H. How is the value of the moment

More information

Damping of magnetization dynamics

Damping of magnetization dynamics Damping of magnetization dynamics Andrei Kirilyuk! Radboud University, Institute for Molecules and Materials, Nijmegen, The Netherlands 1 2 Landau-Lifshitz equation N Heff energy gain:! torque equation:

More information

The Munich SPRKKR-program package A spin polarised relativistic Korringa-Kohn-Rostoker code for calculating solid state properties

The Munich SPRKKR-program package A spin polarised relativistic Korringa-Kohn-Rostoker code for calculating solid state properties The Munich SPRKKR-program package A spin polarised relativistic Korringa-Kohn-Rostoker code for calculating solid state properties Ján Minár H. Ebert, M. Battocletti, D. Benea, S. Bornemann, J. Braun,

More information

Influence of ferromagnetic antiferromagnetic coupling on the antiferromagnetic ordering temperature in Ni/Fe x Mn 1 x bilayers

Influence of ferromagnetic antiferromagnetic coupling on the antiferromagnetic ordering temperature in Ni/Fe x Mn 1 x bilayers Influence of ferromagnetic antiferromagnetic coupling on the antiferromagnetic ordering temperature in Ni/Fe x Mn 1 x bilayers M. Stampe, P. Stoll, T. Homberg, K. Lenz, and W. Kuch Institut für Experimentalphysik,

More information

Spectroscopies for Unoccupied States = Electrons

Spectroscopies for Unoccupied States = Electrons Spectroscopies for Unoccupied States = Electrons Photoemission 1 Hole Inverse Photoemission 1 Electron Tunneling Spectroscopy 1 Electron/Hole Emission 1 Hole Absorption Will be discussed with core levels

More information

Matter-Radiation Interaction

Matter-Radiation Interaction Matter-Radiation Interaction The purpose: 1) To give a description of the process of interaction in terms of the electronic structure of the system (atoms, molecules, solids, liquid or amorphous samples).

More information

Magnetic Materials. The inductor Φ B = LI (Q = CV) = L I = N Φ. Power = VI = LI. Energy = Power dt = LIdI = 1 LI 2 = 1 NΦ B capacitor CV 2

Magnetic Materials. The inductor Φ B = LI (Q = CV) = L I = N Φ. Power = VI = LI. Energy = Power dt = LIdI = 1 LI 2 = 1 NΦ B capacitor CV 2 Magnetic Materials The inductor Φ B = LI (Q = CV) Φ B 1 B = L I E = (CGS) t t c t EdS = 1 ( BdS )= 1 Φ V EMF = N Φ B = L I t t c t B c t I V Φ B magnetic flux density V = L (recall I = C for the capacitor)

More information

Temperature-dependence of magnetism of free Fe clusters

Temperature-dependence of magnetism of free Fe clusters Temperature-dependence of magnetism of free Fe clusters O. Šipr 1, S. Bornemann 2, J. Minár 2, S. Polesya 2, H. Ebert 2 1 Institute of Physics, Academy of Sciences CR, Prague, Czech Republic 2 Universität

More information

Magnetism of TbPc 2 SMMs on ferromagnetic electrodes used in organic spintronics

Magnetism of TbPc 2 SMMs on ferromagnetic electrodes used in organic spintronics Electronic supplementary information Magnetism of TbPc 2 SMMs on ferromagnetic electrodes used in organic spintronics L. Malavolti, a L. Poggini, a L. Margheriti, a D. Chiappe, b P. Graziosi, c B. Cortigiani,

More information

General introduction to XAS

General introduction to XAS General introduction to XAS Júlio Criginski Cezar LNLS - Laboratório Nacional de Luz Síncrotron CNPEM - Centro Nacional de Pesquisa em Energia e Materiais julio.cezar@lnls.br 5 th School on X-ray Spectroscopy

More information

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER Driving forces in the nano-magnetism world Intra-atomic exchange, electron correlation effects: LOCAL (ATOMIC) MAGNETIC MOMENTS m d or f electrons Inter-atomic exchange: MAGNETIC ORDER H exc J S S i j

More information

Angle-Resolved Two-Photon Photoemission of Mott Insulator

Angle-Resolved Two-Photon Photoemission of Mott Insulator Angle-Resolved Two-Photon Photoemission of Mott Insulator Takami Tohyama Institute for Materials Research (IMR) Tohoku University, Sendai Collaborators IMR: H. Onodera, K. Tsutsui, S. Maekawa H. Onodera

More information

First principle calculations of plutonium and plutonium compounds: part 1

First principle calculations of plutonium and plutonium compounds: part 1 First principle calculations of plutonium and plutonium compounds: part 1 A. B. Shick Institute of Physics ASCR, Prague, CZ Outline: u Lecture 1: Methods of Correlated band theory DFT and DFT+U u Lecture

