I Credit I Max I Problem 1 20 Problem 2 20 Problem 3 20 Problem 4 20

Size: px
Start display at page:

Download "I Credit I Max I Problem 1 20 Problem 2 20 Problem 3 20 Problem 4 20"

Transcription

1 ICOT5405: ANALYSIS OF ALGORITHMSI IMid-Term Exam U Date: Feb 16, 2006, Thursday Time: 10:40am - 12:40pm Professor: Alpe~ :Ungar (Office CSE 430) This is a closed book exam. No collaborations are allowed. Your solutions should be concise, but complete, and handwritten clearly. Use only the space provided in this booklet, including the even numbered pages. Write your initials on each shee~. You should answer all the questions to get full credit. GOOD LUCKI I Credit I Max I Problem 1 20 Problem 2 20 Problem 3 20 Problem Problem _'D_ot_al_---' I 1 r

2 = points) BINARY SEARCH TREES Recall that inserting a new element into a binary search tree involves a top-down search and an append operation at the leaf level. Suppose we construct a binary search tree by successively inserting n distinct items into an initially empty tree, without ever rebalancing the tree. (a) How many different trees can you get for n = 3 items? Draw the trees. (b) Is it true that if you pick a random sequence of the n items then each of the possible trees is equally likely? Justify your answer. (a.~ tbr 3~ -=-6 J."{~I.A-t ~ UU\.~, ~ ~"'~,2 /3 l, 3, 1-1,1,3 Qrd 2~1 CD CD \ ~? I S -d;~ c.r-t- +ru-,\ 0 ' ~ ~1~ ~(Aid.A. 3,2, I, 3, \1 L )!), ~ CD,t- t\\...j -trtl d~ 11::: '3 in ~ ~ 6. CorI~t-eIJc..~ o~s 3

3 2. [20= points] TREE-DEPTH AND RECURRENCE A binary tree is full if each node has exactly zero or two children. Consider a full binary tree T with n leaves. Define the right-depth of a node v as the number of right edges from root to v. Let RT denote the sum of right depths over all leaves of T. (a) Which tree with n leaves minimizes RT? What is R T for this tree? (b) Which tree"with n leaves maximizes RT? What is RT for this tree? (c) Prove that if every internal node has at least as many leaves in the left as in the right subtree then RT :S n log2 n. (b, (c) -r I't <... :L ~("/~) R.T(t\) be.. o.t~!! ~y(.( lwl:lrc.. l ~NC!.L lqt- T ""\'~ ~ (\ (\oj;: et~ of k {'o~t-.

4 3. [20 = pointsj DYNAMIC PROGRAMMING Given a sequence 5 of n integers (not necessarily positive), MAXIMUM SUM CONSECUTIVE SUBSEQUENCE PROBLEM asks to find a consecutive subsequence of S whose summation is maximized. For example, for 5 =< -6, 12, - 7, 0, 14, - 7, - 3 >, the maximum sum of 19 is achieved for the subsequence < 12, - 7, 0, 14 >. Note that it is straight-forward to design a O(n 3 )-time algorithm for this problem by computing the sum for all possible consecutive subsequences. However, your goal is to design a dynamic programming algorithm with better running time, i.e., that runs in o[n 3 }time. (a) Write and describe a recurrence to structure a dynamic programming algorithm for solving the MAXIMUM SUM CONSECUTIVE SUBSEQUENCE PROBLEM. (b) Describe and analyze your algorithm based on the recurrence you constructed in (a). [Note/Hint: While there is a solution with ern) running time, 8(n 2 ) time solution is also worth full credit.] ltj; J(ftck. +k.. ~i M.v~ ~I,) m C0r1 s-e(...) h."n S"\Jb!e~r J U\. c. e... O\'~Uvt. We; cj: OoJ~C)'\ 1\. 1tt. of-tij S'ubd'lOt.tu,e. J'W<A 6 7 o 1V- (<.W{(U\~

5 4. [20 = points] GRBEDY ALGORITHMS (a) You are asked to tile an m x n room, using any square tiles, minimizing the number of tiles used (m ~ n are integers). Consider a greedy strategy which uses the largest fitting square tile first. Does this algorithm give an optimal solution? Justify your answer. tjo. COf\'S:~ """"-::: 1- V'\ -e b. \=;".. IA..I< U>., "",- J ~... <; J..:,ti"" bj(-<f ~ 1l.- o.l'rt ~ ~,..dis. "T t-\\~ S -b\~ -Ix\ - - 3)(3 4);.4. I 3,.:'\ 2.1&1 \ 2,..1.. (b) Consider the following version of the a/i Knapsack Problem. Given a set of n objects with weights Wl 2':. W2 2':... 2':. W n and profits Pl $. 112 $.... ~ PTl-, find a subset of objects such that the total weight is bounded by a given capacity Wand the total profit is maximized. Describe the best greedy algorithm you can for solving this problem. Does your algorithm result in an optimal solution? Justify your answer.

