Fractals in Physiology

Size: px
Start display at page:

Download "Fractals in Physiology"

Transcription

1 Fractals in Physiology A Biomedical Engineering Perspective J.P. Marques de Sá jmsa@fe.up.pt INEB Instituto de Engenharia Biomédica Faculdade de Engenharia da Universidade do Porto J.P. Marques de Sá; all rights reserved (*) (*) Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted provided that: Copies are not made or distributed for profit or commercial advantage. Copies bear this notice and full citation on the first page. To copy otherwise, to republish, to post on services, or to redistribute to lists, require specific permission and/or fee.. Motivation 2. Fractals in Physiology 3. Self-Similarity and Fractal Dimension 4. Statistical Self-Similarity 5. Self-Affinity and the Fractional Brownian Model 6. Chaotic Systems and Fractals 7. Why Nature uses Fractals? 8. Fractals in BME

2 2 - MOTIVATION Many physiological signals exhibit almost random behaviour Foetal Heart Rate C. Felgueiras, J.P. Marques de Sá (998) but with statistical self-similarity Model: Temporal Fractal

3 3 Many physiological structures exhibit a high degree of spatial complexity Human Retina Image Retina angiogram. A.M. Mendonça, A. Campilho (997) But some repeating law may be present Diffusion Limited Aggregation Process: a particle falls randomly in a circle of radius R and diffuses until anchoring to another particle or getting out of the circle. Nr of points available for growth in a circle of radius r: N( r) r D Model: Spatial Fractal

4 4 Hydroxyapatite Growth on Bioactive Surfaces Substrate: hydroxyapatite Substrate: composite C.Felgueiras, J.P. Marques de Sá, 998 Fractal modelling may help to assess the growth conditions

5 5 2 - FRACTALS IN PHYSIOLOGY (Some Examples) Temporal Fractals Heart beat sequences Electroencephalograms Time intervals between action potentials Respiratory tidal volumes Ion channel kinetics in cell membranes Glycolysis metabolism DNA sequences mapping Spatial Fractals Intestine and placenta linings Airways in lungs Arterial system in kidneys Ducts in lever His-Purkinje fibres in the heart Blood vessels in circulatory system Neuronal growth patterns Retinal vasculature Reference: Bassingthwaighte JB, Liebovitch, L. S., West B. J. (994) Fractal Physiology. Oxford University Press.

6 6 3 - SELF-SIMILARITY AND FRACTAL DIMENSION Koch curve Scale: r a.r < a < Self-similarity dimension: How many parts in an object are similar to the whole? Simple Objects Dimension = D = r = r = /3 Dimension = D = 2 N = N = 3 = (/3) N = N = 9 = (/3) 2 Number of exact replicas N(r) when the resolution is r : D D ( ) = = r N r r log( N( r)) D = log(/ r)

7 7 (with exact self-similarity) Fractal Objects Fractal: Any object with D having a fraction part? Not always Any object with D > topological dimension? Not always

8 8 Length of the object : N(r) r D L( r) = r. N( r) = r ln(l(r)) = (D-). ln(/r) ln(l(r)) ln(4/3) =.2 ln()= slope = D - =.26 ln(3)=.47 ln(/r) Any object with a property L(r) satisfying a Power Law Scaling: α L ( r) r, is said to have a fractal property L(r). α = -D α = 2-D α = 3-D for lengths for areas for volumes

9 9 The scaling property can be written as: L(ar) = k L(r), with a <, k=a α and k, iteration factor, independent of r For the Koch curve: r = L() = r = /3 r = /9 L(/3) = 4/3 = 4/3. L() L(/9) = 6/9 = 4/3. L(/3) L(r/3) = 4/3. L(r)

10 Cardiac Pacing Electrode Zr Interface impedance with roughness effect Zi Interface impedance per unit of true interface area Zr = a (Zi)β β = /(D-) Roughening the surface D 3 β.5

11 Estimating the Fractal Dimension Length: L( r) = rn( r) r D Number of covering boxes or spheres: N( r) r D Box-counting: number of squares containing a piece of the object

12 2 Statistical Self-Similarity Generalisation: D cap = lim ln( N( r)) / ln(/ r), capacity dimension r (Grassberg and Procaccia) Result of box-counting method applied to retina angiogram 4 2 log2(n(r)) log2(/r) C.Felgueiras, J.P. Marques de Sá, A.M. Mendonça (999) D =.82 Number of branching sites (cluster diameter) D

13 3 Generalised Fractal Dimensions (In a coverage of N(r) boxes of size r) Information dimension: D inf = lim r S( r) / ln( r) = lim r N( r) i= p i ln p i / ln( r) S(r) Entropy; p i - probability for a point to lie in box i Correlation dimension: D corr = lim r ln( C( r)) / ln( r) = lim ln r N( r) i= p 2 i / ln( r) C(r) : Number of pairs of points in box i Generalised dimensions: Dq = N( r) q ln pi F ( r) lim i= q = lim r q ln(/ r) r ln(/ r) D = D cap ; D = D inf ; D 2 = D corr D q decreases with q, e.g.: Dcap D inf Dcorr

14 4 Hydroxyapatite Growth on Bioactive Surfaces 6 4 Fq( ) log2(/ε ),8,75 Dq,7,65 comp3c comp4 ha3a ha4b,6, q ha hydroxiapatite substrate comp composite glass substrate

15 5 Ha Hydroxiapatite comp 2 composite 2 glass

16 6 5 - SELF-AFFINITY AND THE FRACTIONAL BROWNIAN MODEL The symmetric random walk n x ( n) = x i = i ; P( x i = ) = P( x i = ) = 2 x(n) n n P( x( n) = k) = k = n, n + 2,..., n 2, n n n + k 2 2 [ x( n) ] = V[ x( n) ] n E =

