Physics 18 Spring 2011 Homework 2 - Solutions Wednesday January 26, 2011

Size: px
Start display at page:

Download "Physics 18 Spring 2011 Homework 2 - Solutions Wednesday January 26, 2011"

Transcription

1 Physics 18 Sprin 011 Homework - s Wednesday January 6, 011 Make sure your name is on your homework, and please box your final answer. Because we will be ivin partial credit, be sure to attempt all the problems, even if you don t finish them. The homework is due at the beinnin of class on Wednesday, February nd. Because the solutions will be posted immediately after class, no late homeworks can be accepted! You are welcome to ask questions durin the discussion session or durin office hours. 1. True or false (inore any effects due to air resistance): (a) When a projectile is fired horizontally, it takes the same amount of time to reach the round as an identical projectile dropped from rest from the same heiht. (b) When a projectile is fired from a certain heiht at an upward anle, it takes loner to reach the round than does an identical projectile dropped from rest from the same heiht. (c) When a projectile is fired horizontally from a certain heiht, it has a hiher speed upon reachin the round than does an identical projectile dropped from rest from the same heiht. (a) True. The rate at which the objects fall is independent of their horizontal velocity. (b) True. The projectile fired up starts headin up first, before it starts headin toward the round. So, it will take loner to hit the round than an object just dropped from rest. (c) True. The object just dropped picks up speed from ravitational acceleration. The fired projectile also picks up this speed, but it also had the initial velocity in the horizontal direction. The final speed includes both these contributions, and so the fired projectile hits with a hiher speed. 1

2 . To withstand -forces of up to 10 s, caused by suddenly pullin out of a steep dive, fihter jet pilots train on a human centrifue. 10 is an acceleration of 98 m/s. If the lenth of the centrifue arm is 1 m, at what speed is the rider movin when she experiences 10 s? The centripetal acceleration is just a cent = v /r, where v is the velocity, and r is the distance from the center of the orbit. So, solvin for the velocity ives v = ar. Pluin in the numbers ives which is about 77 miles per hour. v = ar = 98 1 = 34.3 m/s,

3 3. A wall clock has a minute hand with a lenth of 0.50 m and an hour hand with a lenth of 0.5 m. Take the center of the clock as the oriin, and use a Cartesian coordinate system with the positive x axis pointin to 3 o clock and the positive y axis pointin to 1 o clock. Usin unit vectors î and ĵ, express the position vectors of the tip of the hour hand ( A) and the tip of the minute hand ( B) when the clock reads (a) 1:00, (b) 3:00, (c) 6:00, (d) 9:00. (a) Both hands point up (alon the y axis) at 1:00, and so A = 0.5ĵ, and B = 0.5ĵ. (b) The hour hand points horizontally (alon the x axis), while the minute hand points up, so A = 0.5î, and B = 0.5ĵ. (c) The hour hand points down, while the minute hand points up, so A = 0.5ĵ, and B = 0.5ĵ. (d) The hour hand points to the left, while the minute hand points up, so A = 0.5î, and B = 0.5ĵ. 3

4 4. A particle has a position vector iven by r = (30t) î+(40 5t ) ĵ, where r is in meters, and t is in seconds. Find the instantaneous velocity and instantaneous acceleration vectors as functions of time. The instantaneous velocity is iven by v = d dt r r, where the dot over the quantity denotes the time derivative. So, takin the derivative with respect to time ives r = 30î 10tĵ. The instantaneous acceleration is the second derivative of the position, a = r, or the first derivative of the velocity, a = v. So, takin another derivative ives v = r = 10ĵ, which is a constant acceleration alon the vertical direction. So, this position vector could describe a particle fallin in a (slihtly stroner) ravitational field. 4

5 5. A cat is chasin a mouse. The mouse runs in a straiht line at a speed of 1.5 m/s. If the cat leaps off the floor at a 30 anle and a speed of 4.0 m/s, at what distance behind the mouse should the cat leap in order to land on the poor mouse? Model: Use the particle model for the cat and apply the constant-acce Visualize: We can picture the situation as seen in the fiure to the riht. The cat has a rane of R (θ) = v 0 sin θ. For the iven numbers, the cat jumps a distance R (θ) = 4 sin 60 = 1.41 m. 9.8Solve: The relative velocity of the cat from the mouse s reference frame is It takes him a time T = v 0 sin θ = 8 sin = 0.41 (4.0cos30 seconds to travel 1.5) this m/sdistance. = m/s = v 0 Durin this time, the mouse moves a distance d = v mouse T = = 0.61 meters. So, in order for Thus, the vcat 0x = tov pounce 0 = onm/s theand mouse, v 0 he y = vshould 0 sin30 = start (4.0 back m/s)sin30 a distance =.0 m/s. Th D = R d = = 0.80 meters, or 80 centimeters. floor is found as follows: y = y + v ( t t ) + a ( t t ) 0 m= 0 m + (.0 m/s) t y 1 0 y The horizontal distance covered in time t 1 is x x v t t a t t t 1 = 0 s (trivial solution) and s 1 1 = 0 + 0x( 1 0) + ( x 1 0) = 0 m + (1.964 m/s)(0.408 That is, the cat should leap when he is 80 cm behind the mouse. 5

6 6. Pulsars are neutron stars that emit X rays and other radiation in such a way that we on Earth receive pulses of radiation from the pulsars at reular intervals equal to the period that they rotate. Some of these pulsars rotate with periods as short as 1 ms! The Crab Pulsar, located inside the Crab Nebula in the constellation Orion, has a period currently of lenth ms. It is estimated to have an equatorial radius of 15 km, an averae radius for a neutron star. (a) What is the value of the centripetal acceleration of an object on the surface at the equator of the pulsar? (b) Many pulsars are observed to have periods that lenthen slihtly with time, a phenomenon called spin-down. The rate of slowin of the Crab Pulsar is s per second, which implies that if this rate remains constant, the Crab Pulsar will stop spinnin in s (about 3000 years from today). What is the tanential acceleration of an object on the equator of this neutron star? (a) The centripetal acceleration is iven by a cent = v /r, where v is the tanential velocity of a point at the radius r. The speed of the point is the total distance the point oes around (the circumference), divided by the time it takes to o around (in other words, the period). So, v = πr/t. Thus, a = v r = (πr) rt with the numbers. This is a hue acceleration! = 4π r T = 4π ( ) = m/s, (b) The tanential velocity was iven by v = πr/t. The tanential acceleration is a tan = dv. The radius of the star isn t chanin, but the period is chanin. So, dt takin the time derivative ives a tan = dv ( ) πr dt dt = T dt, where dt/dt is the spin-down rate. So, pluin in the values ives, usin the chain rule, ( ) πr dt a tan = T dt = π ( ) ( ) = m/s, where the spin-down rate is neative because it s slowin down. The tanential acceleration is very much smaller than the centripetal acceleration! 6

