Lecture 26 Chapter 16 Ideal-dilute solutions and Colligative Properties

Size: px
Start display at page:

Download "Lecture 26 Chapter 16 Ideal-dilute solutions and Colligative Properties"

Transcription

1 Lectre 26 Chapter 16 Ideal-dilte soltions and Colligative Properties nnonce: HW de next Monday Remember Seminars Friday Hledin at 3:00, Bchwalter at 4:00 We ll go over exams on this afternoon Otline: Mixing of non-ideal soltions H mix 0 G mix cold be anything p Liqid/gas eqilibria µ () l = µ () l + RTln p Review Mixing of ideal soltions H mix = 0 S mix = n tot R ( X lnx + X B lnx B ) G mix = n tot RT ( X lnx + X B lnx B ) We also derived how liqid chemical potential depends on composition p µ () l = µ () l + RTln p if p < p, then µ (l) < µ (l) (mixing lowers the chemical potential) Therefore, the chemical potential for the liqid sbstance in a mixtre is dependent on the chemical potential for the pre sbstance pls a factor that is dependent on the ratio of the vapor pressres (of p in mixtre to p of pre sbstance). Raolt s Law Let s simplify this last relationship that connects chemical potential with ratio of vapor pressres. We can se the experimental reslt that (for similar liqids) the mole fraction of the sbstance in the mixtre is approximately p /p, or the ratio of the partial vapor pressres of each component in a mixtre to its vapor pressre as a pre liqid: 1

2 p = X p (Raolt s law) Vapor Pressre (torr) X benzene Pre benzene Pre tolene Binary mixtre obeying Raolt s Law (Fig 10.3 from MT) Total Benzene Tolene We can see (since the mole fraction is always less than 1) that the vapor pressre is always redced for a sbstance when additional sbstances are added to the mixtre. The reason for this can be nderstood simply by considering that only molecles near the srface of the liqid may easily escape. So, it makes sense that the mole fraction in the mixtre shold directly affect the vapor pressre. Raolt s law is valid for similar sbstances this is becase then interactions with other sbstance will closely mimic those with the pre sbstance. We can se Raolt s law to write the eqation for the chemical potential of the liqid : µ () l = µ () l + RTlnX 2

3 This eqation is valid only for ideal soltions (similar interactions, mix H = 0). Remember that mix H = 0 does not mean that there are no interactions, it means that the interactions in the mixtre are the same as those in either pre sbstance. Even for non-ideal soltions nder what conditions might Raolt s law be obeyed? When the mole fraction of a sbstance approaches one. In this case, the solvent obeys Raolt s law The moleclar explanation for this limiting behavior is that each of the molecles will have only molecles identical to itself in its next-neighbor sphere. and the solte obeys Henry s law p B = X B K B (Henry s law) Notice here that while the vapor pressre is proportional to the mole fraction (as is the case for Raolt s law), the constant of proportionality is not the vapor pressre of the pre sbstance. This constant (K B ) is chosen to be tangent to the experimentally determined crve at X B = 0. Show diagram for transition from Henry s law regime to Raolt s law regime. Positive Deviation from Raolt s Law Vapor Pressre Slope = K B ctal Raolt s Law X Ideal-dilte soltions: are those that behave as above non-ideal mixtres for which the solvent obeys Raolt s law and the solte obeys Henry s law. 3

4 Henry s law constants are inversely proportional to the solbility (vapor pressre is inversely proportional to solbility). Right? If something is very solble then we wold expect it to not escape into the vapor phase. Sample Henry s law constants for aqeos soltions (298 K) (from Tinoco) Solte K B (atm) He 131 x 10 3 N 2 86 x 10 3 CO 57 x 10 3 O 2 43 x 10 3 CH 4 41 x 10 3 r 40 x 10 3 CO 2 2 x 10 3 C 2 H 2 1 x 10 3 s we saw before for non-ideal gas behavior, more electrons lead to greater intermoleclar attraction, and in this case, greater solbility. Why? Larger dispersive interactions it is easy to indce dipoles. Example Origin of the bends in deep-sea diving. The bends are cased by bbbles of N 2 gas that form in the bloodstream as the diver rises too qickly from a dive. save for homework. Real Mixtres Show acetone-chloroform pressre vs. mole fraction diagram (from Levine) 4

5 We can see that at very low mole fractions, both acetone and chloroform obey Henry s law and that at high mole fractions they obey Raolt s law. What kind of behavior is this? Ideal-dilte However, at intermediate mole fractions the mixtre deviates from ideality the vapor pressre for each sbstance is less than that predicted by Raolt s law (negative deviation). Why negative? This is becase acetone and chloroform have more attraction for each other than they do themselves. Show acetone-carbon dislfide diagram 5

6 Here is a case of even stronger non-ideality, althogh here we can see that the deviation is positive. Why positive? acetone and carbon dislfide have less attraction for each other relative to their attraction for themselves. Note that they don t necessarily repel each other jst attract less. Let s back p a second. Remember or focs here is intermoleclar interactions How do we qantify the intermoleclar interactions in: ideal gaseos mixtres? no interactions ideal liqid mixtres? similar in mixtre compared to pre components Ths, or reference state for a liqid mixtre is the intermoleclar interactions in the pre soltions. In yet another dplication of notation, se for intermoleclar interactions. What shold be for an ideal soltion? + B B B = 2 lternatively, we can define w as the non-ideality w = 2 B B B w = 0 for ideal w < 0 for stronger attraction w > 0 for weaker attraction/replsion Note that Dill defines the closely related exchange parameter the energy to transfer one into otherwise pre B and one B into otherwise pre. 6

