Solutions. Chapter 1. Problem 1.1. Solution. Simulate free response of damped harmonic oscillator

Size: px
Start display at page:

Download "Solutions. Chapter 1. Problem 1.1. Solution. Simulate free response of damped harmonic oscillator"

Transcription

1 Chapter Solutions Problem. Simulate free response of damped harmonic oscillator ẍ + ζẋ + x = for different values of damping ration ζ and initial conditions. Plot the response x(t) and ẋ(t) versus t and the corresponding trajectories in the phase space for underdamped, critically damped, and overdamped systems. Do the same for the harmonically forced system: ẍ + ζẋ + x = f cos ωt for some choice of f and ω and plot the solutions including transient response and some part of the steady state. Solution MATLAB code for the simulations and figures: function [] = Problem MCE 567 Problem. Solution integrate the equations for the free response [t,y] = ode45(@harmonic,:.:,[ ],[],.,,); [t,y] = ode45(@harmonic,:.:,[ ],[],,,); [t,y3] = ode45(@harmonic,:.:,[ ],[],,,); plot the results figure() figure( PaperType, <custom>, PaperSize,[8 4], PaperPosition,[ ]); subplot() plot(t,y,t,y,t,y3) xlabel( $t$, FontSize,4, Interpreter, latex ); ylabel( $x(t), \dot x(t)$, FontSize,4, Interpreter, latex ); axis([ ]) box on 3

2 4 CHAPTER. SOLUTIONS legend( underdamped, x, underdamped, v, critically-damped, x,... critically-damped, v, overdamped, x, overdamped, v ) legend boxoff subplot() tau = ; plot(y(:,),y(:,),y(:,),y(:,),y3(:,),y3(:,)) xlabel( $x$, FontSize,4, Interpreter, latex ); ylabel( $\dot x$, FontSize,4, Interpreter, latex ); axis([ ]) box on legend( underdamped, critically-damped, overdamped, location, northwest ) legend boxoff print -dpdf Problem a integrate the equations for the forced response [t,y] = ode45(@harmonic,:.:,[ ],[],.,.,.8); [t,y] = ode45(@harmonic,:.:,[ ],[],,.,.8); [t,y3] = ode45(@harmonic,:.:,[ ],[],,.,.8); plot the results figure() figure( PaperType, <custom>, PaperSize,[8 4], PaperPosition,[ ]); subplot() plot(t,y,t,y,t,y3) xlabel( $t$, FontSize,4, Interpreter, latex ); ylabel( $x(t), \dot x(t)$, FontSize,4, Interpreter, latex ); axis([ -.5.5]) box on legend( underdamped, x, underdamped, v, critically-damped, x,... critically-damped, v, overdamped, x, overdamped, v ) legend boxoff subplot() tau = ; plot(y(:,),y(:,),y(:,),y(:,),y3(:,),y3(:,)) xlabel( $x$, FontSize,4, Interpreter, latex ); ylabel( $\dot x$, FontSize,4, Interpreter, latex ); axis([ ]) box on legend( underdamped, critically-damped, overdamped, location, northwest ) legend boxoff print -dpdf Problem b function dy=harmonic(t,y,zeta,f,omega) duffing equation for integration dy=[y(); -y()*zeta*y()+f*cos(omega*t)]; end end

3 underdamped, x underdamped, v critically-damped, x critically-damped, v overdamped, x overdamped, v.5 underdamped critically-damped overdamped Figure.: Output of the above script for the free response The figure above shows the free response of the damped harmonic oscillator. We observe that critically damped system reaches zero faster than over-damped. However, the over-damped has smaller maximum amplitude. The figure bellow shows the forced response of the system. We observe that the damping determines the magnitude of the steady state response: larger damping causes smaller steady state response amplitudes. The rate at which the steady state is reached is the same as for the unforced system underdamped, x underdamped, v critically-damped, x critically-damped, v overdamped, x overdamped, v.5 underdamped critically-damped overdamped Figure.: Output of the above script for the forced response (f =. and ω =.8)

4 6 CHAPTER. SOLUTIONS Problem. Simulate two-well Duffing oscillator ẍ +.5 ẋ + x(x ) =.3 cos t using MATLAB s ode45 algorithm and using initial conditions x() = and ẋ() = over the interval t [, ]. Sample the trajectory with the uniform sampling interval t s =.. Now assume that our measurement from this system is u i = x i, and do the following: Plot the original systems phase space trajectory, by plotting x i versus ẋ i. Now plot our measurements versus their -delayed version: x i versus x i+. How do these two plot compare? Can you say that our measurement can be used to reconstruct the original system s trajectory? Solution MATLAB code for the simulation and plots: function [] = Problem MCE 567 Problem. Solution integrate the equation [t,y] = ode45(@duffing,:.:,[ , ],[],,,.5,.3,); plot the results clf figure( PaperType, <custom>, PaperSize,[7 3], PaperPosition,[ 7 3]); subplot() plot(y(:,),y(:,)) xlabel( $x$, FontSize,4, Interpreter, latex ); ylabel( $\dot x$, FontSize,4, Interpreter, latex ); axis([ ]) box on subplot() tau = ; plot(y(:end-tau,),y(+tau:end,)) xlabel( $x_n$, FontSize,4, Interpreter, latex ); ylabel( $x_{n+}$, FontSize,4, Interpreter, latex ); axis([ ]) box on print the results print -dpdf Problem duffing oscillator function dy=duffing(t,y,alpha,beta,gamma,f,omega)

5 7 duffing equation for integration dy=[y(); alpha*y()-beta*y()^3-gamma*y()+f*cos(omega*t)]; end end Looking at the above figures: Figure.3: Output of the above script. The delay coordinate plot seems similar to the original phase portrait rotated by 45 degrees counter clockwise.. Since both plots share striking resemblance they seem geometrically equivalent, we can speculate that the measurements can be used to reconstruct the original trajectory in certain cases.