7 7. Human blood contains plasma, platelets, and blood cells. To separate the plasma from other components, centrifuation is used. Effective centrifuation requires subjectin blood to an acceleration of 000 or more. In this situation, assume that blood is contained in test tubes that are 15 cm lon and are full of blood. These tubes ride in the centrifue tilted at an anle of 45.0 above the horizontal. (a) What is the distance of a sample of blood from the rotation axis of a centrifue rotatin at 3500 rpm, if it has an acceleration of 000? (b) If the blood at the center of the tubes revolves around the rotation axis at the radius calculated in Part (a), calculate the accelerations experienced by the blood at each end of the test tube. Express all accelerations as multiples of. (a) The acceleration that the blood experiences is the centripetal acceleration, a cent = v. Now, the velocity is v = πr/t, where T is the period. The period can be r rewritten in terms of the frequency, f = T 1, and so v = πfr. So, a = 4π f r. Since the centrifue rotates at 3500 rpm, it makes 3500/60 = 58.3 rotations per second, which is the frequency, f. Thus, solvin for the distance, and pluin in the numbers ives r = a = = 0.15 m = 15 cm. 4π f 4π 58.3 This value seems lare, but the centrifue is spinnin really fast! (b) Because the test tube is tilted, the top and bottom of the tube are at different radii from the axis. This leads to different accelerations. Since the center of the test tube is at 15 centimeters, and is also 15 centimeters lon, the top of the test tube is at r = sin 45 = 9.70 cm. The bottom of the test tube is at r + = sin 45 = 0.3 cm. The acceleration is, from before, a ± = 4π f r ±. Pluin in each value, and dividin by = 9.8 to express the acceleration in terms of, we find a = 4π f r = 4π = 138 a + = 4π f r + = 4π = 780 So, the accelerations rane from about 1330, to about

8 8. Wile E. Coyote (Carnivorus hunribilus) is chasin the Roadrunner (Speedibus cantcatchmi) yet aain. While runnin down the road, they come to a deep ore, 15.0 m straiht across and 100 m deep. The Roadrunner launches himself across the ore at a launch anle of 15 above the horizontal, and lands with 1.5 m to spare. (a) What was the Roadrunner s launch speed? (b) Wile E. Coyote launches himself across the ore with the same initial speed, but at a different launch anle. To his horror, he is short of the other lip by 0.50 m. What was his launch anle? (Assume that it was less than 15.) For a iven launch speed and anle, the rane of a projectile is iven by R = v 0 sin(θ). (a) The roadrunner jumps at an anle of θ = 15, and reaches a rane R = 16.5 meters. So, solvin for the velocity ives R v 0 = sin(θ) = = 18 m/s. sin 30 (b) The poor coyote only jumps 14.5 meters. Solvin for the anle ives θ = 1 ( ) R sin 1 = 1 ( ) v0 sin 1 =

9 9. You are asked to consult for the city s research hospital, where a roup of doctors is investiatin the bombardment of cancer tumors with hih-enery ions. The ions are fired directly toward the center of the tumor at speeds of m/s. To cover the entire tumor area, the ions are deflected sideways by passin them between two chared metal plates that accelerate the ions perpendicular to the direction of their initial motion. The acceleration reion is 5.0 cm lon, and the ends of the acceleration plates are 1.5 m from the patient. What acceleration is required to deflect an ion.0 cm to one side? The plates add in a vertical acceleration, a y. The horizontal acceleration is always zero, a x = 0. The ion experiences a constant acceleration between the plates, and is deflected a heiht H 1 = 1a yt 1 where t 1 is the amount of time the ion spends in between the plates. Since the ion is travelin at a constant speed, v x, then if the lenth of the plates is d, then t 1 = d/v x. So, the net displacement from the plates is H 1 = ayd. vx After emerin from the plates, the ion travels alon at a constant speed, in a straiht line. The ion then travels up a distance H = v y t where v y is it s velocity, while t is the time the ion spends oin between the plates to the taret. If the distance away is L, then t = L/v x. Furthermore, the velocity is just what it s picked up from bein between the plates, v y = a y t 1 = a y d/v x. So, H = aydl. vx These two displacements need to add up to the h = centimeter deflection. So, h = H 1 + H = ayd + aydl. Solvin for the acceleration ives vx vx Pluin in our numbers ives a y = hv x d + dl. a y = hv x d + dl = (0.0) (5 106 ) (0.05)(1.5) = m/s, which is a hue acceleration, rouhly 100 billion times that due to ravity! 9

10 10. A toy cannon is placed on a ramp that has a slope of anle φ. (a) If the cannonball is projected up the hill at an anle of θ 0 above the horizontal and has a muzzle speed of v 0, show that the rane R of the cannonball (as measured alon the ramp) is iven by R = v 0 cos θ 0 (tan θ 0 tan φ). cos φ Inore any effects due to air resistance. The path of the cannonball can be expressed in terms of the distance x as ( ) y(x) = (tan θ 0 )x x, v0 cos θ 0 where we have set the initial y 0 = 0, since we set the cannon at the oriin. Now, if the distance alon the ramp is R, then the cannonball hits the ramp at (x, y) = (R cos φ, R sin φ). Pluin in these values to the rane expression ives ( ) R sin φ = (tan θ 0 )R cos φ R cos φ, v0 cos θ 0 or, dividin by R cos φ ives ( ) tan φ = tan θ 0 R cos φ. v0 cos θ 0 Now, rearranin and solvin for R ives or R cos φ = v 0 cos θ 0 which is the answer we were lookin for. (tan θ 0 tan φ), R = v 0 cos θ 0 cos φ (tan θ 0 tan φ), 10

