PARTIAL DIFFERENTIAL EQUATIONS (MATH417) SOLUTIONS FOR THE FINAL EXAM

Size: px
Start display at page:

Download "PARTIAL DIFFERENTIAL EQUATIONS (MATH417) SOLUTIONS FOR THE FINAL EXAM"

Transcription

1 PARTIAL DIFFERENTIAL EQUATIONS (MATH417) SOLUTIONS FOR THE FINAL EXAM Problem 1 (1 pts.) Classify each equation as linear homogeneous, linear inhomogeneous, or nonlinear: a) u = u x + x 3 b) u + u c) u x + u y = u 4 u y 4 x = 3u d) u x y = e x y Solution: (a) is a linear inhomogeneous equation; (b) is a linear homogeneous equation; (c) is a nonlinear (because of the right-hand side) equation; (d) is a linear inhomogeneous equation. Problem ( pts.) Let f(x) = x. (1) Find the Fourier series (complex form) of f(x) on the interval ( π, π). () Rewrite the Fourier series in the real form. (3) Sketch the function to which the Fourier series converges. (4) Use Parseval s equality to evaluate n=1 n 4. Solution: (1) The required series is f(x) n Z c ne inπx/l with c n = 1 π π π f(x)e inx dx. If n =, then c = 1 π x dx = 1 x 3 π π π 3 π π = π 3. If n, we can integrate by parts twice to get c n = ( 1)n n. We can also use the given formula x e iax dx = ( x ia + x a + i a 3 )eiax + c, a. According to this integral, c n = 1 π Thus π π x e inx dx = 1 π ( x in +x n i n 3 )e inx π π = 1 x π n e inx π π = e inπ + e inπ n. x π 3 + n,n Z 1 ( 1) n n e inx

2 SOLUTION FOR FINAL y x - Pi -Pi Pi Pi Figure 1. () Rewrite it in the real form, π 3 + Thus n,n Z ( 1) n n e inx = π 3 + ( 1) n n x π 3 + 4( 1) n n cos(nx). (e inx +e inx ) = π 3 + 4( 1) n n cos(nx) (3) Sketch the function to which the Fourier series converges. The series converges to the π-periodic function that coincides with f(x) for π < x < π. The sum is continuous and piecewise smooth hence the convergence is uniform. see Figure 1. (4) Use Parseval s equality to evaluate n=1 n 4. Recall that f(x) n Z c n e inx, c n = 1 π π π f(x)e inx dx Now Thus 1 π f dx = c n π π n Z 1 π f dx = 1 x 5 π π π 5 π π = π4 5, n Z c n = ( π 3 ) + ( ( 1)n n ) π 4 5 = π n 4

3 SOLUTION FOR FINAL 3 It follows that 1 n 4 = 1 8 (π4 5 π4 9 ) = π4 9. Problem 3 (4 pts.) a) By the method of your choice, solve the wave equation on the half-line u = u x < x <, < t <, u x b) Solve the problem (, t) = < t <, u(x, ) = x e x, u (x, ) =, < x <. u = u u x x < x <, < t <, (, t) = t < t <, u(x, ) = x e x, u (x, ) =, < x <. a) D Alembert s method: We use method of characteristic to give the solution here i)let f be the even extension of the function x e x (x > ), i.e. f(x) = x e x. Then we consider instead the problem on real line. ii) We know the general solution can be given by IC gives us that which means that we can set iii) thus we can know that u(x, t) = F (x t) + G(x + t). F (x) + G(x) = f(x), G (x) F (x) =, F (x) = f(x), G(x) = f(x). f(x + t) + f(x t) u(x, t) = = 1 [(x + t) e x+t + (x t) e x t ]. Fourier s method. In view of the BC, we use Fourier cosine transform to solve it. Recall that Then C[f](ω) = π f(x) cos ωxdx, f(x) = C[ df dx ] = f() + ωs[f], π S[ df dx ] = ωc[f]. C[f](ω) cos ωxdω. C[ d f dx ] = df df () + ωs[ π dx dx ] = df π dx () ω C[f].

4 4 SOLUTION FOR FINAL Apply these formula to the PDE, we get C[u](ω, t) = du π dx (, t)) ω C[u](ω, t) = ω C[u](ω, t). The ODE has general solution for ω, C[u](ω, t) = a(ω) cos ωt + b(ω) sin ωt. We also have the IC C[u](ω, t) C[u](ω, ) = C[f](ω), =. Thus the general solution to this ODE in t for fixed ω > is given by then Recall C[u](ω, t) = C[f](ω) cos ωt. cos ωt cos xω = cos(x t)ω + cos(x + t)ω = cos x t ω + cos x + t ω, u(x, t) = C 1 [C[u]](x, t) = C[f](ω) cos ωt cos xωdω = 1 [ C[f](ω) cos x t ωdω + = 1 [f( x t ) + f( x + t )] = 1 [(x + t) e x+t + (x t) e x t ]. C[f](ω) cos x + t ωdω] b) D Alembert s method: We use method of characteristic to give the solution. Let f(x) = x e x, x > i) We know the general solution can be given by IC gives us that which means that we can set u(x, t) = F (x t) + G(x + t). F (x) + G(x) = f(x), x > G (x) F (x) =, x > F (x) = G(x) = f(x) = x e x, x >. iii) To solve the problem, we still need to know F for negative variables, which comes from the BC. By BC, we see that then for x <, F ( t) + G (t) = t, t > F (x) = x G ( x), F (x) = c x + G( x)