6 8 CHAPTER. SOLUTIONS

7 Chapter Solutions Problem. In Matlab, generate M trials of random processes with the forms. x(t) = cos(t) + n(t);. x(t) = cos(t + θ) + n(t); and 3. x(t) = A cos(t + θ) + n(t), where t T for some sample T, n(t) is a normally-distributed (Gaussian) random process with zero mean and variance σ, θ is a uniformly-distributed constant random variable on [; π], and A is a normally-distributed constant with zero mean and unit variance. In each case, generate uniformly-sampled series {x ; x ;... ; x N } where x i = x(t i ). Use the above-generated series to examine the stationarity and ergodicity of the different processes. Experiment with different values of M, N, T, and σ to make sure you get good results. Discuss your findings. Note: Think carefully about your sampling interval and the length of the series (relationship between N and T ). Solution MATLAB code for the simulation and plots: function [] = Problem (T,N,M,sigma) MCE 567: Assignment, Problem. Can test for different values of: T -- window N -- number of samples in this window M -- numbers of trial functions sigma -- standard deviation of additive noise generate 9

8 CHAPTER. SOLUTIONS t = linspace(,t,n); define random variables n = sigma*randn(m,n); theta = *pi*rand(m,n); A = randn(m,n); generate random process trials x = ones(m,)*cos(t)+n; x = cos(ones(m,)*t+theta)+n; x3 = A.*cos(ones(M,)*t+theta)+n; test for stationarity indx = floor(linspace(,n,)); uniformly spaced points figure( PaperType, <custom>, PaperSize,[ 5.3], PaperPosition,[ ]); test for signal (a) subplot(,3,), errorbar(t(indx),mean(x(:,indx)),std(x(:,indx)), o ) xlabel( ), ylabel( ) title( stationarity of x(t) = sin(t) +n(t) ) thus this signal is nonstationary test for signal (b) subplot(,3,), errorbar(t(indx),mean(x(:,indx)),std(x(:,indx)), o ) xlabel( ), ylabel( ) title( stationarity of x(t) = sin(t-\theta) +n(t) ) this seems to be stationary test for signal (c) subplot(,3,3), errorbar(t(indx),mean(x3(:,indx)),std(x3(:,indx)), o ) xlabel( ), ylabel( ) title( stationarity of x(t) = A sin(t-\theta) +n(t) ) this also seems to be stationary Now test for ergodicity signal (a) subplot(,3,4), plot(mean(x )), hold on, plot(mean(x)) xlabel( ), ylabel( ) legend( average, space average ),title( Signal (a) ) this was obvious: it s not ergodic signal (b) subplot(,3,5), plot(mean(x )), hold on, plot(mean(x)) xlabel( ), ylabel( ),title( Signal (b) ) this seems to be ergodic signal (c) subplot(,3,6), plot(mean(x3 )), hold on, plot(mean(x3)) xlabel( ), ylabel( ),title( Signal (c) )

9 this seems to be ergodic print -dpdf Problem From the figures it is clear the the process (a) is not stationary since its mean varies with. Processes (b) and (c) seem to be stationary since their mean and variance stay approximately constant along. As for the ergodicity: process (a) is not ergodic since average is different from the space average. However, processes (b) and (c) seem stationary since their both averages seem to have similar behavior.

10 CHAPTER. SOLUTIONS stationarity of x(t) = sin(t) +n(t) stationarity of x(t) = sin(t- ) +n(t) stationarity of x(t) = A sin(t- ) +n(t) Signal (a) average space average Signal (b) Signal (c) stationarity of x(t) = sin(t) +n(t) stationarity of x(t) = sin(t- ) +n(t) stationarity of x(t) = A sin(t- ) +n(t) Signal (a) average space average Signal (b) Signal (c) Figure.: Problem. (Top: T =, N =, M =, σ =.5; Bottom: T =, N =, M =, σ =.)

11 3 stationarity of x(t) = sin(t) +n(t).5 stationarity of x(t) = sin(t- ) +n(t) stationarity of x(t) = A sin(t- ) +n(t) Signal (a) average space average Signal (b) Signal (c) stationarity of x(t) = sin(t) +n(t) stationarity of x(t) = sin(t- ) +n(t) stationarity of x(t) = A sin(t- ) +n(t) Signal (a) average space average Signal (b) Signal (c) Figure.: Problem. (Top: T =, N =, M =, σ =.5; Bottom: T =, N =, M =, σ =.)

12 4 CHAPTER. SOLUTIONS Problem. Generate one long series of the random process () in Exercise. Estimate the mean of the process many s from different subsets of the series, and show that the distribution of µ x is approximately Gaussian with mean and variance, as predicted by the Central Limit Theorem. Note: the way in which you make the samples used for each estimate can have a large impact on your results! Solution MATLAB code for the simulation and plots: function [mn, sd] = Problem MCE 567 Assignment, Problem. Solution define the parameters t = linspace(,48,48); generate random process trials x = cos(t)+.*randn(size(t)); mn=[]; sd=[]; sz = [ ]; for i = :, s = sz(i); for j = :, mun(j) = mean(x((j-)*s+:j*s)); end mn = [mn mean(mun)]; sd = [sd std(mun)]; subplot(4,3,i),hist(mun,5) xlabel( ),ylabel([ PSD (N = numstr(s) ) ]) end print -dpdf Problem a figure( PaperType, <custom>, PaperSize,[ 3.], PaperPosition,[. 3]); subplot(,,), semilogx(sz,mn, o- ) xlabel( data set size (N) ),ylabel( mean of the means ) subplot(,,), loglog(sz,sd, o- ) xlabel( data set size (N) ),ylabel( standard deviation in the mean ) print -dpdf Problem b The first figure here shows the clear trend of approaching a normal probability distribution as the number of points is increased in the data set. Also the mean of means converges to zero as data set size is increased and the standard deviation decreases according to the power law predicted by the CLT.