Physics 11 Fall 2012 Practice Problems 2 - Solutions

Physics 11 Fall 2012 Practice Problems 2 - Solutions Physics 11 Fall 01 Practice Problems - s 1. True or false (inore any effects due to air resistance): (a) When a projectile is fired horizontally, it takes the same amount of time to reach the round as

More information

Problem Set 2 Solutions

Problem Set 2 Solutions UNIVERSITY OF ALABAMA Department of Physics and Astronomy PH 125 / LeClair Sprin 2009 Problem Set 2 Solutions The followin three problems are due 20 January 2009 at the beinnin of class. 1. (H,R,&W 4.39)

More information

REVIEW: Going from ONE to TWO Dimensions with Kinematics. Review of one dimension, constant acceleration kinematics. v x (t) = v x0 + a x t

REVIEW: Going from ONE to TWO Dimensions with Kinematics. Review of one dimension, constant acceleration kinematics. v x (t) = v x0 + a x t Lecture 5: Projectile motion, uniform circular motion 1 REVIEW: Goin from ONE to TWO Dimensions with Kinematics In Lecture 2, we studied the motion of a particle in just one dimension. The concepts of

More information

(a) 1m s -2 (b) 2 m s -2 (c) zero (d) -1 m s -2

(a) 1m s -2 (b) 2 m s -2 (c) zero (d) -1 m s -2 11 th Physics - Unit 2 Kinematics Solutions for the Textbook Problems One Marks 1. Which one of the followin Cartesian coordinate system is not followed in physics? 5. If a particle has neative velocity

More information

Physics 111. Lecture 7 (Walker: 4.2-5) 2D Motion Examples Projectile Motion

Physics 111. Lecture 7 (Walker: 4.2-5) 2D Motion Examples Projectile Motion Physics 111 Lecture 7 (Walker: 4.-5) D Motion Eamples Projectile Motion Sept. 16, 9 -D Motion -- Constant Acceleration r r r r = v t at t v t a t y y yt y v t at r r r v = v at v = v a t v = v a t y y

More information

Ground Rules. PC1221 Fundamentals of Physics I. Position and Displacement. Average Velocity. Lectures 7 and 8 Motion in Two Dimensions

Ground Rules. PC1221 Fundamentals of Physics I. Position and Displacement. Average Velocity. Lectures 7 and 8 Motion in Two Dimensions PC11 Fundamentals of Physics I Lectures 7 and 8 Motion in Two Dimensions Dr Tay Sen Chuan 1 Ground Rules Switch off your handphone and paer Switch off your laptop computer and keep it No talkin while lecture

More information

the equations for the motion of the particle are written as

the equations for the motion of the particle are written as Dynamics 4600:203 Homework 02 Due: ebruary 01, 2008 Name: Please denote your answers clearly, ie, box in, star, etc, and write neatly There are no points for small, messy, unreadable work please use lots

More information

Projectile Motion. Equipment: Ballistic Gun Apparatus Projectiles Table Clamps 2-meter Stick Carbon Paper, Scratch Paper, Masking Tape Plumb Bob

Projectile Motion. Equipment: Ballistic Gun Apparatus Projectiles Table Clamps 2-meter Stick Carbon Paper, Scratch Paper, Masking Tape Plumb Bob Purpose: To calculate the initial speed of a projectile by measurin its rane. To predict how far a projectile will travel when fired at different anles, and test these predictions. To predict what anle

More information

Linear Motion. Miroslav Mihaylov. February 13, 2014

Linear Motion. Miroslav Mihaylov. February 13, 2014 Linear Motion Miroslav Mihaylov February 13, 2014 1 Vector components Vector A has manitude A and direction θ with respect to the horizontal. On Fiure 1 we chose the eastbound as a positive x direction

More information

Discussion Session 2

Discussion Session 2 Physics 11 Fall 2012 NAME: Discussion Session 2 Vectors and 2D Motion Worksheet Motion in more than one direction is most easily described in terms of vectors. A vector is an object that has a magnitude

More information

2.2 Differentiation and Integration of Vector-Valued Functions

2.2 Differentiation and Integration of Vector-Valued Functions .. DIFFERENTIATION AND INTEGRATION OF VECTOR-VALUED FUNCTIONS133. Differentiation and Interation of Vector-Valued Functions Simply put, we differentiate and interate vector functions by differentiatin

More information

Discussion Session 2

Discussion Session 2 Physics 101 Fall 2012 NAME: Discussion Session 2 Vectors and 2D Motion Worksheet Motion in more than one direction is most easily described in terms of vectors. A vector is an object that has a magnitude

More information

XI PHYSICS M. AFFAN KHAN LECTURER PHYSICS, AKHSS, K. https://promotephysics.wordpress.com

XI PHYSICS M. AFFAN KHAN LECTURER PHYSICS, AKHSS, K. https://promotephysics.wordpress.com XI PHYSICS M. AFFAN KHAN LECTURER PHYSICS, AKHSS, K affan_414@live.com https://promotephysics.wordpress.com [MOTION IN TWO DIMENSIONS] CHAPTER NO. 4 In this chapter we are oin to discuss motion in projectile

More information

Prince Sultan University Physics Department First Semester 2012 /2013. PHY 105 First Major Exam Allowed Time: 60 min

Prince Sultan University Physics Department First Semester 2012 /2013. PHY 105 First Major Exam Allowed Time: 60 min Prince Sultan University Physics Department First Semester 01 /01 PHY 105 First Major Exam Allowed Time: 60 min Student Name: 1. Write your name in the specified space NOW.. Any paper without name will

More information

Exam 2A Solution. 1. A baseball is thrown vertically upward and feels no air resistance. As it is rising

Exam 2A Solution. 1. A baseball is thrown vertically upward and feels no air resistance. As it is rising Exam 2A Solution 1. A baseball is thrown vertically upward and feels no air resistance. As it is risin Solution: Possible answers: A) both its momentum and its mechanical enery are conserved - incorrect.