7 z + BB χ B = B (Dill Eq 15.11) kt 2 In the case of benzene-tolene we saw this mixtre was ideal, so w = 0 In the case of acetone-chloroform we saw that the -B interactions were stronger (more attractive) and the case of the observed non-ideality. + B B B < (more negative, w < 0) 2 On the other hand, for acetone-carbon dislfide we saw that the -B interactions were weaker (more replsive) and cased non-ideal behavior of opposite sign to that the acetone-chloroform case. + B B B > (less negative, w > 0) 2 It is possible for real soltions that mix G > 0 (either becase of enthalpy increases or entropy decreases pon mixing) sch that the components of the mixtre separate. Example: oil and water ctivities For an ideal soltion, Raolt s law is obeyed and we can write the chemical potential: µ () l = µ () l + RTlnX When the soltion does not obey Raolt s law, the form of the above expression can be retained by sbstitting the activity for the mole fraction: µ () l = µ () l + RTlna The activity is an effective mole fraction for non-ideal soltions jst as fgacity is an effective pressre for non-ideal gases. (We didn t do fgacity in lectre, bt Chapt 8 talks abot it.) By comparison to or general eqation for the chemical potential of a mixtre, we can see that a =? p / p. Therefore, the activity can simply measred as the ratio of the vapor pressre of component in in a mixtre and its vapor pressre as a pre sbstance. 7

8 Solvent activity Since all sbstances obey Raolt s law as the X 1, we can say: as X 1, then p p and therefore a X We can define a new term called the activity coefficient for sbstance (γ ): a = γ X (γ is not constant!!!) It follows then that? X 1, γ 1 and therefore a X as it shold The chemical potential for a solvent in a non-ideal soltion is therefore: µ = µ + RTln X + RTln γ Notice that the second two terms are zero for X = 1, so: as X 1, µ µ Can we qantify non-ideality Remember that G mix = n tot RT ( X lnx + X B lnx B ) for ideal soltions Keeping in mind that µ = µ + RTln X + RTln γ then what might G mix be for or non-ideal case? G mix = n tot RT ( X lnx + X B lnx B + X lnγ + X B lnγ B ) ideal mixing excess Gibbs energy of mixing G mix = G ideal + G excess This is great stff allows s to qantify the intermoleclar interactions! 8

Chem 4501 Introduction to Thermodynamics, 3 Credits Kinetics, and Statistical Mechanics. Fall Semester Homework Problem Set Number 10 Solutions

Chem 4501 Introduction to Thermodynamics, 3 Credits Kinetics, and Statistical Mechanics. Fall Semester Homework Problem Set Number 10 Solutions Chem 4501 Introdction to Thermodynamics, 3 Credits Kinetics, and Statistical Mechanics Fall Semester 2017 Homework Problem Set Nmber 10 Soltions 1. McQarrie and Simon, 10-4. Paraphrase: Apply Eler s theorem

More information

PROBLEMS

PROBLEMS PROBLEMS------------------------------------------------ - 7- Thermodynamic Variables and the Eqation of State 1. Compter (a) the nmber of moles and (b) the nmber of molecles in 1.00 cm of an ideal gas

More information

Microscopic Properties of Gases

Microscopic Properties of Gases icroscopic Properties of Gases So far we he seen the gas laws. These came from observations. In this section we want to look at a theory that explains the gas laws: The kinetic theory of gases or The kinetic

More information

Vapor Pressure & Raoult s Law. This is the pressure above a solid or liquid due to evaporation.

Vapor Pressure & Raoult s Law. This is the pressure above a solid or liquid due to evaporation. 1. What is Vapor Pressure? Vapor Pressure & Raoult s Law This is the pressure above a solid or liquid due to evaporation. 2. Can a solute affect the vapor pressure of a solvent? Yes. 3. What do solutes

More information

Thermodynamic condition for equilibrium between two phases a and b is G a = G b, so that during an equilibrium phase change, G ab = G a G b = 0.

Thermodynamic condition for equilibrium between two phases a and b is G a = G b, so that during an equilibrium phase change, G ab = G a G b = 0. CHAPTER 5 LECTURE NOTES Phases and Solutions Phase diagrams for two one component systems, CO 2 and H 2 O, are shown below. The main items to note are the following: The lines represent equilibria between

More information

L = 2 λ 2 = λ (1) In other words, the wavelength of the wave in question equals to the string length,

L = 2 λ 2 = λ (1) In other words, the wavelength of the wave in question equals to the string length, PHY 309 L. Soltions for Problem set # 6. Textbook problem Q.20 at the end of chapter 5: For any standing wave on a string, the distance between neighboring nodes is λ/2, one half of the wavelength. The

More information

Ch 10 -Ch 10 Notes Assign: -HW 1, HW 2, HW 3 Blk 1 Ch 10 Lab

Ch 10 -Ch 10 Notes Assign: -HW 1, HW 2, HW 3 Blk 1 Ch 10 Lab Advanced Placement Chemistry Chapters 10 11 Syllabus As you work through each chapter, you should be able to: Chapter 10 Solids and Liquids 1. Differentiate between the various types of intermolecular

More information

Chapter 11 Problems: 11, 15, 18, 20-23, 30, 32-35, 39, 41, 43, 45, 47, 49-51, 53, 55-57, 59-61, 63, 65, 67, 70, 71, 74, 75, 78, 81, 85, 86, 93

Chapter 11 Problems: 11, 15, 18, 20-23, 30, 32-35, 39, 41, 43, 45, 47, 49-51, 53, 55-57, 59-61, 63, 65, 67, 70, 71, 74, 75, 78, 81, 85, 86, 93 Chapter 11 Problems: 11, 15, 18, 20-23, 30, 32-35, 39, 41, 43, 45, 47, 49-51, 53, 55-57, 59-61, 63, 65, 67, 70, 71, 74, 75, 78, 81, 85, 86, 93 Chapter 11 Properties of Solutions Types of mixtures: homogenous

More information

Chapter 5. Simple Mixtures Fall Semester Physical Chemistry 1 (CHM2201)

Chapter 5. Simple Mixtures Fall Semester Physical Chemistry 1 (CHM2201) Chapter 5. Simple Mixtures 2011 Fall Semester Physical Chemistry 1 (CHM2201) Contents The thermodynamic description of mixtures 5.1 Partial molar quantities 5.2 The thermodynamic of Mixing 5.3 The chemical

More information

Phase Equilibrium: Preliminaries

Phase Equilibrium: Preliminaries Phase Equilibrium: Preliminaries Phase diagrams for two one component systems, CO 2 and H 2 O, are shown below. The main items to note are the following: The lines represent equilibria between two phases.