5 SOLUTION FOR FINAL 5 we would like to have F continuous at, which gives c = G( ) = G() =. Thus we can know that { x F (x) = e x x > x (ex 1) x < u(x, t) = { F (x t) + G(x + t) = 1 [(x + t) e x+t + (x t) e x t ] x t (x t) (e x t 1) + (x+t) e x t x < t Problem 4 (3 pts+5 bonus) Consider the regular Sturm-Liouville eigenvalue problem d dx (p(x)du ) + q(x)u + λσ(x)u =. dx We try to find the solution of form u(x) = A(x)e iλ1/ ϕ(x) for λ 1 with ϕ >. a)[1 pts] substitute to the DE, we may get [λb (x) + iλ 1/ B 1 (x) + B (x)]e iλ1/ϕ = determine B i (x). b)[5 pts] By letting B = B 1 =, solve for A = A (x) and ϕ. This will give the first approximation of the eigenfunction. c)[5 pts] In general, we can not have B = for the choice in ). Note that we have B = independent of A, the DE for A is iλ 1/ B 1 (x) + B (x) =. Instead, let A(x) = A (x) + λ 1/ A 1 (x) + λ 1 A (x) +. Comparing the coefficients of powers of λ, we can solve for A n (x). Use the described method to solve for A 1 in terms of A (together with p, q, σ). d)[1 pts] Consider the particular case p = q = σ = 1, u() = u x (π) =. By using the Rayleigh quotient, give an upper bound for λ 1, the smallest eigenvalue. e) (Bonus 5points) What is the precise value of λ 1? Solution: a) since u(x) = A(x)e iλ1/ ϕ(x), we have u (x) = A e iλ1/ϕ + iλ 1/ ϕ Ae iλ1/ ϕ u (x) = A e iλ1/ϕ + iλ 1/ ϕ A e iλ1/ϕ + iλ 1/ (ϕ A) e iλ1/ϕ λ(ϕ ) Ae iλ1/ ϕ Substitute in the equation we get d dx (p(x)du dx ) + q(x)u + λσ(x)u = pu + p u + qu + λσu =. λ(σ p(ϕ ) )Ae iλ1/ϕ +iλ 1/ [p(ϕ A +(ϕ A) )+p ϕ A]e iλ1/ϕ +(pa +p A +qa)e iλ1/ϕ = We see that B (x) = (σ p(ϕ ) )A B 1 (x) = p(ϕ A + (ϕ A) ) + p ϕ A = A pϕ + A(pϕ ) B (x) = pa + p A + qa b) B = tells us that x ϕ = (σ/p) 1/ ϕ(x) = (σ(t)/p(t)) 1/ dt

6 6 SOLUTION FOR FINAL B 1 = tells us that A A = 1 (pϕ ) pϕ A = c(pϕ ) 1/ = c(σp) 1/4 c) Fix the choice of ϕ, we want to have iλ 1/ B 1 (A) + B (A) =. Let A(x) = A (x) + λ 1/ A 1 (x) + O(λ 1 ), we have that is iλ 1/ B 1 (A ) + B (A ) + λ 1/ (iλ 1/ B 1 (A 1 ) + B (A 1 )) + O(λ 1 λ 1/ ) =, Let λ, we see that we must have B (A ) + ib 1 (A 1 ) = O(λ 1/ ) B (A ) + ib 1 (A 1 ) = i[a 1pϕ + 1 A 1(pϕ ) ] + pa + p A + qa = Integrating factor (pϕ ) 1/, we see Recall pϕ = (σp) 1/, [(pϕ ) 1/ A 1 ] = i (pϕ ) 1/ [qa + (pa ) ] A 1 = i (σp) 1/4 x (σp) 1/4 [qa + (pa ) ]dt d) RQ[u] = puu π + π [pu qu π ]dx π = [u u ]dx π u σdx u dx Based on the BCs u() = u x (π) =, we choose a trial function (without interior zeros) { x < x < π/ u(x) = π/ π/ < x < π then π/ dx π λ 1 RQ[u] = u dx π/ π = u dx π/ x dx + π/(π/) 1 = 3 π 1 e) In this case, the SL eigenvalue problem becomes d u dx + u + λu = which is just the standard problem with (p, q, σ) = (1,, 1) with eigenvalue λ + 1 d u + (λ + 1)u = dx For this problem, we know that λ + 1 >. u() = tells us that u(x) = sin(kx) u (π) = tells us that the first eigenfunction corresponding to k = 1. That is u 1 (x) = sin x/

7 SOLUTION FOR FINAL 7 and λ = (1/) λ 1 = 3/4

Math Fall 2006 Sample problems for the final exam: Solutions

Math Fall 2006 Sample problems for the final exam: Solutions Mth 42-5 Fll 26 Smple problems for the finl exm: Solutions Any problem my be ltered or replced by different one! Some possibly useful informtion Prsevl s equlity for the complex form of the Fourier series

More information

Preparation for the Final

Preparation for the Final Preparation for the Final Basic Set of Problems that you should be able to do: - all problems on your tests (- 3 and their samples) - ex tra practice problems in this documents. The final will be a mix

More information

Final Examination Linear Partial Differential Equations. Matthew J. Hancock. Feb. 3, 2006

Final Examination Linear Partial Differential Equations. Matthew J. Hancock. Feb. 3, 2006 Final Examination 8.303 Linear Partial ifferential Equations Matthew J. Hancock Feb. 3, 006 Total points: 00 Rules [requires student signature!]. I will use only pencils, pens, erasers, and straight edges

More information

MATH-UA 263 Partial Differential Equations Recitation Summary

MATH-UA 263 Partial Differential Equations Recitation Summary MATH-UA 263 Partial Differential Equations Recitation Summary Yuanxun (Bill) Bao Office Hour: Wednesday 2-4pm, WWH 1003 Email: yxb201@nyu.edu 1 February 2, 2018 Topics: verifying solution to a PDE, dispersion

More information

Final: Solutions Math 118A, Fall 2013

Final: Solutions Math 118A, Fall 2013 Final: Solutions Math 118A, Fall 2013 1. [20 pts] For each of the following PDEs for u(x, y), give their order and say if they are nonlinear or linear. If they are linear, say if they are homogeneous or