More information

Problem Set: Fall #1 - Solutions

Problem Set: Fall #1 - Solutions Problem Set: Fall #1 - Solutions 1. (a) The car stops speedin up in the neative direction and beins deceleratin, probably brakin. (b) Calculate the averae velocity over each time interval. v av0 v 0 +

More information

This Week. Next Week

This Week. Next Week This Week Tutorial and Test 1, in the lab (chapters 1 and 2) Next Week Experiment 1: Measurement of Lenth and Mass WileyPLUS Assinment 1 now available Due Monday, October 5 at 11:00 pm Chapters 2 & 3 28

More information

Experiment 1: Simple Pendulum

Experiment 1: Simple Pendulum COMSATS Institute of Information Technoloy, Islamabad Campus PHY-108 : Physics Lab 1 (Mechanics of Particles) Experiment 1: Simple Pendulum A simple pendulum consists of a small object (known as the bob)

More information

Geodesics as gravity

Geodesics as gravity Geodesics as ravity February 8, 05 It is not obvious that curvature can account for ravity. The orbitin path of a planet, for example, does not immediately seem to be the shortest path between points.

More information

Homework # 2. SOLUTION - We start writing Newton s second law for x and y components: F x = 0, (1) F y = mg (2) x (t) = 0 v x (t) = v 0x (3)

Homework # 2. SOLUTION - We start writing Newton s second law for x and y components: F x = 0, (1) F y = mg (2) x (t) = 0 v x (t) = v 0x (3) Physics 411 Homework # Due:..18 Mechanics I 1. A projectile is fired from the oriin of a coordinate system, in the x-y plane (x is the horizontal displacement; y, the vertical with initial velocity v =

More information

KINEMATICS PREVIOUS EAMCET BITS ENGINEERING PAPER

KINEMATICS PREVIOUS EAMCET BITS ENGINEERING PAPER KINEMATICS PREVIOUS EAMCET BITS ENGINEERING PAPER. A body is projected vertically upwards at time t = 0 and is seen at a heiht at time t and t seconds durin its fliht. The maximum heiht attained is [ =

More information

Dynamics 4600:203 Homework 03 Due: February 08, 2008 Name:

Dynamics 4600:203 Homework 03 Due: February 08, 2008 Name: Dynamics 4600:03 Homework 03 Due: ebruary 08, 008 Name: Please denote your answers clearly, i.e., bo in, star, etc., and write neatly. There are no points for small, messy, unreadable work... please use

More information

(C) 7 s. (C) 13 s. (C) 10 m

(C) 7 s. (C) 13 s. (C) 10 m NAME: Ms. Dwarka, Principal Period: #: WC Bryant HS Ms. Simonds, AP Science Base your answers to questions 1 throuh 3 on the position versus time raph below which shows the motion of a particle on a straiht

More information

PSI AP Physics C Kinematics 2D. Multiple Choice Questions

PSI AP Physics C Kinematics 2D. Multiple Choice Questions PSI AP Physics C Kinematics D Multiple Choice Questions 1. A tennis ball is thrown off a cliff 10 m above the round with an initial horizontal velocity of 5 m/s as shown above. The time between the ball

More information

Motion in Two Dimensions Sections Covered in the Text: Chapters 6 & 7, except 7.5 & 7.6

Motion in Two Dimensions Sections Covered in the Text: Chapters 6 & 7, except 7.5 & 7.6 Motion in Two Dimensions Sections Covered in the Tet: Chapters 6 & 7, ecept 7.5 & 7.6 It is time to etend the definitions we developed in Note 03 to describe motion in 2D space. In doin so we shall find

More information

v( t) g 2 v 0 sin θ ( ) ( ) g t ( ) = 0

v( t) g 2 v 0 sin θ ( ) ( ) g t ( ) = 0 PROJECTILE MOTION Velocity We seek to explore the velocity of the projectile, includin its final value as it hits the round, or a taret above the round. The anle made by the velocity vector with the local

More information

AAPT UNITED STATES PHYSICS TEAM AIP 2009

AAPT UNITED STATES PHYSICS TEAM AIP 2009 2009 F = ma Exam 1 AAPT UNITED STATES PHYSICS TEAM AIP 2009 2009 F = ma Contest 25 QUESTIONS - 75 MINUTES INSTRUCTIONS DO NOT OPEN THIS TEST UNTI YOU ARE TOD TO BEGIN Use = 10 N/k throuhout this contest.

More information

Version PREVIEW Vectors & 2D Chap. 3 sizemore (13756) 1

Version PREVIEW Vectors & 2D Chap. 3 sizemore (13756) 1 Version PREVIEW Vectors & 2D Chap. 3 sizemore (13756) 1 This print-out should have 73 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. Rectangular

More information

Physics 18 Spring 2011 Homework 4 Wednesday February 9, 2011

Physics 18 Spring 2011 Homework 4 Wednesday February 9, 2011 Physics 18 Spring 2011 Homework 4 Wednesday February 9, 2011 Make sure your name is on your homework, and please box your final answer. Because we will be giving partial credit, be sure to attempt all

More information

Physics 20 Homework 1 SIMS 2016

Physics 20 Homework 1 SIMS 2016 Physics 20 Homework 1 SIMS 2016 Due: Wednesday, Auust 17 th Problem 1 The idea of this problem is to et some practice in approachin a situation where you miht not initially know how to proceed, and need

More information

Midterm Feb. 17, 2009 Physics 110B Secret No.=

Midterm Feb. 17, 2009 Physics 110B Secret No.= Midterm Feb. 17, 29 Physics 11B Secret No.= PROBLEM (1) (4 points) The radient operator = x i ê i transforms like a vector. Use ɛ ijk to prove that if B( r) = A( r), then B( r) =. B i = x i x i = x j =

More information

Mechanics Cycle 3 Chapter 12++ Chapter 12++ Revisit Circular Motion

Mechanics Cycle 3 Chapter 12++ Chapter 12++ Revisit Circular Motion Chapter 12++ Revisit Circular Motion Revisit: Anular variables Second laws for radial and tanential acceleration Circular motion CM 2 nd aw with F net To-Do: Vertical circular motion in ravity Complete

More information

Components of a Vector

Components of a Vector Vectors (Ch. 1) A vector is a quantity that has a magnitude and a direction. Examples: velocity, displacement, force, acceleration, momentum Examples of scalars: speed, temperature, mass, length, time.