17 7 Probability of the random walk for n= P k 6

18 8 Taking: r points per unit time ±ε jumps 2 2 With: r, ε ; rε σ Symmetric Random Walk Brownian Motion Function Properties: B( t, x) = σ 2πt e x 2 / 2 σ 2 t B(t+ t)-b(t): Gaussian increments E[B(t+ t)-b(t)] = V[B(t+ t)-b(t)] = σ 2. t σ[b(t+ t)-b(t)] t scaling σ[b(t+ t)-b(t)] t σ[b(t+r t)-b(t)] r t = r 2. σ[b(t+ t)-b(t)] Self-Affinity t r. t ; σ(b) r 2. σ(b) Iteration factor dependent on r (compare with page 9)

19

20 2 Two processes: r 2 2 Self-similar: L = L( r) r 2 r 2 Self-affine: L = L( r) L(r) /r Self-similar Self-affine

21 2 Fractional Brownian Motion Def.: Moving average of B(t,x) with increments weighted by / 2 ( t s) H - random walk with memory t ( t, x) B ( t s) db( s, x) H H / 2 H ], [ Hurst coefficient Self-affine process with : σ ( BH ) H t H = ½ Brownian motion < H < ½ fbm with anti-correlated samples ½ < H < fbm with correlated samples

22 22 B H (t) Kernel σ ( BH ) H t H=.2, D= H=.5, D= H=.8, D=

23 23 Computing the fractal dimension of the fbm : x x o= t = /N t o= For t = N x = t H = N H The region x t is covered by: N squares of size H N The whole segment is covered by: N N( L) = N. = N H N Therefore: D = 2 H L = N 2 H = 2 H L Higushi method: L(k)=sk -D =sk H- L(k) ln(l(k)) S o o o o o o o o o k slope=-d ln(k)

24 24 Chaotic system: 6 - Chaotic Systems and Fractality Deterministic dynamic system with high sensitivity to initial conditions. Example: Hénon process: x(n+) = y(n) + -.4x(n) 2 ; y(n+) =.3x(n)..5.5 x [n] n a) b) c) Figure 9. a) Hénon process signals with initial values differing in -2 ; b) Hénon attractor; c) A detail of the attractor. Some properties: High sensitivity to initial conditions. Values not predictable in the long run. System state describes intricate trajectories (attractor) in the phase space.

25 25 Analysis tool: Attractors in the phase-space Takens Theorem: The set {x[i],x[i+k],,x[i+dk]} is topologically equivalent to the attractor in an embedding space of dimension d+.

26 26 7 Fractal Modelling of Foetal Heart Rate FHR (bpm) Class A Class FS Class B Class A NEM sleep 3 cases Class B REM sleep 5 cases Class FS - Neuro-cardiac depression 43 cases Time (min) FHR modelling by a bi-scale fbm fractal 2 5 Class A Class B Class FS L(k) k H Results of Higushi method ( L ( k) = Sk ) showing two scaling regions

27 27 FHR bi-scale behaviour ln(l(k)) ln(s2) ln(s) H- H2- ln(k) STV LTV H, H2,8,6,4,2 H-A H-B H-FS H2-A H2-B H2-FS S, S S-A S-B S-FS S2-A S2-B S2-FS

28 28 Foetal Heart Attractor (Stage A; Delay= 8 samples 2 s) C. Felgueiras, J.P. Marques de Sá (998)

29 29 FHR Classification Results 7 Features (3 temporal; 4 attractor) Actual No. of Predicted Class Class Cases A B FS A 3 26 (84%) B 5 2 (4%) 5 (6%) 48 (96%) (%) (%) FS 43 2 (5%) (%) 4 (95%) Training set error: 7.3% - Test set error: 5.4% Comparison with traditional clinical method: FHR No. of Pe % Class Cases Fractal STV p A <. B <. FS Total <. C. Felgueiras, J.P. Marques de Sá, J. Bernardes, S. Gama (998) Classification of Foetal Heart Rate Sequences Based on Fractal Features, Medical & Biological Eng. & Comp., 36(2): 97-2.

30 3 8 - FINAL COMMENT Interest of Fractal Modelling in BME Reveal the mechanisms that produce physiologic signals and structures. Clarify the meaning of measurements. Clarify the existence of deterministic causes in apparent random behaviour. Derive model parameters to classify data.

Sjoerd Verduyn Lunel (Utrecht University)

Sjoerd Verduyn Lunel (Utrecht University) Universiteit Utrecht, February 9, 016 Wasserstein distances in the analysis of time series and dynamical systems Sjoerd Verduyn Lunel (Utrecht University) S.M.VerduynLunel@uu.nl Abstract A new approach

More information

The Origin of Universal Scaling in Biology(?)

The Origin of Universal Scaling in Biology(?) The Origin of Universal Scaling in Biology(?) September 3, 2003 Background Consider the now famous figure reproduced in Figure. Does metabolism scale as mass, taken to the 3/4 power? Or should it, as Euclidean

More information

Neural Network Learning: Testing Bounds on Sample Complexity

Neural Network Learning: Testing Bounds on Sample Complexity Neural Network Learning: Testing Bounds on Sample Complexity Joaquim Marques de Sá, Fernando Sereno 2, Luís Alexandre 3 INEB Instituto de Engenharia Biomédica Faculdade de Engenharia da Universidade do

More information

The Origin of Universal Scaling in Biology

The Origin of Universal Scaling in Biology The Origin of Universal Scaling in Biology D. Hundley Fall 2005 Modeling September 4, 2005 Background Consider the now famous figure reproduced in Figure. Does metabolism scale as mass, taken to the 3/4

More information

Maximum Achievable Gain of a Two Port Network

Maximum Achievable Gain of a Two Port Network Maximum Achievable Gain of a Two Port Network Ali Niknejad Siva Thyagarajan Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2016-15 http://www.eecs.berkeley.edu/pubs/techrpts/2016/eecs-2016-15.html

More information

CMSC 425: Lecture 12 Procedural Generation: Fractals

CMSC 425: Lecture 12 Procedural Generation: Fractals : Lecture 12 Procedural Generation: Fractals Reading: This material comes from classic computer-graphics books. Procedural Generation: One of the important issues in game development is how to generate