More information

HW7, Math 322, Fall 2016

HW7, Math 322, Fall 2016 HW7, Math 322, Fall 216 Nasser M. Abbasi November 4, 216 Contents 1 HW 7 2 1.1 Problem 5.6.1 a...................................... 2 1.1.1 part a....................................... 2 1.2 Problem

More information

v(x, 0) = g(x) where g(x) = f(x) U(x). The solution is where b n = 2 g(x) sin(nπx) dx. (c) As t, we have v(x, t) 0 and u(x, t) U(x).

v(x, 0) = g(x) where g(x) = f(x) U(x). The solution is where b n = 2 g(x) sin(nπx) dx. (c) As t, we have v(x, t) 0 and u(x, t) U(x). Problem set 4: Solutions Math 27B, Winter216 1. The following nonhomogeneous IBVP describes heat flow in a rod whose ends are held at temperatures u, u 1 : u t = u xx < x < 1, t > u(, t) = u, u(1, t) =

More information

Ma 221 Final Exam Solutions 5/14/13

Ma 221 Final Exam Solutions 5/14/13 Ma 221 Final Exam Solutions 5/14/13 1. Solve (a) (8 pts) Solution: The equation is separable. dy dx exy y 1 y0 0 y 1e y dy e x dx y 1e y dy e x dx ye y e y dy e x dx ye y e y e y e x c The last step comes

More information

# Points Score Total 100

# Points Score Total 100 Name: PennID: Math 241 Make-Up Final Exam January 19, 2016 Instructions: Turn off and put away your cell phone. Please write your Name and PennID on the top of this page. Please sign and date the pledge

More information

Math 251 December 14, 2005 Answer Key to Final Exam. 1 18pt 2 16pt 3 12pt 4 14pt 5 12pt 6 14pt 7 14pt 8 16pt 9 20pt 10 14pt Total 150pt

Math 251 December 14, 2005 Answer Key to Final Exam. 1 18pt 2 16pt 3 12pt 4 14pt 5 12pt 6 14pt 7 14pt 8 16pt 9 20pt 10 14pt Total 150pt Name Section Math 51 December 14, 5 Answer Key to Final Exam There are 1 questions on this exam. Many of them have multiple parts. The point value of each question is indicated either at the beginning

More information

Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: = 0 : homogeneous equation.

Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: = 0 : homogeneous equation. Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: y y x y2 = 0 : homogeneous equation. x2 v = y dy, y = vx, and x v + x dv dx = v + v2. dx =

More information

Physics 250 Green s functions for ordinary differential equations

Physics 250 Green s functions for ordinary differential equations Physics 25 Green s functions for ordinary differential equations Peter Young November 25, 27 Homogeneous Equations We have already discussed second order linear homogeneous differential equations, which

More information

Math 251 December 14, 2005 Final Exam. 1 18pt 2 16pt 3 12pt 4 14pt 5 12pt 6 14pt 7 14pt 8 16pt 9 20pt 10 14pt Total 150pt

Math 251 December 14, 2005 Final Exam. 1 18pt 2 16pt 3 12pt 4 14pt 5 12pt 6 14pt 7 14pt 8 16pt 9 20pt 10 14pt Total 150pt Math 251 December 14, 2005 Final Exam Name Section There are 10 questions on this exam. Many of them have multiple parts. The point value of each question is indicated either at the beginning of each question

More information

MATH 251 Final Examination August 14, 2015 FORM A. Name: Student Number: Section:

MATH 251 Final Examination August 14, 2015 FORM A. Name: Student Number: Section: MATH 251 Final Examination August 14, 2015 FORM A Name: Student Number: Section: This exam has 11 questions for a total of 150 points. Show all your work! In order to obtain full credit for partial credit

More information

Math 46, Applied Math (Spring 2009): Final

Math 46, Applied Math (Spring 2009): Final Math 46, Applied Math (Spring 2009): Final 3 hours, 80 points total, 9 questions worth varying numbers of points 1. [8 points] Find an approximate solution to the following initial-value problem which

More information

Section Consider the wave equation: ρu tt = T 0 u xx + αu + βu t

Section Consider the wave equation: ρu tt = T 0 u xx + αu + βu t Section 5.3 Exercises, 3, 5, 7, 8 and 9 were assigned, and 7,8 were to turn in. You might also note that 5.3.1 was done in class (it is poorly worded, since it is the ODE that is Sturm-iouville, not a

More information

SAMPLE FINAL EXAM SOLUTIONS

SAMPLE FINAL EXAM SOLUTIONS LAST (family) NAME: FIRST (given) NAME: ID # : MATHEMATICS 3FF3 McMaster University Final Examination Day Class Duration of Examination: 3 hours Dr. J.-P. Gabardo THIS EXAMINATION PAPER INCLUDES 22 PAGES

More information

MATH 425, FINAL EXAM SOLUTIONS

MATH 425, FINAL EXAM SOLUTIONS MATH 425, FINAL EXAM SOLUTIONS Each exercise is worth 50 points. Exercise. a The operator L is defined on smooth functions of (x, y by: Is the operator L linear? Prove your answer. L (u := arctan(xy u

More information

ENGI 9420 Lecture Notes 8 - PDEs Page 8.01

ENGI 9420 Lecture Notes 8 - PDEs Page 8.01 ENGI 940 ecture Notes 8 - PDEs Page 8.0 8. Partial Differential Equations Partial differential equations (PDEs) are equations involving functions of more than one variable and their partial derivatives

More information

ENGI 9420 Lecture Notes 8 - PDEs Page 8.01

ENGI 9420 Lecture Notes 8 - PDEs Page 8.01 ENGI 940 Lecture Notes 8 - PDEs Page 8.01 8. Partial Differential Equations Partial differential equations (PDEs) are equations involving functions of more than one variable and their partial derivatives