6 5. [20 points] AMORTIZED ANALYSIS Recall that a QUEUE is a first-in-first-out data structure with two basic operations enqueue and dequeue, and a STACK is a first-in-last-out data structure with operations push and pop. Describe how to implement a queue with two stacks so that the amortized cost of each enqueue and dequeue operations is constant. Q..) Ej.\JEuE((3,?t-') ~&0~lJt ( f).') 'PuSt1- ( STAC'(, -1 I -;il) it STACl_1... ~~( ) w\. J~ ~S\f\C'l.J.~l~l) 1: 4- ~p (SlACk:..j.) PuS\+-C STAc.~'2., t) ~~ fo? (STAc.\(. -'2..J (tjv( '1 rx. """ cost-.. u>u.. Ofl~<; r w<)v \ ~ I.A.'\'\-.l,'fIJ- 0("J...~\::rk ~&.()~0~ \~"'I\. \...O~ Cl::iv' u,~ -\o.>;qj-tqn ~W ~ ~L. j <WllVc.v~ 0;\ \ ~ I.fJ. CDVC/'\j ik rv ~\,.. l"~ ~ L (.0"<1''6 -fu.. -t ""'<;~ i"vd.t.d lot Q.. WI-<.( \:'N.\l ~ ~ ~i. ~O ~ ~\- of- Po"? {c~ ~\-Ac.lc._L. 11

CS-141 Exam 2 Review October 19, 2016 Presented by the RIT Computer Science Community

CS-141 Exam 2 Review October 19, 2016 Presented by the RIT Computer Science Community CS-141 Exam 2 Review October 19, 2016 Presented by the RIT Computer Science Community http://csc.cs.rit.edu Linked Lists 1. You are given the linked list: 1 2 3. You may assume that each node has one field

More information

COL351: Analysis and Design of Algorithms (CSE, IITD, Semester-I ) Name: Entry number:

COL351: Analysis and Design of Algorithms (CSE, IITD, Semester-I ) Name: Entry number: Name: Entry number: There are 5 questions for a total of 75 points. 1. (5 points) You are given n items and a sack that can hold at most W units of weight. The weight of the i th item is denoted by w(i)

More information

13 Dynamic Programming (3) Optimal Binary Search Trees Subset Sums & Knapsacks

13 Dynamic Programming (3) Optimal Binary Search Trees Subset Sums & Knapsacks 13 Dynamic Programming (3) Optimal Binary Search Trees Subset Sums & Knapsacks Average-case analysis Average-case analysis of algorithms and data structures: Input is generated according to a known probability

More information

CS60007 Algorithm Design and Analysis 2018 Assignment 1

CS60007 Algorithm Design and Analysis 2018 Assignment 1 CS60007 Algorithm Design and Analysis 2018 Assignment 1 Palash Dey and Swagato Sanyal Indian Institute of Technology, Kharagpur Please submit the solutions of the problems 6, 11, 12 and 13 (written in

More information

Amortized analysis. Amortized analysis

Amortized analysis. Amortized analysis In amortized analysis the goal is to bound the worst case time of a sequence of operations on a data-structure. If n operations take T (n) time (worst case), the amortized cost of an operation is T (n)/n.

More information

Data Structures and Algorithms Winter Semester

Data Structures and Algorithms Winter Semester Page 0 German University in Cairo December 26, 2015 Media Engineering and Technology Faculty Prof. Dr. Slim Abdennadher Dr. Wael Abouelsadaat Data Structures and Algorithms Winter Semester 2015-2016 Final

More information

CMPSCI 611 Advanced Algorithms Midterm Exam Fall 2015

CMPSCI 611 Advanced Algorithms Midterm Exam Fall 2015 NAME: CMPSCI 611 Advanced Algorithms Midterm Exam Fall 015 A. McGregor 1 October 015 DIRECTIONS: Do not turn over the page until you are told to do so. This is a closed book exam. No communicating with

More information

University of New Mexico Department of Computer Science. Final Examination. CS 561 Data Structures and Algorithms Fall, 2006

University of New Mexico Department of Computer Science. Final Examination. CS 561 Data Structures and Algorithms Fall, 2006 University of New Mexico Department of Computer Science Final Examination CS 561 Data Structures and Algorithms Fall, 2006 Name: Email: Print your name and email, neatly in the space provided above; print

More information

University of New Mexico Department of Computer Science. Final Examination. CS 561 Data Structures and Algorithms Fall, 2013

University of New Mexico Department of Computer Science. Final Examination. CS 561 Data Structures and Algorithms Fall, 2013 University of New Mexico Department of Computer Science Final Examination CS 561 Data Structures and Algorithms Fall, 2013 Name: Email: This exam lasts 2 hours. It is closed book and closed notes wing

More information

Advanced Analysis of Algorithms - Midterm (Solutions)

Advanced Analysis of Algorithms - Midterm (Solutions) Advanced Analysis of Algorithms - Midterm (Solutions) K. Subramani LCSEE, West Virginia University, Morgantown, WV {ksmani@csee.wvu.edu} 1 Problems 1. Solve the following recurrence using substitution:

More information

CSE548, AMS542: Analysis of Algorithms, Fall 2016 Date: Nov 30. Final In-Class Exam. ( 7:05 PM 8:20 PM : 75 Minutes )

CSE548, AMS542: Analysis of Algorithms, Fall 2016 Date: Nov 30. Final In-Class Exam. ( 7:05 PM 8:20 PM : 75 Minutes ) CSE548, AMS542: Analysis of Algorithms, Fall 2016 Date: Nov 30 Final In-Class Exam ( 7:05 PM 8:20 PM : 75 Minutes ) This exam will account for either 15% or 30% of your overall grade depending on your

More information

CSE613: Parallel Programming, Spring 2012 Date: May 11. Final Exam. ( 11:15 AM 1:45 PM : 150 Minutes )

CSE613: Parallel Programming, Spring 2012 Date: May 11. Final Exam. ( 11:15 AM 1:45 PM : 150 Minutes ) CSE613: Parallel Programming, Spring 2012 Date: May 11 Final Exam ( 11:15 AM 1:45 PM : 150 Minutes ) This exam will account for either 10% or 20% of your overall grade depending on your relative performance