13 mean of the means standard deviation in the mean PSD (N = 5) PSD (N = 4) PSD (N = 48) PSD (N = 64) PSD (N = 8) PSD (N = 56) PSD (N = 8) PSD (N = 6) PSD (N = 3) PSD (N = ) PSD (N = ) PSD (N = 4) data set size (N) data set size (N) Figure.3: Problem. Plots

Solutions. Chapter 5. Problem 5.1. Solution. Consider the driven, two-well Duffing s oscillator. which can be written in state variable form as

Solutions. Chapter 5. Problem 5.1. Solution. Consider the driven, two-well Duffing s oscillator. which can be written in state variable form as Chapter 5 Solutions Problem 5.1 Consider the driven, two-well Duffing s oscillator which can be written in state variable form as ẍ + ɛγẋ x + x 3 = ɛf cos(ωt) ẋ = v v = x x 3 + ɛ( γv + F cos(ωt)). In the

More information

2 Solving Ordinary Differential Equations Using MATLAB

2 Solving Ordinary Differential Equations Using MATLAB Penn State Erie, The Behrend College School of Engineering E E 383 Signals and Control Lab Spring 2008 Lab 3 System Responses January 31, 2008 Due: February 7, 2008 Number of Lab Periods: 1 1 Objective

More information

APPM 2460 CHAOTIC DYNAMICS

APPM 2460 CHAOTIC DYNAMICS APPM 2460 CHAOTIC DYNAMICS 1. Introduction Today we ll continue our exploration of dynamical systems, focusing in particular upon systems who exhibit a type of strange behavior known as chaos. We will

More information

Experimental Fourier Transforms

Experimental Fourier Transforms Chapter 5 Experimental Fourier Transforms 5.1 Sampling and Aliasing Given x(t), we observe only sampled data x s (t) = x(t)s(t; T s ) (Fig. 5.1), where s is called sampling or comb function and can be

More information

2. Determine whether the following pair of functions are linearly dependent, or linearly independent:

2. Determine whether the following pair of functions are linearly dependent, or linearly independent: Topics to be covered on the exam include: Recognizing, and verifying solutions to homogeneous second-order linear differential equations, and their corresponding Initial Value Problems Recognizing and

More information

Introduction to Dynamical Systems. Tuesday, September 9, 14

Introduction to Dynamical Systems. Tuesday, September 9, 14 Introduction to Dynamical Systems 1 Dynamical Systems A dynamical system is a set of related phenomena that change over time in a deterministic way. The future states of the system can be predicted from

More information

M A : Ordinary Differential Equations

M A : Ordinary Differential Equations M A 2 0 5 1: Ordinary Differential Equations Essential Class Notes & Graphics C 17 * Sections C11-C18, C20 2016-2017 1 Required Background 1. INTRODUCTION CLASS 1 The definition of the derivative, Derivative

More information

Notes on the Periodically Forced Harmonic Oscillator

Notes on the Periodically Forced Harmonic Oscillator Notes on the Periodically orced Harmonic Oscillator Warren Weckesser Math 38 - Differential Equations 1 The Periodically orced Harmonic Oscillator. By periodically forced harmonic oscillator, we mean the

More information

Introduction to Signal Analysis Parts I and II

Introduction to Signal Analysis Parts I and II 41614 Dynamics of Machinery 23/03/2005 IFS Introduction to Signal Analysis Parts I and II Contents 1 Topics of the Lecture 11/03/2005 (Part I) 2 2 Fourier Analysis Fourier Series, Integral and Complex

More information

to have roots with negative real parts, the necessary and sufficient conditions are that:

to have roots with negative real parts, the necessary and sufficient conditions are that: THE UNIVERSITY OF TEXAS AT SAN ANTONIO EE 543 LINEAR SYSTEMS AND CONTROL H O M E W O R K # 7 Sebastian A. Nugroho November 6, 7 Due date of the homework is: Sunday, November 6th @ :59pm.. The following

More information

M A : Ordinary Differential Equations

M A : Ordinary Differential Equations M A 2 0 5 1: Ordinary Differential Equations Essential Class Notes & Graphics D 19 * 2018-2019 Sections D07 D11 & D14 1 1. INTRODUCTION CLASS 1 ODE: Course s Overarching Functions An introduction to the

More information

Physics with Matlab and Mathematica Exercise #1 28 Aug 2012

Physics with Matlab and Mathematica Exercise #1 28 Aug 2012 Physics with Matlab and Mathematica Exercise #1 28 Aug 2012 You can work this exercise in either matlab or mathematica. Your choice. A simple harmonic oscillator is constructed from a mass m and a spring

More information

S12 PHY321: Practice Final

S12 PHY321: Practice Final S12 PHY321: Practice Final Contextual information Damped harmonic oscillator equation: ẍ + 2βẋ + ω0x 2 = 0 ( ) ( General solution: x(t) = e [A βt 1 exp β2 ω0t 2 + A 2 exp )] β 2 ω0t 2 Driven harmonic oscillator

More information

Analysis and Design of Control Systems in the Time Domain

Analysis and Design of Control Systems in the Time Domain Chapter 6 Analysis and Design of Control Systems in the Time Domain 6. Concepts of feedback control Given a system, we can classify it as an open loop or a closed loop depends on the usage of the feedback.

More information

Homework 1 Solutions

Homework 1 Solutions 18-9 Signals and Systems Profs. Byron Yu and Pulkit Grover Fall 18 Homework 1 Solutions Part One 1. (8 points) Consider the DT signal given by the algorithm: x[] = 1 x[1] = x[n] = x[n 1] x[n ] (a) Plot

More information

Lesson 11: Mass-Spring, Resonance and ode45

Lesson 11: Mass-Spring, Resonance and ode45 Lesson 11: Mass-Spring, Resonance and ode45 11.1 Applied Problem. Trucks and cars have springs and shock absorbers to make a comfortable and safe ride. Without good shock absorbers, the truck or car will

More information

Bayesian Analysis - A First Example

Bayesian Analysis - A First Example Bayesian Analysis - A First Example This script works through the example in Hoff (29), section 1.2.1 We are interested in a single parameter: θ, the fraction of individuals in a city population with with

More information

Lab # 4 Time Response Analysis

Lab # 4 Time Response Analysis Islamic University of Gaza Faculty of Engineering Computer Engineering Dep. Feedback Control Systems Lab Eng. Tareq Abu Aisha Lab # 4 Lab # 4 Time Response Analysis What is the Time Response? It is an

More information

for non-homogeneous linear differential equations L y = f y H

for non-homogeneous linear differential equations L y = f y H Tues March 13: 5.4-5.5 Finish Monday's notes on 5.4, Then begin 5.5: Finding y P for non-homogeneous linear differential equations (so that you can use the general solution y = y P y = y x in this section...