More information

Sturm-Liouville operators have form (given p(x) > 0, q(x)) + q(x), (notation means Lf = (pf ) + qf ) dx

Sturm-Liouville operators have form (given p(x) > 0, q(x)) + q(x), (notation means Lf = (pf ) + qf ) dx Sturm-Liouville operators Sturm-Liouville operators have form (given p(x) > 0, q(x)) L = d dx ( p(x) d ) + q(x), (notation means Lf = (pf ) + qf ) dx Sturm-Liouville operators Sturm-Liouville operators

More information

Math 5587 Midterm II Solutions

Math 5587 Midterm II Solutions Math 5587 Midterm II Solutions Prof. Jeff Calder November 3, 2016 Name: Instructions: 1. I recommend looking over the problems first and starting with those you feel most comfortable with. 2. Unless otherwise

More information

Math 4263 Homework Set 1

Math 4263 Homework Set 1 Homework Set 1 1. Solve the following PDE/BVP 2. Solve the following PDE/BVP 2u t + 3u x = 0 u (x, 0) = sin (x) u x + e x u y = 0 u (0, y) = y 2 3. (a) Find the curves γ : t (x (t), y (t)) such that that

More information

Math Assignment 5

Math Assignment 5 Math 2280 - Assignment 5 Dylan Zwick Fall 2013 Section 3.4-1, 5, 18, 21 Section 3.5-1, 11, 23, 28, 35, 47, 56 Section 3.6-1, 2, 9, 17, 24 1 Section 3.4 - Mechanical Vibrations 3.4.1 - Determine the period

More information

Differential equations, comprehensive exam topics and sample questions

Differential equations, comprehensive exam topics and sample questions Differential equations, comprehensive exam topics and sample questions Topics covered ODE s: Chapters -5, 7, from Elementary Differential Equations by Edwards and Penney, 6th edition.. Exact solutions

More information

6 Non-homogeneous Heat Problems

6 Non-homogeneous Heat Problems 6 Non-homogeneous Heat Problems Up to this point all the problems we have considered for the heat or wave equation we what we call homogeneous problems. This means that for an interval < x < l the problems

More information

17 Source Problems for Heat and Wave IB- VPs

17 Source Problems for Heat and Wave IB- VPs 17 Source Problems for Heat and Wave IB- VPs We have mostly dealt with homogeneous equations, homogeneous b.c.s in this course so far. Recall that if we have non-homogeneous b.c.s, then we want to first

More information

Ma 221 Final Exam 18 May 2015

Ma 221 Final Exam 18 May 2015 Ma 221 Final Exam 18 May 2015 Print Name: Lecture Section: Lecturer This exam consists of 7 problems. You are to solve all of these problems. The point value of each problem is indicated. The total number

More information

Lecture Notes for Math 251: ODE and PDE. Lecture 30: 10.1 Two-Point Boundary Value Problems

Lecture Notes for Math 251: ODE and PDE. Lecture 30: 10.1 Two-Point Boundary Value Problems Lecture Notes for Math 251: ODE and PDE. Lecture 30: 10.1 Two-Point Boundary Value Problems Shawn D. Ryan Spring 2012 Last Time: We finished Chapter 9: Nonlinear Differential Equations and Stability. Now

More information

Math 201 Assignment #11

Math 201 Assignment #11 Math 21 Assignment #11 Problem 1 (1.5 2) Find a formal solution to the given initial-boundary value problem. = 2 u x, < x < π, t > 2 u(, t) = u(π, t) =, t > u(x, ) = x 2, < x < π Problem 2 (1.5 5) Find

More information

MAE 200B Homework #3 Solutions University of California, Irvine Winter 2005

MAE 200B Homework #3 Solutions University of California, Irvine Winter 2005 Problem 1 (Haberman 5.3.2): Consider this equation: MAE 200B Homework #3 Solutions University of California, Irvine Winter 2005 a) ρ 2 u t = T 2 u u 2 0 + αu + β x2 t The term αu describes a force that

More information

MATH FALL 2014 HOMEWORK 10 SOLUTIONS

MATH FALL 2014 HOMEWORK 10 SOLUTIONS Problem 1. MATH 241-2 FA 214 HOMEWORK 1 SOUTIONS Note that u E (x) 1 ( x) is an equilibrium distribution for the homogeneous pde that satisfies the given boundary conditions. We therefore want to find

More information

MATH 220: MIDTERM OCTOBER 29, 2015

MATH 220: MIDTERM OCTOBER 29, 2015 MATH 22: MIDTERM OCTOBER 29, 25 This is a closed book, closed notes, no electronic devices exam. There are 5 problems. Solve Problems -3 and one of Problems 4 and 5. Write your solutions to problems and

More information

A proof for the full Fourier series on [ π, π] is given here.

A proof for the full Fourier series on [ π, π] is given here. niform convergence of Fourier series A smooth function on an interval [a, b] may be represented by a full, sine, or cosine Fourier series, and pointwise convergence can be achieved, except possibly at

More information

Chapter 3 Second Order Linear Equations

Chapter 3 Second Order Linear Equations Partial Differential Equations (Math 3303) A Ë@ Õæ Aë áöß @. X. @ 2015-2014 ú GA JË@ É Ë@ Chapter 3 Second Order Linear Equations Second-order partial differential equations for an known function u(x,

More information

ENGI 4430 PDEs - d Alembert Solutions Page 11.01

ENGI 4430 PDEs - d Alembert Solutions Page 11.01 ENGI 4430 PDEs - d Alembert Solutions Page 11.01 11. Partial Differential Equations Partial differential equations (PDEs) are equations involving functions of more than one variable and their partial derivatives

More information

1. Solve the boundary-value problems or else show that no solutions exist. y (x) = c 1 e 2x + c 2 e 3x. (3)

1. Solve the boundary-value problems or else show that no solutions exist. y (x) = c 1 e 2x + c 2 e 3x. (3) Diff. Eqns. Problem Set 6 Solutions. Solve the boundary-value problems or else show that no solutions exist. a y + y 6y, y, y 4 b y + 9y x + e x, y, yπ a Assuming y e rx is a solution, we get the characteristic

More information

Lecture 19: Heat conduction with distributed sources/sinks

Lecture 19: Heat conduction with distributed sources/sinks Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without explicit written permission from the copyright owner. 1 ecture 19: Heat conduction

More information

In this worksheet we will use the eigenfunction expansion to solve nonhomogeneous equation.