More information

Chemistry 201: General Chemistry II - Lecture

Chemistry 201: General Chemistry II - Lecture Chemistry 201: General Chemistry II - Lecture Dr. Namphol Sinkaset Chapter 14 Study Guide Concepts 1. Solutions are homogeneous mixtures of two or more substances. 2. solute: substance present in smaller

More information

The Chemical Potential of Components of Solutions

The Chemical Potential of Components of Solutions CHEM 331 Physical Chemistry Fall 2017 The Chemical Potential of Components of Solutions We have shown that the Gibbs Free Energy for a solution at constant T and P can be determined from the chemical potential

More information

Lecture 6. NONELECTROLYTE SOLUTONS

Lecture 6. NONELECTROLYTE SOLUTONS Lecture 6. NONELECTROLYTE SOLUTONS NONELECTROLYTE SOLUTIONS SOLUTIONS single phase homogeneous mixture of two or more components NONELECTROLYTES do not contain ionic species. CONCENTRATION UNITS percent

More information

Outline of the Course

Outline of the Course Outline of the Course 1) Review and Definitions 2) Molecules and their Energies 3) 1 st Law of Thermodynamics Conservation of Energy. 4) 2 nd Law of Thermodynamics Ever-Increasing Entropy. 5) Gibbs Free

More information

Thermodynamics IV - Free Energy and Chemical Equilibria Chemical Potential (Partial Molar Gibbs Free Energy)

Thermodynamics IV - Free Energy and Chemical Equilibria Chemical Potential (Partial Molar Gibbs Free Energy) Thermodynamics IV - Free Energy and Chemical Equilibria Chemical Potential (Partial Molar Gibbs Free Energy) increase in the Gibbs free energy of the system when 1 mole of i is added to a large amount

More information

- Let's look at how things dissolve into water, since aqueous solutions are quite common. sucrose (table sugar)

- Let's look at how things dissolve into water, since aqueous solutions are quite common. sucrose (table sugar) 68 HOW THINGS DISSOLVE - Let's look at how things dissolve into water, since aqueous solutions are quite common. sucrose (table sugar)... what happens? - Water molecules pull the sugar molecules out of

More information

Uncertainty Evaluation of Toluene Determination in Room Air by Thermal Desorption Gas Chromatography

Uncertainty Evaluation of Toluene Determination in Room Air by Thermal Desorption Gas Chromatography International Conference on Civil, Transportation and Environment (ICCTE 06) ncertainty Evalation of Tolene Determination in Room Air by Thermal Desorption Gas Chromatography Xiaoyan Wen, a,yanhi Gao,

More information

MATSCI 204 Thermodynamics and Phase Equilibria Winter Chapter #4 Practice problems

MATSCI 204 Thermodynamics and Phase Equilibria Winter Chapter #4 Practice problems MATSCI 204 Thermodynamics and Phase Equilibria Winter 2013 Chapter #4 Practice problems Problem: 1-Show that for any extensive property Ω of a binary system A-B: d ( "# ) "# B, = "# + 1$ x B 2- If "# has

More information

Chapter 11 section 6 and Chapter 8 Sections 1-4 from Atkins

Chapter 11 section 6 and Chapter 8 Sections 1-4 from Atkins Lecture Announce: Chapter 11 section 6 and Chapter 8 Sections 1-4 from Atkins Outline: osmotic pressure electrolyte solutions phase diagrams of mixtures Gibbs phase rule liquid-vapor distillation azeotropes

More information

Solutions to Problem Set 9

Solutions to Problem Set 9 Solutions to Problem Set 9 1. When possible, we want to write an equation with the quantity on the ordinate in terms of the quantity on the abscissa for each pf the labeled curves. A B C p CHCl3 = K H

More information

CH1810 Lecture #2 Vapor Pressure of Liquids and Solutions

CH1810 Lecture #2 Vapor Pressure of Liquids and Solutions CH1810 Lecture #2 Vapor Pressure of Liquids and Solutions Vaporization and Condensation Kinetic Energy and Temperature Molecules in a liquid are constantly in motion Types of motion: vibrational, and limited

More information

Module 2: Solutions The Science of Mixing : Have you ever been in a wrong mix?

Module 2: Solutions The Science of Mixing : Have you ever been in a wrong mix? PART 1 Name: All matter around us exists in a mixed state. Chemists look at the atomic level and try to explain why certain matters mix homogeneously (uniformly) and certain types of matters (or compounds)

More information

Born-Haber Cycle: ΔH hydration

Born-Haber Cycle: ΔH hydration Born-Haber Cycle: ΔH hydration ΔH solution,nacl = ΔH hydration,nacl(aq) U NaCl ΔH hydration,nacl(aq) = ΔH hydration,na + (g) + ΔH hydration,cl (g) Enthalpies of Hydration 1 Sample Exercise 11.3 Use the

More information

Solutions. π = n RT = M RT V

Solutions. π = n RT = M RT V Solutions Factors that affect solubility intermolecular interactions (like dissolves like) temperature pressure Colligative Properties vapor pressure lowering Raoult s Law: P A = X A P A boiling point

More information

Chapter 11. General Chemistry. Chapter 11/1

Chapter 11. General Chemistry. Chapter 11/1 Chapter 11 Solutions and Their Properties Professor Sam Sawan General Chemistry 84.122 Chapter 11/1 Solutions Solution: A homogeneous mixture. Solvent: The major component. Solute: A minor component. Copyright

More information

Lecture Notes 1: Physical Equilibria Vapor Pressure

Lecture Notes 1: Physical Equilibria Vapor Pressure Lecture Notes 1: Physical Equilibria Vapor Pressure Our first exploration of equilibria will examine physical equilibria (no chemical changes) in which the only changes occurring are matter changes phases.