More information

ES205 Analysis and Design of Engineering Systems: Lab 1: An Introductory Tutorial: Getting Started with SIMULINK

ES205 Analysis and Design of Engineering Systems: Lab 1: An Introductory Tutorial: Getting Started with SIMULINK ES205 Analysis and Design of Engineering Systems: Lab 1: An Introductory Tutorial: Getting Started with SIMULINK What is SIMULINK? SIMULINK is a software package for modeling, simulating, and analyzing

More information

1-DOF Vibration Characteristics. MCE371: Vibrations. Prof. Richter. Department of Mechanical Engineering. Handout 7 Fall 2017

1-DOF Vibration Characteristics. MCE371: Vibrations. Prof. Richter. Department of Mechanical Engineering. Handout 7 Fall 2017 MCE371: Vibrations Prof. Richter Department of Mechanical Engineering Handout 7 Fall 2017 Free Undamped Vibration Follow Palm, Sect. 3.2, 3.3 (pp 120-138), 3.5 (pp 144-151), 3.8 (pp. 167-169) The equation

More information

Chapter 1: Introduction

Chapter 1: Introduction Chapter 1: Introduction Definition: A differential equation is an equation involving the derivative of a function. If the function depends on a single variable, then only ordinary derivatives appear and

More information

APPPHYS 217 Tuesday 6 April 2010

APPPHYS 217 Tuesday 6 April 2010 APPPHYS 7 Tuesday 6 April Stability and input-output performance: second-order systems Here we present a detailed example to draw connections between today s topics and our prior review of linear algebra

More information

28. Pendulum phase portrait Draw the phase portrait for the pendulum (supported by an inextensible rod)

28. Pendulum phase portrait Draw the phase portrait for the pendulum (supported by an inextensible rod) 28. Pendulum phase portrait Draw the phase portrait for the pendulum (supported by an inextensible rod) θ + ω 2 sin θ = 0. Indicate the stable equilibrium points as well as the unstable equilibrium points.

More information

System Control Engineering 0

System Control Engineering 0 System Control Engineering 0 Koichi Hashimoto Graduate School of Information Sciences Text: Nonlinear Control Systems Analysis and Design, Wiley Author: Horacio J. Marquez Web: http://www.ic.is.tohoku.ac.jp/~koichi/system_control/

More information

Topic # Feedback Control Systems

Topic # Feedback Control Systems Topic #14 16.31 Feedback Control Systems State-Space Systems Full-state Feedback Control How do we change the poles of the state-space system? Or, even if we can change the pole locations. Where do we

More information

Stochastic Processes. M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno

Stochastic Processes. M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno Stochastic Processes M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno 1 Outline Stochastic (random) processes. Autocorrelation. Crosscorrelation. Spectral density function.

More information

Even-Numbered Homework Solutions

Even-Numbered Homework Solutions -6 Even-Numbered Homework Solutions Suppose that the matric B has λ = + 5i as an eigenvalue with eigenvector Y 0 = solution to dy = BY Using Euler s formula, we can write the complex-valued solution Y

More information

Controller Design using Root Locus

Controller Design using Root Locus Chapter 4 Controller Design using Root Locus 4. PD Control Root locus is a useful tool to design different types of controllers. Below, we will illustrate the design of proportional derivative controllers

More information

Lecture Notes 7 Stationary Random Processes. Strict-Sense and Wide-Sense Stationarity. Autocorrelation Function of a Stationary Process

Lecture Notes 7 Stationary Random Processes. Strict-Sense and Wide-Sense Stationarity. Autocorrelation Function of a Stationary Process Lecture Notes 7 Stationary Random Processes Strict-Sense and Wide-Sense Stationarity Autocorrelation Function of a Stationary Process Power Spectral Density Continuity and Integration of Random Processes

More information

Vector Fields and Solutions to Ordinary Differential Equations using MATLAB/Octave

Vector Fields and Solutions to Ordinary Differential Equations using MATLAB/Octave Vector Fields and Solutions to Ordinary Differential Equations using MATLAB/Octave Andreas Stahel 5th December 27 Contents Vector field for the logistic equation 2 Solutions of ordinary differential equations

More information

Chapter 1, Section 1.2, Example 9 (page 13) and Exercise 29 (page 15). Use the Uniqueness Tool. Select the option ẋ = x

Chapter 1, Section 1.2, Example 9 (page 13) and Exercise 29 (page 15). Use the Uniqueness Tool. Select the option ẋ = x Use of Tools from Interactive Differential Equations with the texts Fundamentals of Differential Equations, 5th edition and Fundamentals of Differential Equations and Boundary Value Problems, 3rd edition

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.685 Electric Machines Problem Set Solutions September 17, 5 Problem 1: First, note that λ 1 = L 1 i 1 +

More information

Laboratory handouts, ME 340

Laboratory handouts, ME 340 Laboratory handouts, ME 340 This document contains summary theory, solved exercises, prelab assignments, lab instructions, and report assignments for Lab 4. 2014-2016 Harry Dankowicz, unless otherwise

More information

Math 240: Spring/Mass Systems II

Math 240: Spring/Mass Systems II Math 240: Spring/Mass Systems II Ryan Blair University of Pennsylvania Monday, March 26, 2012 Ryan Blair (U Penn) Math 240: Spring/Mass Systems II Monday, March 26, 2012 1 / 12 Outline 1 Today s Goals

More information

MAE143A Signals & Systems - Homework 5, Winter 2013 due by the end of class Tuesday February 12, 2013.