In this worksheet we will use the eigenfunction expansion to solve nonhomogeneous equation. Eigen Function Expansion and Applications. In this worksheet we will use the eigenfunction expansion to solve nonhomogeneous equation. a/ The theory. b/ Example: Solving the Euler equation in two ways.

More information

PARTIAL DIFFERENTIAL EQUATIONS. Lecturer: D.M.A. Stuart MT 2007

PARTIAL DIFFERENTIAL EQUATIONS. Lecturer: D.M.A. Stuart MT 2007 PARTIAL DIFFERENTIAL EQUATIONS Lecturer: D.M.A. Stuart MT 2007 In addition to the sets of lecture notes written by previous lecturers ([1, 2]) the books [4, 7] are very good for the PDE topics in the course.

More information

Math 337, Summer 2010 Assignment 5

Math 337, Summer 2010 Assignment 5 Math 337, Summer Assignment 5 Dr. T Hillen, University of Alberta Exercise.. Consider Laplace s equation r r r u + u r r θ = in a semi-circular disk of radius a centered at the origin with boundary conditions

More information

Method of Separation of Variables

Method of Separation of Variables MODUE 5: HEAT EQUATION 11 ecture 3 Method of Separation of Variables Separation of variables is one of the oldest technique for solving initial-boundary value problems (IBVP) and applies to problems, where

More information

Existence Theory: Green s Functions

Existence Theory: Green s Functions Chapter 5 Existence Theory: Green s Functions In this chapter we describe a method for constructing a Green s Function The method outlined is formal (not rigorous) When we find a solution to a PDE by constructing

More information

Math 424 Midterm. π t if t π. ( sin(πλ/2) (λ/2) = 1 2π. ( sin π(λ + α) (λ + α) if t 2π g α (t) = 0 if t > 2π. 2 e. f (t)e iλt dt

Math 424 Midterm. π t if t π. ( sin(πλ/2) (λ/2) = 1 2π. ( sin π(λ + α) (λ + α) if t 2π g α (t) = 0 if t > 2π. 2 e. f (t)e iλt dt Math 424 Midterm Instructions: You may use your textbook and notes, but should not use other texts or consult anyone except me about material on this exam. In solving any question or part of a question,

More information

Partial Differential Equations for Engineering Math 312, Fall 2012

Partial Differential Equations for Engineering Math 312, Fall 2012 Partial Differential Equations for Engineering Math 312, Fall 2012 Jens Lorenz July 17, 2012 Contents Department of Mathematics and Statistics, UNM, Albuquerque, NM 87131 1 Second Order ODEs with Constant

More information

The Fourier series for a 2π-periodic function

The Fourier series for a 2π-periodic function The Fourier series for a 2π-periodic function Let f : ( π, π] R be a bounded piecewise continuous function which we continue to be a 2π-periodic function defined on R, i.e. f (x + 2π) = f (x), x R. The

More information

Mathematical Modeling using Partial Differential Equations (PDE s)

Mathematical Modeling using Partial Differential Equations (PDE s) Mathematical Modeling using Partial Differential Equations (PDE s) 145. Physical Models: heat conduction, vibration. 146. Mathematical Models: why build them. The solution to the mathematical model will

More information

Part A 5 shorter problems, 8 points each.

Part A 5 shorter problems, 8 points each. Math 425 Final Exam Jerry L. Kazdan May 7, 2015 9:00 11:00 Directions This exam has two parts. Part A has 5 shorter problems (8 points each, so 40 points), while Part B has 5 traditional problems (15 points

More information

Test #2 Math 2250 Summer 2003

Test #2 Math 2250 Summer 2003 Test #2 Math 225 Summer 23 Name: Score: There are six problems on the front and back of the pages. Each subpart is worth 5 points. Show all of your work where appropriate for full credit. ) Show the following

More information

Computer Problems for Fourier Series and Transforms

Computer Problems for Fourier Series and Transforms Computer Problems for Fourier Series and Transforms 1. Square waves are frequently used in electronics and signal processing. An example is shown below. 1 π < x < 0 1 0 < x < π y(x) = 1 π < x < 2π... and

More information

Math 46, Applied Math (Spring 2008): Final

Math 46, Applied Math (Spring 2008): Final Math 46, Applied Math (Spring 2008): Final 3 hours, 80 points total, 9 questions, roughly in syllabus order (apart from short answers) 1. [16 points. Note part c, worth 7 points, is independent of the

More information

Examples of the Fourier Theorem (Sect. 10.3). The Fourier Theorem: Continuous case.

Examples of the Fourier Theorem (Sect. 10.3). The Fourier Theorem: Continuous case. s of the Fourier Theorem (Sect. 1.3. The Fourier Theorem: Continuous case. : Using the Fourier Theorem. The Fourier Theorem: Piecewise continuous case. : Using the Fourier Theorem. The Fourier Theorem:

More information

Math 2Z03 - Tutorial # 6. Oct. 26th, 27th, 28th, 2015

Math 2Z03 - Tutorial # 6. Oct. 26th, 27th, 28th, 2015 Math 2Z03 - Tutorial # 6 Oct. 26th, 27th, 28th, 2015 Tutorial Info: Tutorial Website: http://ms.mcmaster.ca/ dedieula/2z03.html Office Hours: Mondays 3pm - 5pm (in the Math Help Centre) Tutorial #6: 3.4

More information

Welcome to Math 257/316 - Partial Differential Equations

Welcome to Math 257/316 - Partial Differential Equations Welcome to Math 257/316 - Partial Differential Equations Instructor: Mona Rahmani email: mrahmani@math.ubc.ca Office: Mathematics Building 110 Office hours: Mondays 2-3 pm, Wednesdays and Fridays 1-2 pm.