More information

Division Avenue High School AP Biology

Division Avenue High School AP Biology Division Avene igh School Ms. Foglia The Chemistry of Life 2009-2010 Why are we stdying chemistry? Chemistry is the fondation of Biology The World of Elements C N O Na Mg P S K Ca 1 Division Avene igh

More information

CHEMISTRY XL-14A PHYSICAL EQUILIBRIUM. August 13, 2011 Robert Iafe

CHEMISTRY XL-14A PHYSICAL EQUILIBRIUM. August 13, 2011 Robert Iafe CHEMISTRY XL-14A PHYSICAL EQUILIBRIUM August 13, 2011 Robert Iafe Chapter Overview 2 Phases and Phase Transitions Solubility Colligative Properties Binary Liquid Mixtures Phases and Phase Transitions 3

More information

Intermolecular Forces

Intermolecular Forces Intermolecular Forces! When two molecules approach one another, they are attracted to some extent! Polar molecules are attracted through the electrostatic interaction of their dipole moments! Non-polar

More information

MAE 320 Thermodynamics HW 4 Assignment

MAE 320 Thermodynamics HW 4 Assignment MAE 0 Thermodynamics HW 4 Assignment The homework is de Friday, October 7 th, 06. Each problem is worth the points indicated. Copying of the soltion from any sorce is not acceptable. (). Mltiple choice

More information

LECTURE 6 NON ELECTROLYTE SOLUTION

LECTURE 6 NON ELECTROLYTE SOLUTION LECTURE 6 NON ELECTROLYTE SOLUTION Ch 45.5 pplied Phy Chem First Sem 2014-15 Ch 45.5 Exam II September 1/3 (Multiple Choice/Problem Solving) Coverage: Second/Third Laws of Thermodynamics Nonelectrolyte

More information

Mixture of gases. Mix 5 moles of CO 2 V = 40L 2 moles of N 2 T = 0 C 1 mole of Cl 2 What is P? Mary J. Bojan Chem 110

Mixture of gases. Mix 5 moles of CO 2 V = 40L 2 moles of N 2 T = 0 C 1 mole of Cl 2 What is P? Mary J. Bojan Chem 110 Mixture of gases Mix 5 moles of CO 2 V = 40L 2 moles of N 2 T = 0 C 1 mole of Cl 2 What is P? 1 Partial Pressure Partial pressure: the pressure a gas would have if it was the only gas in the container.

More information

Chapter 13. Properties of Solutions

Chapter 13. Properties of Solutions Chapter 13 Properties of Solutions Warm - Up Why doesn t salt dissolve in nonpolar solvents such as hexane? How does the orientation of water around Na + differ from the orientation of water around Cl

More information

EXPT. 5 DETERMINATION OF pk a OF AN INDICATOR USING SPECTROPHOTOMETRY

EXPT. 5 DETERMINATION OF pk a OF AN INDICATOR USING SPECTROPHOTOMETRY EXPT. 5 DETERMITIO OF pk a OF IDICTOR USIG SPECTROPHOTOMETRY Strctre 5.1 Introdction Objectives 5.2 Principle 5.3 Spectrophotometric Determination of pka Vale of Indicator 5.4 Reqirements 5.5 Soltions

More information

Properties of Solutions

Properties of Solutions Properties of Solutions The Solution Process A solution is a homogeneous mixture of solute and solvent. Solutions may be gases, liquids, or solids. Each substance present is a component of the solution.

More information

Copyright 2017 Dan Dill 1

Copyright 2017 Dan Dill 1 TP The order of normal boiling points is Acetone, CH 3 C O CH 3 30.8 Diethyl ether, CH 3 CH 2 2 O 71.7 Ethanol, CH 3 CH 2 OH 7.87 Water, H 2 O 3.17 0 Lecture 13 CH1 A1 (MWF 9:05 am) Friday, October 6,

More information

Concept of the chemical potential and the activity of elements

Concept of the chemical potential and the activity of elements Concept of the chemical potential and the activity of elements Gibb s free energy, G is function of temperature, T, pressure, P and amount of elements, n, n dg G G (T, P, n, n ) t particular temperature

More information

Chapter 11 Properties of Solutions

Chapter 11 Properties of Solutions Chapter 11 Properties of Solutions Solutions Homogeneous mixtures of two or more substances Composition is uniform throughout the sample No chemical reaction between the components of the mixture Solvents

More information

χ A = P A Gen. Chem. II Exam I review sheet (Ch. 10, 11, 13, 14) Ch. 10 Gases behave physically similarly.