More information

Dynamics of partial discharges involved in electrical tree growth in insulation and its relation with the fractal dimension

Dynamics of partial discharges involved in electrical tree growth in insulation and its relation with the fractal dimension Dynamics of partial discharges involved in electrical tree growth in insulation and its relation with the fractal dimension Daniela Contreras Departamento de Matemática Universidad Técnica Federico Santa

More information

CMSC 425: Lecture 11 Procedural Generation: Fractals and L-Systems

CMSC 425: Lecture 11 Procedural Generation: Fractals and L-Systems CMSC 425: Lecture 11 Procedural Generation: ractals and L-Systems Reading: The material on fractals comes from classic computer-graphics books. The material on L-Systems comes from Chapter 1 of The Algorithmic

More information

Implementing Memristor Based Chaotic Circuits

Implementing Memristor Based Chaotic Circuits Implementing Memristor Based Chaotic Circuits Bharathwaj Muthuswamy Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2009-156 http://www.eecs.berkeley.edu/pubs/techrpts/2009/eecs-2009-156.html

More information

Disordered Structures. Part 2

Disordered Structures. Part 2 Disordered Structures Part 2 Composites and mixtures Consider inhomogeneities on length scales > 10-20 Å Phase separation two (or multi-) phase mixtures Mixtures of particles of different kinds - solids,

More information

INTRODUCTION TO FRACTAL GEOMETRY

INTRODUCTION TO FRACTAL GEOMETRY Every mathematical theory, however abstract, is inspired by some idea coming in our mind from the observation of nature, and has some application to our world, even if very unexpected ones and lying centuries

More information

COMPUTATIONAL INSIGHT IN THE VISUAL GANGLION DYNAMICS

COMPUTATIONAL INSIGHT IN THE VISUAL GANGLION DYNAMICS COMPUTATIONAL INSIGHT IN THE VISUAL GANGLION DYNAMICS D. E. CREANGÃ 1, S. MICLAUS 2 1 Al. I. Cuza University, Faculty of Physics, 11A Blvd. Copou, Iaºi, Romania dorinacreanga@yahoo.com 2 Terrestrial Troupe

More information

Fractals in Science. Armin Bunde Shlomo Havlin (Eds.) Springer-Verlag Berlin Heidelberg New York London Paris Tokyo HongKong Barcelona Budapest

Fractals in Science. Armin Bunde Shlomo Havlin (Eds.) Springer-Verlag Berlin Heidelberg New York London Paris Tokyo HongKong Barcelona Budapest Armin Bunde Shlomo Havlin (Eds.) Fractals in Science With a MS-DOS Program Diskette, 120 Figures and 10 Color Plates Springer-Verlag Berlin Heidelberg New York London Paris Tokyo HongKong Barcelona Budapest

More information

Chaos in GDP. Abstract

Chaos in GDP. Abstract Chaos in GDP R. Kříž Abstract This paper presents an analysis of GDP and finds chaos in GDP. I tried to find a nonlinear lower-dimensional discrete dynamic macroeconomic model that would characterize GDP.

More information

ESTIMATING THE ATTRACTOR DIMENSION OF THE EQUATORIAL WEATHER SYSTEM M. Leok B.T.

ESTIMATING THE ATTRACTOR DIMENSION OF THE EQUATORIAL WEATHER SYSTEM M. Leok B.T. This paper was awarded in the I International Competition (99/9) First Step to Nobel Prize in Physics and published in the competition proceedings (Acta Phys. Pol. A 8 Supplement, S- (99)). The paper is

More information

Geometric interpretation of signals: background

Geometric interpretation of signals: background Geometric interpretation of signals: background David G. Messerschmitt Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-006-9 http://www.eecs.berkeley.edu/pubs/techrpts/006/eecs-006-9.html

More information

Electrodes MB - JASS 09. Metal in electrolyte

Electrodes MB - JASS 09. Metal in electrolyte Electrodes MB - JASS 09 Metal in electrolyte 1 Helmholtz double layer (1) Helmholtz double layer : simplest approximation surface charge is neutralized by opposite signed counterions placed away from the

More information

Fractals and Dimension

Fractals and Dimension Chapter 7 Fractals and Dimension Dimension We say that a smooth curve has dimension 1, a plane has dimension 2 and so on, but it is not so obvious at first what dimension we should ascribe to the Sierpinski

More information

Heat content asymptotics of some domains with fractal boundary

Heat content asymptotics of some domains with fractal boundary Heat content asymptotics of some domains with fractal boundary Philippe H. A. Charmoy Mathematical Institute, University of Oxford Partly based on joint work with D.A. Croydon and B.M. Hambly Cornell,

More information

Intermittency, Fractals, and β-model

Intermittency, Fractals, and β-model Intermittency, Fractals, and β-model Lecture by Prof. P. H. Diamond, note by Rongjie Hong I. INTRODUCTION An essential assumption of Kolmogorov 1941 theory is that eddies of any generation are space filling

More information

Copyright 1965, by the author(s). All rights reserved.

Copyright 1965, by the author(s). All rights reserved. Copyright 1965, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are

More information

Integer Least Squares: Sphere Decoding and the LLL Algorithm

Integer Least Squares: Sphere Decoding and the LLL Algorithm Integer Least Squares: Sphere Decoding and the LLL Algorithm Sanzheng Qiao Department of Computing and Software McMaster University 28 Main St. West Hamilton Ontario L8S 4L7 Canada. ABSTRACT This paper

More information

EEG- Signal Processing

EEG- Signal Processing Fatemeh Hadaeghi EEG- Signal Processing Lecture Notes for BSP, Chapter 5 Master Program Data Engineering 1 5 Introduction The complex patterns of neural activity, both in presence and absence of external

More information

Biomedical Instrumentation System

Biomedical Instrumentation System BME/EECS 458 - Biomedical Instrumentation & Design Matt O Donnell I.0 Introduction What is a biomedical instrument? To many it s an EKG machine, to others it s a chemical biosensor, and to some it s a

More information

Stability Analysis of Predator- Prey Models via the Liapunov Method

Stability Analysis of Predator- Prey Models via the Liapunov Method Stability Analysis of Predator- Prey Models via the Liapunov Method Gatto, M. and Rinaldi, S. IIASA Research Memorandum October 1975 Gatto, M. and Rinaldi, S. (1975) Stability Analysis of Predator-Prey

More information

However, in actual topology a distance function is not used to define open sets.