MAE143A Signals & Systems - Homework 5, Winter 2013 due by the end of class Tuesday February 12, 2013. MAE43A Signals & Systems - Homework 5, Winter 23 due by the end of class Tuesday February 2, 23. If left under my door, then straight to the recycling bin with it. This week s homework will be a refresher

More information

Course roadmap. Step response for 2nd-order system. Step response for 2nd-order system

Course roadmap. Step response for 2nd-order system. Step response for 2nd-order system ME45: Control Systems Lecture Time response of nd-order systems Prof. Clar Radcliffe and Prof. Jongeun Choi Department of Mechanical Engineering Michigan State University Modeling Laplace transform Transfer

More information

Solutions for examination in TSRT78 Digital Signal Processing,

Solutions for examination in TSRT78 Digital Signal Processing, Solutions for examination in TSRT78 Digital Signal Processing, 2014-04-14 1. s(t) is generated by s(t) = 1 w(t), 1 + 0.3q 1 Var(w(t)) = σ 2 w = 2. It is measured as y(t) = s(t) + n(t) where n(t) is white

More information

Math 216 Second Midterm 20 March, 2017

Math 216 Second Midterm 20 March, 2017 Math 216 Second Midterm 20 March, 2017 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material

More information

Computational Physics (6810): Session 8

Computational Physics (6810): Session 8 Computational Physics (6810): Session 8 Dick Furnstahl Nuclear Theory Group OSU Physics Department February 24, 2014 Differential equation solving Session 7 Preview Session 8 Stuff Solving differential

More information

Differential Equations

Differential Equations Differential Equations A differential equation (DE) is an equation which involves an unknown function f (x) as well as some of its derivatives. To solve a differential equation means to find the unknown

More information

MAT 275 Laboratory 4 MATLAB solvers for First-Order IVP

MAT 275 Laboratory 4 MATLAB solvers for First-Order IVP MATLAB sessions: Laboratory 4 MAT 275 Laboratory 4 MATLAB solvers for First-Order IVP In this laboratory session we will learn how to. Use MATLAB solvers for solving scalar IVP 2. Use MATLAB solvers for

More information

12. Prediction Error Methods (PEM)

12. Prediction Error Methods (PEM) 12. Prediction Error Methods (PEM) EE531 (Semester II, 2010) description optimal prediction Kalman filter statistical results computational aspects 12-1 Description idea: determine the model parameter

More information

EE364b Homework 4. L(y,ν) = (1/2) y x ν(1 T y 1), minimize (1/2) y x 2 2 subject to y 0, 1 T y = 1,

EE364b Homework 4. L(y,ν) = (1/2) y x ν(1 T y 1), minimize (1/2) y x 2 2 subject to y 0, 1 T y = 1, EE364b Prof. S. Boyd EE364b Homework 4 1. Projection onto the probability simplex. In this problem you will work out a simple method for finding the Euclidean projection y of x R n onto the probability

More information

MAT 275 Laboratory 4 MATLAB solvers for First-Order IVP

MAT 275 Laboratory 4 MATLAB solvers for First-Order IVP MAT 275 Laboratory 4 MATLAB solvers for First-Order IVP In this laboratory session we will learn how to. Use MATLAB solvers for solving scalar IVP 2. Use MATLAB solvers for solving higher order ODEs and

More information

EEM 409. Random Signals. Problem Set-2: (Power Spectral Density, LTI Systems with Random Inputs) Problem 1: Problem 2:

EEM 409. Random Signals. Problem Set-2: (Power Spectral Density, LTI Systems with Random Inputs) Problem 1: Problem 2: EEM 409 Random Signals Problem Set-2: (Power Spectral Density, LTI Systems with Random Inputs) Problem 1: Consider a random process of the form = + Problem 2: X(t) = b cos(2π t + ), where b is a constant,

More information

Chapter 4 Transients. Chapter 4 Transients

Chapter 4 Transients. Chapter 4 Transients Chapter 4 Transients Chapter 4 Transients 1. Solve first-order RC or RL circuits. 2. Understand the concepts of transient response and steady-state response. 1 3. Relate the transient response of first-order

More information

MODELLING A MASS / SPRING SYSTEM Free oscillations, Damping, Force oscillations (impulsive and sinusoidal)

MODELLING A MASS / SPRING SYSTEM Free oscillations, Damping, Force oscillations (impulsive and sinusoidal) DOING PHYSICS WITH MATLAB MODELLING A MASS / SPRING SYSTEM Free oscillations, Damping, Force oscillations (impulsive and sinusoidal) Download Directory: Matlab mscripts osc_harmonic01.m The script uses

More information

Introduction Course Goals Review Topics. MCE371: Vibrations. Prof. Richter. Department of Mechanical Engineering. Handout 1 Fall 2017

Introduction Course Goals Review Topics. MCE371: Vibrations. Prof. Richter. Department of Mechanical Engineering. Handout 1 Fall 2017 MCE371: Vibrations Prof. Richter Department of Mechanical Engineering Handout 1 Fall 2017 Outline Introduction 1 Introduction Vibration Problems in Engineering 2 3 Vibration Problems in Engineering Vibration

More information

Laboratory handout 5 Mode shapes and resonance

Laboratory handout 5 Mode shapes and resonance laboratory handouts, me 34 82 Laboratory handout 5 Mode shapes and resonance In this handout, material and assignments marked as optional can be skipped when preparing for the lab, but may provide a useful

More information

Problem Weight Total 100

Problem Weight Total 100 EE 350 Problem Set 3 Cover Sheet Fall 2016 Last Name (Print): First Name (Print): ID number (Last 4 digits): Section: Submission deadlines: Turn in the written solutions by 4:00 pm on Tuesday September