More information

CS 170 Algorithms Fall 2014 David Wagner MT2

CS 170 Algorithms Fall 2014 David Wagner MT2 CS 170 Algorithms Fall 2014 David Wagner MT2 PRINT your name:, (last) SIGN your name: (first) Your Student ID number: Your Unix account login: cs170- The room you are sitting in right now: Name of the

More information

University of Toronto Department of Electrical and Computer Engineering. Final Examination. ECE 345 Algorithms and Data Structures Fall 2016

University of Toronto Department of Electrical and Computer Engineering. Final Examination. ECE 345 Algorithms and Data Structures Fall 2016 University of Toronto Department of Electrical and Computer Engineering Final Examination ECE 345 Algorithms and Data Structures Fall 2016 Print your first name, last name, UTORid, and student number neatly

More information

Week 5: Quicksort, Lower bound, Greedy

Week 5: Quicksort, Lower bound, Greedy Week 5: Quicksort, Lower bound, Greedy Agenda: Quicksort: Average case Lower bound for sorting Greedy method 1 Week 5: Quicksort Recall Quicksort: The ideas: Pick one key Compare to others: partition into

More information

CMPSCI 311: Introduction to Algorithms Second Midterm Exam

CMPSCI 311: Introduction to Algorithms Second Midterm Exam CMPSCI 311: Introduction to Algorithms Second Midterm Exam April 11, 2018. Name: ID: Instructions: Answer the questions directly on the exam pages. Show all your work for each question. Providing more

More information

CSE 431/531: Analysis of Algorithms. Dynamic Programming. Lecturer: Shi Li. Department of Computer Science and Engineering University at Buffalo

CSE 431/531: Analysis of Algorithms. Dynamic Programming. Lecturer: Shi Li. Department of Computer Science and Engineering University at Buffalo CSE 431/531: Analysis of Algorithms Dynamic Programming Lecturer: Shi Li Department of Computer Science and Engineering University at Buffalo Paradigms for Designing Algorithms Greedy algorithm Make a

More information

CSE548, AMS542: Analysis of Algorithms, Fall 2017 Date: Oct 26. Homework #2. ( Due: Nov 8 )

CSE548, AMS542: Analysis of Algorithms, Fall 2017 Date: Oct 26. Homework #2. ( Due: Nov 8 ) CSE548, AMS542: Analysis of Algorithms, Fall 2017 Date: Oct 26 Homework #2 ( Due: Nov 8 ) Task 1. [ 80 Points ] Average Case Analysis of Median-of-3 Quicksort Consider the median-of-3 quicksort algorithm

More information

(tree searching technique) (Boolean formulas) satisfying assignment: (X 1, X 2 )

(tree searching technique) (Boolean formulas) satisfying assignment: (X 1, X 2 ) Algorithms Chapter 5: The Tree Searching Strategy - Examples 1 / 11 Chapter 5: The Tree Searching Strategy 1. Ex 5.1Determine the satisfiability of the following Boolean formulas by depth-first search

More information

1 The Knapsack Problem

1 The Knapsack Problem Comp 260: Advanced Algorithms Prof. Lenore Cowen Tufts University, Spring 2018 Scribe: Tom Magerlein 1 Lecture 4: The Knapsack Problem 1 The Knapsack Problem Suppose we are trying to burgle someone s house.

More information

FINAL EXAM PRACTICE PROBLEMS CMSC 451 (Spring 2016)

FINAL EXAM PRACTICE PROBLEMS CMSC 451 (Spring 2016) FINAL EXAM PRACTICE PROBLEMS CMSC 451 (Spring 2016) The final exam will be on Thursday, May 12, from 8:00 10:00 am, at our regular class location (CSI 2117). It will be closed-book and closed-notes, except

More information

COMPSCI 611 Advanced Algorithms Second Midterm Exam Fall 2017

COMPSCI 611 Advanced Algorithms Second Midterm Exam Fall 2017 NAME: COMPSCI 611 Advanced Algorithms Second Midterm Exam Fall 2017 A. McGregor 15 November 2017 DIRECTIONS: Do not turn over the page until you are told to do so. This is a closed book exam. No communicating

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science ALGORITHMS FOR INFERENCE Fall 2014

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science ALGORITHMS FOR INFERENCE Fall 2014 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.438 ALGORITHMS FOR INFERENCE Fall 2014 Quiz 2 Wednesday, December 10, 2014 7:00pm 10:00pm This is a closed

More information

COMPSCI 611 Advanced Algorithms Second Midterm Exam Fall 2017

COMPSCI 611 Advanced Algorithms Second Midterm Exam Fall 2017 NAME: COMPSCI 611 Advanced Algorithms Second Midterm Exam Fall 2017 A. McGregor 15 November 2017 DIRECTIONS: Do not turn over the page until you are told to do so. This is a closed book exam. No communicating

More information

Chapter 6. Self-Adjusting Data Structures

Chapter 6. Self-Adjusting Data Structures Chapter 6 Self-Adjusting Data Structures Chapter 5 describes a data structure that is able to achieve an epected quer time that is proportional to the entrop of the quer distribution. The most interesting

More information

Divide-and-Conquer Algorithms Part Two

Divide-and-Conquer Algorithms Part Two Divide-and-Conquer Algorithms Part Two Recap from Last Time Divide-and-Conquer Algorithms A divide-and-conquer algorithm is one that works as follows: (Divide) Split the input apart into multiple smaller