More information

Periodic functions: simple harmonic oscillator

Periodic functions: simple harmonic oscillator Periodic functions: simple harmonic oscillator Recall the simple harmonic oscillator (e.g. mass-spring system) d 2 y dt 2 + ω2 0y = 0 Solution can be written in various ways: y(t) = Ae iω 0t y(t) = A cos

More information

The particular integral :

The particular integral : Second order linear equation with constant coefficients The particular integral : d f df Lf = a + a + af = h( x) Solutions with combinations of driving functions d f df Lf = a + a + af = h( x) + h( x)

More information

Part A 5 Shorter Problems, 8 points each.

Part A 5 Shorter Problems, 8 points each. Math 241 Final Exam Jerry L. Kazdan May 11, 2015 12:00 2:00 Directions This exam has two parts. Part A has 5 shorter question (8 points each so total 40 points), Part B has 5 traditional problems (15 points

More information

UNIVERSITY OF SOUTHAMPTON. A foreign language dictionary (paper version) is permitted provided it contains no notes, additions or annotations.

UNIVERSITY OF SOUTHAMPTON. A foreign language dictionary (paper version) is permitted provided it contains no notes, additions or annotations. UNIVERSITY OF SOUTHAMPTON MATH055W SEMESTER EXAMINATION 03/4 MATHEMATICS FOR ELECTRONIC & ELECTRICAL ENGINEERING Duration: 0 min Solutions Only University approved calculators may be used. A foreign language

More information

MAGIC058 & MATH64062: Partial Differential Equations 1

MAGIC058 & MATH64062: Partial Differential Equations 1 MAGIC58 & MATH6462: Partial Differential Equations Section 6 Fourier transforms 6. The Fourier integral formula We have seen from section 4 that, if a function f(x) satisfies the Dirichlet conditions,

More information

Math 5440 Problem Set 6 Solutions

Math 5440 Problem Set 6 Solutions Math 544 Math 544 Problem Set 6 Solutions Aaron Fogelson Fall, 5 : (Logan,.6 # ) Solve the following problem using Laplace transforms. u tt c u xx g, x >, t >, u(, t), t >, u(x, ), u t (x, ), x >. The

More information

LECTURE 33: NONHOMOGENEOUS HEAT CONDUCTION PROBLEM

LECTURE 33: NONHOMOGENEOUS HEAT CONDUCTION PROBLEM LECTURE 33: NONHOMOGENEOUS HEAT CONDUCTION PROBLEM 1. General Solving Procedure The general nonhomogeneous 1-dimensional heat conduction problem takes the form Eq : [p(x)u x ] x q(x)u + F (x, t) = r(x)u

More information

The second-order 1D wave equation

The second-order 1D wave equation C The second-order D wave equation C. Homogeneous wave equation with constant speed The simplest form of the second-order wave equation is given by: x 2 = Like the first-order wave equation, it responds

More information

a k cos kω 0 t + b k sin kω 0 t (1) k=1

a k cos kω 0 t + b k sin kω 0 t (1) k=1 MOAC worksheet Fourier series, Fourier transform, & Sampling Working through the following exercises you will glean a quick overview/review of a few essential ideas that you will need in the moac course.

More information

MATH 251 Final Examination August 10, 2011 FORM A. Name: Student Number: Section:

MATH 251 Final Examination August 10, 2011 FORM A. Name: Student Number: Section: MATH 251 Final Examination August 10, 2011 FORM A Name: Student Number: Section: This exam has 10 questions for a total of 150 points. In order to obtain full credit for partial credit problems, all work

More information

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK. Summer Examination 2009.

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK. Summer Examination 2009. OLLSCOIL NA héireann, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK Summer Examination 2009 First Engineering MA008 Calculus and Linear Algebra

More information

Name: Math Homework Set # 5. March 12, 2010

Name: Math Homework Set # 5. March 12, 2010 Name: Math 4567. Homework Set # 5 March 12, 2010 Chapter 3 (page 79, problems 1,2), (page 82, problems 1,2), (page 86, problems 2,3), Chapter 4 (page 93, problems 2,3), (page 98, problems 1,2), (page 102,

More information

PARTIAL DIFFERENTIAL EQUATIONS

PARTIAL DIFFERENTIAL EQUATIONS PARTIAL DIFFERENTIAL EQUATIONS Lecturer: P.A. Markowich bgmt2008 http://www.damtp.cam.ac.uk/group/apde/teaching/pde_partii.html In addition to the sets of lecture notes written by previous lecturers ([1],[2])

More information

Lecture IX. Definition 1 A non-singular Sturm 1 -Liouville 2 problem consists of a second order linear differential equation of the form.