More information

1-DOF Forced Harmonic Vibration. MCE371: Vibrations. Prof. Richter. Department of Mechanical Engineering. Handout 8 Fall 2011

1-DOF Forced Harmonic Vibration. MCE371: Vibrations. Prof. Richter. Department of Mechanical Engineering. Handout 8 Fall 2011 MCE371: Vibrations Prof. Richter Department of Mechanical Engineering Handout 8 Fall 2011 Harmonic Forcing Functions Transient vs. Steady Vibration Follow Palm, Sect. 4.1, 4.9 and 4.10 Harmonic forcing

More information

Fourier Series. Green - underdamped

Fourier Series. Green - underdamped Harmonic Oscillator Fourier Series Undamped: Green - underdamped Overdamped: Critical: Underdamped: Driven: Calculus of Variations b f {y, y'; x}dx is stationary when f y d f = 0 dx y' a Note that y is

More information

Probability Space. J. McNames Portland State University ECE 538/638 Stochastic Signals Ver

Probability Space. J. McNames Portland State University ECE 538/638 Stochastic Signals Ver Stochastic Signals Overview Definitions Second order statistics Stationarity and ergodicity Random signal variability Power spectral density Linear systems with stationary inputs Random signal memory Correlation

More information

ECE382/ME482 Spring 2005 Homework 7 Solution April 17, K(s + 0.2) s 2 (s + 2)(s + 5) G(s) =

ECE382/ME482 Spring 2005 Homework 7 Solution April 17, K(s + 0.2) s 2 (s + 2)(s + 5) G(s) = ECE382/ME482 Spring 25 Homework 7 Solution April 17, 25 1 Solution to HW7 AP9.5 We are given a system with open loop transfer function G(s) = K(s +.2) s 2 (s + 2)(s + 5) (1) and unity negative feedback.

More information

These videos and handouts are supplemental documents of paper X. Li, Z. Huang. An Inverted Classroom Approach to Educate MATLAB in Chemical Process

These videos and handouts are supplemental documents of paper X. Li, Z. Huang. An Inverted Classroom Approach to Educate MATLAB in Chemical Process These videos and handouts are supplemental documents of paper X. Li, Z. Huang. An Inverted Classroom Approach to Educate MATLAB in Chemical Process Control, Education for Chemical Engineers, 9, -, 7. The

More information

APPLICATIONS FOR ROBOTICS

APPLICATIONS FOR ROBOTICS Version: 1 CONTROL APPLICATIONS FOR ROBOTICS TEX d: Feb. 17, 214 PREVIEW We show that the transfer function and conditions of stability for linear systems can be studied using Laplace transforms. Table

More information

Solve the set of equations using the decomposition method and AX=B:

Solve the set of equations using the decomposition method and AX=B: PROBLEM 1.1 STATEMENT Solve the set of equations using the decomposition method and AX=B: 5x 1 + 3x 2 + 4x 3 = 12 6x 1 + 3x 2 + 4x 3 = 15 7x 1 + 9x 2 + 2x 3 = 10 PROBLEM 1.2 STATEMENT 1 4 5 3 4 5 If A

More information

One-Dimensional Motion (Symon Chapter Two)

One-Dimensional Motion (Symon Chapter Two) One-Dimensional Motion (Symon Chapter Two) Physics A3 Spring 6 Contents I Consequences of Newton s Second Law 3 1 Momentum and Energy 3 Forces Depending only on Time (Symon Section.3) 4.1 Example: Sinusoidal

More information

6.094 Introduction to MATLAB January (IAP) 2009

6.094 Introduction to MATLAB January (IAP) 2009 MIT OpenCourseWare http://ocw.mit.edu 6.094 Introduction to MATLAB January (IAP) 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 6.094: Introduction

More information

Statistics Assignment 2 HET551 Design and Development Project 1

Statistics Assignment 2 HET551 Design and Development Project 1 Statistics Assignment HET Design and Development Project Michael Allwright - 74634 Haddon O Neill 7396 Monday, 3 June Simple Stochastic Processes Mean, Variance and Covariance Derivation The following

More information

APPM 2360: Midterm 3 July 12, 2013.

APPM 2360: Midterm 3 July 12, 2013. APPM 2360: Midterm 3 July 12, 2013. ON THE FRONT OF YOUR BLUEBOOK write: (1) your name, (2) your instructor s name, (3) your recitation section number and (4) a grading table. Text books, class notes,

More information

BSc/MSci MidTerm Test

BSc/MSci MidTerm Test BSc/MSci MidTerm Test PHY-217 Vibrations and Waves Time Allowed: 40 minutes Date: 18 th Nov, 2011 Time: 9:10-9:50 Instructions: Answer ALL questions in section A. Answer ONLY ONE questions from section

More information

Figure 1: Schematic of ship in still water showing the action of bouyancy and weight to right the ship.

Figure 1: Schematic of ship in still water showing the action of bouyancy and weight to right the ship. MULTI-DIMENSIONAL SYSTEM: In this computer simulation we will explore a nonlinear multi-dimensional system. As before these systems are governed by equations of the form x 1 = f 1 x 2 = f 2.. x n = f n

More information

From Fourier Series to Analysis of Non-stationary Signals - X

From Fourier Series to Analysis of Non-stationary Signals - X From Fourier Series to Analysis of Non-stationary Signals - X prof. Miroslav Vlcek December 14, 21 Contents Stationary and non-stationary 1 Stationary and non-stationary 2 3 Contents Stationary and non-stationary

More information

MAE 143B - Homework 7

MAE 143B - Homework 7 MAE 143B - Homework 7 6.7 Multiplying the first ODE by m u and subtracting the product of the second ODE with m s, we get m s m u (ẍ s ẍ i ) + m u b s (ẋ s ẋ u ) + m u k s (x s x u ) + m s b s (ẋ s ẋ u

More information

Vibrations: Second Order Systems with One Degree of Freedom, Free Response

Vibrations: Second Order Systems with One Degree of Freedom, Free Response Single Degree of Freedom System 1.003J/1.053J Dynamics and Control I, Spring 007 Professor Thomas Peacock 5//007 Lecture 0 Vibrations: Second Order Systems with One Degree of Freedom, Free Response Single