More information

Influence of ferromagnetic-antiferromagnetic coupling on the antiferromagnetic ordering temperature in NiÕFe x Mn 1 x bilayers

Influence of ferromagnetic-antiferromagnetic coupling on the antiferromagnetic ordering temperature in NiÕFe x Mn 1 x bilayers PHYSICAL REVIEW B 81, 1442 21 Influence of ferromagnetic-antiferromagnetic coupling on the antiferromagnetic ordering temperature in NiÕFe x Mn 1 x bilayers M. Stampe,* P. Stoll, T. Homberg, K. Lenz, and

More information

Magnetic X-rays versus Neutrons

Magnetic X-rays versus Neutrons Magnetic X-rays versus Neutrons what can we learn from scattering experiments when studying magnetism? which probe to use to solve a given problem? neutrons or synchrotron x-rays? problems to be solved

More information

Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder

Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder Krzysztof Byczuk Institute of Physics, Augsburg University Institute of Theoretical Physics, Warsaw University October

More information

Core-Level spectroscopy. Experiments and first-principles calculations. Tomoyuki Yamamoto. Waseda University, Japan

Core-Level spectroscopy. Experiments and first-principles calculations. Tomoyuki Yamamoto. Waseda University, Japan Core-Level spectroscopy Experiments and first-principles calculations Tomoyuki Yamamoto Waseda University, Japan 22 nd WIEN2k workshop Jun. 26 th, 2015@Singapore Outline What is core-level spectroscopy

More information

Introduction to spin and spin-dependent phenomenon

Introduction to spin and spin-dependent phenomenon Introduction to spin and spin-dependent phenomenon Institut für Theoretische Physik Freie Universität Berlin, Germany and Fritz Haber Institute of the Max Planck Society, Berlin, Germany. May 16th, 2007

More information

Nanomagnetism Part III Atomic-scale properties

Nanomagnetism Part III Atomic-scale properties Nanomagnetism Part III Atomic-scale properties Olivier Fruchart Institut Néel (CNRS-UJF-INPG) Grenoble - France http://neel.cnrs.fr SKETCH OF THE LECTURES Part I Magnetization reversal Part II Techniques

More information

Spin pumping in magnetic trilayer structures with an MgO barrier Supplementary Information.

Spin pumping in magnetic trilayer structures with an MgO barrier Supplementary Information. Spin pumping in magnetic trilayer structures with an MgO barrier Supplementary Information. A. A. Baker, 1, 2 A. I. Figueroa, 2 D. Pingstone, 3 V. K. Lazarov, 3 G. van der Laan, 2 and 1, a) T. Hesjedal

More information

Concepts in Surface Physics

Concepts in Surface Physics M.-C. Desjonqueres D. Spanjaard Concepts in Surface Physics Second Edition With 257 Figures Springer 1. Introduction................................. 1 2. Thermodynamical and Statistical Properties of

More information

PHOTOELECTRON SPECTROSCOPY PROBLEMS:

PHOTOELECTRON SPECTROSCOPY PROBLEMS: PHOTOELECTRON SPECTROSCOPY PROBLEMS: 1. A hydrogen atom in its ground state is irradiated with 80 nm radiation. What is the kinetic energy (in ev) of the ejected photoelectron? Useful formulae: ν = c/λ

More information

In order to determine the energy level alignment of the interface between cobalt and

In order to determine the energy level alignment of the interface between cobalt and SUPPLEMENTARY INFORMATION Energy level alignment of the CuPc/Co interface In order to determine the energy level alignment of the interface between cobalt and CuPc, we have performed one-photon photoemission

More information

Hidden Interfaces and High-Temperature Magnetism in Intrinsic Topological Insulator - Ferromagnetic Insulator Heterostructures

Hidden Interfaces and High-Temperature Magnetism in Intrinsic Topological Insulator - Ferromagnetic Insulator Heterostructures Hidden Interfaces and High-Temperature Magnetism in Intrinsic Topological Insulator - Ferromagnetic Insulator Heterostructures Valeria Lauter Quantum Condensed Matter Division, Oak Ridge National Laboratory,

More information

Exchange bias in core/shell magnetic nanoparticles: experimental results and numerical simulations

Exchange bias in core/shell magnetic nanoparticles: experimental results and numerical simulations Exchange bias in core/shell magnetic nanoparticles: experimental results and numerical simulations Xavier Batlle, A. Labarta, Ò. Iglesias, M. García del Muro and M. Kovylina Goup of Magnetic Nanomaterials

More information

Mn in GaAs: from a single impurity to ferromagnetic layers

Mn in GaAs: from a single impurity to ferromagnetic layers Mn in GaAs: from a single impurity to ferromagnetic layers Paul Koenraad Department of Applied Physics Eindhoven University of Technology Materials D e v i c e s S y s t e m s COBRA Inter-University Research

More information