Lecture IX. Definition 1 A non-singular Sturm 1 -Liouville 2 problem consists of a second order linear differential equation of the form. Lecture IX Abstract When solving PDEs it is often necessary to represent the solution in terms of a series of orthogonal functions. One way to obtain an orthogonal family of functions is by solving a particular

More information

Fourier transforms. R. C. Daileda. Partial Differential Equations April 17, Trinity University

Fourier transforms. R. C. Daileda. Partial Differential Equations April 17, Trinity University The Fourier Transform R. C. Trinity University Partial Differential Equations April 17, 214 The Fourier series representation For periodic functions Recall: If f is a 2p-periodic (piecewise smooth) function,

More information

Boundary-value Problems in Rectangular Coordinates

Boundary-value Problems in Rectangular Coordinates Boundary-value Problems in Rectangular Coordinates 2009 Outline Separation of Variables: Heat Equation on a Slab Separation of Variables: Vibrating String Separation of Variables: Laplace Equation Review

More information

Ma 221 Eigenvalues and Fourier Series

Ma 221 Eigenvalues and Fourier Series Ma Eigenvalues and Fourier Series Eigenvalue and Eigenfunction Examples Example Find the eigenvalues and eigenfunctions for y y 47 y y y5 Solution: The characteristic equation is r r 47 so r 44 447 6 Thus

More information

Partial differential equations (ACM30220)

Partial differential equations (ACM30220) (ACM3. A pot on a stove has a handle of length that can be modelled as a rod with diffusion constant D. The equation for the temperature in the rod is u t Du xx < x

More information

Problem set 3: Solutions Math 207B, Winter Suppose that u(x) is a non-zero solution of the eigenvalue problem. (u ) 2 dx, u 2 dx.

Problem set 3: Solutions Math 207B, Winter Suppose that u(x) is a non-zero solution of the eigenvalue problem. (u ) 2 dx, u 2 dx. Problem set 3: Solutions Math 27B, Winter 216 1. Suppose that u(x) is a non-zero solution of the eigenvalue problem u = λu < x < 1, u() =, u(1) =. Show that λ = (u ) 2 dx u2 dx. Deduce that every eigenvalue

More information

MATH 412 Fourier Series and PDE- Spring 2010 SOLUTIONS to HOMEWORK 5

MATH 412 Fourier Series and PDE- Spring 2010 SOLUTIONS to HOMEWORK 5 MATH 4 Fourier Series PDE- Spring SOLUTIONS to HOMEWORK 5 Problem (a: Solve the following Sturm-Liouville problem { (xu + λ x u = < x < e u( = u (e = (b: Show directly that the eigenfunctions are orthogonal

More information

Math 5440 Problem Set 7 Solutions

Math 5440 Problem Set 7 Solutions Math 544 Math 544 Problem Set 7 Solutions Aaron Fogelson Fall, 13 1: (Logan, 3. # 1) Verify that the set of functions {1, cos(x), cos(x),...} form an orthogonal set on the interval [, π]. Next verify that

More information

UNIVERSITY OF MANITOBA

UNIVERSITY OF MANITOBA Question Points Score INSTRUCTIONS TO STUDENTS: This is a 6 hour examination. No extra time will be given. No texts, notes, or other aids are permitted. There are no calculators, cellphones or electronic

More information

The 1-D Heat Equation

The 1-D Heat Equation The 1-D Heat Equation 18.303 Linear Partial Differential Equations Matthew J. Hancock Fall 005 1 The 1-D Heat Equation 1.1 Physical derivation Reference: Haberman 1.1-1.3 [Sept. 7, 005] In a metal rod

More information

Fourier Series. Fourier Transform

Fourier Series. Fourier Transform Math Methods I Lia Vas Fourier Series. Fourier ransform Fourier Series. Recall that a function differentiable any number of times at x = a can be represented as a power series n= a n (x a) n where the

More information

Power series solutions for 2nd order linear ODE s (not necessarily with constant coefficients) a n z n. n=0

Power series solutions for 2nd order linear ODE s (not necessarily with constant coefficients) a n z n. n=0 Lecture 22 Power series solutions for 2nd order linear ODE s (not necessarily with constant coefficients) Recall a few facts about power series: a n z n This series in z is centered at z 0. Here z can

More information

Math 180, Exam 2, Practice Fall 2009 Problem 1 Solution. f(x) = arcsin(2x + 1) = sin 1 (3x + 1), lnx

Math 180, Exam 2, Practice Fall 2009 Problem 1 Solution. f(x) = arcsin(2x + 1) = sin 1 (3x + 1), lnx Math 80, Exam, Practice Fall 009 Problem Solution. Differentiate the functions: (do not simplify) f(x) = x ln(x + ), f(x) = xe x f(x) = arcsin(x + ) = sin (3x + ), f(x) = e3x lnx Solution: For the first

More information

California State University Northridge MATH 280: Applied Differential Equations Midterm Exam 1

California State University Northridge MATH 280: Applied Differential Equations Midterm Exam 1 California State University Northridge MATH 280: Applied Differential Equations Midterm Exam 1 October 9, 2013. Duration: 75 Minutes. Instructor: Jing Li Student Name: Student number: Take your time to

More information

THE UNIVERSITY OF WESTERN ONTARIO. Applied Mathematics 375a Instructor: Matt Davison. Final Examination December 14, :00 12:00 a.m.

THE UNIVERSITY OF WESTERN ONTARIO. Applied Mathematics 375a Instructor: Matt Davison. Final Examination December 14, :00 12:00 a.m. THE UNIVERSITY OF WESTERN ONTARIO London Ontario Applied Mathematics 375a Instructor: Matt Davison Final Examination December 4, 22 9: 2: a.m. 3 HOURS Name: Stu. #: Notes: ) There are 8 question worth

More information

Math 122L. Additional Homework Problems. Prepared by Sarah Schott

Math 122L. Additional Homework Problems. Prepared by Sarah Schott Math 22L Additional Homework Problems Prepared by Sarah Schott Contents Review of AP AB Differentiation Topics 4 L Hopital s Rule and Relative Rates of Growth 6 Riemann Sums 7 Definition of the Definite

More information

Math 54: Mock Final. December 11, y y 2y = cos(x) sin(2x). The auxiliary equation for the corresponding homogeneous problem is