However, in actual topology a distance function is not used to define open sets. Chapter 10 Dimension Theory We are used to the notion of dimension from vector spaces: dimension of a vector space V is the minimum number of independent bases vectors needed to span V. Therefore, a point

More information

Two Decades of Search for Chaos in Brain.

Two Decades of Search for Chaos in Brain. Two Decades of Search for Chaos in Brain. A. Krakovská Inst. of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovak Republic, Email: krakovska@savba.sk Abstract. A short review of applications

More information

M. DAROWSKI 1, W. KLONOWSKI 1,2, M. KOZARSKI 1, G. FERRARI 3, K. ZIELIŃSKI 1, R. STEPIEN 1,2

M. DAROWSKI 1, W. KLONOWSKI 1,2, M. KOZARSKI 1, G. FERRARI 3, K. ZIELIŃSKI 1, R. STEPIEN 1,2 M. DAROWSKI 1, W. KLONOWSKI 1,2, M. KOZARSKI 1, G. FERRARI 3, K. ZIELIŃSKI 1, R. STEPIEN 1,2 1 Polish Academy of Sciences (IBIB PAN) Institute of Biocybernetics and Biomedical Engineering Warsaw, Poland,

More information

Test Generation for Designs with Multiple Clocks

Test Generation for Designs with Multiple Clocks 39.1 Test Generation for Designs with Multiple Clocks Xijiang Lin and Rob Thompson Mentor Graphics Corp. 8005 SW Boeckman Rd. Wilsonville, OR 97070 Abstract To improve the system performance, designs with

More information

The Effects of Dynamical Noises on the Identification of Chaotic Systems: with Application to Streamflow Processes

The Effects of Dynamical Noises on the Identification of Chaotic Systems: with Application to Streamflow Processes Fourth International Conference on Natural Computation The Effects of Dynamical Noises on the Identification of Chaotic Systems: with Application to Streamflow Processes Wen Wang, Pieter H.A.J.M. Van Gelder,

More information

LYAPUNOV EXPONENT AND DIMENSIONS OF THE ATTRACTOR FOR TWO DIMENSIONAL NEURAL MODEL

LYAPUNOV EXPONENT AND DIMENSIONS OF THE ATTRACTOR FOR TWO DIMENSIONAL NEURAL MODEL Volume 1, No. 7, July 2013 Journal of Global Research in Mathematical Archives RESEARCH PAPER Available online at http://www.jgrma.info LYAPUNOV EXPONENT AND DIMENSIONS OF THE ATTRACTOR FOR TWO DIMENSIONAL

More information

Integral representations in models with long memory

Integral representations in models with long memory Integral representations in models with long memory Georgiy Shevchenko, Yuliya Mishura, Esko Valkeila, Lauri Viitasaari, Taras Shalaiko Taras Shevchenko National University of Kyiv 29 September 215, Ulm

More information

Sjoerd Verduyn Lunel (Utrecht University)

Sjoerd Verduyn Lunel (Utrecht University) Lorentz Center Leiden, April 16 2013 Wasserstein distances in the analysis of time series and dynamical systems Sjoerd Verduyn Lunel (Utrecht University) Workshop Mathematics and Biology: a Roundtrip in

More information

1. A discrete-time recurrent network is described by the following equation: y(n + 1) = A y(n) + B x(n)

1. A discrete-time recurrent network is described by the following equation: y(n + 1) = A y(n) + B x(n) Neuro-Fuzzy, Revision questions June, 25. A discrete-time recurrent network is described by the following equation: y(n + ) = A y(n) + B x(n) where A =.7.5.4.6, B = 2 (a) Sketch the dendritic and signal-flow

More information

Old and New Methods in the Age of Big Data

Old and New Methods in the Age of Big Data Old and New Methods in the Age of Big Data Zoltán Somogyvári1,2 1Department of Theory Wigner Research Center for Physics of the Hungarian Academy of Sciences 2National Institute for Clinical Neuroscience

More information

A Novel Chaotic Neural Network Architecture

A Novel Chaotic Neural Network Architecture ESANN' proceedings - European Symposium on Artificial Neural Networks Bruges (Belgium), - April, D-Facto public., ISBN ---, pp. - A Novel Neural Network Architecture Nigel Crook and Tjeerd olde Scheper

More information

xt+1 = 1 ax 2 t + y t y t+1 = bx t (1)

xt+1 = 1 ax 2 t + y t y t+1 = bx t (1) Exercise 2.2: Hénon map In Numerical study of quadratic area-preserving mappings (Commun. Math. Phys. 50, 69-77, 1976), the French astronomer Michel Hénon proposed the following map as a model of the Poincaré

More information

No. 6 Determining the input dimension of a To model a nonlinear time series with the widely used feed-forward neural network means to fit the a

No. 6 Determining the input dimension of a To model a nonlinear time series with the widely used feed-forward neural network means to fit the a Vol 12 No 6, June 2003 cfl 2003 Chin. Phys. Soc. 1009-1963/2003/12(06)/0594-05 Chinese Physics and IOP Publishing Ltd Determining the input dimension of a neural network for nonlinear time series prediction

More information

Mechanisms of Chaos: Stable Instability

Mechanisms of Chaos: Stable Instability Mechanisms of Chaos: Stable Instability Reading for this lecture: NDAC, Sec. 2.-2.3, 9.3, and.5. Unpredictability: Orbit complicated: difficult to follow Repeatedly convergent and divergent Net amplification