χ A = P A Gen. Chem. II Exam I review sheet (Ch. 10, 11, 13, 14) Ch. 10 Gases behave physically similarly. Gen. Chem. II Exam I review sheet (Ch. 10, 11, 13, 14) Ch. 10 Gases behave physically similarly. KMT (Kinetic Molecular Theory): particles in a gas: are in constant rapid motion are tiny compared to the

More information

Math 263 Assignment #3 Solutions. 1. A function z = f(x, y) is called harmonic if it satisfies Laplace s equation:

Math 263 Assignment #3 Solutions. 1. A function z = f(x, y) is called harmonic if it satisfies Laplace s equation: Math 263 Assignment #3 Soltions 1. A fnction z f(x, ) is called harmonic if it satisfies Laplace s eqation: 2 + 2 z 2 0 Determine whether or not the following are harmonic. (a) z x 2 + 2. We se the one-variable

More information

5.4 Liquid Mixtures. G i. + n B. = n A. )+ n B. + RT ln x A. + RT ln x B. G = nrt ( x A. ln x A. Δ mix. + x B S = nr( x A

5.4 Liquid Mixtures. G i. + n B. = n A. )+ n B. + RT ln x A. + RT ln x B. G = nrt ( x A. ln x A. Δ mix. + x B S = nr( x A 5.4 Liquid Mixtures Key points 1. The Gibbs energy of mixing of two liquids to form an ideal solution is calculated in the same way as for two perfect gases 2. A regular solution is one in which the entropy

More information

Chapter 11. Freedom of Motion. Comparisons of the States of Matter. Liquids, Solids, and Intermolecular Forces

Chapter 11. Freedom of Motion. Comparisons of the States of Matter. Liquids, Solids, and Intermolecular Forces Liquids, Solids, and Intermolecular Forces Chapter 11 Comparisons of the States of Matter The solid and liquid states have a much higher density than the gas state The solid and liquid states have similar

More information

Extrinsic Point Defects: Impurities

Extrinsic Point Defects: Impurities Extrinsic Point Defects: Impurities Substitutional and interstitial impurities Sol solutions, solubility limit Entropy of ing, eal solution model Enthalpy of ing, quasi-chemical model Ideal and regular

More information

Handout #2. Reading Thompson (1967) Researches in Geochem, v.2.,

Handout #2. Reading Thompson (1967) Researches in Geochem, v.2., 1.480 Handout # Non-ideal solutions Reading Thompson (1967) Researches in Geochem, v.., 340-361. Solutions for which ΔHmix > 0 Depending on the contribution from ΔHmix, we can have one of two general cases.

More information

- Let's look at how things dissolve into water, since aqueous solutions are quite common. sucrose (table sugar)

- Let's look at how things dissolve into water, since aqueous solutions are quite common. sucrose (table sugar) 68 HOW THINGS DISSOLVE - Let's look at how things dissolve into water, since aqueous solutions are quite common. sucrose (table sugar)... what happens? - Water molecules pull the sugar molecules out of

More information

OFB Chapter 6 Condensed Phases and Phase Transitions

OFB Chapter 6 Condensed Phases and Phase Transitions OFB Chapter 6 Condensed Phases and Phase Transitions 6-1 Intermolecular Forces: Why Condensed Phases Exist 6- The Kinetic Theory of Liquids and Solids 6-3 Phase Equilibrium 6-4 Phase Transitions 6-5 Phase

More information

5. The Bernoulli Equation

5. The Bernoulli Equation 5. The Bernolli Eqation [This material relates predominantly to modles ELP034, ELP035] 5. Work and Energy 5. Bernolli s Eqation 5.3 An example of the se of Bernolli s eqation 5.4 Pressre head, velocity

More information

A Reaction of Ideal Gasses

A Reaction of Ideal Gasses A Reaction of Ideal Gasses N 2 (g) + 3H 2 (g) 2NH 3 (g) Each component: Can write Gibbs Energy as: 1 Toward the Equilibrium Constant For any reaction involving ideal gasses: aa+ bb+ cc+ dd+ We can write

More information

General Chemistry II CHM202 Unit 1 Practice Test

General Chemistry II CHM202 Unit 1 Practice Test General Chemistry II CHM202 Unit 1 Practice Test 1. Ion dipole forces always require a. an ion and a water molecule. d. an ion and a polar molecule. b. a cation and a water molecule. e. a polar and a nonpolar

More information

Chemistry: The Central Science

Chemistry: The Central Science Chemistry: The Central Science Fourteenth Edition Chapter 11 Liquids and Intermolecular Forces Intermolecular Forces The attractions between molecules are not nearly as strong as the intramolecular attractions

More information

Chemistry 103 Spring 2010

Chemistry 103 Spring 2010 Today 1. Factors affecting solubility. 2. Colligative properties. Announcements 1. OWL homework for Ch. 14 due next week. 2. DROP deadline on Apr. 6, Tuesday. 3. ADD deadline on Apr. 12, Monday. 4. First

More information

POGIL: Principles of Solubility

POGIL: Principles of Solubility NAME: DATE: AP Chemistry POGIL: Principles of Solubility Why? The previous POGIL discussed a few factors affecting how and why solutions form based on entropy and interparticle forces. Another factor affecting

More information

Cosmic rays. l Some come from the sun (relatively low energy) and some from catastrophic events elsewhere in the galaxy/universe

Cosmic rays. l Some come from the sun (relatively low energy) and some from catastrophic events elsewhere in the galaxy/universe Special relativity The laws of physics are the same in all coordinate systems either at rest or moving at constant speed with respect to one another The speed of light in a vacm has the same vale regardless

More information

Lecture 3. (2) Last time: 3D space. The dot product. Dan Nichols January 30, 2018

Lecture 3. (2) Last time: 3D space. The dot product. Dan Nichols January 30, 2018 Lectre 3 The dot prodct Dan Nichols nichols@math.mass.ed MATH 33, Spring 018 Uniersity of Massachsetts Janary 30, 018 () Last time: 3D space Right-hand rle, the three coordinate planes 3D coordinate system:

More information

BLOOM S TAXONOMY. Following Bloom s Taxonomy to Assess Students

BLOOM S TAXONOMY. Following Bloom s Taxonomy to Assess Students BLOOM S TAXONOMY Topic Following Bloom s Taonomy to Assess Stdents Smmary A handot for stdents to eplain Bloom s taonomy that is sed for item writing and test constrction to test stdents to see if they

More information

Chapter 17: Phenomena

Chapter 17: Phenomena Chapter 17: Phenomena Phenomena: Different masses of solute were added to 1 kg of either H 2 O or C 6 H 6. The boiling and freezing points of the solutions were then measured. Examine the data to determine

More information

Section 7.4: Integration of Rational Functions by Partial Fractions

Section 7.4: Integration of Rational Functions by Partial Fractions Section 7.4: Integration of Rational Fnctions by Partial Fractions This is abot as complicated as it gets. The Method of Partial Fractions Ecept for a few very special cases, crrently we have no way to

More information

ρ u = u. (1) w z will become certain time, and at a certain point in space, the value of

ρ u = u. (1) w z will become certain time, and at a certain point in space, the value of THE CONDITIONS NECESSARY FOR DISCONTINUOUS MOTION IN GASES G I Taylor Proceedings of the Royal Society A vol LXXXIV (90) pp 37-377 The possibility of the propagation of a srface of discontinity in a gas

More information

READING. Review of Intermolecular Forces & Liquids (Chapter 12) Ion-Ion Forces. Ion-Dipole Energies

READING. Review of Intermolecular Forces & Liquids (Chapter 12) Ion-Ion Forces. Ion-Dipole Energies Review of Intermolecular Forces & Liquids (Chapter 12) CEM 102 T. ughbanks READIG We will very briefly review the underlying concepts from Chapters 12 on intermolecular forces since it is relevant to Chapter

More information

Chemistry 360 Spring 2017 Dr. Jean M. Standard April 19, Exam points

Chemistry 360 Spring 2017 Dr. Jean M. Standard April 19, Exam points Chemistry 360 pring 2017 Dr. Jean M. tandard April 19, 2017 Name Exam 3 100 points Note: You must show your work on problems in order to receive full credit for any answers. You must turn in your equation

More information

Chapter 6 The States of Matter. Examples of Physical Properties of Three States of Matter

Chapter 6 The States of Matter. Examples of Physical Properties of Three States of Matter Chapter 6 The States of Matter Examples of Physical Properties of Three States of Matter 1 Three States of Matter Solids: Fixed shape, fixed volume, particles are held rigidly in place. Liquids: Variable

More information

In the last lecture we have seen the electronic transitions and the vibrational structure of these electronic transitions.

In the last lecture we have seen the electronic transitions and the vibrational structure of these electronic transitions. Title: Term vales of the electronic states of the molecle Pae-1 In the beinnin of this modle, we have learnt the formation of the molecle from atoms. We have also learnt the moleclar orbital and the electronic

More information

Modeling Effort on Chamber Clearing for IFE Liquid Chambers at UCLA

Modeling Effort on Chamber Clearing for IFE Liquid Chambers at UCLA Modeling Effort on Chamber Clearing for IFE Liqid Chambers at UCLA Presented by: P. Calderoni own Meeting on IFE Liqid Wall Chamber Dynamics Livermore CA May 5-6 3 Otline his presentation will address

More information

Disorder and Entropy. Disorder and Entropy

Disorder and Entropy. Disorder and Entropy Disorder and Entropy Suppose I have 10 particles that can be in one of two states either the blue state or the red state. How many different ways can we arrange those particles among the states? All particles

More information

Process Modeling of Wellbore Leakage for GCS Risk Assessment

Process Modeling of Wellbore Leakage for GCS Risk Assessment Process Modeling of Wellbore Leakage for CS Risk Assessment Crtis M. Oldenbrg Earth Sciences Division Lawrence Berkeley National Laboratory Contribtors: Leha Pan (LBNL) Bill Carey (LANL) IEAH- Modeling

More information

Lecture Presentation. Chapter 12. Solutions. Sherril Soman, Grand Valley State University Pearson Education, Inc.

Lecture Presentation. Chapter 12. Solutions. Sherril Soman, Grand Valley State University Pearson Education, Inc. Lecture Presentation Chapter 12 Solutions Sherril Soman, Grand Valley State University Thirsty Seawater Drinking seawater can cause dehydration. Seawater Is a homogeneous mixture of salts with water Contains

More information

1 JAXA Special Pblication JAXA-SP-1-E Small-scale trblence affects flow fields arond a blff body and therefore it governs characteristics of cross-sec

1 JAXA Special Pblication JAXA-SP-1-E Small-scale trblence affects flow fields arond a blff body and therefore it governs characteristics of cross-sec First International Symposim on Fltter and its Application, 1 11 IEXPERIMENTAL STUDY ON TURBULENCE PARTIAL SIMULATION FOR BLUFF BODY Hiroshi Katschi +1 and Hitoshi Yamada + +1 Yokohama National University,

More information

Chapter 11 Intermolecular Forces, Liquids, and Solids

Chapter 11 Intermolecular Forces, Liquids, and Solids Surveying the Chapter: Page 442 Chapter 11 Intermolecular Forces, Liquids, and Solids We begin with a brief comparison of solids, liquids, and gases from a molecular perspective, which reveals the important

More information

5. None are true correct. 6. I only. 7. III only

5. None are true correct. 6. I only. 7. III only Version 001 Practice Exam 3 - F15 mccord (78704) 1 This print-out should have 25 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. Remember

More information

Chemistry 163B. Concluding Factoids. and. Comments

Chemistry 163B. Concluding Factoids. and. Comments Chemistry 163B Concluding Factoids and Comments 1 neuron, resting potential http://projects.gw.utwente.nl/pi/sim/bovt/concep4.gif http://www.uta.edu/biology/westmoreland/classnotes/144/chapter_48_files/image009.jpg