More information

University of New Mexico Department of Computer Science. Final Examination. CS 362 Data Structures and Algorithms Spring, 2007

University of New Mexico Department of Computer Science. Final Examination. CS 362 Data Structures and Algorithms Spring, 2007 University of New Mexico Department of Computer Science Final Examination CS 362 Data Structures and Algorithms Spring, 2007 Name: Email: Print your name and email, neatly in the space provided above;

More information

Priority queues implemented via heaps

Priority queues implemented via heaps Priority queues implemented via heaps Comp Sci 1575 Data s Outline 1 2 3 Outline 1 2 3 Priority queue: most important first Recall: queue is FIFO A normal queue data structure will not implement a priority

More information

CSE 151 Machine Learning. Instructor: Kamalika Chaudhuri

CSE 151 Machine Learning. Instructor: Kamalika Chaudhuri CSE 151 Machine Learning Instructor: Kamalika Chaudhuri Announcements Midterm is graded! Average: 39, stdev: 6 HW2 is out today HW2 is due Thursday, May 3, by 5pm in my mailbox Decision Tree Classifiers

More information

past balancing schemes require maintenance of balance info at all times, are aggresive use work of searches to pay for work of rebalancing

past balancing schemes require maintenance of balance info at all times, are aggresive use work of searches to pay for work of rebalancing 1 Splay Trees Sleator and Tarjan, Self Adjusting Binary Search Trees JACM 32(3) 1985 The claim planning ahead. But matches previous idea of being lazy, letting potential build up, using it to pay for expensive

More information

arxiv: v1 [cs.cg] 29 Jun 2012

arxiv: v1 [cs.cg] 29 Jun 2012 Single-Source Dilation-Bounded Minimum Spanning Trees Otfried Cheong Changryeol Lee May 2, 2014 arxiv:1206.6943v1 [cs.cg] 29 Jun 2012 Abstract Given a set S of points in the plane, a geometric network

More information

University of California Berkeley CS170: Efficient Algorithms and Intractable Problems November 19, 2001 Professor Luca Trevisan. Midterm 2 Solutions

University of California Berkeley CS170: Efficient Algorithms and Intractable Problems November 19, 2001 Professor Luca Trevisan. Midterm 2 Solutions University of California Berkeley Handout MS2 CS170: Efficient Algorithms and Intractable Problems November 19, 2001 Professor Luca Trevisan Midterm 2 Solutions Problem 1. Provide the following information:

More information

CSCE 750 Final Exam Answer Key Wednesday December 7, 2005

CSCE 750 Final Exam Answer Key Wednesday December 7, 2005 CSCE 750 Final Exam Answer Key Wednesday December 7, 2005 Do all problems. Put your answers on blank paper or in a test booklet. There are 00 points total in the exam. You have 80 minutes. Please note

More information

Lecture 9. Greedy Algorithm

Lecture 9. Greedy Algorithm Lecture 9. Greedy Algorithm T. H. Cormen, C. E. Leiserson and R. L. Rivest Introduction to Algorithms, 3rd Edition, MIT Press, 2009 Sungkyunkwan University Hyunseung Choo choo@skku.edu Copyright 2000-2018

More information

Greedy Algorithms. CSE 101: Design and Analysis of Algorithms Lecture 10

Greedy Algorithms. CSE 101: Design and Analysis of Algorithms Lecture 10 Greedy Algorithms CSE 101: Design and Analysis of Algorithms Lecture 10 CSE 101: Design and analysis of algorithms Greedy algorithms Reading: Kleinberg and Tardos, sections 4.1, 4.2, and 4.3 Homework 4

More information

Efficient Algorithms and Intractable Problems Spring 2016 Alessandro Chiesa and Umesh Vazirani Midterm 2

Efficient Algorithms and Intractable Problems Spring 2016 Alessandro Chiesa and Umesh Vazirani Midterm 2 CS 170 Efficient Algorithms and Intractable Problems Spring 2016 Alessandro Chiesa and Umesh Vazirani Midterm 2 Name: SID: GSI and section time: Write down the names of the students around you as they

More information

Note that M i,j depends on two entries in row (i 1). If we proceed in a row major order, these two entries will be available when we are ready to comp

Note that M i,j depends on two entries in row (i 1). If we proceed in a row major order, these two entries will be available when we are ready to comp CSE 3500 Algorithms and Complexity Fall 2016 Lecture 18: October 27, 2016 Dynamic Programming Steps involved in a typical dynamic programming algorithm are: 1. Identify a function such that the solution

More information

1 Basic Definitions. 2 Proof By Contradiction. 3 Exchange Argument

1 Basic Definitions. 2 Proof By Contradiction. 3 Exchange Argument 1 Basic Definitions A Problem is a relation from input to acceptable output. For example, INPUT: A list of integers x 1,..., x n OUTPUT: One of the three smallest numbers in the list An algorithm A solves

More information

Randomized Sorting Algorithms Quick sort can be converted to a randomized algorithm by picking the pivot element randomly. In this case we can show th

Randomized Sorting Algorithms Quick sort can be converted to a randomized algorithm by picking the pivot element randomly. In this case we can show th CSE 3500 Algorithms and Complexity Fall 2016 Lecture 10: September 29, 2016 Quick sort: Average Run Time In the last lecture we started analyzing the expected run time of quick sort. Let X = k 1, k 2,...,