More information

Lectures on Medical Biophysics Department of Biophysics, Medical Faculty, Masaryk University in Brno. Biocybernetics

Lectures on Medical Biophysics Department of Biophysics, Medical Faculty, Masaryk University in Brno. Biocybernetics Lectures on Medical Biophysics Department of Biophysics, Medical Faculty, Masaryk University in Brno Norbert Wiener 26.11.1894-18.03.1964 Biocybernetics Lecture outline Cybernetics Cybernetic systems Feedback

More information

EE (082) Ch. II: Intro. to Signals Lecture 2 Dr. Wajih Abu-Al-Saud

EE (082) Ch. II: Intro. to Signals Lecture 2 Dr. Wajih Abu-Al-Saud Classification of Signals Some important classifications of signals Analog vs. Digital signals: as stated in the previous lecture, a signal with a magnitude that may take any real value in a specific range

More information

Department Curriculum and Assessment Outline

Department Curriculum and Assessment Outline Department: Science Year Group: 10 Teaching, learning and assessment during the course: Combined Science 1 2 B1 Key concepts in Biology B2 Cells and control What are the structure and function of cells.

More information

Stochastic Network Calculus

Stochastic Network Calculus Stochastic Network Calculus Assessing the Performance of the Future Internet Markus Fidler joint work with Amr Rizk Institute of Communications Technology Leibniz Universität Hannover April 22, 2010 c

More information

Fractals. R. J. Renka 11/14/2016. Department of Computer Science & Engineering University of North Texas. R. J. Renka Fractals

Fractals. R. J. Renka 11/14/2016. Department of Computer Science & Engineering University of North Texas. R. J. Renka Fractals Fractals R. J. Renka Department of Computer Science & Engineering University of North Texas 11/14/2016 Introduction In graphics, fractals are used to produce natural scenes with irregular shapes, such

More information

NONLINEAR DYNAMICS AND CHAOS. Facilitating medical diagnosis. Medical classifications

NONLINEAR DYNAMICS AND CHAOS. Facilitating medical diagnosis. Medical classifications LECTURE : BIOMEDICAL MODELS NONLINEAR DYNAMICS AND CHAOS Patrick E McSharry Systems Analysis, Modelling & Prediction Group www.eng.ox.ac.uk/samp patrick@mcsharry.net Tel: +44 2 823 74 Medical diagnostics

More information

PHY411 Lecture notes Part 5

PHY411 Lecture notes Part 5 PHY411 Lecture notes Part 5 Alice Quillen January 27, 2016 Contents 0.1 Introduction.................................... 1 1 Symbolic Dynamics 2 1.1 The Shift map.................................. 3 1.2

More information

Chaotic diffusion in randomly perturbed dynamical systems

Chaotic diffusion in randomly perturbed dynamical systems Chaotic diffusion in randomly perturbed dynamical systems Rainer Klages Queen Mary University of London, School of Mathematical Sciences Max Planck Institute for Mathematics in the Sciences Leipzig, 30

More information

Memristor Based Chaotic Circuits

Memristor Based Chaotic Circuits Memristor Based Chaotic Circuits Bharathwaj Muthuswamy Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2009-6 http://www.eecs.berkeley.edu/pubs/techrpts/2009/eecs-2009-6.html

More information

Information Dynamics Foundations and Applications

Information Dynamics Foundations and Applications Gustavo Deco Bernd Schürmann Information Dynamics Foundations and Applications With 89 Illustrations Springer PREFACE vii CHAPTER 1 Introduction 1 CHAPTER 2 Dynamical Systems: An Overview 7 2.1 Deterministic

More information

Copyright 1963, by the author(s). All rights reserved.

Copyright 1963, by the author(s). All rights reserved. Copyright 1963, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are

More information

K. Pyragas* Semiconductor Physics Institute, LT-2600 Vilnius, Lithuania Received 19 March 1998

K. Pyragas* Semiconductor Physics Institute, LT-2600 Vilnius, Lithuania Received 19 March 1998 PHYSICAL REVIEW E VOLUME 58, NUMBER 3 SEPTEMBER 998 Synchronization of coupled time-delay systems: Analytical estimations K. Pyragas* Semiconductor Physics Institute, LT-26 Vilnius, Lithuania Received

More information

Determining and Forecasting High-Frequency Value-at-Risk by Using Lévy Processes

Determining and Forecasting High-Frequency Value-at-Risk by Using Lévy Processes Determining and Forecasting High-Frequency Value-at-Risk by Using Lévy Processes W ei Sun 1, Svetlozar Rachev 1,2, F rank J. F abozzi 3 1 Institute of Statistics and Mathematical Economics, University

More information

Abstract. Introduction. B. Sivakumar Department of Land, Air & Water Resources, University of California, Davis, CA 95616, USA

Abstract. Introduction. B. Sivakumar Department of Land, Air & Water Resources, University of California, Davis, CA 95616, USA Hydrology and Earth System Sciences, 5(4), 645 651 (2001) Rainfall dynamics EGS at different temporal scales: A chaotic perspective Rainfall dynamics at different temporal scales: A chaotic perspective

More information

From Fractional Brownian Motion to Multifractional Brownian Motion

From Fractional Brownian Motion to Multifractional Brownian Motion From Fractional Brownian Motion to Multifractional Brownian Motion Antoine Ayache USTL (Lille) Antoine.Ayache@math.univ-lille1.fr Cassino December 2010 A.Ayache (USTL) From FBM to MBM Cassino December

More information

Application of Chaos Theory and Genetic Programming in Runoff Time Series

Application of Chaos Theory and Genetic Programming in Runoff Time Series Application of Chaos Theory and Genetic Programming in Runoff Time Series Mohammad Ali Ghorbani 1, Hossein Jabbari Khamnei, Hakimeh Asadi 3*, Peyman Yousefi 4 1 Associate Professor, Department of Water