More information

Physics 8 Spring 2012 Midterm 1

Physics 8 Spring 2012 Midterm 1 Physics 8 Spring 2012 NAME: TA: Physics 8 Spring 2012 Midterm 1 For the midterm, you may use one sheet of notes with whatever you want to put on it, front and back. Please sit every other seat, and please

More information

Ground Rules. PC1221 Fundamentals of Physics I. Position and Displacement. Average Velocity. Lectures 7 and 8 Motion in Two Dimensions

Ground Rules. PC1221 Fundamentals of Physics I. Position and Displacement. Average Velocity. Lectures 7 and 8 Motion in Two Dimensions PC11 Fndamentals of Physics I Lectres 7 and 8 Motion in Two Dimensions A/Prof Tay Sen Chan 1 Grond Rles Switch off yor handphone and paer Switch off yor laptop compter and keep it No talkin while lectre

More information

(A) (B) (C) (D) None of these

(A) (B) (C) (D) None of these Exercise OBJECTIVE PROBLEMS. Action and reaction (A) act on two different objects (C) have opposite directions. Which fiure represents the correct F.B.D. of rod of mass m as shown in fiure : (B) have equal

More information

10. The vectors are V 1 = 6.0i + 8.0j, V 2 = 4.5i 5.0j. (a) For the magnitude of V 1 we have 2 1x + V 1y2 ) 1/2 = [( 6.0) 2 + (8.0) 2 ] 1/2 = 10.0.

10. The vectors are V 1 = 6.0i + 8.0j, V 2 = 4.5i 5.0j. (a) For the magnitude of V 1 we have 2 1x + V 1y2 ) 1/2 = [( 6.0) 2 + (8.0) 2 ] 1/2 = 10.0. 10. The vectors are V 1 = 6.0i + 8.0j, V 2 = 4.5i 5.0j. (a) For the magnitude of V 1 we have V 1 = (V 2 1x + V 1y2 ) 1/2 = [( 6.0) 2 + (8.0) 2 ] 1/2 = 10.0. We find the direction from tan θ 1 = V 1y /V

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVRSITY OF SASKATCHWAN Department of Physics and nineerin Physics Physics 115.3 MIDTRM TST October 3, 009 Time: 90 minutes NAM: (Last) Please Print (Given) STUDNT NO.: LCTUR SCTION (please check): 01

More information

PHYS 1114, Lecture 9, February 6 Contents:

PHYS 1114, Lecture 9, February 6 Contents: PHYS 4, Lecture 9, February 6 Contents: Continued with projectile motion: The kicko problem in football was treated analytically, obtainin formulas for maimum heiht and rane in terms of initial speed and

More information

Physics 121k Exam 3 7 Dec 2012

Physics 121k Exam 3 7 Dec 2012 Answer each question and show your work. A correct answer with no supportin reasonin may receive no credit. Unless directed otherwise, please use =10.0 m/s 2. Name: 1. (15 points) An 5.0 k block, initially

More information

Phys207: Lecture 04. Today s Agenda 3-D Kinematics Independence of x and y components Baseball projectile Shoot the monkey Uniform circular motion

Phys207: Lecture 04. Today s Agenda 3-D Kinematics Independence of x and y components Baseball projectile Shoot the monkey Uniform circular motion Phys7: Lecture 4 Reminders All Discussion and Lab sections start meetin this week Homework is posted on course website Solutions to preious hwks will be posted Thursday mornins Today s Aenda 3-D Kinematics

More information

f 1. (8.1.1) This means that SI unit for frequency is going to be s 1 also known as Hertz d1hz

f 1. (8.1.1) This means that SI unit for frequency is going to be s 1 also known as Hertz d1hz ecture 8-1 Oscillations 1. Oscillations Simple Harmonic Motion So far we have considered two basic types of motion: translational motion and rotational motion. But these are not the only types of motion

More information

Newton's laws of motion

Newton's laws of motion Episode No - 5 Date: 03-04-2017 Faculty: Sunil Deshpande Newton's laws of motion * A plank with a box on it at one end is slowly raised about the other end. As the anle with the horizontal slowly reaches

More information

1 CHAPTER 7 PROJECTILES. 7.1 No Air Resistance

1 CHAPTER 7 PROJECTILES. 7.1 No Air Resistance CHAPTER 7 PROJECTILES 7 No Air Resistance We suppose that a particle is projected from a point O at the oriin of a coordinate system, the y-axis bein vertical and the x-axis directed alon the round The

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics. Physics 8.01x Fall Term 2001 EXAM 1 SOLUTIONS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics. Physics 8.01x Fall Term 2001 EXAM 1 SOLUTIONS MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01x Fall Term 2001 EXAM 1 SOLUTIONS Problem 1: We define a vertical coordinate system with positive upwards. The only forces actin

More information

Get Solution of These Packages & Learn by Video Tutorials on PROJECTILE MOTION

Get Solution of These Packages & Learn by Video Tutorials on  PROJECTILE MOTION FREE Download Study Packae from website: www.tekoclasses.com & www.mathsbysuha.com Get Solution of These Packaes & Learn by Video Tutorials on www.mathsbysuha.com. BASIC CONCEPT :. PROJECTILE PROJECTILE

More information

Parametric Equations

Parametric Equations Parametric Equations Suppose a cricket jumps off of the round with an initial velocity v 0 at an anle θ. If we take his initial position as the oriin, his horizontal and vertical positions follow the equations:

More information

As observed from the frame of reference of the sidewalk:

As observed from the frame of reference of the sidewalk: Section 3.1: Inertial and Non-inertial Frames of Reference Tutorial 1 Practice, pae 110 1. a) When the car is movin with constant velocity, I see the ball lie still on the floor. I would see the same situation

More information

Firing an Ideal Projectile

Firing an Ideal Projectile 92 Chapter 13: Vector-Valued Functions and Motion in Space 13.2 Modelin Projectile Motion 921 r at time t v v cos i a j (a) v sin j Newton s second law of motion sas that the force actin on the projectile