More information

CSE 202 Homework 4 Matthias Springer, A

CSE 202 Homework 4 Matthias Springer, A CSE 202 Homework 4 Matthias Springer, A99500782 1 Problem 2 Basic Idea PERFECT ASSEMBLY N P: a permutation P of s i S is a certificate that can be checked in polynomial time by ensuring that P = S, and

More information

A fast algorithm to generate necklaces with xed content

A fast algorithm to generate necklaces with xed content Theoretical Computer Science 301 (003) 477 489 www.elsevier.com/locate/tcs Note A fast algorithm to generate necklaces with xed content Joe Sawada 1 Department of Computer Science, University of Toronto,

More information

CS Analysis of Recursive Algorithms and Brute Force

CS Analysis of Recursive Algorithms and Brute Force CS483-05 Analysis of Recursive Algorithms and Brute Force Instructor: Fei Li Room 443 ST II Office hours: Tue. & Thur. 4:30pm - 5:30pm or by appointments lifei@cs.gmu.edu with subject: CS483 http://www.cs.gmu.edu/

More information

MIDTERM Fundamental Algorithms, Spring 2008, Professor Yap March 10, 2008

MIDTERM Fundamental Algorithms, Spring 2008, Professor Yap March 10, 2008 INSTRUCTIONS: MIDTERM Fundamental Algorithms, Spring 2008, Professor Yap March 10, 2008 0. This is a closed book exam, with one 8 x11 (2-sided) cheat sheet. 1. Please answer ALL questions (there is ONE

More information

CPSC 320 (Intermediate Algorithm Design and Analysis). Summer Instructor: Dr. Lior Malka Final Examination, July 24th, 2009

CPSC 320 (Intermediate Algorithm Design and Analysis). Summer Instructor: Dr. Lior Malka Final Examination, July 24th, 2009 CPSC 320 (Intermediate Algorithm Design and Analysis). Summer 2009. Instructor: Dr. Lior Malka Final Examination, July 24th, 2009 Student ID: INSTRUCTIONS: There are 6 questions printed on pages 1 7. Exam

More information

CS361 Homework #3 Solutions

CS361 Homework #3 Solutions CS6 Homework # Solutions. Suppose I have a hash table with 5 locations. I would like to know how many items I can store in it before it becomes fairly likely that I have a collision, i.e., that two items

More information

Econ 172A, Fall 2012: Final Examination (I) 1. The examination has seven questions. Answer them all.

Econ 172A, Fall 2012: Final Examination (I) 1. The examination has seven questions. Answer them all. Econ 172A, Fall 12: Final Examination (I) Instructions. 1. The examination has seven questions. Answer them all. 2. If you do not know how to interpret a question, then ask me. 3. Questions 1- require

More information

Tutorial 4. Dynamic Set: Amortized Analysis

Tutorial 4. Dynamic Set: Amortized Analysis Tutorial 4 Dynamic Set: Amortized Analysis Review Binary tree Complete binary tree Full binary tree 2-tree P115 Unlike common binary tree, the base case is not an empty tree, but a external node Heap Binary

More information

Homework 1 Submission

Homework 1 Submission Homework Submission Sample Solution; Due Date: Thursday, May 4, :59 pm Directions: Your solutions should be typed and submitted as a single pdf on Gradescope by the due date. L A TEX is preferred but not

More information

Lecture 7: Amortized analysis

Lecture 7: Amortized analysis Lecture 7: Amortized analysis In many applications we want to minimize the time for a sequence of operations. To sum worst-case times for single operations can be overly pessimistic, since it ignores correlation

More information

Today: Amortized Analysis

Today: Amortized Analysis Today: Amortized Analysis COSC 581, Algorithms March 6, 2014 Many of these slides are adapted from several online sources Today s class: Chapter 17 Reading Assignments Reading assignment for next class:

More information

NAME: Be clear and concise. You may use the number of points assigned toeach problem as a rough

NAME: Be clear and concise. You may use the number of points assigned toeach problem as a rough CS170 Final Examination 20 May 1998 NAME: TA: Be clear and concise. You may use the number of points assigned toeach problem as a rough estimate for the number of minutes you want to allocate to the problem.

More information

BFS Dijkstra. Oct abhi shelat

BFS Dijkstra. Oct abhi shelat 4102 BFS Dijkstra Oct 22 2009 abhi shelat breadth first search bfs(g, a) 1 2 a b 1 2 d c e f g 2 h bfs theorem Theorem 1 (CLRS, p. 599) Let G =(V, E) be a graph and suppose that BFS is run on G from vertex

More information

Heaps and Priority Queues

Heaps and Priority Queues Heaps and Priority Queues Motivation Situations where one has to choose the next most important from a collection. Examples: patients in an emergency room, scheduling programs in a multi-tasking OS. Need

More information

CS Data Structures and Algorithm Analysis

CS Data Structures and Algorithm Analysis CS 483 - Data Structures and Algorithm Analysis Lecture VII: Chapter 6, part 2 R. Paul Wiegand George Mason University, Department of Computer Science March 22, 2006 Outline 1 Balanced Trees 2 Heaps &

More information

Chapter 8 Dynamic Programming

Chapter 8 Dynamic Programming Chapter 8 Dynamic Programming Copyright 2007 Pearson Addison-Wesley. All rights reserved. Dynamic Programming Dynamic Programming is a general algorithm design technique for solving problems defined by

More information

/463 Algorithms - Fall 2013 Solution to Assignment 4

/463 Algorithms - Fall 2013 Solution to Assignment 4 600.363/463 Algorithms - Fall 2013 Solution to Assignment 4 (30+20 points) I (10 points) This problem brings in an extra constraint on the optimal binary search tree - for every node v, the number of nodes

More information

Outline / Reading. Greedy Method as a fundamental algorithm design technique

Outline / Reading. Greedy Method as a fundamental algorithm design technique Greedy Method Outline / Reading Greedy Method as a fundamental algorithm design technique Application to problems of: Making change Fractional Knapsack Problem (Ch. 5.1.1) Task Scheduling (Ch. 5.1.2) Minimum

More information

Another way of saying this is that amortized analysis guarantees the average case performance of each operation in the worst case.