More information

Lecture Notes on Fractals and Multifractals

Lecture Notes on Fractals and Multifractals Lecture Notes on Fractals and Multifractals Topics in Physics of Complex Systems Version: 8th October 2010 1 SELF-AFFINE SURFACES 1 Self-affine surfaces The most common example of a self-affine signal

More information

Distinguishing chaos from noise

Distinguishing chaos from noise Distinguishing chaos from noise Jianbo Gao PMB InTelliGence, LLC, West Lafayette, IN 47906 Mechanical and Materials Engineering, Wright State University jbgao.pmb@gmail.com http://www.gao.ece.ufl.edu/

More information

What is Chaos? Implications of Chaos 4/12/2010

What is Chaos? Implications of Chaos 4/12/2010 Joseph Engler Adaptive Systems Rockwell Collins, Inc & Intelligent Systems Laboratory The University of Iowa When we see irregularity we cling to randomness and disorder for explanations. Why should this

More information

Long term persistence in daily wind speed series using fractal dimension

Long term persistence in daily wind speed series using fractal dimension Int. Jnl. of Multiphysics Volume 7 Number 2 213 87 Long term persistence in daily wind speed series using fractal dimension Samia Harrouni * Instrumentation Laboratory, Faculty of Electronics and Computer,

More information

Long-term behaviour of GRP pipes

Long-term behaviour of GRP pipes Long-term behaviour of GRP pipes H. Faria ( 1 ), A.Vieira ( 1 ), J. Reis ( 1 ), A. T. Marques ( 2 ), R. M. Guedes ( 2 ), A. J. M. Ferreira ( 2 ) 1 INEGI - Instituto de Engenharia Mecânica e Gestão Industrial,

More information

Colin Barquist. Biological Scaling Laws and Universality PHZ 7429

Colin Barquist. Biological Scaling Laws and Universality PHZ 7429 Colin Barquist Biological Scaling Laws and Universality PHZ 7429 aaab6nicbvdlsgnbeoynrxhfuy9ebopgkeykei9blx7jiw9ilja76u2gzm4um7ncwpijxjwo4tuv8ubfoen2oikfduvvn91dqsk4nq777rtw1jc2t4rbpz3dvf2d8ufrs8epythksyhvj6aabzfynnwi7cqkarqibafjm5nffkkleswfzsrbp6jdyupoqlhsw31f9msvt+roqvajl5mk5gj0y1+9qczsckvhgmrd9dze+blvhjob01iv1zhqnqzd7foqaytaz+antsmzvqykjjutachc/t2r0ujrsrtyzoiakv72zuj/xjc14zwfczmkbivblaptquxmzn+tavfijjhyqpni9lbcrlrrzmw6jruct/zykmldvd236t1dvurxerxfoiftoacpalchw2haexgm4rle4c0rzovz7nwswgtopnmmf+b8/garoi21

More information

Take a line segment of length one unit and divide it into N equal old length. Take a square (dimension 2) of area one square unit and divide

Take a line segment of length one unit and divide it into N equal old length. Take a square (dimension 2) of area one square unit and divide Fractal Geometr A Fractal is a geometric object whose dimension is fractional Most fractals are self similar, that is when an small part of a fractal is magnified the result resembles the original fractal

More information

Analysis of Electroencephologram Data Using Time-Delay Embeddings to Reconstruct Phase Space

Analysis of Electroencephologram Data Using Time-Delay Embeddings to Reconstruct Phase Space Dynamics at the Horsetooth Volume 1, 2009. Analysis of Electroencephologram Data Using Time-Delay Embeddings to Reconstruct Phase Space Department of Mathematics Colorado State University Report submitted

More information

ZEBRAFISH CROSSWORD PUZZLE (LEVEL 1)

ZEBRAFISH CROSSWORD PUZZLE (LEVEL 1) ZEBRAFISH CROSSWORD PUZZLE (LEVEL 1) 1 2 3 4 5 6 7 8 1 The organ that pumps blood through the body 6 An organ in the fish that takes oxygen from the water 7 Structures in the lung that take oxygen from

More information

Singular Measures and f(α)

Singular Measures and f(α) Chapter 10 Singular Measures and f(α) 10.1 Definition Another approach to characterizing the complexity of chaotic attractors is through the singularities of the measure. Demonstration 1 illustrates the

More information

Fractal Dimension and Vector Quantization

Fractal Dimension and Vector Quantization Fractal Dimension and Vector Quantization [Extended Abstract] Krishna Kumaraswamy Center for Automated Learning and Discovery, Carnegie Mellon University skkumar@cs.cmu.edu Vasileios Megalooikonomou Department

More information

Copyright 1966, by the author(s). All rights reserved.

Copyright 1966, by the author(s). All rights reserved. Copyright 1966, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are

More information

The Research of Railway Coal Dispatched Volume Prediction Based on Chaos Theory

The Research of Railway Coal Dispatched Volume Prediction Based on Chaos Theory The Research of Railway Coal Dispatched Volume Prediction Based on Chaos Theory Hua-Wen Wu Fu-Zhang Wang Institute of Computing Technology, China Academy of Railway Sciences Beijing 00044, China, P.R.