More information

Energizing Math with Engineering Applications

Energizing Math with Engineering Applications Enerizin Math with Enineerin Applications Understandin the Math behind Launchin a Straw-Rocket throuh the use of Simulations. Activity created by Ira Rosenthal (rosenthi@palmbeachstate.edu) as part of

More information

Ballistics Car P3-3527

Ballistics Car P3-3527 WWW.ARBORSCI.COM Ballistics Car P3-3527 BACKGROUND: The Ballistic Car demonstrates that the horizontal motion of an object is unaffected by forces which act solely in the vertical direction. It consists

More information

Chapter K. Oscillatory Motion. Blinn College - Physics Terry Honan. Interactive Figure

Chapter K. Oscillatory Motion. Blinn College - Physics Terry Honan. Interactive Figure K. - Simple Harmonic Motion Chapter K Oscillatory Motion Blinn Collee - Physics 2425 - Terry Honan The Mass-Sprin System Interactive Fiure Consider a mass slidin without friction on a horizontal surface.

More information

University of Alabama Department of Physics and Astronomy. PH 125 / LeClair Fall Exam III Solution

University of Alabama Department of Physics and Astronomy. PH 125 / LeClair Fall Exam III Solution University of Alabama Department of Physics and Astronomy PH 5 / LeClair Fall 07 Exam III Solution. A child throws a ball with an initial speed of 8.00 m/s at an anle of 40.0 above the horizontal. The

More information

2.5 Velocity and Acceleration

2.5 Velocity and Acceleration 82 CHAPTER 2. VECTOR FUNCTIONS 2.5 Velocity and Acceleration In this section, we study the motion of an object alon a space curve. In other words, as the object moves with time, its trajectory follows

More information

Chapter 6 Motion in Two Dimensions

Chapter 6 Motion in Two Dimensions Conceptual Physics/ PEP Name: Date: Chapter 6 Motion in Two Dimensions Section Review 6.1 1. What is the word for the horizontal distance a projectile travels? 2. What does it mean to say a projectile

More information

jfpr% ekuo /kez iz.ksrk ln~xq# Jh j.knksm+nklth egkjkt

jfpr% ekuo /kez iz.ksrk ln~xq# Jh j.knksm+nklth egkjkt Phone : 0 903 903 7779, 98930 58881 Kinematics Pae: 1 fo/u fopkjr Hkh# tu] uha kjehks dke] foifr ns[k NksM+s rqjar e/;e eu dj ';kea iq#"k fla ladyi dj] lrs foifr usd] ^cuk^ u NksM+s /;s; dks] j?kqcj jk[ks

More information

Assignment 6. Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Assignment 6. Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Assinment 6 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Round your answer, if appropriate. 1) A man 6 ft tall walks at a rate of 3 ft/sec

More information

Do not turn over until you are told to do so by the Invigilator.

Do not turn over until you are told to do so by the Invigilator. UNIVERSITY OF EAST ANGLIA School of Mathematics Main Series UG Examination 2016 17 ENGINEERING MATHEMATICS AND MECHANICS ENG-4004Y Time allowed: 2 Hours Attempt QUESTIONS 1 and 2, and ONE other question.

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVRSITY OF SASKATCHWAN Department of Physics and nineerin Physics Physics 115.3 MIDTRM TST Alternative Sittin October 009 Time: 90 minutes NAM: (Last) Please Print (Given) STUDNT NO.: LCTUR SCTION (please

More information

PROJECTILE MOTION. ( ) g y 0. Equations ( ) General time of flight (TOF) General range. Angle for maximum range ("optimum angle")

PROJECTILE MOTION. ( ) g y 0. Equations ( ) General time of flight (TOF) General range. Angle for maximum range (optimum angle) PROJECTILE MOTION Equations General time of fliht (TOF) T sin θ y 0 sin( θ) General rane R cos( θ) T R cos θ sin( θ) sin( θ) y 0 Anle for maximum rane ("optimum anle") θ opt atan y 0 atan v f atan v f

More information

Vector Valued Functions

Vector Valued Functions SUGGESTED REFERENCE MATERIAL: Vector Valued Functions As you work throuh the problems listed below, you should reference Chapters. &. of the recommended textbook (or the equivalent chapter in your alternative

More information

SOLUTIONS TO PRACTICE PROBLEMS FOR MIDTERM I

SOLUTIONS TO PRACTICE PROBLEMS FOR MIDTERM I University of California, Berkeley Physics 7A Sprin 009 (Yury Kolomensky) SOLUTIONS TO PRACTICE PROBLEMS FOR MIDTERM I Maximum score: 100 points 1. (15 points) Race Stratey Two swimmers need to et from

More information

y(t) = y 0 t! 1 2 gt 2. With y(t final ) = 0, we can solve this for v 0 : v 0 A ĵ. With A! ĵ =!2 and A! = (2) 2 + (!

y(t) = y 0 t! 1 2 gt 2. With y(t final ) = 0, we can solve this for v 0 : v 0 A ĵ. With A! ĵ =!2 and A! = (2) 2 + (! 1. The angle between the vector! A = 3î! 2 ĵ! 5 ˆk and the positive y axis, in degrees, is closest to: A) 19 B) 71 C) 90 D) 109 E) 161 The dot product between the vector! A = 3î! 2 ĵ! 5 ˆk and the unit

More information

Experiment 3 The Simple Pendulum

Experiment 3 The Simple Pendulum PHY191 Fall003 Experiment 3: The Simple Pendulum 10/7/004 Pae 1 Suested Readin for this lab Experiment 3 The Simple Pendulum Read Taylor chapter 5. (You can skip section 5.6.IV if you aren't comfortable

More information

11 Free vibrations: one degree of freedom

11 Free vibrations: one degree of freedom 11 Free vibrations: one deree of freedom 11.1 A uniform riid disk of radius r and mass m rolls without slippin inside a circular track of radius R, as shown in the fiure. The centroidal moment of inertia

More information

OSCILLATIONS

OSCILLATIONS OSCIAIONS Important Points:. Simple Harmonic Motion: a) he acceleration is directly proportional to the displacement of the body from the fixed point and it is always directed towards the fixed point in

More information

Random sample problems

Random sample problems UNIVERSITY OF ALABAMA Department of Physics and Astronomy PH 125 / LeClair Spring 2009 Random sample problems 1. The position of a particle in meters can be described by x = 10t 2.5t 2, where t is in seconds.