Math 54: Mock Final. December 11, y y 2y = cos(x) sin(2x). The auxiliary equation for the corresponding homogeneous problem is Name: Solutions Math 54: Mock Final December, 25 Find the general solution of y y 2y = cos(x) sin(2x) The auxiliary equation for the corresponding homogeneous problem is r 2 r 2 = (r 2)(r + ) = r = 2,

More information

sech(ax) = 1 ch(x) = 2 e x + e x (10) cos(a) cos(b) = 2 sin( 1 2 (a + b)) sin( 1 2

sech(ax) = 1 ch(x) = 2 e x + e x (10) cos(a) cos(b) = 2 sin( 1 2 (a + b)) sin( 1 2 Math 60 43 6 Fourier transform Here are some formulae that you may want to use: F(f)(ω) def = f(x)e iωx dx, F (f)(x) = f(ω)e iωx dω, (3) F(f g) = F(f)F(g), (4) F(e α x ) = α π ω + α, F( α x + α )(ω) =

More information

Math 2142 Homework 5 Part 1 Solutions

Math 2142 Homework 5 Part 1 Solutions Math 2142 Homework 5 Part 1 Solutions Problem 1. For the following homogeneous second order differential equations, give the general solution and the particular solution satisfying the given initial conditions.

More information

MATH 819 FALL We considered solutions of this equation on the domain Ū, where

MATH 819 FALL We considered solutions of this equation on the domain Ū, where MATH 89 FALL. The D linear wave equation weak solutions We have considered the initial value problem for the wave equation in one space dimension: (a) (b) (c) u tt u xx = f(x, t) u(x, ) = g(x), u t (x,

More information

The University of British Columbia Final Examination - April, 2007 Mathematics 257/316

The University of British Columbia Final Examination - April, 2007 Mathematics 257/316 The University of British Columbia Final Examination - April, 2007 Mathematics 257/316 Closed book examination Time: 2.5 hours Instructor Name: Last Name:, First: Signature Student Number Special Instructions:

More information

Math 124A October 11, 2011

Math 124A October 11, 2011 Math 14A October 11, 11 Viktor Grigoryan 6 Wave equation: solution In this lecture we will solve the wave equation on the entire real line x R. This corresponds to a string of infinite length. Although

More information

Partial Differential Equations Summary

Partial Differential Equations Summary Partial Differential Equations Summary 1. The heat equation Many physical processes are governed by partial differential equations. temperature of a rod. In this chapter, we will examine exactly that.

More information

Math October 20, 2006 Exam 2: Solutions

Math October 20, 2006 Exam 2: Solutions Math 412-51 October 2, 26 Exam 2: Solutions Problem 1 (5 pts) Solve the heat equation in a rectangle < x < π, < y < π, subject to the initial condition and the boundary conditions u t = 2 u x + 2 u 2 y

More information

MATH 131P: PRACTICE FINAL SOLUTIONS DECEMBER 12, 2012

MATH 131P: PRACTICE FINAL SOLUTIONS DECEMBER 12, 2012 MATH 3P: PRACTICE FINAL SOLUTIONS DECEMBER, This is a closed ook, closed notes, no calculators/computers exam. There are 6 prolems. Write your solutions to Prolems -3 in lue ook #, and your solutions to

More information

Separation of variables

Separation of variables Separation of variables Idea: Transform a PDE of 2 variables into a pair of ODEs Example : Find the general solution of u x u y = 0 Step. Assume that u(x,y) = G(x)H(y), i.e., u can be written as the product

More information

1 Wave Equation on Finite Interval

1 Wave Equation on Finite Interval 1 Wave Equation on Finite Interval 1.1 Wave Equation Dirichlet Boundary Conditions u tt (x, t) = c u xx (x, t), < x < l, t > (1.1) u(, t) =, u(l, t) = u(x, ) = f(x) u t (x, ) = g(x) First we present the

More information

Transforming Nonhomogeneous BCs Into Homogeneous Ones

Transforming Nonhomogeneous BCs Into Homogeneous Ones Chapter 10 Transforming Nonhomogeneous s Into Homogeneous Ones 10.1 Goal In the previous chapter, we looked at separation of variables. We saw that this method applies if both the boundary conditions and

More information

MA 201: Method of Separation of Variables Finite Vibrating String Problem Lecture - 11 MA201(2016): PDE

MA 201: Method of Separation of Variables Finite Vibrating String Problem Lecture - 11 MA201(2016): PDE MA 201: Method of Separation of Variables Finite Vibrating String Problem ecture - 11 IBVP for Vibrating string with no external forces We consider the problem in a computational domain (x,t) [0,] [0,

More information

Math 2930 Worksheet Final Exam Review

Math 2930 Worksheet Final Exam Review Math 293 Worksheet Final Exam Review Week 14 November 3th, 217 Question 1. (* Solve the initial value problem y y = 2xe x, y( = 1 Question 2. (* Consider the differential equation: y = y y 3. (a Find the

More information

More on Fourier Series

More on Fourier Series More on Fourier Series R. C. Trinity University Partial Differential Equations Lecture 6.1 New Fourier series from old Recall: Given a function f (x, we can dilate/translate its graph via multiplication/addition,

More information

MATH 251 Final Examination December 16, 2015 FORM A. Name: Student Number: Section:

MATH 251 Final Examination December 16, 2015 FORM A. Name: Student Number: Section: MATH 5 Final Examination December 6, 5 FORM A Name: Student Number: Section: This exam has 7 questions for a total of 5 points. In order to obtain full credit for partial credit problems, all work must

More information

Outline. Math Partial Differential Equations. Fourier Transforms for PDEs. Joseph M. Mahaffy,

Outline. Math Partial Differential Equations. Fourier Transforms for PDEs. Joseph M. Mahaffy, Outline Math 53 - Partial Differential Equations s for PDEs Joseph M. Mahaffy, jmahaffy@mail.sdsu.edu Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center

More information