More information

SVM based on personal identification system using Electrocardiograms

SVM based on personal identification system using Electrocardiograms SVM based on personal identification system using Electrocardiograms Emna Rabhi #1, Zied Lachiri * # University of Tunis El Manar National School of Engineers of Tunis, LR11ES17 Signal, Image and Information

More information

DYNAMIC ANALYSIS OF THE CORRELATION INTEGRAL OF HEART RATE VARIABILITY IN HYPERTROPHIC CARDIOMYOPATHY PATIENTS

DYNAMIC ANALYSIS OF THE CORRELATION INTEGRAL OF HEART RATE VARIABILITY IN HYPERTROPHIC CARDIOMYOPATHY PATIENTS of DYNAMIC ANALYSIS OF THE CORRELATION INTEGRAL OF HEART RATE VARIABILITY IN HYPERTROPHIC CARDIOMYOPATHY PATIENTS R. Carvajal,2, M. Vallverdú, J.J. Zebrowski 3, R. Baranowski, L. Chojnowska, P. Caminal

More information

Characterization of phonemes by means of correlation dimension

Characterization of phonemes by means of correlation dimension Characterization of phonemes by means of correlation dimension PACS REFERENCE: 43.25.TS (nonlinear acoustical and dinamical systems) Martínez, F.; Guillamón, A.; Alcaraz, J.C. Departamento de Matemática

More information

Exact solution of two friendly walks above a sticky wall with single and double interactions

Exact solution of two friendly walks above a sticky wall with single and double interactions Exact solution of two friendly walks above a sticky wall with single and double interactions Aleks, Andrew Rechnitzer, and Thomas Wong MASCOS and Department of Mathematics and Statistics, The University

More information

Preliminary Results on Social Learning with Partial Observations

Preliminary Results on Social Learning with Partial Observations Preliminary Results on Social Learning with Partial Observations Ilan Lobel, Daron Acemoglu, Munther Dahleh and Asuman Ozdaglar ABSTRACT We study a model of social learning with partial observations from

More information

1 GO: regulation of cell size E-04 2 GO: negative regulation of cell growth GO:

1 GO: regulation of cell size E-04 2 GO: negative regulation of cell growth GO: Table S2: The biological modulated by mir-5701 Sr. No Term Id 1 Term Name 2 Hit Gene Number 3 P-Value 4 1 GO:0008361 regulation of cell size 9 4.37E-04 2 GO:0030308 negative regulation of cell growth 8

More information

FRACTALS, DIMENSION, AND NONSMOOTH ANALYSIS ERIN PEARSE

FRACTALS, DIMENSION, AND NONSMOOTH ANALYSIS ERIN PEARSE FRACTALS, DIMENSION, AND NONSMOOTH ANALYSIS ERIN PEARSE 1. Fractional Dimension Fractal = fractional dimension. Intuition suggests dimension is an integer, e.g., A line is 1-dimensional, a plane (or square)

More information

USING THE RANDOM ITERATION ALGORITHM TO CREATE FRACTALS

USING THE RANDOM ITERATION ALGORITHM TO CREATE FRACTALS USING THE RANDOM ITERATION ALGORITHM TO CREATE FRACTALS UNIVERSITY OF MARYLAND DIRECTED READING PROGRAM FALL 205 BY ADAM ANDERSON THE SIERPINSKI GASKET 2 Stage 0: A 0 = 2 22 A 0 = Stage : A = 2 = 4 A

More information

Interbeat RR Interval Time Series Analyzed with the Sample Entropy Methodology

Interbeat RR Interval Time Series Analyzed with the Sample Entropy Methodology Proceedings of the 3 rd World Congress on Electrical Engineering and Computer Systems and Science (EECSS'17) Rome, Italy June 4 6, 2017 Paper No. ICBES 125 ISSN: 2369-811X DOI: 10.11159/icbes17.125 Interbeat

More information

PACKING-DIMENSION PROFILES AND FRACTIONAL BROWNIAN MOTION

PACKING-DIMENSION PROFILES AND FRACTIONAL BROWNIAN MOTION PACKING-DIMENSION PROFILES AND FRACTIONAL BROWNIAN MOTION DAVAR KHOSHNEVISAN AND YIMIN XIAO Abstract. In order to compute the packing dimension of orthogonal projections Falconer and Howroyd 997) introduced

More information

Hausdorff Measure. Jimmy Briggs and Tim Tyree. December 3, 2016

Hausdorff Measure. Jimmy Briggs and Tim Tyree. December 3, 2016 Hausdorff Measure Jimmy Briggs and Tim Tyree December 3, 2016 1 1 Introduction In this report, we explore the the measurement of arbitrary subsets of the metric space (X, ρ), a topological space X along

More information

Modeling and Predicting Chaotic Time Series

Modeling and Predicting Chaotic Time Series Chapter 14 Modeling and Predicting Chaotic Time Series To understand the behavior of a dynamical system in terms of some meaningful parameters we seek the appropriate mathematical model that captures the

More information

Solution Manual for Transport Phenomena in Biological Systems George A. Truskey, Fan Yuan and David F. Katz

Solution Manual for Transport Phenomena in Biological Systems George A. Truskey, Fan Yuan and David F. Katz Solution Manual for Transport Phenomena in Biological Systems George A. Truskey, Fan Yuan and David F. Katz Solution to Problems in Chapter, Section... The relative importance of convection and diffusion

More information

Ergodicity of Stochastic Differential Equations Driven by Fractional Brownian Motion

Ergodicity of Stochastic Differential Equations Driven by Fractional Brownian Motion Ergodicity of Stochastic Differential Equations Driven by Fractional Brownian Motion April 15, 23 Martin Hairer Mathematics Research Centre, University of Warwick Email: hairer@maths.warwick.ac.uk Abstract

More information

Annales UMCS Informatica AI 1 (2003) UMCS. Liquid state machine built of Hodgkin-Huxley neurons pattern recognition and informational entropy

Annales UMCS Informatica AI 1 (2003) UMCS. Liquid state machine built of Hodgkin-Huxley neurons pattern recognition and informational entropy Annales UMC Informatica AI 1 (2003) 107-113 Annales UMC Informatica Lublin-Polonia ectio AI http://www.annales.umcs.lublin.pl/ Liquid state machine built of Hodgkin-Huxley neurons pattern recognition and

More information

CHAPTER 10 PERMUTATION ENTROPY, MULTISCALE PERMUTATION ENTROPY AND WAVELET TRANSFORM ANALYSIS OF HEART RATE VARIABILITY

CHAPTER 10 PERMUTATION ENTROPY, MULTISCALE PERMUTATION ENTROPY AND WAVELET TRANSFORM ANALYSIS OF HEART RATE VARIABILITY 157 CHAPTER 10 PERMUTATION ENTROPY, MULTISCALE PERMUTATION ENTROPY AND WAVELET TRANSFORM ANALYSIS OF HEART RATE VARIABILITY 10.1 INTRODUCTION Complexity parameters for time series are produced based on

More information

2.3 BASIC DIFFERENTIATION FORMULAS. dy dx 12 d dx x 1 12 x 2 12

2.3 BASIC DIFFERENTIATION FORMULAS. dy dx 12 d dx x 1 12 x 2 12 SECTION 2.3 BASIC DIFFERENTIATION FORMULAS 1 2.3 BASIC DIFFERENTIATION FORMULAS EXAMLE A At what points on the hyperbola xy 12 is the tangent line parallel to the line 3x y 0? SOLUTION Since xy 12 can

More information

Copyright 1972, by the author(s). All rights reserved.