Another way of saying this is that amortized analysis guarantees the average case performance of each operation in the worst case. Amortized Analysis: CLRS Chapter 17 Last revised: August 30, 2006 1 In amortized analysis we try to analyze the time required by a sequence of operations. There are many situations in which, even though

More information

Amortized Complexity Verified

Amortized Complexity Verified Amortized Complexity Verified Tobias Nipkow Technische Universität München Abstract A framework for the analysis of the amortized complexity of (functional) data structures is formalized in Isabelle/HOL

More information

0-1 Knapsack Problem

0-1 Knapsack Problem KP-0 0-1 Knapsack Problem Define object o i with profit p i > 0 and weight w i > 0, for 1 i n. Given n objects and a knapsack capacity C > 0, the problem is to select a subset of objects with largest total

More information

CSE 355 Test 2, Fall 2016

CSE 355 Test 2, Fall 2016 CSE 355 Test 2, Fall 2016 28 October 2016, 8:35-9:25 a.m., LSA 191 Last Name SAMPLE ASU ID 1357924680 First Name(s) Ima Regrading of Midterms If you believe that your grade has not been added up correctly,

More information

Lecture #8: We now take up the concept of dynamic programming again using examples.

Lecture #8: We now take up the concept of dynamic programming again using examples. Lecture #8: 0.0.1 Dynamic Programming:(Chapter 15) We now take up the concept of dynamic programming again using examples. Example 1 (Chapter 15.2) Matrix Chain Multiplication INPUT: An Ordered set of

More information

Graphs and Trees Binary Search Trees AVL-Trees (a,b)-trees Splay-Trees. Search Trees. Tobias Lieber. April 14, 2008

Graphs and Trees Binary Search Trees AVL-Trees (a,b)-trees Splay-Trees. Search Trees. Tobias Lieber. April 14, 2008 Search Trees Tobias Lieber April 14, 2008 Tobias Lieber Search Trees April 14, 2008 1 / 57 Graphs and Trees Binary Search Trees AVL-Trees (a,b)-trees Splay-Trees Tobias Lieber Search Trees April 14, 2008

More information

Fundamental Algorithms

Fundamental Algorithms Fundamental Algorithms Chapter 5: Searching Michael Bader Winter 2014/15 Chapter 5: Searching, Winter 2014/15 1 Searching Definition (Search Problem) Input: a sequence or set A of n elements (objects)

More information

COMP 2804 Assignment 2

COMP 2804 Assignment 2 COMP 804 Assignment Due: Thursday October 19, before 11:55pm (= 3:55), through culearn. Assignment Policy: Your assignment must be submitted as a PDF file through culearn. Late assignments will not be

More information

Solution suggestions for examination of Logic, Algorithms and Data Structures,

Solution suggestions for examination of Logic, Algorithms and Data Structures, Department of VT12 Software Engineering and Managment DIT725 (TIG023) Göteborg University, Chalmers 24/5-12 Solution suggestions for examination of Logic, Algorithms and Data Structures, Date : April 26,

More information

Theory Bridge Exam Example Questions

Theory Bridge Exam Example Questions Theory Bridge Exam Example Questions Annotated version with some (sometimes rather sketchy) answers and notes. This is a collection of sample theory bridge exam questions. This is just to get some idea

More information

Maximum sum contiguous subsequence Longest common subsequence Matrix chain multiplication All pair shortest path Kna. Dynamic Programming

Maximum sum contiguous subsequence Longest common subsequence Matrix chain multiplication All pair shortest path Kna. Dynamic Programming Dynamic Programming Arijit Bishnu arijit@isical.ac.in Indian Statistical Institute, India. August 31, 2015 Outline 1 Maximum sum contiguous subsequence 2 Longest common subsequence 3 Matrix chain multiplication

More information

Statistics 253/317 Introduction to Probability Models. Winter Midterm Exam Friday, Feb 8, 2013

Statistics 253/317 Introduction to Probability Models. Winter Midterm Exam Friday, Feb 8, 2013 Statistics 253/317 Introduction to Probability Models Winter 2014 - Midterm Exam Friday, Feb 8, 2013 Student Name (print): (a) Do not sit directly next to another student. (b) This is a closed-book, closed-note

More information

Outline. Computer Science 331. Cost of Binary Search Tree Operations. Bounds on Height: Worst- and Average-Case

Outline. Computer Science 331. Cost of Binary Search Tree Operations. Bounds on Height: Worst- and Average-Case Outline Computer Science Average Case Analysis: Binary Search Trees Mike Jacobson Department of Computer Science University of Calgary Lecture #7 Motivation and Objective Definition 4 Mike Jacobson (University

More information

CS583 Lecture 11. Many slides here are based on D. Luebke slides. Review: Dynamic Programming

CS583 Lecture 11. Many slides here are based on D. Luebke slides. Review: Dynamic Programming // CS8 Lecture Jana Kosecka Dynamic Programming Greedy Algorithms Many slides here are based on D. Luebke slides Review: Dynamic Programming A meta-technique, not an algorithm (like divide & conquer) Applicable

More information

Notes on Logarithmic Lower Bounds in the Cell Probe Model

Notes on Logarithmic Lower Bounds in the Cell Probe Model Notes on Logarithmic Lower Bounds in the Cell Probe Model Kevin Zatloukal November 10, 2010 1 Overview Paper is by Mihai Pâtraşcu and Erik Demaine. Both were at MIT at the time. (Mihai is now at AT&T Labs.)