More information

Physics 9 Spring 2011 Homework 1 - Solutions Wednesday January 19, 2011

Physics 9 Spring 2011 Homework 1 - Solutions Wednesday January 19, 2011 Physics 9 Spring 011 Homework 1 - s Wednesday January 19, 011 Make sure your name is on your homework, and please box your final answer. Because we will be giving partial credit, be sure to attempt all

More information

Chapter 3 2-D Motion

Chapter 3 2-D Motion Chapter 3 2-D Motion We will need to use vectors and their properties a lot for this chapter. .. Pythagorean Theorem: Sample problem: First you hike 100 m north. Then hike 50 m west. Finally

More information

Motion in Two or Three Dimensions

Motion in Two or Three Dimensions Chapter 3 Motion in Two or Three Dimensions PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 3 To use vectors

More information

3.1. Types of Forces. Measuring Forces. Force Diagrams

3.1. Types of Forces. Measuring Forces. Force Diagrams 3.1 Fiure 1 Forces are all around you. dynamics the study of the causes of motion Types of Forces Forces are all around you, actin on every object that you see. The motion of cars, trucks, planes, and

More information

N N N ( N

N N N ( N Copyriht Glencoe/McGraw-Hill, a division of The McGraw-Hill Copanies, Inc. Chapter 4 1. You and your bike have a cobined ass of 80 k. How uch brakin force has to be applied to slow you fro a velocity of

More information

[ ][ ] mg = R GM g = R GM = g R 2. Definition of G: From (1) we have, 2 NEWTON S LAW OF GRAVITATION:

[ ][ ] mg = R GM g = R GM = g R 2. Definition of G: From (1) we have, 2 NEWTON S LAW OF GRAVITATION: NEWTON S LAW OF GAVITATION: Statement: Every particle in the universe attracts every other particle with a force which is directly proportional to the product of the masses and inversely proportional to

More information

Physics 218 Exam 2 Spring 2011, Sections , 526, 528

Physics 218 Exam 2 Spring 2011, Sections , 526, 528 Physics 8 Exa Sprin, Sections 53-55, 56, 58 Do not fill out the inforation below until instructed to do so! Nae Sinature Student ID E- ail Section # : Solutions in RED Rules of the exa:. ou have the full

More information

MOTION IN A STRAIGHT LINE. time interval t and as t approaches zero, the ratio. has a finite limiting value.(where x is the distance

MOTION IN A STRAIGHT LINE. time interval t and as t approaches zero, the ratio. has a finite limiting value.(where x is the distance KINEMATICS Rest and Motion, Distance and Displacement, Speed, Velocity, and Acceleration, Averae Velocity, Averae Acceleration, Instantaneous Velocity, Instantaneous Acceleration, Motion with Constant

More information

2.3. PBL Equations for Mean Flow and Their Applications

2.3. PBL Equations for Mean Flow and Their Applications .3. PBL Equations for Mean Flow and Their Applications Read Holton Section 5.3!.3.1. The PBL Momentum Equations We have derived the Reynolds averaed equations in the previous section, and they describe

More information

PHYS 100: Lecture 4 PROJECTILE MOTION. y = (v 0 /v T ) x (g/2v T2 )x 2. Velocity of Train v T. Physics 100 Lecture 4, Slide y(m)

PHYS 100: Lecture 4 PROJECTILE MOTION. y = (v 0 /v T ) x (g/2v T2 )x 2. Velocity of Train v T. Physics 100 Lecture 4, Slide y(m) PHYS : Lecture 4 PROJECTILE MOTION.4. Velocity of Train T y(m).8.6.4. 5 5 x(m) y ( / T ) x (/ T )x Physics Lecture 4, Slide Music Who is the Artist? A) Miles Dais B) Wynton Marsalis C) Chris Botti D) Nina

More information

PH Fall - Section 04 - Version A DRAFT

PH Fall - Section 04 - Version A DRAFT 1. A truck (traveling in a straight line), starts from rest and accelerates to 30 m/s in 20 seconds. It cruises along at that constant speed for one minute, then brakes, coming to a stop in 25 m. Determine

More information

PRACTICE TEST for Midterm Exam

PRACTICE TEST for Midterm Exam South Pasadena AP Physics PRACTICE TEST for Midterm Exam FORMULAS Name Period Date / / d = vt d = v o t + ½ at 2 d = v o + v 2 t v = v o + at v 2 = v 2 o + 2ad v = v x 2 + v y 2 = tan 1 v y v v x = v cos

More information

Physics 18 Spring 2011 Homework 3 Wednesday February 2, 2011

Physics 18 Spring 2011 Homework 3 Wednesday February 2, 2011 Physics 18 Spring 2011 Homework 3 Wednesday February 2, 2011 Make sure your name is on your homework, and please box your final answer. Because we will be giving partial credit, be sure to attempt all

More information

7.2 Maximization of the Range of a Rocket

7.2 Maximization of the Range of a Rocket 138 CHAPTER 7. SOME APPLICATIONS The counterintuitive answer that a supersonic aircraft must dive first in order to climb to a iven altitude in minimum time was first discovered by Walter Denham and Art

More information

Physics 201 Homework 1

Physics 201 Homework 1 Physics 201 Homework 1 Jan 9, 2013 1. (a) What is the magnitude of the average acceleration of a skier who, starting (a) 1.6 m/s 2 ; (b) 20 meters from rest, reaches a speed of 8.0 m/s when going down

More information

Kinematics 2. Kinematics Equations. How to solve a Physics problem:

Kinematics 2. Kinematics Equations. How to solve a Physics problem: Kinematics Equations Kinematics 2 How to solve a Physics problem: What is the question asking for? List the given quantities with units Equation Substitution with units Solution with units Does the answer

More information

Follows the revised HSC syllabus prescribed by the Maharashtra State Board of Secondary and Higher Secondary Education, Pune.