Copyright 1972, by the author(s). All rights reserved. Copyright 1972, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are

More information

Dynamical Systems and Deep Learning: Overview. Abbas Edalat

Dynamical Systems and Deep Learning: Overview. Abbas Edalat Dynamical Systems and Deep Learning: Overview Abbas Edalat Dynamical Systems The notion of a dynamical system includes the following: A phase or state space, which may be continuous, e.g. the real line,

More information

Scaling in Biology. How do properties of living systems change as their size is varied?

Scaling in Biology. How do properties of living systems change as their size is varied? Scaling in Biology How do properties of living systems change as their size is varied? Example: How does basal metabolic rate (heat radiation) vary as a function of an animal s body mass? Mouse Hamster

More information

NONLINEAR TIME SERIES ANALYSIS, WITH APPLICATIONS TO MEDICINE

NONLINEAR TIME SERIES ANALYSIS, WITH APPLICATIONS TO MEDICINE NONLINEAR TIME SERIES ANALYSIS, WITH APPLICATIONS TO MEDICINE José María Amigó Centro de Investigación Operativa, Universidad Miguel Hernández, Elche (Spain) J.M. Amigó (CIO) Nonlinear time series analysis

More information

k k k 1 Lecture 9: Applying Backpropagation Lecture 9: Applying Backpropagation 3 Lecture 9: Applying Backpropagation

k k k 1 Lecture 9: Applying Backpropagation Lecture 9: Applying Backpropagation 3 Lecture 9: Applying Backpropagation K-Class Classification Problem Let us denote the -th class by C, with n exemplars or training samples, forming the sets T for = 1,, K: {( x, ) p = 1 n } T = d,..., p p The complete training set is T =

More information

Majid Sodagar, 1 Patrick Chang, 1 Edward Coyler, 1 and John Parke 1 School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA

Majid Sodagar, 1 Patrick Chang, 1 Edward Coyler, 1 and John Parke 1 School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA Experimental Characterization of Chua s Circuit Majid Sodagar, 1 Patrick Chang, 1 Edward Coyler, 1 and John Parke 1 School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA (Dated:

More information

Physiology Coloring Book: Panels 29, 32, 33,

Physiology Coloring Book: Panels 29, 32, 33, ELEC4623/ELEC9734: Semester 2, 2009 Dr Stephen Redmond School of Electrical Engineering & Telecommunications Email: s.redmond@unsw.edu.au Ph: 9385 6101 Rm: 458, ELECENG (G17) Physiology Coloring Book:

More information

SELF-SIMILAR BASED TIME SERIES ANALYSIS AND PREDICTION

SELF-SIMILAR BASED TIME SERIES ANALYSIS AND PREDICTION SELF-SIMILAR BASED TIME SERIES ANALYSIS AND PREDICTION by Ruoqiu Wang A thesis submitted in conformity with the requirements for the degree of Master of Applied Science Graduate Department of Mechanical

More information

Discretization of SDEs: Euler Methods and Beyond

Discretization of SDEs: Euler Methods and Beyond Discretization of SDEs: Euler Methods and Beyond 09-26-2006 / PRisMa 2006 Workshop Outline Introduction 1 Introduction Motivation Stochastic Differential Equations 2 The Time Discretization of SDEs Monte-Carlo

More information

Copyright 1984, by the author(s). All rights reserved.

Copyright 1984, by the author(s). All rights reserved. Copyright 1984, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are

More information

Convex mirror (p1) Convex mirror (p2) Galileo's Telescope. Incandescent light bulb James Gregory Telescope Kepler's Telescope

Convex mirror (p1) Convex mirror (p2) Galileo's Telescope. Incandescent light bulb James Gregory Telescope Kepler's Telescope SCIENCE GENERAL APPARATUS & EQUIPMENT Convex mirror (p1) Convex mirror (p2) Galileo's Telescope Incandescent light bulb James Gregory Telescope Kepler's Telescope Mirrors (p1) Mirrors (p2) Plane mirror

More information

Recurrence Analysis of Converging and Diverging Trajectories in the Mandelbrot Set

Recurrence Analysis of Converging and Diverging Trajectories in the Mandelbrot Set 155 Bulletin of Jumonji University, vol.47, 2016 研究ノート Recurrence Analysis of Converging and Diverging Trajectories in the Mandelbrot Set Shigeki IKEGAWA 1) Charles L. Webber, Jr. 2) ABSTRACT Iterated

More information

continuing education Acid-Base Review

continuing education Acid-Base Review continuing education Acid-Base Review James P. Dearing, B.S., C.C.P. In the normal, healthy individual the acid-base balance within the body is remarkably constant. For example, arterial blood, drawn from

More information

Lecture 9. Time series prediction

Lecture 9. Time series prediction Lecture 9 Time series prediction Prediction is about function fitting To predict we need to model There are a bewildering number of models for data we look at some of the major approaches in this lecture

More information

exponents and mode-locked solutions for integrate-and-fire dynamical systems

exponents and mode-locked solutions for integrate-and-fire dynamical systems Loughborough University Institutional Repository Liapunov exponents and mode-locked solutions for integrate-and-fire dynamical systems This item was submitted to Loughborough University's Institutional

More information