More information

1. What is the value of the quantity PV for one mole of an ideal gas at 25.0 C and one atm?

1. What is the value of the quantity PV for one mole of an ideal gas at 25.0 C and one atm? Real Gases Thought Question: How does the volume of one mole of methane gas (CH4) at 300 Torr and 298 K compare to the volume of one mole of an ideal gas at 300 Torr and 298 K? a) the volume of methane

More information

UNIT 5 : STATES OF MATTER Concept 1. INTERMOLECULAR FORCES

UNIT 5 : STATES OF MATTER Concept 1. INTERMOLECULAR FORCES www.tiwariacademy.in UNIT 5 : STATES OF MATTER CONCEPT WISE HANDOUTS KEY CONCEPTS : 1. Intermolecular Forces 2. Gas Laws 3. Behaviour of gases Concept 1. INTERMOLECULAR FORCES Intermolecular forces- forces

More information

Solutions and Their Properties

Solutions and Their Properties Chapter 11 Solutions and Their Properties Solutions: Definitions A solution is a homogeneous mixture. A solution is composed of a solute dissolved in a solvent. When two compounds make a solution, the

More information

Applying Laminar and Turbulent Flow and measuring Velocity Profile Using MATLAB

Applying Laminar and Turbulent Flow and measuring Velocity Profile Using MATLAB IOS Jornal of Mathematics (IOS-JM) e-issn: 78-578, p-issn: 319-765X. Volme 13, Isse 6 Ver. II (Nov. - Dec. 17), PP 5-59 www.iosrjornals.org Applying Laminar and Trblent Flow and measring Velocity Profile

More information

Simple Mixtures. Chapter 7 of Atkins: Section

Simple Mixtures. Chapter 7 of Atkins: Section Simple Mixtures Chapter 7 of Atkins: Section 7.5-7.8 Colligative Properties Boiling point elevation Freezing point depression Solubility Osmotic Pressure Activities Solvent Activity Solute Activity Regular

More information

7.02 Colligative Properties

7.02 Colligative Properties 7.02 Colligative Properties Changes in solvent properties due to impurities Colloidal suspensions or dispersions scatter light, a phenomenon known as the Tyndall effect. (a) Dust in the air scatters the

More information

Relativity II. The laws of physics are identical in all inertial frames of reference. equivalently

Relativity II. The laws of physics are identical in all inertial frames of reference. equivalently Relatiity II I. Henri Poincare's Relatiity Principle In the late 1800's, Henri Poincare proposed that the principle of Galilean relatiity be expanded to inclde all physical phenomena and not jst mechanics.

More information

Liquids and Solids The Condensed States of Matter

Liquids and Solids The Condensed States of Matter Liquids and Solids The Condensed States of Matter AP Chemistry Ms. Grobsky Where We Have Been And Where We Are Going In the last few chapters, we saw that atoms can form stable units called molecules by

More information

DEFINITION OF A NEW UO 2 F 2 DENSITY LAW FOR LOW- MODERATED SOLUTIONS (H/U < 20) AND CONSEQUENCES ON CRITICALITY SAFETY

DEFINITION OF A NEW UO 2 F 2 DENSITY LAW FOR LOW- MODERATED SOLUTIONS (H/U < 20) AND CONSEQUENCES ON CRITICALITY SAFETY DEFINITION OF A NEW UO 2 F 2 DENSITY LAW FOR LOW- MODERATED SOLUTIONS ( < 20) AND CONSEQUENCES ON CRITICALITY SAFETY N. Leclaire, S. Evo, I.R.S.N., France Introdction In criticality stdies, the blk density

More information

Chem 75 February, 2017 Practice Exam 2

Chem 75 February, 2017 Practice Exam 2 As before, here is last year s Exam 2 in two forms: just the questions, and then the questions followed by their solutions. 1. (2 + 6 + 8 points) At high temperature, aluminum nitride, AlN(s), decomposes

More information

Thinking Like a Chemist About Dissolution. Unit 5 Day 4

Thinking Like a Chemist About Dissolution. Unit 5 Day 4 Thinking Like a Chemist About Dissolution Unit 5 Day 4 What are we going to learn today? Thinking Like a Chemist in the Context of the Dissolution Process. Macro Modeling Micro Modeling Energy of the change

More information

Chapter 12: Solutions. Mrs. Brayfield

Chapter 12: Solutions. Mrs. Brayfield Chapter 12: Solutions Mrs. Brayfield 12.1: Solutions Solution a homogeneous mixture of two or more substances Solvent the majority component Solute the minority component What is the solute and solvent

More information

1 Which of the following compounds has the lowest solubility in water? (4 pts)

1 Which of the following compounds has the lowest solubility in water? (4 pts) version: 516 Exam 1 - Sparks This MC portion of the exam should have 19 questions. The point values are given with each question. Bubble in your answer choices on the bubblehseet provided. Your score is

More information

By Dr. Salah Salman. Problem (1)

By Dr. Salah Salman. Problem (1) Chemical Eng. De. Problem ( Solved Problems Samles in Flid Flow 0 A late of size 60 cm x 60 cm slides over a lane inclined to the horizontal at an angle of 0. It is searated from the lane with a film of

More information

UNIVERSITY OF MANITOBA, DEPARTMENT OF CHEMISTRY Chemistry 2290, Winter 2011, Dr. H. Georg Schreckenbach. Final Examination April 12, 2011 (3 hours)

UNIVERSITY OF MANITOBA, DEPARTMENT OF CHEMISTRY Chemistry 2290, Winter 2011, Dr. H. Georg Schreckenbach. Final Examination April 12, 2011 (3 hours) Comments 2012: - This exam turned out to be too short almost all of the class had left after 2 ½ hours or so. For this year, then, expect a somewhat longer exam (with a few more questions and/or somewhat