More information

1 Matroid intersection

1 Matroid intersection CS 369P: Polyhedral techniques in combinatorial optimization Instructor: Jan Vondrák Lecture date: October 21st, 2010 Scribe: Bernd Bandemer 1 Matroid intersection Given two matroids M 1 = (E, I 1 ) and

More information

An 1.75 approximation algorithm for the leaf-to-leaf tree augmentation problem

An 1.75 approximation algorithm for the leaf-to-leaf tree augmentation problem An 1.75 approximation algorithm for the leaf-to-leaf tree augmentation problem Zeev Nutov, László A. Végh January 12, 2016 We study the tree augmentation problem: Tree Augmentation Problem (TAP) Instance:

More information

Chapter 5 Data Structures Algorithm Theory WS 2017/18 Fabian Kuhn

Chapter 5 Data Structures Algorithm Theory WS 2017/18 Fabian Kuhn Chapter 5 Data Structures Algorithm Theory WS 2017/18 Fabian Kuhn Priority Queue / Heap Stores (key,data) pairs (like dictionary) But, different set of operations: Initialize-Heap: creates new empty heap

More information

Chapter 8 Dynamic Programming

Chapter 8 Dynamic Programming Chapter 8 Dynamic Programming Copyright 007 Pearson Addison-Wesley. All rights reserved. Dynamic Programming Dynamic Programming is a general algorithm design technique for solving problems defined by

More information

CSE 421 Introduction to Algorithms Final Exam Winter 2005

CSE 421 Introduction to Algorithms Final Exam Winter 2005 NAME: CSE 421 Introduction to Algorithms Final Exam Winter 2005 P. Beame 14 March 2005 DIRECTIONS: Answer the problems on the exam paper. Open book. Open notes. If you need extra space use the back of

More information

The Greedy Method. Design and analysis of algorithms Cs The Greedy Method

The Greedy Method. Design and analysis of algorithms Cs The Greedy Method Design and analysis of algorithms Cs 3400 The Greedy Method 1 Outline and Reading The Greedy Method Technique Fractional Knapsack Problem Task Scheduling 2 The Greedy Method Technique The greedy method

More information

Chapter 10 Search Structures

Chapter 10 Search Structures Chapter 1 Search Structures 1 1.2 AVL Trees : 동기 Objective : maintain binary search tree structure for O(log n) access time with dynamic changes of identifiers (i.e., elements) in the tree. JULY APR AUG

More information

Knapsack. Bag/knapsack of integer capacity B n items item i has size s i and profit/weight w i

Knapsack. Bag/knapsack of integer capacity B n items item i has size s i and profit/weight w i Knapsack Bag/knapsack of integer capacity B n items item i has size s i and profit/weight w i Goal: find a subset of items of maximum profit such that the item subset fits in the bag Knapsack X: item set

More information

Amortized Analysis (chap. 17)

Amortized Analysis (chap. 17) Amortized Analysis (chap. 17) Not just consider one operation, but a sequence of operations on a given data structure. Average cost over a sequence of operations. Probabilistic analysis: Average case running

More information

CS483 Design and Analysis of Algorithms

CS483 Design and Analysis of Algorithms CS483 Design and Analysis of Algorithms Lectures 15-16 Dynamic Programming Instructor: Fei Li lifei@cs.gmu.edu with subject: CS483 Office hours: STII, Room 443, Friday 4:00pm - 6:00pm or by appointments

More information

UNIVERSITY OF CALIFORNIA, RIVERSIDE

UNIVERSITY OF CALIFORNIA, RIVERSIDE UNIVERSITY OF CALIFORNIA, RIVERSIDE DEPARTMENT OF COMPUTER SCIENCE 2006 DEPTH EXAMINATION IN THEORY OF OF COMPUTATION AND ALGORITHMS There are 10 problems on the test. Each problem is worth 10 points.

More information

CSEE W3827 Fundamentals of Computer Systems Homework Assignment 3

CSEE W3827 Fundamentals of Computer Systems Homework Assignment 3 CSEE W3827 Fundamentals of Computer Systems Homework Assignment 3 Prof. Martha A. Kim Columbia University Due October 10, 2013 at 10:10 AM Write your name and UNI on your solutions Show your work for each

More information

Section Summary. Sequences. Recurrence Relations. Summations Special Integer Sequences (optional)

Section Summary. Sequences. Recurrence Relations. Summations Special Integer Sequences (optional) Section 2.4 Section Summary Sequences. o Examples: Geometric Progression, Arithmetic Progression Recurrence Relations o Example: Fibonacci Sequence Summations Special Integer Sequences (optional) Sequences

More information

Dynamic Programming (CLRS )

Dynamic Programming (CLRS ) Dynamic Programming (CLRS.-.) Today we discuss a technique called dynamic programming. It is neither especially dynamic nor especially programming related. We will discuss dynamic programming by looking

More information

Chapter 7 Network Flow Problems, I

Chapter 7 Network Flow Problems, I Chapter 7 Network Flow Problems, I Network flow problems are the most frequently solved linear programming problems. They include as special cases, the assignment, transportation, maximum flow, and shortest