More information

New Mexico Tech Hyd 510

New Mexico Tech Hyd 510 Vectors vector - has magnitude and direction (e.g. velocity, specific discharge, hydraulic gradient) scalar - has magnitude only (e.g. porosity, specific yield, storage coefficient) unit vector - a unit

More information

08. Brownian Motion. University of Rhode Island. Gerhard Müller University of Rhode Island,

08. Brownian Motion. University of Rhode Island. Gerhard Müller University of Rhode Island, University of Rhode Island DigitalCommons@URI Nonequilibrium Statistical Physics Physics Course Materials 1-19-215 8. Brownian Motion Gerhard Müller University of Rhode Island, gmuller@uri.edu Follow this

More information

Second Order and Higher Order Systems

Second Order and Higher Order Systems Second Order and Higher Order Systems 1. Second Order System In this section, we shall obtain the response of a typical second-order control system to a step input. In terms of damping ratio and natural

More information

ENGI Duffing s Equation Page 4.65

ENGI Duffing s Equation Page 4.65 ENGI 940 4. - Duffing s Equation Page 4.65 4. Duffing s Equation Among the simplest models of damped non-linear forced oscillations of a mechanical or electrical system with a cubic stiffness term is Duffing

More information

Nonlinear Oscillators: Free Response

Nonlinear Oscillators: Free Response 20 Nonlinear Oscillators: Free Response Tools Used in Lab 20 Pendulums To the Instructor: This lab is just an introduction to the nonlinear phase portraits, but the connection between phase portraits and

More information

CDS 101 Precourse Phase Plane Analysis and Stability

CDS 101 Precourse Phase Plane Analysis and Stability CDS 101 Precourse Phase Plane Analysis and Stability Melvin Leok Control and Dynamical Systems California Institute of Technology Pasadena, CA, 26 September, 2002. mleok@cds.caltech.edu http://www.cds.caltech.edu/

More information

Applications of Second-Order Differential Equations

Applications of Second-Order Differential Equations Applications of Second-Order Differential Equations ymy/013 Building Intuition Even though there are an infinite number of differential equations, they all share common characteristics that allow intuition

More information

H 2 Optimal State Feedback Control Synthesis. Raktim Bhattacharya Aerospace Engineering, Texas A&M University

H 2 Optimal State Feedback Control Synthesis. Raktim Bhattacharya Aerospace Engineering, Texas A&M University H 2 Optimal State Feedback Control Synthesis Raktim Bhattacharya Aerospace Engineering, Texas A&M University Motivation Motivation w(t) u(t) G K y(t) z(t) w(t) are exogenous signals reference, process

More information

Lecture 7:Time Response Pole-Zero Maps Influence of Poles and Zeros Higher Order Systems and Pole Dominance Criterion

Lecture 7:Time Response Pole-Zero Maps Influence of Poles and Zeros Higher Order Systems and Pole Dominance Criterion Cleveland State University MCE441: Intr. Linear Control Lecture 7:Time Influence of Poles and Zeros Higher Order and Pole Criterion Prof. Richter 1 / 26 First-Order Specs: Step : Pole Real inputs contain

More information

APPLICATIONS OF SECOND-ORDER DIFFERENTIAL EQUATIONS

APPLICATIONS OF SECOND-ORDER DIFFERENTIAL EQUATIONS APPLICATIONS OF SECOND-ORDER DIFFERENTIAL EQUATIONS Second-order linear differential equations have a variety of applications in science and engineering. In this section we explore two of them: the vibration

More information

Chapter 3. 1 st Order Sine Function Input. General Solution. Ce t. Measurement System Behavior Part 2

Chapter 3. 1 st Order Sine Function Input. General Solution. Ce t. Measurement System Behavior Part 2 Chapter 3 Measurement System Behavior Part 2 1 st Order Sine Function Input Examples of Periodic: vibrating structure, vehicle suspension, reciprocating pumps, environmental conditions The frequency of

More information

Math Assignment 5

Math Assignment 5 Math 2280 - Assignment 5 Dylan Zwick Fall 2013 Section 3.4-1, 5, 18, 21 Section 3.5-1, 11, 23, 28, 35, 47, 56 Section 3.6-1, 2, 9, 17, 24 1 Section 3.4 - Mechanical Vibrations 3.4.1 - Determine the period

More information

PHYSICS 110A : CLASSICAL MECHANICS HW 2 SOLUTIONS. Here is a sketch of the potential with A = 1, R = 1, and S = 1. From the plot we can see

PHYSICS 110A : CLASSICAL MECHANICS HW 2 SOLUTIONS. Here is a sketch of the potential with A = 1, R = 1, and S = 1. From the plot we can see PHYSICS 11A : CLASSICAL MECHANICS HW SOLUTIONS (1) Taylor 5. Here is a sketch of the potential with A = 1, R = 1, and S = 1. From the plot we can see 1.5 1 U(r).5.5 1 4 6 8 1 r Figure 1: Plot for problem

More information

Homework Assignment 3

Homework Assignment 3 ECE382/ME482 Fall 2008 Homework 3 Solution October 20, 2008 1 Homework Assignment 3 Assigned September 30, 2008. Due in lecture October 7, 2008. Note that you must include all of your work to obtain full

More information

Using Matlab to integrate Ordinary Differential Equations (ODEs)

Using Matlab to integrate Ordinary Differential Equations (ODEs) Using Matlab to integrate Ordinary Differential Equations (ODEs) Erica McEvoy (Dated: June 17, 2009) 1. INTRODUCTION Ordinary differential equations tend to arise whenever you need to model changing quantities

More information

F = ma, F R + F S = mx.