More information

Linear System Theory (Fall 2011): Homework 1. Solutions

Linear System Theory (Fall 2011): Homework 1. Solutions Linear System Theory (Fall 20): Homework Soltions De Sep. 29, 20 Exercise (C.T. Chen: Ex.3-8). Consider a linear system with inpt and otpt y. Three experiments are performed on this system sing the inpts

More information

Chapter 14. Liquids and Solids

Chapter 14. Liquids and Solids Chapter 14 Liquids and Solids Review Solid - Has a definite (fixed) shape and volume (cannot flow). Liquid - Definite volume but takes the shape of its container (flows). Gas Has neither fixed shape nor

More information

Chemistry 452/ August 2012

Chemistry 452/ August 2012 Chemistry 45/456 7 August 0 End- of-term Examination Professor G. Drobny Enter your answers into a blue or green Composition Book. Perform only the number of problems required. Answers must be given in

More information

Solution KEY CONCEPTS

Solution KEY CONCEPTS Solution KEY CONCEPTS Solution is the homogeneous mixture of two or more substances in which the components are uniformly distributed into each other. The substances which make the solution are called

More information

Overview. Types of Solutions. Intermolecular forces in solution. Concentration terms. Colligative properties. Osmotic Pressure 2 / 46

Overview. Types of Solutions. Intermolecular forces in solution. Concentration terms. Colligative properties. Osmotic Pressure 2 / 46 1 / 46 2 / 46 Overview Types of Solutions. Intermolecular forces in solution Concentration terms Colligative properties Osmotic Pressure 3 / 46 Solutions and Colloids A solution is a homogeneous mixture

More information

Reduction of over-determined systems of differential equations

Reduction of over-determined systems of differential equations Redction of oer-determined systems of differential eqations Maim Zaytse 1) 1, ) and Vyachesla Akkerman 1) Nclear Safety Institte, Rssian Academy of Sciences, Moscow, 115191 Rssia ) Department of Mechanical

More information

MECH6661 lectures 6/1 Dr. M. Medraj Mech. Eng. Dept. - Concordia University. Fe3C (cementite)

MECH6661 lectures 6/1 Dr. M. Medraj Mech. Eng. Dept. - Concordia University. Fe3C (cementite) Outline Solid solution Gibbs free energy of binary solutions Ideal solution Chemical potential of an ideal solution Regular solutions Activity of a component Real solutions Equilibrium in heterogeneous

More information

The fundamental difference between. particles.

The fundamental difference between. particles. Gases, Liquids and Solids David A. Katz Department of Chemistry Pima Community College States of Matter The fundamental difference between states t of matter is the distance between particles. States of

More information

Bushra Javed Valencia College CHM 1046 Chapter 12 - Solutions

Bushra Javed Valencia College CHM 1046 Chapter 12 - Solutions Bushra Javed Valencia College CHM 1046 Chapter 12 - Solutions 1 Chapter 12 :Solutions Tentative Outline 1. Introduction to solutions. 2. Types of Solutions 3. Solubility and the Solution Process: Saturated,

More information

THERMODYNAMICS I. TERMS AND DEFINITIONS A. Review of Definitions 1. Thermodynamics = Study of the exchange of heat, energy and work between a system

THERMODYNAMICS I. TERMS AND DEFINITIONS A. Review of Definitions 1. Thermodynamics = Study of the exchange of heat, energy and work between a system THERMODYNAMICS I. TERMS AND DEFINITIONS A. Review of Definitions 1. Thermodynamics = Study of the exchange of heat, energy and work between a system and its surroundings. a. System = That part of universe

More information

CHEM Exam 2 - October 11, INFORMATION PAGE (Use for reference and for scratch paper)

CHEM Exam 2 - October 11, INFORMATION PAGE (Use for reference and for scratch paper) CHEM 5200 - Exam 2 - October 11, 2018 INFORMATION PAGE (Use for reference and for scratch paper) Constants and Conversion Factors: R = 0.082 L-atm/mol-K = 8.31 J/mol-K = 8.31 kpa-l/mol-k 1 L-atm = 101

More information

London Dispersion Forces (LDFs) Intermolecular Forces Attractions BETWEEN molecules. London Dispersion Forces (LDFs) London Dispersion Forces (LDFs)

London Dispersion Forces (LDFs) Intermolecular Forces Attractions BETWEEN molecules. London Dispersion Forces (LDFs) London Dispersion Forces (LDFs) LIQUIDS / SOLIDS / IMFs Intermolecular Forces (IMFs) Attractions BETWEEN molecules NOT within molecules NOT true bonds weaker attractions Represented by dashed lines Physical properties (melting points,

More information

CH.7 Fugacities in Liquid Mixtures: Models and Theories of Solutions

CH.7 Fugacities in Liquid Mixtures: Models and Theories of Solutions CH.7 Fugacities in Liquid Mixtures: Models and Theories of Solutions The aim of solution theory is to express the properties of liquid mixture in terms of intermolecular forces and liquid structure. The

More information

A Single Species in One Spatial Dimension

A Single Species in One Spatial Dimension Lectre 6 A Single Species in One Spatial Dimension Reading: Material similar to that in this section of the corse appears in Sections 1. and 13.5 of James D. Mrray (), Mathematical Biology I: An introction,

More information

Thermodynamics. Chem 36 Spring The study of energy changes which accompany physical and chemical processes

Thermodynamics. Chem 36 Spring The study of energy changes which accompany physical and chemical processes Thermodynamics Chem 36 Spring 2002 Thermodynamics The study of energy changes which accompany physical and chemical processes Why do we care? -will a reaction proceed spontaneously? -if so, to what extent?

More information