More information

COP-5555 PROGRAMMING LANGUAGEPRINCIPLES NOTES ON THE MECHANICAL EVALUATION OF APPLICATIVE EXPRESSSIONS

COP-5555 PROGRAMMING LANGUAGEPRINCIPLES NOTES ON THE MECHANICAL EVALUATION OF APPLICATIVE EXPRESSSIONS COP-5555 PROGRAMMING LANGUAGEPRINCIPLES NOTES ON THE MECHANICAL EVALUATION OF APPLICATIVE EXPRESSSIONS The substitution mechanism for evaluating applicative expressions is convenient for humans, but inconvenient

More information

Algorithm Design CS 515 Fall 2015 Sample Final Exam Solutions

Algorithm Design CS 515 Fall 2015 Sample Final Exam Solutions Algorithm Design CS 515 Fall 2015 Sample Final Exam Solutions Copyright c 2015 Andrew Klapper. All rights reserved. 1. For the functions satisfying the following three recurrences, determine which is the

More information

CS 21 Decidability and Tractability Winter Solution Set 3

CS 21 Decidability and Tractability Winter Solution Set 3 CS 21 Decidability and Tractability Winter 2018 Posted: January 31 Solution Set 3 If you have not yet turned in the Problem Set, you should not consult these solutions. 1. (a) A 2-NPDA is a 7-tuple (Q,,

More information

CSI 4105 MIDTERM SOLUTION

CSI 4105 MIDTERM SOLUTION University of Ottawa CSI 4105 MIDTERM SOLUTION Instructor: Lucia Moura Feb 6, 2010 10:00 am Duration: 1:50 hs Closed book Last name: First name: Student number: There are 4 questions and 100 marks total.

More information

Partition of Integers into Distinct Summands with Upper Bounds. Partition of Integers into Even Summands. An Example

Partition of Integers into Distinct Summands with Upper Bounds. Partition of Integers into Even Summands. An Example Partition of Integers into Even Summands We ask for the number of partitions of m Z + into positive even integers The desired number is the coefficient of x m in + x + x 4 + ) + x 4 + x 8 + ) + x 6 + x

More information

CS325: Analysis of Algorithms, Fall Final Exam

CS325: Analysis of Algorithms, Fall Final Exam CS: Analysis of Algorithms, Fall 0 Final Exam I don t know policy: you may write I don t know and nothing else to answer a question and receive percent of the total points for that problem whereas a completely

More information

Introduction to Fall 2008 Artificial Intelligence Final Exam

Introduction to Fall 2008 Artificial Intelligence Final Exam CS 188 Introduction to Fall 2008 Artificial Intelligence Final Exam INSTRUCTIONS You have 180 minutes. 100 points total. Don t panic! The exam is closed book, closed notes except a two-page crib sheet,

More information

DAA Unit- II Greedy and Dynamic Programming. By Mrs. B.A. Khivsara Asst. Professor Department of Computer Engineering SNJB s KBJ COE, Chandwad

DAA Unit- II Greedy and Dynamic Programming. By Mrs. B.A. Khivsara Asst. Professor Department of Computer Engineering SNJB s KBJ COE, Chandwad DAA Unit- II Greedy and Dynamic Programming By Mrs. B.A. Khivsara Asst. Professor Department of Computer Engineering SNJB s KBJ COE, Chandwad 1 Greedy Method 2 Greedy Method Greedy Principal: are typically

More information

This observation leads to the following algorithm.

This observation leads to the following algorithm. 126 Andreas Jakoby A Bounding-Function for the Knapsack Problem Finding a useful bounding-function is for most problems a difficult task. Let us consider the Knapsack Problem: Let us consider the version

More information

Breadth First Search, Dijkstra s Algorithm for Shortest Paths

Breadth First Search, Dijkstra s Algorithm for Shortest Paths CS 374: Algorithms & Models of Computation, Spring 2017 Breadth First Search, Dijkstra s Algorithm for Shortest Paths Lecture 17 March 1, 2017 Chandra Chekuri (UIUC) CS374 1 Spring 2017 1 / 42 Part I Breadth

More information

CSCE 222 Discrete Structures for Computing. Review for Exam 2. Dr. Hyunyoung Lee !!!

CSCE 222 Discrete Structures for Computing. Review for Exam 2. Dr. Hyunyoung Lee !!! CSCE 222 Discrete Structures for Computing Review for Exam 2 Dr. Hyunyoung Lee 1 Strategy for Exam Preparation - Start studying now (unless have already started) - Study class notes (lecture slides and

More information

Math 210 Exam 2 - Practice Problems. 1. For each of the following, determine whether the statement is True or False.

Math 210 Exam 2 - Practice Problems. 1. For each of the following, determine whether the statement is True or False. Math 20 Exam 2 - Practice Problems. For each of the following, determine whether the statement is True or False. (a) {a,b,c,d} TRE (b) {a,b,c,d} FLSE (c) {a,b, } TRE (d) {a,b, } TRE (e) {a,b} {a,b} FLSE

More information

ECE 5775 (Fall 17) High-Level Digital Design Automation. Scheduling: Exact Methods

ECE 5775 (Fall 17) High-Level Digital Design Automation. Scheduling: Exact Methods ECE 5775 (Fall 17) High-Level Digital Design Automation Scheduling: Exact Methods Announcements Sign up for the first student-led discussions today One slot remaining Presenters for the 1st session will

More information