F = ma, F R + F S = mx. Mechanical Vibrations As we mentioned in Section 3.1, linear equations with constant coefficients come up in many applications; in this section, we will specifically study spring and shock absorber systems

More information

Chapter 6 - Random Processes

Chapter 6 - Random Processes EE385 Class Notes //04 John Stensby Chapter 6 - Random Processes Recall that a random variable X is a mapping between the sample space S and the extended real line R +. That is, X : S R +. A random process

More information

Lab 4: Quantization, Oversampling, and Noise Shaping

Lab 4: Quantization, Oversampling, and Noise Shaping Lab 4: Quantization, Oversampling, and Noise Shaping Due Friday 04/21/17 Overview: This assignment should be completed with your assigned lab partner(s). Each group must turn in a report composed using

More information

Oscillations. Simple Harmonic Motion of a Mass on a Spring The equation of motion for a mass m is attached to a spring of constant k is

Oscillations. Simple Harmonic Motion of a Mass on a Spring The equation of motion for a mass m is attached to a spring of constant k is Dr. Alain Brizard College Physics I (PY 10) Oscillations Textbook Reference: Chapter 14 sections 1-8. Simple Harmonic Motion of a Mass on a Spring The equation of motion for a mass m is attached to a spring

More information

P 1.5 X 4.5 / X 2 and (iii) The smallest value of n for

P 1.5 X 4.5 / X 2 and (iii) The smallest value of n for DHANALAKSHMI COLLEGE OF ENEINEERING, CHENNAI DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING MA645 PROBABILITY AND RANDOM PROCESS UNIT I : RANDOM VARIABLES PART B (6 MARKS). A random variable X

More information

Lab 3: Poles, Zeros, and Time/Frequency Domain Response

Lab 3: Poles, Zeros, and Time/Frequency Domain Response ECEN 33 Linear Systems Spring 2 2-- P. Mathys Lab 3: Poles, Zeros, and Time/Frequency Domain Response of CT Systems Introduction Systems that are used for signal processing are very often characterized

More information

Final Exam April 30, 2013

Final Exam April 30, 2013 Final Exam Instructions: You have 120 minutes to complete this exam. This is a closed-book, closed-notes exam. You are allowed to use a calculator during the exam. Usage of mobile phones and other electronic

More information

Dynamics of structures

Dynamics of structures Dynamics of structures 1.2 Viscous damping Luc St-Pierre October 30, 2017 1 / 22 Summary so far We analysed the spring-mass system and found that its motion is governed by: mẍ(t) + kx(t) = 0 k y m x x

More information

Lecture 17: variance in a band = log(s xx (f)) df (2) If we want to plot something that is more directly representative of variance, we can try this:

Lecture 17: variance in a band = log(s xx (f)) df (2) If we want to plot something that is more directly representative of variance, we can try this: UCSD SIOC 221A: (Gille) 1 Lecture 17: Recap We ve now spent some time looking closely at coherence and how to assign uncertainties to coherence. Can we think about coherence in a different way? There are

More information

Matlab Sheet 3. Plotting in Matlab

Matlab Sheet 3. Plotting in Matlab Matlab Sheet 3 Plotting in Matlab 1. a. Estimate the roots of the following equation by plotting the equation. x 3 3x 2 + 5x sin ( πx 4 5π 4 ) + 3 = 0 b. Use the estimates found in part a to find the roots

More information

1 TIME OF ARRIVAL LOCATION TECHNIQUE

1 TIME OF ARRIVAL LOCATION TECHNIQUE Contents 1 TIME OF ARRIVAL LOCATION TECHNIQUE 2 1.1 TOA Principals...................................... 2 1.2 Time of Arrival Location Error Analysis........................ 8 1.3 Determining the Best

More information

Section 3.7: Mechanical and Electrical Vibrations

Section 3.7: Mechanical and Electrical Vibrations Section 3.7: Mechanical and Electrical Vibrations Second order linear equations with constant coefficients serve as mathematical models for mechanical and electrical oscillations. For example, the motion

More information

Application 6.5B Period Doubling and Chaos in Mechanical Systems

Application 6.5B Period Doubling and Chaos in Mechanical Systems Application 6.5B Period Doubling and Chaos in Mechanical Systems The first objective of this section is the application of the DE plotting techniques of the Section 6. and 6.4 applications to the investigation

More information

Discrete Fourier transform (DFT)

Discrete Fourier transform (DFT) Discrete Fourier transform (DFT) Alejandro Ribeiro January 19, 2018 Let x : [0, N 1] C be a discrete signal of duration N and having elements x(n) for n [0, N 1]. The discrete Fourier transform (DFT) of

More information

Control Systems, Lecture04

Control Systems, Lecture04 Control Systems, Lecture04 İbrahim Beklan Küçükdemiral Yıldız Teknik Üniversitesi 2015 1 / 53 Transfer Functions The output response of a system is the sum of two responses: the forced response and the

More information

The Cooper Union Department of Electrical Engineering ECE111 Signal Processing & Systems Analysis Final May 4, 2012

The Cooper Union Department of Electrical Engineering ECE111 Signal Processing & Systems Analysis Final May 4, 2012 The Cooper Union Department of Electrical Engineering ECE111 Signal Processing & Systems Analysis Final May 4, 2012 Time: 3 hours. Close book, closed notes. No calculators. Part I: ANSWER ALL PARTS. WRITE

More information

Core Concepts Review. Orthogonality of Complex Sinusoids Consider two (possibly non-harmonic) complex sinusoids

Core Concepts Review. Orthogonality of Complex Sinusoids Consider two (possibly non-harmonic) complex sinusoids Overview of Continuous-Time Fourier Transform Topics Definition Compare & contrast with Laplace transform Conditions for existence Relationship to LTI systems Examples Ideal lowpass filters Relationship

More information

Session 1 : Fundamental concepts

Session 1 : Fundamental concepts BRUFACE Vibrations and Acoustics MA1 Academic year 17-18 Cédric Dumoulin (cedumoul@ulb.ac.be) Arnaud Deraemaeker (aderaema@ulb.ac.be) Exercise 1 Session 1 : Fundamental concepts Consider the following

More information