Follows the revised HSC syllabus prescribed by the Maharashtra State Board of Secondary and Higher Secondary Education, Pune. Follows the revised HSC syllabus prescribed by the Maharashtra State Board of Secondary and Hiher Secondary Education, Pune. STD. XII Sci. A collection of Board 013 to 017 Questions Physics Chemistry Mathematics

More information

ESCI 343 Atmospheric Dynamics II Lesson 1 Ageostrophic Wind

ESCI 343 Atmospheric Dynamics II Lesson 1 Ageostrophic Wind ESCI 343 Atmospheric Dynamics II Lesson 1 Aeostrophic Wind References: An Introduction to Dynamic Meteoroloy (3 rd edition), J.R. Holton THE QG MOMENTUM EQUATIONS The QG momentum equations are derived

More information

Answers to Coursebook questions Chapter 2.10

Answers to Coursebook questions Chapter 2.10 Camride Physis for the IB Diploma Answers to Courseook questions Chapter. 1 a y = OP = 1 t = 0.05 m = 0.0 = 00 m s 1 0. The time to fall to the floor is iven y y = 1 t t = y = 1.3 = 0.51 s. The horizontal

More information

Follows the revised HSC syllabus prescribed by the Maharashtra State Board of Secondary and Higher Secondary Education, Pune.

Follows the revised HSC syllabus prescribed by the Maharashtra State Board of Secondary and Higher Secondary Education, Pune. Follows the revised HSC syllabus prescribed by the Maharashtra State Board of Secondary and Hiher Secondary Education, Pune. STD. XII Sci. A collection of Board 013 to 017 Questions Physics Chemistry Mathematics

More information

Dynamics - Midterm Exam Type 1

Dynamics - Midterm Exam Type 1 Dynaics - Midter Exa 06.11.2017- Type 1 1. Two particles of ass and 2 slide on two vertical sooth uides. They are connected to each other and to the ceilin by three sprins of equal stiffness and of zero

More information

Physics 111 P 2 A = P 1. A + mg = P 1. A + ρ( AΔh)g. Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR 468.

Physics 111 P 2 A = P 1. A + mg = P 1. A + ρ( AΔh)g. Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR 468. ics Announcements day, ember 11, 011 C5: Fluids Pascal s Principle Archimede s Principle Fluid Flows Continuity Equation Bernoulli s Equation Toricelli s Theorem Wednesday, 8-9 pm in NSC 118/119 Sunday,

More information

Motion in Two Dimension (Projectile Motion)

Motion in Two Dimension (Projectile Motion) Phsics Motion in Two Dimension (Projectile Motion) www.testprepkart.com Table of Content. Introdction.. Projectile. 3. Assmptions of projectile motion. 4. Principle of phsical independence of motions.

More information

PHY 133 Lab 1 - The Pendulum

PHY 133 Lab 1 - The Pendulum 3/20/2017 PHY 133 Lab 1 The Pendulum [Stony Brook Physics Laboratory Manuals] Stony Brook Physics Laboratory Manuals PHY 133 Lab 1 - The Pendulum The purpose of this lab is to measure the period of a simple

More information

Motion in a 2 and 3 dimensions Ch 4 HRW

Motion in a 2 and 3 dimensions Ch 4 HRW Motion in a and 3 dimensions Ch 4 HRW Motion in a plane D Motion in space 3D Projectile motion Position and Displacement Vectors A position vector r extends from a reference point (usually the origin O)

More information

Two-Dimensional Motion Worksheet

Two-Dimensional Motion Worksheet Name Pd Date Two-Dimensional Motion Worksheet Because perpendicular vectors are independent of each other we can use the kinematic equations to analyze the vertical (y) and horizontal (x) components of

More information

KINEMATICS OF A PARTICLE. Prepared by Engr. John Paul Timola

KINEMATICS OF A PARTICLE. Prepared by Engr. John Paul Timola KINEMATICS OF A PARTICLE Prepared by Engr. John Paul Timola Particle has a mass but negligible size and shape. bodies of finite size, such as rockets, projectiles, or vehicles. objects can be considered

More information

Get the frictional force from the normal force. Use dynamics to get the normal force.

Get the frictional force from the normal force. Use dynamics to get the normal force. . L F n µ k L =00 t µ k = 0.60 = 0 o = 050 lb F n +y +x x = sin y = cos = µf n Is the initial elocity o the car reater than 30 mph? Approach: Use conseration o enery. System: car Initial time: beore you

More information

Introductory Physics Questions

Introductory Physics Questions Introductory Physics Questions (19th June 2015) These questions are taken fro end-of-ter and ake-up exas in 2013 and 2014. After today s class, you should e ale to answer Q1, Q2, Q3 and Q7. Q4, Q5, and

More information

Exam 1 Practice SOLUTIONS Physics 111Q.B

Exam 1 Practice SOLUTIONS Physics 111Q.B Exam 1 Practice SOLUTIONS Physics 111Q.B Instructions This is a collection of practice problems for the first exam. The first exam will consist of 7-10 multiple choice questions followed by 1-3 problems

More information

Kinematics A train accelerates from rest at a rate of 2 m/(s*s), for a time of 20 seconds. How much distance does the train cover?

Kinematics A train accelerates from rest at a rate of 2 m/(s*s), for a time of 20 seconds. How much distance does the train cover? Physics R Date: 1. A cheetah goes from rest to 60 miles per hour (26.8 m/s) in 3 seconds. Calculate the acceleration of the cheetah. Kinematics Equations Kinematics 2 How to solve a Physics problem: 1.

More information

PHYS 124 Section A01 Final Examination Autumn 2006

PHYS 124 Section A01 Final Examination Autumn 2006 PHYS 14 Section A1 Final Examination Autumn 6 Name : S Student ID Number : Instructor : Marc de Montiny Time : Monday, December 18, 6 9: 11: AM Room : Tory Lecture (Turtle) TL-B Instructions : This booklet

More information

Chapter 4 MOTION IN TWO AND THREE DIMENSIONS

Chapter 4 MOTION IN TWO AND THREE DIMENSIONS Chapter 4 MTIN IN TW AND THREE DIMENSINS Section 4-5, 4-6 Projectile Motion Projectile Motion Analzed Important skills from this lecture: 1. Identif the projectile motion and its velocit and acceleration

More information